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Cohomology operations and algebraic geometry

SIMONE BORGHESI

The manuscript is an overview of the motivations and foundations lying behind
Voevodsky’s ideas of constructing categories similar to the ordinary topological
homotopy categories. The objects of these categories are strictly related to algebraic
varieties and preserve some of their algebraic invariants.

14F42, 18D10; 14F20, 18F10

1 Introduction

This manuscript is based on a ten hours series of seminars I delivered in August of 2003
at the Nagoya Institute of Technology as part of the workshop on homotopy theory
organized by Norihiko Minami and following the Kinosaki conference in honor of Goro
Nishida. One of the most striking applications of homotopy theory in “exotic” contexes
is Voevodsky’s proof of the Milnor Conjecture. This conjecture can be reduced to
statements about algebraic varieties and “cohomology theories” of algebraic varieties.
These contravariant functors are called motivic cohomology with coefficients in abelian
groups A. Since they share several properties with singular cohomology in classical
homotopy theory, it is reasonable to expect “motivic cohomology operations” acting
naturally on these cohomology theories. By assuming the existence of certain motivic
Steenrod operations and guessing their right degrees, Voevodsky was able to prove
the Milnor Conjecture. This strategy reduced the complete proof of the conjecture to
the construction of these operations and to an appropriate category in whcih motivic
cohomology is a “representable”. In homotopy theory there are several ways of doing
this. We now know two ways of obtaining such operations on motivic cohomology: one
is due to P Brosnan [7] and the other to V Voevodsky [22]. The latter approach follows
a systematic developement of homotopy categories containing algebraic information
of the underlying objects and it is the one we will discuss in this manuscript. It turns
out that, if we think of an algebraic variety as something like a topological space
with an algebraic structure attached to it, it makes sense to try to construct homotopy
categories in which objects are algebraic varieties, as opposed to just topological spaces,
and, at the same time motivic cohomology representable. In the classical homotopy
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categories such representability always holds for any cohomology theory because of
Brown Representability Theorem. If such exotic homotopy categories existed in our
algebraic setting, they would tautologically contain all the algebraic invariants detected
by the cohomology theories represented.

This manuscript begins with a motivational part constituted by an introduction to
Voevodsky’s reduction steps of the Milnor Conjecture. By the end, the conjecture is
reduced to the existence of motivic Steenrod operations and of an (unstable) homotopy
category of schemes. In the second section we will discuss some of the main issues
involved on the construction of the homotopy category of schemes and in the proof
of the representability of motivic cohomology, assuming perfectness of the base field.
Another reference for representability of motivic cohomology are the lecture notes by
Voevodsky and Deligne [19]. We will focus particularly on the identifications between
objects in the localized categories.

For the beautiful memories of the period spent in Japan, which included the workshop
at the Nagoya Institute of Technology, I am greatly indebted to Akito Futaki and to
Norihiko Minami.

2 Motivic Steenrod operations in the Milnor Conjecture

Throughout this section, the word scheme will refer to a separable scheme of finite
type over a field k . Alternatively, we may consider a scheme to be an algebraic variety
over a field k . By Milnor Conjecture we mean the statement known as Bloch–Kato
Conjecture at the prime p = 2 (for more information about the origin of this conjecture,
see the introduction of the paper [20] by Voevodsky). This conjecture asserts:

Conjecture (Bloch–Kato) Let k be a field of characteristic different from a prime
number p. Then the norm residue homomorphism

(1) N : KM
n (k)/(p)→ Hn

et(Spec k, µ⊗n
p )

is an isomorphism for any nonnegative integer n.

We assume the reader to have mainly a homotopy theoretic background, therefore we
will occasionally include some descriptions of objects used in algebraic geometry. The
Milnor K –theory is defined as the graded ring

{KM
0 (k),KM

1 (k),KK
2 (k), . . .}
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where KM
n (k) is the quotient of the group k∗⊗Z

n· · · ⊗Zk∗ by the subgroup generated
by the elements a1 ⊗ · · · ⊗ an where ai + ai+1 = 1 for some i. It is useful to
mention that, in the literature, when dealing with Milnor K –theory, the multiplicative
group k∗ of the field k is written additively: for instance the element in KM

n (k)
represented by a1⊗ · · · ⊗ ac

m⊗ · · · an belongs to the subgroup c ·KM
n (k), being equal to

a1 ⊗ · · · c · am ⊗ · · · an where c · am is in KM
1 (k) = (k∗,+). The group lying as target

of the norm residue homomorphism is a (hyper)cohomology group of the algebraic
variety Spec k . As first approximation we may think of it as being a sort of ordinary
cohomology functor H∗(−,A) on algebraic varieties in which, instead of having the
abelian group A as the only input, we have two inputs: the Grothendieck topology
(et=étale in this case), and a complex of sheaves of abelian groups for the topology
considered as “coefficients” of the cohomology (the étale complex of sheaves µ⊗n

p in
the statement of the conjecture). The complex of sheaves µp is zero at any degree
except in degree zero where it is the sheaf that associates the elements f ∈ O(X) such
that f p = 1 to any smooth scheme of finite type X over a field k . µ⊗n

p is the n–fold
tensor product of µp in the derived category (one can construct this monoidal structure
in a similiar way as in the derived category of complexes of abelian groups). As we
would expect, the cohomology theory H∗et(−, µ⊗∗p ) is endowed of a commutative ring
structure given by the cup product. The norm residue homomorphism is defined as

N(a1 ⊗ · · · ⊗ an) = δ(a1) ∪ · · · ∪ δ(an) ∈ Hn
et(Spec k, µ⊗n

p ),

where δ is the coboundary operator H0
et(Spec k,Gm)→ H1

et(Spec k, µp) associated to
the short exact (for the étale topology) sequence of sheaves

(2) 0 // µp // Gm
bp // Gm // 0

We recall that the multiplicative group sheaf Gm is defined as Gm(X) = O(X)∗ for
any smooth scheme X and that H0(X,F) = F(X) for any sheaf F . N defines indeed
an homomorphism from KM

∗ (k) because δ(a) ∪ δ(1− a) = 0 in H2
et(Spec k, µ⊗2) as a

consequence of a result of Bass and Tate in [1].

2.1 Reduction steps

There are several reduction steps in Voevodsky’s program to prove the general Bloch–
Kato Conjecture before motivic cohomology operations are used. Firstly, the conjecture
follows from another one:
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Conjecture (Beilinson–Lichtenbaum, p–local version) Let k be a field and w ≥ 0.
Then

(3) Hw+1
et (Spec k,Z(p)(w)) = 0

In the proof that this statement implies the Bloch–Kato conjecture we begin to use the
so called motivic cohomology theory Hi,j(−,A) with coefficients in an abelian group A.

Proof (that the Beilinson–Licthembaum Conjecture implies the Bloch–Kato Conjecture)
Let Hi,j(X,Z/p) be the (i, j)th motivic cohomology group of X with coefficients in
Z/p (see Definition 4.1). Assuming that the Beilinson–Lichtenbaum conjecture
holds in degrees less or equal than n, Voevodsky proved in [20, Corollary 6.9(2)] that
Hi,j(X,Z/p) ∼= Hi

et(X,Z/p(j)) for all i ≤ j ≤ n. On the other hand, in Theorem 6.1 of the
same paper, he shows that Hi

et(X,Z/p(j)) ∼= Hi
et(X, µ

⊗j
p ). We conclude by recalling that,

if i = j and X = Spec k , the natural homomorphism KM
i (k)/(p)→ Hi,i(Spec k,Z/p) is

an isomorphism (see Suslin–Voevodsky [17, Theorem 3.4]).

The proof of the Beilinson–Lichtenbaum Conjecture is by induction on the index w.
For w = 0 we have that

H1
et(Spec k,Z(0)) = H1

et(Spec k,Z) = H1,0(Spec k,Z) = 0

and in the case w = 1, we know that Z(1) = Gm[−1], thus

H2
et(Spec k,Z(1)) = H1

et(Spec k,Gm) = Pic(Spec k) = 0

The first reduction step is that we can assume that k has no finite extensions of
degree prime to p (for the time being such field will be called p–special). Indeed,
Hw+1

et (Spec k,Z(p)(w)) injects in Hw+1
et (Spec L,Z(p)(w)) for any prime to p degree field

extension L/k , because the composition

H∗et(Spec k,Z(p)(∗)) transfer// H∗et(Spec L,Z(p)(∗)) i∗ // H∗et(Spec k,Z(p)(∗))

is multiplication by [L : k], hence it is an isomorphism. Therefore, letting F to be the
colimit over all the prime to p field extensions of k , to conclude it suffices to show the
vanishing statement for F .

Secondly, if k is p–special and KM
w (k)/(p) = 0, it is possible to prove directly that

Hw+1
et (Spec k,Z(p)(w)) = 0. Hence, to prove the Bloch–Kato Conjecture it suffices to

prove the following statement.
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Theorem 2.1 For any 0 6= {a1, a2, . . . , aw} = a ∈ KM
w (k)/(p), there exists a field

extension ka/k with k being p–special such that:

(1) a ∈ ker i∗ , where i∗ : KM
w (k)/(p)→ KM

w (ka)/(p) is the induced homomorphism;

(2) i∗ : Hw+1
et (Spec k,Z(p)(w)) ↪→ Hw+1

et (ka,Z(p)(w)) is an injection.

Surprisingly, the best candidates for such fields, we have knowledge of, are function
fields of appropriate algebraic varieties. Indeed, k(a1/p

i ) are all fields satisfying condition
(1) for any 1 ≤ i ≤ w, and condition (2) is precisely the complicated one. The approach
to handle (2) is to give a sort of underlying “algebraic variety” structure to the field ka .
Voevodsky proved the Milnor Conjecture by showing that, if p = 2, we can take ka to
be the function field of the projective quadric Qa given by the equation

(4) 〈1,−a1〉 ⊗ 〈1,−a2〉 ⊗ · · · ⊗ 〈1,−aw−1〉 ⊕ 〈−aw〉 = 0

with the convention that

〈a, b〉 ⊗ 〈c, d〉 = act2
1 + adt2

2 + bct2
3 + bdt2

4

and
〈k1, k2, . . . , km〉 ⊕ 〈h〉 = k1t2

1 + k2t2
2 + · · ·+ kmt2

m + ht2
m+1

Such variety is known as Pfister neighborhood of the quadric 〈1,−a1〉 ⊗ 〈1,−a2〉 ⊗
· · · ⊗ 〈1,−aw−1〉. In order to prove this, Voevodsky used two results of Markus Rost
about such quadrics translated in a context in which it makes sense to use homotopy
theoretical tools on algebraic varieties and an argument involving motivic cohomology
operations. We are now going to examine more carefully these techniques.

Remark 2.2 Recently Rost worked on finding substitute varieties for Pfister neighbor-
hoods at odd primes. His candidates are called norm varieties and he uses in his program
certain formulae called (higher) degree formulae (see Rost [13, 15] and Borghesi [5])
to prove the relevant properties in order to fit in Voevodsky’s framework.

At this stage, we will take for granted the existence of a localized category H•(k)
whose objects are pointed simplicial algebraic varieties (or, more generally, pointed
simplicial sheaves for the Nisnevich topology on the site of smooth schemes over k).
The localizing structure is determined by H•(k) being the homotopy category associated
to an (A1

k ) model structure on the category of simplicial sheaves. These categories will
be discussed more extensively later in the manuscript (see Section 4). At this point all
we need to know is that

(1) the objects of H•(k) include pointed simplicial algebraic varieties;
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(2) any morphism f : X → Y in H•(k) can be completed to a sequence

(5) X f−→ Y −→ Z −→ X ∧ S1
s

f∧id−→ Y ∧ S1
s −→ · · ·

inducing long exact sequences of sets, or abelian groups when appropriate, by
applying the functor HomH•(k)(−,W) for any W ∈ H•(k);

(3) for all integers i, j and abelian group A, there exist objects K(A(j), i) ∈ H•(k) such
that HomH•(k)(X+,K(A(j), i)) = Hi,j(X,A) for any smooth algebraic variety X
(X+ is the pointed object associated to X , that is XqSpec k). Moreover, defining
Hi,j(X ,A) = HomH•(k)(X ,K(A(j), i)) for any pointed simplicial algebraic variety
X , we have that, if k is a perfect field, the following equalities hold (see
Voevodsky [22, Theorem 2.4]):

Hi+1,j(X ∧ S1
s ,A) ∼= Hi,j(X,A)(6)

Hi+2,j+1(X ∧ P1
k ,A) ∼= Hi,j(X,A)(7)

where ∧ is the usual categorical smash product defined as X × Y/X ∨ Y .

Perfectness of the base field is not restrictive for the purpose of the Bloch–Kato
Conjecture since such conjecture holding on characteristic zero fields implies the same
result for fields of characteristic different from p. Let X be a variety; denote by Č(X)
the simplicial variety given by Č(X)n = X × n+1· · · × X with projections and diagonals
as structure maps. The main feature of such simplicial variety is that it becomes
simplicially equivalent to a point (ie Spec k) if X has a rational point x : Spec k→ X ,
a contracting homotopy being

(8) id×x : X× i· · · ×X → X× i+1· · · ×X

By (2), the canonical map Č(X)+ → Spec k+ can be completed to a sequence

(9) Č(X)+ → Spec k+ → C̃(X)→ Č(X)+ ∧ S1
s → · · ·

for some object C̃(X) of H•(k).

We now assume p = 2 as in that case things are settled and we let Xa to be the simplicial
smooth variety Č(Ra), Ra being the Pfister neighborhood associated to the symbol a.
Part (1) of Theorem 2.1 for ka = k(Qa) is consequence of a standard property of Pfister
quadrics: if Ra has a rational point on a field extension L over k , then a is in the kernel
of the map i∗ : KM

∗ (k)/(2)→ KM
∗ (L)/(2) (see Voevodsky [20, Proposition 4.1]). Part

(2) follows from two statements:

(i) there exists a surjective map Hw+1,w(Xa,Z(2))→ ker i∗ , and

(ii) Hw+1,w(Xa,Z(2)) = 0.
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The first statement is already nontrivial and uses various exact triangles in certain
triangulated categories, one of which is derived by a result of Rost on the Chow motive
of Ra , and a very technical argument (not mentioned by Voevodsky [20]) involving
commutativity of the functor H∗et(−,Z(2)(∗)) with limits. The reason for introducing
the simplicial algebraic variety Xa is to have an object sufficiently similar to Spec k ,
and at the same time sufficiently different to carry homotopy theoretic information. The
similarity to Spec k is used to prove (i), whereas the homotopy information plays a
fundamental role in showing that

Theorem 2.3 Hw+1,w(Xa,Z(2)) = 0

Proof Let X̃a be C̃(Ra). Since Ra has points of degree two Spec E → Ra over
k , we have that (X̃a)E ∼= Spec E , because fE (the base change of the structure map
f : X̃a → Spec k over Spec E) is a simplicial weak equivalence. By a transfer argument,
we see that 2H∗,∗(X̃a,Z(2)) = 0. Moreover, property (3) of H•(k) implies that
Hw+1,w(Xa,Z(2)) ∼= H̃w+2,w(X̃a,Z(2)), because Hi,j(Spec k,Z) = 0 if i > j. Thus, it
suffices to show that the image of the reduction modulo 2 map

(10) H̃w+2,w(X̃a,Z(2))→ H̃w+2,w(X̃a,Z/(2))

is zero. The groups Hi,j(X̃a,Z/2) are known for i ≤ j ≤ w−1, because of the following
comparison result (cf Voevodsky [20, Corollary 6.9]):

Theorem 2.4 Assume that the Beilinson–Lichtenbaum Conjecture holds in degree n.
Then for any field k and any smooth simplicial scheme X over k ,

(1) the homomorphisms

Hi,j(X ,Z(p))→ Hi
et(X ,Z(p)(j))

are isomorphisms for i− 1 ≤ j ≤ n and monomorphisms for i = j + 2 and j ≤ n;
and

(2) the homomorphisms

Hi,j(X ,Z/pm)→ Hi
et(X ,Z/pm(j))

are isomorphisms for i ≤ j ≤ n and monomorphisms for i = j + 1 and j ≤ n
and for any nonnegative integer m.

In our case we have

H̃i,j(X̃a,Z/2) ∼= H̃i
et, (X̃a,Z/2(j)) ∼= H̃i

et, (Spec k,Z/2(j)) = 0
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because of the inductive assumption on the Beilinson–Lichtenbaum Conjecture holding
through degree w− 1 and [20, Lemma 7.3]. In other degrees almost nothing is known,
except that H2w−1,2w−1

(Xa,Z) = H̃2w,2w−1
(X̃a,Z) = 0 by Theorem 4.9, which uses the

second result of Rost [14]. Let u be a nonzero class in the image of (10), by means of
some hypothetical motivic cohomology operation θ acting on H∗,∗(−,Z/2), we can
first try to move u up to the degree (2w, 2w−1) and then compare it with the datum
H̃2w,2w−1

(X̃a,Z) = 0. What we are about to write now is strictly related to Section 5
of this manuscript. Let Qtop

i be the topological Steenrod operations defined by Milnor
[9]. Let us assume that there exist operations which we still denote by Qi that act on
H∗,∗(−,Z/p) and that satisfy similar properties as Qtop

i . In particular, we should expect
that Q2

i = 0 and we could compute the bidegrees of Qi from the equality

(11) Qi = Q0(0, . . . , 1) + (0, . . . , 1)Q0

where (0, . . . , 1), with the 1 in the ith place, is the hypothetical motivical cohomological
operations defined as the dual to the canonical class ξi of the dual of the motivic
Steenrod algebra (cf Voevodsky [22] and Milnor [9]). Indeed, the bidegree of (0, . . . , 1)
is (2pi − 2, pi − 1) and Q0 should be the Bockstein, hence bidegree (0, 1). This
shows that |Qi| = (2pi − 1, pi − 1) or (2i+1 − 1, 2i − 1) if p = 2. Section 5 will be
devoted to the construction of such cohomology operations. Thus, Qw−2Qw−3 · · ·Q1u
belongs to H̃2w,2w−1

(X̃a,Z/2). By assumption, the class u is the reduction of an integral
cohomology class and, by the equality (11), so does the class Qw−2Qw−3 · · ·Q1u, that
therefore must be zero. To finish the proof it suffices to show that multiplication by Qi

on the relevant motivic cohomology group H̃w−i+2i+1−1,w−i+21−1(X̃a,Z/2) is injective.
Since

(12) Qi · H̃w−i,w−1(X̃a,Z/2) ⊂ H̃w−i+2i+1−1,w−i+21−1(X̃a,Z/2)

and the former group is zero as mentioned above, the obstruction to injectivity of left
multiplication by Qi in degree (w−i+2i+1−1,w−i+21−1) is given by the ith Margolis
homology of the module H̃∗,∗(X̃a,Z/2) in degree (w−i+2i+1−1,w−i+21−1). Recall
that given a graded left module over the Steenrod algebra M , the Margolis homology of
M is defined as H1 of the chain complex

{M Qi·−→ M
Qi·−→ M}

and is usually denoted with HM(M,Qi).

Remark 2.5 This argument, along with the successful use of Qi to prove the van-
ishing of Margolis homology of X̃a , constituted the strongest motivation to construct
cohomological operations analogous to the Steenrod operations. Voevodsky did this
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in [22] and it turned out that the Hopf algebra (actually Hopf algebroid) structure of
these operations may depend on the base field. More precisely, at odd primes or if√
−1 ∈ k , then the multiplication and comultiplication between the motivic Steenrod

operations are as expected, but at the prime 2 and in the case
√
−1 6∈ k both the

product and the coproduct are different. For more details see Theorem 5.5, Theorem 5.7,
Proposition 5.10 of this text, [22] and [4]. From these formulae we see that the formula
(11) barely holds even if

√
−1 6∈ k .

It suffices to prove that HM(H∗,∗(X̃a,Z/2),Qn) = 0 for all n ≥ 0. If X is a smooth,
projective variety of pure dimension i, then si(X) is the zero cycle in X represented by
−Newti(c1(TX), c2(TX), . . . , ci(TX)), that is the ith Newton polynomial in the Chern
classes of the tangent bundle of X . Such polynomials depend only on the index
i, thus the notation si(X) for them may seem strange. However, it is motivated by
the property of these polynomials being dual to certain monomials in the motivic
homology of the classifying sheaf BU . Indeed, in analogy to the topological case, the
set {sα(γ)}α=(α1,α2,...,αn,...) forms a basis for the motivic cohomology of BU , where αi

are nonnegative integers and γ → BU is the colimit of universal n–plane bundles over
the infinite grassmanians Grn(A∞) (see the author’s article [4]).

Theorem 2.6 Let Y be a smooth, projective variety over k with a map X → Y such
that X is smooth, projective variety of dimension d = pt − 1 with deg(sd(X)) 6≡ 0
mod p2 . Then HM(H∗,∗(C̃(Y),Z/p),Qt) = 0 for all n ≥ 0.

To prove Theorem 2.3 we apply the proposition to X = Xi for smooth subquadrics Xi of
dimension 2i− 1 for all 1 ≤ i ≤ w− 2. The fact that the condition on the characteristic
number of the Xi is satisfied is readily checked (see Voevodsky [20, Proposition 3.4]).

Proof The pointed object C̃(Y), which in topology would just be equivalent to a point,
it looks very much like Spec k , but it is different enough to contain homotopy theoretic
invariants of algebraic varieties mapping to Y . To prove the vanishing of the Margolis
homology, we analyze the two possible cases: in the first the scheme Y has points of
degree prime with p, in the second the prime p divides all the degrees of points of Y .
The former case implies that H̃∗,∗(C̃(Y),Z/p) = 0 by a transfer argument. Thus, we
can assume the latter property holds for Y . We want to present a contracting homotopy

(13) φ : H̃∗,∗(C̃(Y),Z/p)→ H̃∗−2d−1,∗−d(C̃(Y),Z/p)

satisfying the relation

(14) φQt − Qtφ = c

Geometry & TopologyMonographs 10 (2007)
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for some nonzero c ∈ Z/p. In topology, the assumption on the characteristic number
of X and the fact that all the caracteristic numbers of Y (a subset of degrees of points
of Y ) are divisible by p are equivalent to Qtτ 6= 0 in the cohomology of the cone of
fX : Sd+n → Th(νX) obtained via the Thom–Pontryagin construction, where ν is the
normal bundle to an embedding X ↪→ Rd+n such that ν has a complex structure and
τ ∈ Hn(Th(νX),Z/p) is the Thom class. Existence of an “algebraic” Thom–Pontryagin
construction (see Voevodsky [20, Theorem 2.11] or Borghesi [5, Section 2]) allows to
conclude the same statement in the category H•(k). We will now transform the equality
Qtτ 6= 0 in the equality (14). Consider the sequence

(15) (P1
k)∧d+n fX→ Th(νX)→ Cof(fX) δ→ (P1

k)∧d+n ∧ S1
s → · · ·

and let Qtτ = cγ 6= 0, where γ = δ∗ι and ι is the canonical generator of

H2(d+n)+1,d+n((P1
k)∧d+n ∧ S1

s ,Z/p).

Consider now the chain of morphisms

(16)

H̃∗,∗(C̃(Y),Z/p) H̃∗−2d−1,∗−d(C̃(Y),Z/p)
φ

//

H̃∗+2n,∗+n(Cof(fX),Z/p)

H̃∗,∗(C̃(Y),Z/p)

OO

τ∧−

H̃∗+2n,∗+n(Cof(fX),Z/p) H̃∗+2n,∗+n((P1
k)n+d∧S1

s∧C̃(Y),Z/p)oo δ∗∧ id H̃∗+2n,∗+n((P1
k)n+d∧S1

s∧C̃(Y),Z/p)

H̃∗−2d−1,∗−d(C̃(Y),Z/p)

∼=

��

Notice that δ∗ ∧ id is an isomorphism. Indeed, one thing that makes C̃(Y) similar to
Spec k is that Th(νX)∧ C̃(Y) is simplicially weak equivalent to Spec k . We can see this
by smashing the sequence (9) with ν+ and using that the projection (Č(Y)× ν)+ → ν+

is a simplicial weak equivalence because of the assumption on existence of a morphism
X → Y and [20, Lemma 9.2]. Let now y ∈ H̃∗,∗(C̃(Y),Z/p) and consider the equality

(17) cγ ∧ y = Qtτ ∧ y = τ ∧ Qt(y)− Qt(τ ∧ y)

with the last equality following from the motivic Steenrod algebra coproduct structure
(cf Proposition 5.10, Voevodsky [22, Proposition 13.4] or Borghesi [4, Corollary 5])
and that Hi,j(X,Z/p) = 0 if X is a smooth variety and i > 2j, hence Qiτ = 0 for i < t
because of the motivic Thom isomorphism. Equality (17) is equality (14) if we let φ as
in diagram (16) and we identify isomorphisms.

This finishes the proof of Theorem 2.3 and the motivational part of this manuscript.
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3 Foundations and the Dold–Kan theorem

We will proceed now with the creation of the environment in which algebraic varieties
preserve various algebraic invariants and at the same time we can employ the homotopy
theoretic techniques which have been used by Voevodsky to prove Theorem 2.3.

Definition 3.1 A functor F : E → F , with every object of F being a set, is repre-
sentable in the category E if there exists an object KF ∈ E such that the bijection of
sets

(18) F(X) ∼= HomE (X,KF)

holds and it is natural in X for any X ∈ E .

In our situation, F will be the category of abelian groups, and the congruence (18) is
to be understood as abelian groups. In algebraic topology there are several ways to
prove that singular cohomology is a representable functor in the unstable homotopy
category H . This is the ordinary homotopy category associated to the model structure
on topological spaces in which fibrations are the Serre fibrations, as opposed to Hurewicz
fibrations. Here we will recall one way to show such representability which serves
as a model for proving the same result in the algebraic context. Originally, singular
cohomology has been defined as the homology of a (cochain) complex of abelian groups,
hence it is resonable to find some connection between the category of complexes of
abelian groups and the underlying objects of H . The latter maybe seen as a localized
category of the category of simplicial sets, thus we may set as our starting point the

Theorem 3.2 (Dold–Kan) Let A be an abelian category with enough injective objects.
Then there exists a pair of adjoint functors N and K (N left adjoint to K ) which induce
and equivalence of categories

(19) Ch≥0(A)
K // ∆op(A)
N

oo

in which simplicially homotopic morphisms correspond to chain homotopic maps and
viceversa.

Consider the case of A to be the category of abelian groups. Then we have a chain of
adjunctions

(20) Ch≥0(A)
K // ∆op(A)
N

oo
forget // ∆op(Sets)
Z[−]

oo
|−| // Top

Sing(−)
oo
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where Z[X ] is the free simplicial abelian group generated by the simplicial set X , |X |
is the topological realization of X , Sing(X) is the simplicial set HomTop(∆∗top,X) and
∆∗top is the cosimplicial topological space{

(t0, t1, . . . , tn)/0 ≤ ti ≤ 1,
∑

ti = 1
}

Each of the categories appearing in the diagram admits localizing structures which are
preserved by the functors. In Ch≥0(A) the class of morphisms that is being inverted
is the quasi isomorphisms, in the simplicial homotopy categories are the simplicial
homotopy equivalences. This lead us to the first result:

Proposition 3.3 The chain of adjunctions of diagram (20) induce bijection of sets in
the relevant localized categories

(21) HomD≥0(Ab)(NZ[X ],D∗) ∼= HomH(∆op(Sets))(X ,K(D∗))

for any simplicial set X and complex of abelian groups D∗ .

Since we will need to take “shifted” complexes we have to enlarge the category
Ch≥0(Ab): let Ch+(Ab) be the category of chain (ie with differential of degree −1)
complexes of abelian groups which are bounded below, that is for any C∗ ∈ Ch+(Ab),
there exists an integer nC ∈ Z such that Ci = 0 for all i < nC . We relate these two
categories of chain complexes by means of a pair of adjoint functors

(22) Ch≥0(Ab)
forget // Ch+(Ab)

truncation
oo

where the truncation is the functor which sends a complex

(23) {· · · → Ci
di→ Ci−1 → · · · → C1

d1→ C0
d0→ · · · }

to the complex

(24) {· · · → Ci
di→ Ci−1 → · · · → C1

d1→ ker d0}

Notice that this functor factors through the derived categories. Given a complex D∗ and
an integer n, let D[n]∗ be the complex such that D[n]i = Di−n . Proposition 3.3 implies

Proposition 3.4 The adjoint functors of diagram (20) induce a bijection of sets

(25) HomD+(Ab)(NZ[X ],D[n]∗) ∼= HomH(∆op(Sets))(X ,K(trunc(D[n]∗))

for any integer n, simplicial set X and bounded below complex of abelian groups D∗ .
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We wish to understand better the morphisms in the derived category in order to use
the equality (25). Recall that we want to show that the functor simplicial cohomology
of topological spaces is representable in the unstable homotopy category H . Quillen
showed in [12] that this category is equivalent to H(∆op(Sets)), thus representability of
singular cohomology in H amounts to the group isomorphism

(26) Hn
sing(X,A) ∼= HomD+(Ab)(NZ[Sing(X)],DA[n]∗)

for some bounded below complex of abelian groups DA and any CW-complex X .

Definition 3.5 Given a topological space X and an abelian group A , we define:

(1) the nth singular homology group Hsing
n (X,A) to be the nth homology of the chain

complex NZ[Sing(X)];

(2) the nth singular cohomology group Hn
sing(X,A), to be the nth homology of the

cochain complex HomAb(NZ[Sing(X)],A).

In conclusion, we are reduced to compare the homology of the cochain complex
{HomAb(NZ[Sing(X)],A)} with the group HomD+(Ab)(NZ[Sing(X)],DA[n]∗) for some
appropriate complex DA[n]∗ . Morphisms in the derived category are described by this
important result

Theorem 3.6 Let A be an abelian category with enough projective (respectively
injective) objects. Moreover, let C∗ and D∗ be chain complexes, P∗ → C∗ and
D∗ → I∗ quasi isomorphisms, P∗ being projective objects and I∗ injective objects for
all ∗. Then

HomD+(A)(C,D[n]) = Hn(Tot∗(HomA(P,D)))

(resp. = H−n(Tot∗(HomA(C, I))))
(27)

where Tot∗ is the total complex of the cochain bicomplex HomA(P∗,D∗) (resp.
HomA(C∗, I−∗)) and H∗ denotes the homology of the cochain complex.

Theorem 3.6 is rather classical and we refer to Weibel [25, Section 10.7] for its proof.
It is based on the fact that, via calculus of fractions, one shows that

HomD+(A)(C∗,D[n]∗) = lim
B∗

q.iso→C∗
HomK+(A)(B∗,D[n]∗)

where K+(A) is the localization of Ch+(A) with respect to the chain equivalences of
complexes and HomK+(A)(B∗,D[n]∗) is the quotient set of

HomCh+(A)(B∗,D[n]∗)
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modulo chain equivalences. According to the definitions given, applying Theorem 3.6
to C∗ = NZ[Sing(X)] and D∗ = A[i] (here the abelian group A is seen as complex
concentrated in degree zero), we conclude that

(28) HomD+(Ab)(NZ[Sing(X)],A[i]) = Hi
sing(X,A)

and, in view of Proposition 3.4, we conclude

Theorem 3.7 The homotopy class of K(trunc A[i]) represents singular cohomology in
the sense that, for any topological space X and abelian group A,

(29) HomH(∆op Sets)(Sing(X),K(trunc A[i])) = Hi
sing(X,A)

or equivalently,

(30) HomH(X, |K(trunc A[i])|) = Hi
sing(X,A)

This represents the reasoning we wish to reproduce in the algebraic setting.

4 Motivic cohomology and its representability

4.1 Sites and sheaves

There are two main issues we should consider: the first is finding the category playing
the role of D+(Ab) and the second is the category replacing H . The former question is
dictated by the definition we wish to give to motivic cohomology groups Hi,j(X,A) with
coefficients in an abelian group A of a smooth variety over a field k . If we set them to
be right hyperderived functors of HomA(−,D∗) for some object D∗ ∈ Ch+(A) and
some abelian category A with enough projective or injective objects, then Theorem 3.6
automatically tells us that motivic cohomology is representable in the derived category
D+(A) and we are well poised for attempting to repeat the topological argument of
the previous section, with D+(A) in place of D+(Ab). Up to a decade or so ago the
best approximation of what we wished to be motivic cohomology was given by the
Bloch’s higher Chow groups [2] defined as the homology of a certain complex. Most of
Voevodsky’s work in [24] is devoted to prove that, if k admits resolution of singularities,
for a smooth variety X , these groups are canonically isomorphic to Hi

Nis(X,A(j)): the
Nisnevich (or even Zariski) hypercohomology of X with coefficients in a certain complex
of sheaves of abelian groups A(j). This makes possible to apply the previous remark
since hypercohomology with coefficients in a complex of sheaves D∗ is defined as right
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derived functors of the global sections and HomAb− Shv(Sm /k)(Z HomSm /k(−,X),D∗)
are precisely the global sections of D∗ , by the Yoneda Lemma. Thus, we can take
the abelian category A to be Nk , the category of sheaves of abelian groups for the
Nisnevich topology over the site of smooth algebraic varieties over k , and D∗ to be
A(j). Therefore, we define

Definition 4.1 The (i, j)th motivic cohomology group of a smooth algebraic variety X
is Hi

Nis(X,A(j)), where the complex of sheaves of abelian groups A(j) will be defined
below. Such groups will be denoted in short by Hi,j(X,A).

The quest for the algebraic counterpart of the category H begins with the question
on what are the “topological spaces” or more precisely what should we take as the
category ∆op(Sets) in the algebraic setting. The first candidate is clearly Sch /k , the
category of schemes of finite type over a field k . This category has all (finite) limits
but, the finiteness type condition on the objects of Sch /k prevents this category from
being closed under (finite) colimits and this is too strong of a limitation on a category
for trying to do homotopy theory on. The less painful way to solve this problem it
seems to be to embed Sch /k in Funct((Sch /k)op,Sets), the category of contravariant
functors from Sch /k to Sets, via the Yoneda embedding Y : X → HomSch /k(−,X).
The category Funct((Sch /k)op,Sets) has all limits and colimits induced by the ones of
Sets and the functor Y has some good properties like being faithfully full, because of
Yoneda Lemma. However, although it preserves limits, it does not preserve existing
colimits in Sch /k . Thus, the entire category Funct((Sch /k)op,Sets) does not reflect
enough existing structures of the original category Sch /k . It turns out that smaller
categories are more suited for this purpose and the question of which colimits we wish
to be preserved by Y is related to sheaf theory. Let us recall some basic definitions of
this theory.

Definition 4.2 Let C be a category such that for each object U there exists a set of
maps {Ui → U}i∈I , called a covering, satisfying the following axioms:

(1) for any U ∈ C , {U id→ U} is a covering of U ;

(2) for any covering {Ui → U}i∈I and any morphism V → U in C , the fibre products
Ui ×U V exist and {Ui ×U V → V}i∈I is a covering of V ;

(3) if {Ui → U}i∈I is a covering of U , and if for each i, {Vij → Ui}j∈Ji is a covering
of Ui , then the family {Vij → U}i,j is a covering of U .

Then the datum T of the covering is called a Grothendieck topology and the pair (C, T)
is a site.
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Examples 4.3 (1) If X is a topological space, C is the category whose objects
are the open subsets of X , and morphisms are the inclusions, then the family
{Ui → U}i∈I for which qiUi → U is surjective and U has the quotient topology
is an open covering of U . This is a Grothendieck topology on C . In particular, if
the topology of X is the one of Zariski, we denote by XZar the site associated to
it.

(2) Let X be a scheme and C be the category whose objects are étale (ie locally of
finite type, flat and unramified) morphisms U → X and as arrows the morphisms
over X . If we let the covering be the surjective families of étale morphisms
{Ui → U}i , then we obtain a site denoted with Xet .

(3) If X is a scheme over a field k , and in the previous example we replace étale
coverings with étale coverings {Ui → U}i∈I−finite with the property that for each
(not necessarily closed point) u ∈ U there is an i and ui ∈ Ui such that the
induced map on the residue fields k(ui)→ k(u) is an isomorphism, then we get a
Grothendieck topology called completely decomposed or Nisnevich.

(4) Let C be a subcategory of the schemes over a base scheme S (eg Sm /k : locally
of finite type, smooth schemes over a field k). Then Grothendieck topologies are
obtained by considering coverings of objects of C given by surjective families of
open embeddings, locally of finite type étale morphisms, locally of finite type
étale morphisms with the condition of the previous example, locally of finite type
flat morphisms, et cetera. The corresponding sites are denoted by CZar , Cet , CNis ,
Cfl . In the remaining part of this manuscript we will mainly deal with the site
(Sm /k)Nis .

For the time being all the maps of a covering will be locally of finite type. We have the
following inclusions:

{Zariski covers} ⊂ {Nisnevich covers} ⊂ {étale covers} ⊂ {flat covers}

We now return to the colimit preserving properties of the Yoneda embedding functor
Y : Sch /k ↪→ Funct((Sch /k)op,Sets). Taking for granted the notion of limits and
colimits of diagrams in the category Sets, we recall that an object A of a small category
C is a colimit of a diagram D in C if HomC(A,X) = limSets HomC(D,X) for all X ∈ X .
The diagrams in Sch /k whose colimits we are mostly interested in being preserved by
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Y are

V ×X V

��

// V

V

(31)

where V → X is a flat covering for a Grothendieck topology. Such diagrams admit
colimits on Sch /k : they are each isomorphic to X . This can be rephrased by saying
that the square obtained by adding X and the canonical maps V → X on the lower
right corner of diagram (31) is cocartesian. In order for Y to preserve such colimits we
are going to consider the largest full subcategories of Funct((Sch /k)op,Sets) in which
Y(X) is the colimit of

Y(V ×X V) //

��

Y(V)

Y(V)

(32)

Definition 4.4 Let (Sch /k,T) be a site. Then F is a sheaf on the site (Sch /k,T) if

HomFunct((Sch /k)op,Sets)


Y(V ×X V) //

Y(T)
��

Y(V)

��
Y(V)

Y(T) // Y(X)

,F

(33)

is a cartesian square in Sets. This property will be refered to as F making the diagram

Y(V ×X V) //

Y(T)
��

Y(V)

��
Y(V)

Y(T) // Y(X)

cocartesian in Funct((Sch /k)op,Sets).

The full subcategory of Funct((Sch /k)op,Sets) of sheaves for the T topology will be
denoted as Shv(Sch /k)T .

Remark 4.5 (1) This definition is a rephrasing of the classical one found in algebraic
geometry texts.

(2) The Yoneda embedding Y embeds Sch /k as a full subcategory of Shv(Sch /k)T

for any topology T coarser than the flat.
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Strange it may seem, the category Shv(Sch /k)T is going to be the replacement for the
category Sets in topology. This time, though, the category depends upon one parameter:
the Grothendieck topology T . The role played by such parameter can be deduced by the
results below. For the time being, we will just consider sites with Sm /k as underlying
category of objects

Proposition 4.6 (Morel–Voevodsky [11, Proposition 1.4, p96]) F is a sheaf for the
Nisnevich topology if and only if F makes cocartesian Y(D) where D is the following
diagram:

U ×X V //

��

V

p
��

U � � i // X

(34)

where all the schemes are smooth, p is étale, i is an open immersion and

p : p−1(X − i(U))red → (X − i(U))red

(ie reduced structure on the closed subschemes) is an isomorphism. Such squares are
called elementary squares.

Remark 4.7 There are analogous results for the Zariski and étale topologies according
to whether we require p to be an open embedding or i to be just étale, respectively.

We now drop the Y from the notation and therefore think of a scheme X as being Y(X),
the sheaf represented by X , as an object in Shv(Sch /k)T . Denote with Cof(f ) the
colimit (of course in the category Shv(Sch /k)T ) of the diagram

U
f //

��

X

Spec k

and call it the cofiber of the map f . If f is injective, we will write X/U for such cofiber.
By general nonsense, in a cocartesian square we can identify cofibers of parallel maps.
In particular, in the case of the cocartesian square (34) we get a canonical isomorphism
V/(U ×X V)→ X/U . This implies that we are able to identify special sheaves in the
isomorphism classes of such objects.
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Examples 4.8 (1) Let Z1 and Z2 be two disjoint closed subvarieties of a smooth
variety X . Then,

X − Z1 − Z2 //

��

X − Z1

��
X − Z2 // X

(35)

is an elementary square and the canonical morphism

X − Z1/(X − Z1 − Z2)→ X/(X − Z2)

is, not surprisingly, an isomorphism.

(2) Let L/k be a finite, separable field extension y : Spec L→ X be an L–point, X
a smooth variety over k and XL the base change of X over L. Then there exist
points x1, x2 · · · , xn, xL of XL with xL rational (if L/k is a Galois extension then
all xi are rational), such that

XL − {x1, . . . , xn, xL} //

��

XL − {x1, . . . , xn}
p

��
X − y i // X

(36)

is an elementary square. For instance,

A1
C − {i,−i} //

��

A1
C − {i}

��
A1

R − Spec C // A1
R

(37)

is an elementary square and A1
C − {i}/(A1

C − {i,−i})→ A1
R/(A1

R − Spec C) is
an isomorphism.

Combining the two previous examples we prove:

Proposition 4.9 Let L/k be a finite, separable field extension. Assume that a
smooth variety has an L–point y : Spec L → X . Then, the canonical morphism
X/(X − y) → XL/(XL − y) is an isomorphism of sheaves for a topology finer or
equivalent to the Nisnevich one.

The next results require the introduction of some notation most of the homotopy theorists
are familiar with.
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Definition 4.10 (1) A pointed sheaf is a pair (F, x) of a sheaf F and an element
x ∈ F(Spec k). The symbol F+ will denote the sheaf F q Spec k . The cofiber of
the unique morphism ∅ → X is set by convention to be X+ . Notice that, unlike
in topology, there exist sheaves F with the property that F(Spec k) is the empty
set, thus such F cannot be pointed (unless by adding a separate basepoint). This
fact is the source of the most interesting phenomena in motivic homotopy theory
such as the various degree formulae.

(2) Let (A, a) and (B, b) two pointed sheaves. Then A ∨ B is the colimit of

Spec k a //

b
��

A

B

(38)

pointed by a = b.

(3) The pointed sheaf A ∧ B is defined to be A× B/A ∨ B pointed by the image of
A ∨ B.

(4) Let V → X be a vector bundle (ie the scheme associated with a locally free sheaf
of OX modules). Then the Thom sheaf of V is V/(V − i(X)), where i : X → V
is the zero section of V . The Thom sheaf will be denoted by ThX(V).

(5) The sheaf T will always stand for A1
k/(A1

k − 0).

The Thom sheaves enjoy of properties similar to the topological counterparts.

Proposition 4.11 Let V1 → X1 and V2 → X2 be two vector bundles. Then there is a
canonical isomorphism of pointed sheaves

ThX1×X2(V1 × V2)
∼=→ ThX1(V1) ∧ ThX2(V2)

Corollary 4.12 Let An
X := An

k ×k X be the trivial vector bundle of rank n over X .
Then there is a canonical isomorphism of pointed sheaves

Th(An
X)
∼=→ Tn ∧ X+

Proof Proposition 4.11 implies that Th(An
k) ∼= T∧n and

ThX(An
X) = ThSpec k×kX(An

k ×k A0
X) ∼= T∧n ∧ ThX(A0

X) = T∧n ∧ X+
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Corollary 4.13 Let L/k be a finite and separable field extension and y : Spec L→ An
k

be an L point. For any positive integer n there is an isomorphism of sheaves

An
k/(An

k − y) ∼= T∧n ∧ (Spec L)+

if the topology T is finer or equivalent to the Nisnevich one.

Proof Proposition 4.9 gives an isomorphism An
k/(An

k − y) ∼= An
L/(An

L − y). Since An
L

is the trivial rank n vector bundle over Spec L , Corollary 4.12 gives

An
L/(An

L − y) ∼= Th(An
L) ∼= T∧n ∧ (Spec L)+.

This last isomorphism can be generalized to any closed embedding of smooth schemes,
if we allow to work in a suitable localized category of ∆op Shv(Sm /k)Nis . In that
situation the equivalence will be M/(M − i(X)) ∼= ThX(νi) if i : X ↪→ M is a closed
embedding of smooth schemes. We will go back to this in the next section.

4.2 Homotopy categories of schemes

In Section 4.1 we have mentioned that we will be taking the category ∆op Shv(Sm /k)Nis

as replacement for ∆op(Sets) in the program of Section 3. The chain of adjunctions of
diagram (20) has this algebraic counterpart:

(39) Ch+(Nk)
trunc // Ch≥0(Nk)

K //
forg

oo ∆op(Nk)
N

oo
forget // ∆op Shv(Sm /k)Nis
Z[−]
oo

where Nk denotes the category of sheaves of abelian groups for the Nisnevich topology
(the definition is the same as for Shv(Sm /k)Nis except that it is a full subcategory of
Funct((Sm /k)op,Ab)). Notice that the diagram (39) is a generalization of (20) since
there is a full embedding Sets ↪→ Shv(Sm /k)T sending a set S to the sheaf associated
to the presheaf such that F(U) = S for any U ∈ Sm /k and F(f ) = id for any f
morphism in Sm /k . In Section 3 we passed to localized categories associated with the
categories appearing in the adjunction. The functors respected the localizing structures
and induced adjunctions on the localized categories. Here we will do the same. Since
Nk is an abelian category, it admits a derived category D(Nk). In general, localizing a
category may be a very complicated operation to do on a category, being unclear even
what morphisms look like in the localized category, assuming it exists. D Quillen in [12]
developed a systematic approach to this issue, under the assumption that the category in
question had a model structure. This is a set of axioms which three classes of morphisms
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(weak equivalences, cofibrations and fibrations) have to satisfy. In a sense, this makes
the category similar to the category of topological spaces and the localization with
repect of weak equivalences becomes treatable much in the same way as the unstable
homotopy category of topological spaces H . The category ∆op(Shv(Smk)T can be
given a structure of model category as follows:

Definition 4.14 (1) A point in ∆op Shv(C)T is a functor ∆op Shv(C)T → Sets
commuting with finite limits and all colimits.

(2) Let a square
A //

g
��

B

f
��

C //

∃h
??

D

be given in a category. We say that f has the right lifting property with respect of
g if there exists a lifting h making the diagram commute. In the same instance,
we say that g has the left lifting property with respect of f .

Definition 4.15 Let CT be a site and f : X → Y a morphism in the site ∆op Shv(CT ).
Then f is called

(1) a simplicial weak equivalence if for any “point” x of ∆op Shv(C)T the morphism
of simplicial sets x(f ) : x(X )→ x(Y) is a simplicial weak equivalence;

(2) a cofibration if it is a monomorphism;

(3) a fibration if it has the right lifting property with respect to any cofibration which
is a weak equivalence.

Examples 4.16 Consider the site C = (Sch /k)Zar or (Sm /k)Zar and x : Spec L→ X
be a point of a scheme X over k . Let Ix be the cofiltered category of Zariski open
subschemes of X containing x. Then the functor F → colimU∈Ix F(U) is a point
for Shv(C)Zar . If we change the topology to Nisnevich or étale, to get points for the
respective categories we can take

INis
x = {p : U → X étale such that ∃y ∈ p−1x with p : k(y)

∼=→ k(x)}

and

Iet
x =

diagrams

U

p
��

Spec K x̄ // X

with p étale
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where x̄ : Spec K → Spec k(x) x→ X and K is a separably algebraically closed field.
Notice that the latter is a K dependent category.

Jardine [8] checked that the classes of morphisms of Definition 4.15 satisfy the axioms
of a model structure. Its homotopy category, that is the localization inverting the weak
equivalences, will be denoted as Hs(k). A generalization of the Dold–Kan Theorem
implies

Proposition 4.17 The maps in diagram (39) preserve the mentioned localizing struc-
tures. In particular, the adjoint functors in that diagram induce a bijection of sets

(40) HomD+(Nk)(NZ[X ],D[i]∗) ∼= HomHs(k)(X ,K(trunc(D[i]∗)))

for any D∗ ∈ Ch+(Nk), X ∈ ∆op Shv(Sm /k)Nis and i ∈ Z.

Associating to any set S the constant (simplicially and as a sheaf) simplicial sheaf S ,
we can embed ∆op Sets in ∆op Shv(Sm /k)Nis . Since this embedding preserves the
localizing structures we get a faithfully full embedding of H in Hs(k). In particular,
the canonical projection of ∆1 → Spec k becomes an isomorphism in Hs(k). Thus
Proposition 4.17 is a generalization of Proposition 3.4. However, while in the topological
case H is the correct category to study topological spaces with respect of homotopy
invariant functors like singular cohomology, the category Hs(k) is not appropriate for
certain applications: for example Theorem 4.23 is false in Hs(k). This category can
be made more effective to study algebraic varieties via motivic cohomology. Indeed,
we can localize further Hs(k) without loosing any information detected by motivic
cohomology: it is known that for any algebraic variety X , the canonical projection
X ×k A1

k → X induces via pullback of cycles an isomorphism on (higher) Chow groups
and the same holds for the definition of motivic cohomology of Definition 4.1, if k is
a perfect field. Therefore, inverting all such projections is a lossless operation with
respect to these functors. To localize a localized category we can employ the Bousfield
framework [6] and define X ∈ ∆op Shv(Sm /k)Nis to be a simplicial sheaf A1

k local if
for any Y ∈ ∆op Shv(Sm /k)Nis , the maps of sets

HomHs(k)(Y,X )
p∗→ HomHs(k)(Y ×k A1

k ,X )

induced by the projection Y ×k A1
k → Y , is a bijection.

Definition 4.18 A map f : X → Y in ∆op Shv(Sm /k)Nis is called:
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(1) an A1
k weak equivalence if for any A1

k local sheaf Z , the map of sets

HomHs(k)(Y,Z)
f ∗→ HomHs(k)(X ,Z)

ia a bijection;

(2) an A1
k cofibration if it is a monomorphism;

(3) an A1
k fibration if it has the right lifting property (Definition 4.14 (2)) with respect

to monomorphisms that are A1
k weak equivalence.

Morel and Voevodsky showed in [11] that this is a (proper) model structure on
∆op Shv(Sm /k)Nis . The associated homotopy category will be denoted as H(k) and
called the unstable homotopy category of schemes over k .

Remark 4.19 (see [11]) The inclusion of the full subcategory Hs,A1
k
(k) ↪→ Hs(k) of

A1
k local objects has a left adjoint, denoted by Sing(−), that identifies Hs,A1

k
(k) with

H(k). Such functor is equipped of a natural transformation Θ : Id→ Sing that is an
A1

k weak equivalence on objects.

Working in the category H(k) as opposed to ∆op Shv(Sm /k)Nis makes schemes more
“flexible” quite like working with H in topology. In this case, however, we have an
high algebraic content, thus such flexibility should be made more specific with a few
examples. The next results are stated in unpointed categories, although they could be
formulated in the pointed setting just as well.

Proposition 4.20 Let V → X be a vector bundle and PV ↪→ P(V ⊕ A1
X) be the

inclusion of the projectivized scheme induced by the zero section

V → V ⊕ A1
X.

Then there exists a canonical morphism P(V ⊕ A1
X)/PV → Th(V) in Shv(Sm /k)Nis

that is an A1
k equivalence.

Proof See Morel–Voevodsky [11, Proposition 2.17, p112].

Corollary 4.21 The canonical morphism Pn
k/P

n−1
k → T∧n is an A1

k weak equivalence
for any positive integer n.

One of the first consequences of the algebraic data lying in the category H(k) is the
existence of several nonisomorphic “circles” in that category. Let S1

s denote the sheaf
∆1/∂∆1 and Gm be A1

k − {0}. The following result is a particularly curious one
and states that the simplicial sheaf T = A1

k/(A1
k − {0}), which should embody the

properties of a sphere or a circle, is made of an algebraic and a purely simplicial part.
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Proposition 4.22 There is an A1
k weak equivalence Gm ∧ S1

s
∼= T .

Proof See Morel–Voevodsky [11, Lemma 2.15].

In the previous few results the Nisnevich topology did not play any role. On the contrary,
the theorem below uses this assumption. Arguably, it is the most important result proved
in [11] and it represents a very useful tool which is crucial in several applications such
as the computation of the motivic Steenrod operations (see Voevodsky [22]) and in the
proof of the Milnor Conjecture (see Voevodsky [20]). At this point, it appears to be the
main reason to work in the category H(k) instead of Hs(k).

Theorem 4.23 (Morel–Voevodsky [11, Theorem 2.23, p115]) Let i : Z ↪→ X be
a closed embedding of smooth schemes and νi its normal bundle. Then there is a
canonical isomorphism in H(k)

X/(X − i(Z)) ∼= Th(νi)

Notice the analogy between this congruence of Nisnevich sheaves and the Nisnevich
sheaf isomorphism of Corollary 4.13. This is even more evident in the following
corollary.

Corollary 4.24 Let L/k be a finite and separable field extension and X a smooth
scheme of dimension n with an L point x : Spec L→ X . Then there is an isomorphism

X/(X − x) ∼= T∧n ∧ (Spec L)+

in the category H(k).

Let us go back to the adjunction (39) and representability of motivic cohomology.
From Proposition 4.17 and Theorem 3.6, we see that for any scheme X and complex
D∗ ∈ Ch+(Nk)

(41) Hi(X,D∗) ∼= HomD+(Nk)(Z[X],D[i]) ∼= HomHs(k)(X,K(trunc D[i]∗))

To see this, recall that the hypercohomology groups of a scheme X are the right
hyperderived functors of the global sections functor (on the small site in question). Since
HomAb− Shv(Z HomSch /k(−,X),F) = F(X), we conclude that hypercohomology groups
are Ext functors of Z[X] := Z HomSch /k(−,X). This is isomorphic to the left end side
group in the isomorphism of Proposition 4.17 because Z[X] is a complex concentrated
in dimension zero (hence NZ[X] = Z[X]) and of Theorem 3.6. In particular, for any
abelian group A we get that (cfr. Definition 4.1) Hi,j(X,A) ∼= HomHs(k)(X,K(A(j)[i])),
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that is motivic cohomology is a representable functor in Hs(k). We now wish to derive
an adjunction allowing to conclude an identification similar to the one of Proposition 4.17
but involving the category H(k). Since things work fine in the case of D+(Nk) and
Hs(k) we may try to alterate the former category in the same way we already did to
obtain H(k) from Hs(k). This leads us to the notion of complex D∗ ∈ Ch+(Nk) to be
A1

k local if the morphism A1
k

p→ Spec k induces an isomorphism of groups

p∗ : HomD+(Nk)(C∗,D∗)
∼=→ HomD+(Nk)(C∗

L
⊗ Z[A1

k],D∗)

for any C∗ ∈ Ch+(Nk). We than can endow D+(Nk) of a model structure given by
the classes of maps described in Definition 4.18 adapted to this derived category. The
resulting category DA1

+ (Nk) is equivalent to the full subcategory of D+(Nk) of A1
k local

objects, and the inclusion functor i has a left adjoint denoted by Sing(−). One checks
that the pair of functors induced by (N ◦ Z[−],K ◦ trunc) of diagram (39) on derived
and simplicial homotopy categories preserve A1

k local objects, therefore they induce an
adjunction between DA1

+ (Nk) and Hs(k):

Theorem 4.25 The pair of adjoint functors (N ◦Z[−],K ◦ trunc) induce a bijection of
sets:

(42) HomDA1
+ (Nk)(NZ[X ],D[i]∗) ∼= HomH(k)(X ,K(trunc D[i]∗))

for any D∗ ∈ Ch+(Nk), X ∈ ∆op Shv(Sm /k)Nis and i ∈ Z.

To relate the left end side of the isomorphism (42) with hypercohomology groups and
hence with motivic cohomology, we employ the adjunction (Sing(−), i): since DA1

+ (Nk)
is equivalent to the full subcategory of A1

k local objects of D+(Nk), it follows that

HomDA1
+ (Nk)(C∗,D∗) = HomD+(Nk)(C∗,D∗)

for any A1
k local complexes C∗ and D∗ . Let Sing : Hs(k) → HA1

k
s (k) denote also

the functor left adjoint to the inclusion of the full subcategory generated by the A1
k

local simplicial sheaves in Hs(k). Since NZ[−] preserves A1
k local objects and A1

k
weak equivalences, NZ[Sing(X)] is an A1

k local complex and the canonical morphism
NZ[Θ] : NZ[X]→ NZ[Sing(X)] is an A1

k weak equivalence. Therefore,

HomDA1
+ (Nk)(NZ[Sing(X)],L∗) = HomD+(Nk)(NZ[Sing(X)],L∗)

NZ[Θ]∗−→

HomD+(Nk)(NZ[X],L∗) ∼= Hi
Nis(X,L∗)

is a group isomorphism for any A1
k local complex L∗ . In the case of motivic cohomology,

if k is a perfect field, the complex of sheaves A(j) are A1
k local for all j ∈ Z, hence:
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Corollary 4.26 For a smooth scheme X over a perfect field k , and an abelian group A,
we have

(43)
Hi,j(X,A) ∼= HomDA1

+ (Nk)(Z[Sing(X)],A(j)[i])

∼= HomH(k)(X,K(trunc A(j)[i]))

The homotopy class of the simplicial sheaf K(trunc A(j)[i]) is called the (i, j) motivic
Eilenberg–MacLane simplicial sheaf with coefficients in A, in analogy with the
topological representing space of singular cohomology and will be denoted by K(A(j), i).

5 Motivic cohomology operations

In this section the word sheaf will always mean Nisnevich sheaf, unless otherwise
specified. The objective of this section is to give a more solid basis to key techniques
used to prove Theorem 2.6, namely the use of motivic cohomology operations with
finite coefficients. By such term we mean natural transformations

H∗,∗(−,Z/p)→ H∗+n,∗+m(−,Z/p)

commuting with suspension isomorphisms

H̃∗,∗(X ,Z/p) σs→ H̃∗+1,∗(X ∧ S1
s ,Z/p)

and
H̃∗,∗(X ,Z/p) σt→ H̃∗+1,∗+1(X ∧Gm,Z/p)

for any pointed sheaf X . See Voevodsky [22, Theorem 2.4] for a proof that these
canonical morphisms are isomorphisms in the case the base field is perfect. We are
interested to produce motivic cohomology operations as similar as possible to the ones
generating the Steenrod algebra A∗top : they are classically denoted by Pi and by β , the
Bockstein operation, and the collection of them over all nonnegative i generate A∗top as
(graded) algebra over Z/p. At any prime p, the operation P0 is the identity. At the
prime p = 2, the operation Pi is usually denoted by Sq2i and βPi by Sq2i+1 and are
sometimes called the Steenrod squares. This is a classical subject and there are several
texts available covering it. Among them, the ones of Steenrod and Epstein [16] and of
Milnor [9] contain the constructions and ideas which will serve as models to follow in
the “algebraic” case. The topological Steenrod algebra is in fact an Hopf algebra and is
completely determined by

(1) generators {β,Pi}i≥0 ,
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(2) the relations P0 = 1 and the so called Adem relations,

(3) the diagonal ψ∗ : A∗top → A∗top ⊗Z/p A∗top described by the so called Cartan
formulae.

The standard reference for the “algebraic” constructions is Voevodsky’s paper [22].
To construct the operations Pi , we need a suitable and cohomologically rich enough
simplicial sheaf B and an homomorphism

(44) P : H2∗,∗(−,Z/p)→ H2p∗,p∗(− ∧ B,Z/p)

called the total power operation. The “suitability” that the simplicial sheaf shall satisfy
is that H∗,∗(X ∧ B,Z/p) is free as left H∗,∗(X ,Z/p) module over a basis {bi}i for
any pointed simplicial sheaf X . We can then obtain individual motivic cohomology
operations from P by defining classes Ai(x) satisfying the equality P(x) =

∑
i Ai(x)bi

for any x ∈ H∗,∗(X ,Z/p). In analogy with the topological case, the pointed simplicial
sheaf B is going to be chosen among the ones of the kind BG for a finite group (or, more
generally, a group scheme) G. In particular, we will consider G to be Sp , the group of
permutations on p elements. There are various models for the homotopy class of BG in
H•(k). We are interested to one of them whose motivic cohomology can be computed
more easily for the groups G considered: let r : G→ Gld(k) be a faithful representation
of G and Un the open subset in Adn

k where G acts freely with respect of r . The open
subschemes {Un}n fit into a direct system induced by the embeddings Adn ↪→ Ad(n+1)

given by (x1, x2, . . . , xn)→ (x1, x2, . . . , xn, 0). For instance, let µp defined as the group
scheme given by the kernel of the homomorphism (−)p : Gm → Gm . We can take
d = 1 and r : Z/p ↪→ Gl1(k) = k∗ . It follows that Un = An

k − 0 in this case.

Definition 5.1 BG is defined to be the pointed sheaf colimn(Un/G), where Un/G
is the quotient in the category of schemes and the colimit is taken in the category of
sheaves.

Of all the results of this section, the computation of the motivic cohomology of BG is
the only one that will be given a complete proof. This is because of its importance and
relevance in the structure of the motivic cohomology operations we are going to study
later in this section.

Theorem 5.2 (see Voevodsky [22, Theorem 6.10]) Let k be any field and X a pointed
simplicial sheaf over k . Then, if p is odd,

H∗,∗(X ∧ (Bµp)+,Z/p) =
H∗,∗(X ,Z/p)Ju, vK

(u2)
.(45)
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If p = 2,

(46) H∗,∗(X ∧ (Bµp)+,Z/p) =
H∗,∗(X ,Z/p)Ju, vK

(u2 − τv + ρu)
,

where

(1) u ∈ H1,1(Bµp,Z/p) and v ∈ H2,1(Bµp,Z/p);

(2) ρ is the class of −1 in H1,1(k,Z/p) ∼= k∗/(k∗)p ;

(3) τ is zero if p 6= 2 or char(k) = 2;

(4) τ is the generator of H0,1(k,Z/2) = Γ(Spec k, µ2) = µ2(k) if p = 2 and
char(k) 6= 2.

Proof It suffices to consider the case of X = X+ smooth scheme, essentially because
of [11, Lemma 1.16] (see also [5, Appendix B]). To prove the statement of the theorem as
left H∗,∗(X ,Z/p) modules, we are going to use the existence of a cofibration sequence

(47) (Bµp)+ → (OP∞k (−p))+ → Th(O(−p))→ S1
s ∧ (Bµp)+ · · ·

where OP∞k (−1) is the dual of the canonical line bundle over P∞k . By a vector
bundle V we sometimes mean its affinization Spec(Symm∗(V −̌)). This sequence is a
consequence of the fact that Bµp = OP∞k (−p)− z(P∞k ), where z is the zero section and
Bµp is constructed by means of the representation

µp ↪→ GL(O) = Gm

(cf Voevodsky [22, Lemma 6.3]). Smashing the sequence (47) with a smooth scheme
X+ we get a cofibration sequence

(48) X+ ∧ (Bµp)+ −→ X+ ∧ (OP∞k (−p))+
f−→ X+ ∧ Th(O(−p)) −→

S1
s ∧ X+ ∧ (Bµp)+ −→ · · ·

which yields a long exact sequence

(49) · · · → H̃∗−2,∗−1(X,A)JcK
bf ∗−→ H∗,∗(X,A)JcK α−→

H∗,∗(X+ ∧ (Bµp)+,A) −→ H̃∗−1,∗−1(X,A)JcK→ · · ·

for any abelian group A and where c ∈ H2,1(P∞,A) is the first Chern class of OP∞(1).
We define v ∈ H2,1(Bµp,A) to be the image of c and u ∈ H1,1(Bµp,Z/p) the class
mapping to 1 ∈ H0,0(Spec k,Z/p)JcK and restricting to 0 in H1,1(Spec k,Z/p) ∼=
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{H∗,∗(Spec k,Z/p)JcK}1,1 via any rational point Spec k → Bµp . The long exact
sequence (49) splits in short exact sequences

(50) 0→H∗,∗(X,Z/p)JcK→H∗,∗(X+ ∧ Bµp,Z/p)→H∗−1,∗−1(X,Z/p)JcK→0

if A = Z/p since f̂ ∗ = 0, in that case. To see this, notice that f̂ ∗ is the composition
z∗ ◦ f ∗ ◦ t where

t : H∗,∗(P∞)→ H̃∗+2,∗+1(X+ ∧ Th(O(−p)))=̃H∗+2,∗+1(Th(X ×O(−p)))

is the Thom isomorphism (see Borghesi [4, Corollary 1]) and

z : X+ ∧ P∞+ → X+ ∧ OP∞k (−p)+

is the zero section. This composition sends a class x to x · pc which is zero with Z/p
coefficients. By means of the sequences (50) we prove the theorem as left H∗,∗(X,Z/p)
modules. The exotic part of the theorem lies in the multiplicative structure of the motivic
cohomology at the prime 2, more specifically the relation u2 = τv + ρu. Since the
multiplicative structure in motivic cohomology is graded commutative (see Voevodsky
[22, Theorem 2.2]), at odd primes we have u2 = 0. Let p = 2. The class u2 belongs to
the group H2,2(Bµp,Z/p) which is isomorphic to

(51) H0,1(Spec k,Z/p)v⊕ H1,1(Spec k,Z/p)u⊕ H2,2(Spec k,Z/p)

because of what we have just proved. By definition of u, it restricts to 0 on Spec k ,
thus u2 = xv + yu for coefficients x ∈ H0,1(Spec k,Z/2) and y ∈ H1,1(Spec k,Z/2).
We wish to prove that x = τ and y = ρ as described in the statement of the theorem.

Proof that y = ρ We reduce the question to the group H∗,∗(A1 − 0,Z/2) by means
of the map

(52) A1 − 0 ∼= (A1 − 0)/µ2 → colimi(Ai − 0)/µ2 = Bµ2

The class u ∈ H1,1(Bµp,Z/2) pulls back to the generator u1 of

H1,1(A1
k − 0,Z/2) ∼= Z/2

because so does the similarly defined class ui ∈ H1,1(Ai
k − 0/µ2,Z/2) for each i: the

sequence (47) in this case reduces to

A1
k − 0+ → (A1

k)+ → Th(A1
k) = A1

k/(A1
k − 0)→ . . .

and the generator of H1,1(A1
k − 0,Z/2) is precisely u1 , ie the class coming from the

Thom sheaf. The class u pulls back to each ui because of a lim1 argument on the
motivic cohomology of Bµ2 . We have thus reduced the question to the following rather
curious lemma
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Lemma 5.3 Let u1 ∈ H̃1,1(A1
k − 0,Z/2) ∼= Z/2 be the generator. Then u2

1 = ρu1 in
H2,2(A1

k − 0,Z/2).

One further reduction involves the use of the canonical map A→ A1
k − 0 where A is

a sheaf whose motivic cohomology is colimU⊂A1
k openH∗,∗(U,Z/2). Because of [18],

Hi,j(A,Z/2) is thus isomorphic to the higher Chow group CHj(Spec k(t), 2j− i) and
in particular Hi,i(A,Z/2) ∼= KM

i (k(t))/(2). The sheaf A can be manufactured in many
different non isomorphic ways as sheaves although there is a canonical one. In any
case, their class in H(k) coincides. Such class is known as the homotopy limit of the
cofiltered category {U}U⊂A1

k open and denoted by holim U . It comes equipped with a
map

holim U → U

for any such U and the localizing sequence for motivic cohomology implies the
injectivity of the map H∗,∗(A1

k − 0,Z/2)→ H∗,∗(holim U,Z/2). Therefore, it suffices
to prove the statement of the lemma in

(53) H2,2(holim U,Z/2) ∼= CH2(k(t), 0)⊗ Z/2 ∼= KM
2 (k(t))/(2)

With these identifications we may represent u1 by t ∈ KM
1 (k(t)) and show that t2 = −1·t ,

which is a known relation in KM
2 .

Proof that x = τ We have that x ∈ H0,1(Spec k,Z/2) = µ2(k) and this group is
zero if the characteristic of k is 2. If the characteristic is different from 2 then this
group is Z/2 and thus it suffices to show that x 6= 0. By contravariance of motivic
cohomology, it is enough to prove this statement up to replacing the base field k with a
finite field extension. In particular, by assuming that

√
−1 ∈ k , we reduce the question

to showing that u2 6= 0, since ρ = 0 in this case. Passing to étale cohomology with
Z/2 coefficients via the natural transformation from motivic cohomology with Z/2
coefficients to étale cohomology with the same coefficients, we are reduced to show that
u2 6= 0 in H2

et(Bµ2,Z/2). All the long exact sequences involving motivic cohomology
we have used in this section are valid for étale cohomology as well. Since u ∈ H1

et ,
βu = u2 . Consider the long exact sequence

(54) · · · −→ H1
et(Bµ2,Z) mod 2−→ H1

et(Bµ2,Z/2)
δ−→ H2

et(Bµ2,Z/2) 2·−→ H2
et(Bµ2,Z/2) −→ · · ·
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we see that δu 6= 0. To see this we observe the following diagram

(55) H1
et(Spec k,Z/2)

α

��
H1

et(Spec k,Z) ∼=
α //

mod 2
33gggggggggggggggggggggg

H1
et(Bµ2,Z) mod 2 // H1

et(Bµ2,Z/2)

��
H0

et(Spec k,Z/2)

where the vertical sequence of maps is (49) with motivic cohomology replaced by étale
cohomology and is a short exact sequence. The class u ∈ H1

et(Bµ2,Z/2) is defined
as the only class which maps to the generator of H0

et(Spec k,Z/2) and is zero on the
image of H1

et(Spec k,Z/2), thus it is not in the image of the mod 2 morphism. δu 6= 0
implies that βu 6= 0 since δu = v ∈ H2

et(Bµ2,Z) which projects to the class v with Z/2
coefficients. This finishes the proof of Theorem 5.2.

5.1 The dual algebra A∗,∗

Rather than considering motivic cohomology operations, we are going to concentrate on
their duals. Denote by A∗,∗m the Z/p algebra of all the motivic cohomology operations
and let A∗,∗ be a locally finite and free H∗,∗(Spec k,Z/p) (simply written as H∗,∗ from
now on) submodule of it. Its dual A∗,∗ is the set of left H∗,∗ graded module maps from
A∗,∗ to H∗,∗ . We are interested in the action of A∗,∗ on the motivic cohomology of
Bµp . Let θ ∈ A∗,∗ ; its action on H∗,∗(Bµp,Z/p) is completely determined by θ(uevi)
for all i and e ∈ {0, 1}, because of Theorem 5.2. The module A∗,∗ we are going to
consider is in fact a Z/p algebra and includes certain monomial operations denoted by
Mk for all nonnegative integers k satisfying:

Proposition 5.4 (see Voevodsky [22, Lemma 12.3]) (1) Mk(v) = Mkβ(u) = vpk
,

for all k ≥ 0;

(2) if A∗,∗ 3 θ 6∈ {Mk,Mkβ, k ≥ 0} is a monomial, then

θ · H∗,∗(Bµp,Z/p) = 0

This enables us to define canonical classes ξi ∈ A2(pi−1),pi−1 for i ≥ 0 and τj ∈
A2pj−1,pj−1 for j ≥ 0 as the duals of Mk and Mkβ , respectively. Monomials in the
classes ξi and τj are generators of A∗,∗ as a left H∗,∗ module. More precisely, one
first proves that ω(I) := τ ε0

0 ξ
r1
1 τ

ε1
1 ξ

r
2 · · · form a free H∗,∗ module basis of A∗,∗ , where
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I = (ε0, r1, ε1, r2, . . .) ranges over all the infinite sequences of nonnegative integers r1

and εi ∈ {0, 1} (cf [22, Theorem 12.4]). Then one derives the complete description of
A∗,∗ :

Theorem 5.5 (cf Voevodsky [22, Theorem 12.6]) The graded left H∗,∗ algebra A∗,∗
is (graded) commutative with respect to the first grading and is presented by generators
ξi ∈ A2(pi−1),pi−1 and τi ∈ A2pi−1,pi−1 and with relations

(1) ξ0 = 1;

(2) τ 2
i =

{
0 for p 6= 2

τξi+1 + ρτi+1 + ρτ0ξi+1 for p = 2

Remark 5.6 The degree of the product aγ between an element a ∈ H∗,∗ and γ ∈ A∗,∗
is (γ1 − a1, γ2 − a2).

5.2 The algebra A∗,∗

To get this kind of information on A∗,∗ we really have to be more specific on the algebra
A∗,∗ we are considering. As mentioned earlier, Voevodsky [22, Section 5] first defined
a total power operation

P : H2∗,∗(−,Z/p)→ H2p∗,p∗(− ∧ B,Z/p)

Taking B to be BSp , this becomes a morphism [22, Theorem 6.16]

P : H2∗,∗(X,Z/p)→

{
{H∗,∗(X,Z/p)Jc,dK/(c2=τd+ρc)}4∗,2∗, p = 2

{H∗,∗(X,Z/p)Jc,dK/(c2)}2p∗,p∗, p 6= 2
(56)

for classes c ∈ H2p−3,p−1(BSp,Z/p) and d ∈ H2p−2,p−1(BSp,Z/p) and any simplicial
sheaf X . The unusual relation in the motivic cohomology of BSp at the prime p = 2 is
consequence of the one in H∗,∗(Bµ2,Z/2) described in Theorem 5.2. Thus, in analogy
to the topological case, we can define operations Pi and Bi by the equality

(57) P(w) =
∑
i≥0

Pi(w)dn−i + Bi(w)cdn−i−1

for w ∈ H2n,n(X,Z/p). Then one proves [22, Lemma 9.6] that Bi = Piβ . For an
arbitrary class x ∈ H∗,∗(X,Z/p), we define

Pi(x) := σ−m1
s σ−m2

t (Pi(σm1
s σm2

t (x)))
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where σm1
s σm2

t (x) ∈ H2∗,∗(X,Z/p) for some ∗ and σ are the suspension isomorphisms
we introduced at the beginning of this section. As left H∗,∗ module we let A∗,∗ to
be H∗,∗ ⊗Z/p Z/p 〈β,Pi〉, where Z/p 〈β,Pi〉 is the Z/p subalgebra (of all the motivic
cohomology operations A∗,∗m ) generated by β and Pi . It turns out that A∗,∗ is a
free left H∗,∗ module (cf [22, Section 11]). Notice that there is canonical embedding
i : H∗,∗ ↪→ A∗,∗ sending a ∈ H∗,∗ to the operation ax = π∗a∪x , where π : X → Spec k
is the structure morphism. The image i(H∗,∗) does not belong to the center of A∗,∗ :
the multiplication in A∗,∗ is the composition of the cohomology operations, therefore
(θa)x = θ(ax) = θ(a ∪ x) =

∑
k θ
′
k
A· a⊗ θ′′k (x) where

∑
k θ
′
k ⊗ θ′′k is the image of θ

through the morphism ψ̂∗ : A∗,∗m → A∗,∗m ⊗H∗,∗ A∗,∗m induced by the multiplication (cf
[22, Section 2])

ψ̂ : K(A(j1), i1) ∧ K(A(j2), i2)→ K(A(j1 + j2), i1 + i2)

of the motivic Eilenberg–MacLane simplicial sheaf defined at the end of Section 4. Here

θ
A· a means the motivic cohomology operation θ acting on a seen as a cohomology

class of a scheme. Although, the Z/p vector space H∗,∗ does not lie in the center of
A∗,∗ , the commutators are sums of terms of monomials of the kind aPI . Notice that
A∗,∗ is very much not (even graded) commutative: the relations between the products
of Pi are called Adem relations and are very complicated already in the topological case.
For the expression in the algebraic situation see [22, Theorems 10.2,10.3]. It turns out
that the classes Mk are Ppk−1

Ppk−2 · · ·PpP1 . This fact is needed to prove that A∗,∗ is a
free left H∗,∗ module on the classes ω(I).

To understand the product of elements in the dual, we need to endow A∗,∗ of an extra
structure: a left H∗,∗ module map ψ∗ : A∗,∗ → A∗,∗ ⊗H∗,∗ A∗,∗ called diagonal or
comultiplication. We wish to define ψ∗ to be the restriction of ψ̂∗ to A∗,∗ . In order to
do this we have to show that the image of ψ̂∗ is contained in A∗,∗ when the domain
is restricted to A∗,∗ ⊗H∗,∗ A∗,∗ . This can be checked by explicitely computing the
value of the the total power operation P on the exterior product of motivic cohomology
classes x and y of a simplicial sheaf X and the property that P(x∧ y) = ∆∗(P(x)∧P(y))
(Voevodsky [22, Lemma 5.9]), where ∆ : X → X ×k X is the diagonal. We include
here the complete expression of ψ∗ since the one in [22, Proposition 9.7] has a sign
error at the prime 2:

Theorem 5.7 Let u and v be motivic cohomology classes. Then for p odd we have

(58)
Pi(u ∧ v) =

i∑
r=0

Pr(u) ∧ Pi−r(v)

β(u ∧ v) = β(u) ∧ v + (−1)first deg(u)u ∧ βv.
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If p = 2 then

Sq2i(u∧v) =
i∑

r=0

Sq2r(u)∧Sq2i−2r(v) + τ

i−1∑
s=0

Sq2s+1(u)∧Sq2i−2s−1(v)(59)

Sq2i+1(u∧v) =
i∑

r=0

(
Sq2r+1(u)∧Sq2i−2r(v) + Sq2r(u)∧Sq2i−2r+1(v)

)
(60)

+ ρ

i−1∑
s=0

Sq2s+1(u)∧Sq2i−2s−1(v).

As usual, the strange behaviour of the motivic cohomology of Bµ2 at the prime 2
results in more complicated description of ψ∗ at the same prime. However, even in
this case, ψ∗ is associative and commutative. In such a situation we can define a
product structure on A∗,∗ by means of the transposed map of ψ∗ : let ψ∗ be the map
A∗,∗ ⊗H∗,∗ A∗,∗ → A∗,∗ such that

(61) 〈ψ∗(η1 ⊗ η2), θ〉 = 〈η1 ⊗ η2, ψ
∗(θ)〉 =

∑
η1(θ′)η2(θ′′)

for any θ ∈ A∗,∗ . This makes A∗,∗ in an associative and graded commutative (with
respect to the first grading) H∗,∗ algebra.

Proof of Theorem 5.5 (sketch) Since τi ’s first degrees are odd, we have τ 2
i = 0 at

odd primes because of graded commutativity. At the prime 2 the situation is more
complicated. The key trick goes back to Milnor’s original paper [9]: we define a
morphism λ : H∗,∗(X,Z/p)→ H∗,∗(X,Z/p)⊗H∗,∗ A∗,∗ as

(62) λ(x) =
∑

i

ei(x)⊗ ei

where {ei} are a basis of A∗,∗ over H∗,∗ and ei the dual basis. The morphism λ

does not depend on the choice of ei , thus we can take {ei} = {β,PI} for all indices
I = (i1, i2, . . .). Because of Proposition 5.4, we can explicitely compute the morphism
λ in the case of X = Bµp , at least on the classes u and v: λ(u) = u⊗ 1 +

∑
i vpi ⊗ τi

and λ(v) = v ⊗ 1 +
∑

i vpi ⊗ ξi . We now need some equality in which τ 2
i will

appear. We can take such expression to be λ(u)2 . We are interested to compare it with
λ(u2) = λ(τv + ρu). The crucial property of λ we use here is multiplicativity with
respect to the cup product; than we derive the relation τ 2

i by setting the homogeneous
components of the expressions to be equal. Just like for the case of A∗,∗ , the dual
algebra A∗,∗ has two actions of H∗,∗ : the left one a⊗ ξ → a

l· ξ where aξ is defined by

〈a l· ξ, θ〉 = 〈ξ, aθ〉 = a〈ξ, θ〉
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The right action is ξ ⊗ a→ ξ
r· a, with

(63) 〈ξ r· a, θ〉 = 〈ξ, θa〉 = 〈ξ,
∑

k

(θ′k
A· a)⊗ θ′′k 〉 =

∑
k

θ′k
A· a〈ξ, θ′′k 〉

We form the tensor product A∗,∗ ⊗H∗,∗ A∗,∗ according with these actions. To complete
the picture, we shall compute the diagonal φ∗ : A∗,∗ → A∗,∗⊗H∗,∗ A∗,∗ (the left factor
is understood to be endowed with the right action of H∗,∗ and the right factor with the
left action), defined as the transposed of the multiplication in A∗,∗ : if γ ∈ A∗,∗ then its
action on a product of operations α′ , α′′ is expressed by

〈γ, α′α′′〉 =
∑

i

〈γ′i , α′〉〈γ′′i , α′′〉

for some classes γ′ and γ′′ . We then define φ∗(γ) =
∑

i γ
′
i ⊗ γ′′i . To compute what

φ∗(τi) and φ∗(ξi) are, we use a strategy already employed: find some equality involving
the motivic cohomology classes u and v of Bµp containing expressions like 〈τi, α

′α′′〉
and 〈γ′i , α′〉〈γ′′i , α′′〉 as coefficients of certain monomials and then get the result by
setting equal the homogeneous components of the expressions. We can write the action
of a motivic cohomology operation θ on a class x ∈ H∗,∗(X,Z/p) in such a way to
have elements of A∗,∗ appearing:

(64) θ(x) =
∑

i

〈ξi, θ〉Mi(x) + 〈τi, θ〉Miβ(x)

Once again we take X to be Bµp since we know everything about it and prove the
equalities

θ(upn
) = 〈ξ0, θ〉upn

+
∑

i

〈τ pn

i , θ〉vpi+n

θ(vpn
) =

∑
i

〈ξpn

i , θ〉vpi+n(65)

by means of Proposition 5.4. The expressions we are looking for are γθ(u) and γθ(v)
for γ , θ ∈ A∗,∗ . Each of them can be written in two ways: as (γθ)(u) and as γ(θ(u)).
Using equations (65) we obtain two equalities between polynomials in u and v. Equality
between their coefficients give the following formulae:

Proposition 5.8

φ∗(τk) = τk ⊗ 1 +
∑

i

ξpi

k−i ⊗ τi

φ∗(ξk) = ξpi

k−i ⊗ ξi

(66)
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The computation of the diagonal of the dual motivic Steenrod algebra is crucial to find
relations between certain special classes Qi in A∗,∗ we are now going to define. Let
E = (ε0, ε1, . . .) and R = (r1, r2, . . .). and τ (E)ξ(R) =

∏
i≥0 τ

εi
i
∏

j≥1 ξ
rj
j .

Definition 5.9 The following notation will be used:

(1) (r1, r2, . . . , rn) ∈ A∗,∗ will denote the dual class to ξr1
1 ξ

r2
2 · · · ξrn

n ;

(2) if E = (ε0, ε1 · · · , εm), where εi ∈ {0, 1}, then QE will denote the dual to
τ ε0

0 τ
ε1
1 · · · τ εm

m ;

(3) Qi will be the dual to τi .

The most important properties of Qtop
t , the topological cohomology operations defined

exactly as Qt , are:

(1) (Qtop
t )2 = 0,

(2) ψ∗(Qtop
t ) = Qtop

t ⊗ 1 + 1⊗ Qtop
t , ie Qtop

t is primitive and

(3) If M is a complex manifold with tangent bundle TM is such that all the character-
istic numbers are divisible by p and the integer deg(spn−1(TM)) (see the definition
of it given just after Remark 2.5) is not divisible by p2 , then Qtop

t tν 6= 0 in the
cone of the map S2t → Th(ν), coming from the Thom–Pontryagin construction,
where ν is the normal bundle, with complex structure, of some embedding
M ↪→ RN for N large enough and tν is its Thom class in H2m,m(Th(ν),Z/p).

We are interested in the operations {Qt}t because they appear in the proof of Theorem 2.6,
that is crucial for the Voevodsky’s program to the Bloch–Kato conjecture, in which
property (3) is used. It turns out that the operation Qt satisfies property (1) (use the
coproduct of A∗,∗ ), but fails to satisfy property (2) at the prime 2, if

√
−1 6∈ k for

t > 0. Nonetheless, property (3) holds at any prime, and this is what we need for the
application in Theorem 2.6. To compute the coproduct ψ∗Qt we use its adjointness
with the multiplication of the dual algebra A∗,∗ . This results in:

Proposition 5.10 (1) if p is odd, Qt are primitive;

(2) if p = 2

(67) ψ∗(Qt) = Qt ⊗ 1 + 1⊗ Qt +
t∑

h=1

ρh
( ∑

I,J
I∪J={t−h,t−h+1,...,t−1}

I∩J={t−h}

QI ⊗ QJ

)

To prove property (3) we use a result of Voevodsky [22, Corollary 14.3]:
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Proposition 5.11 Let X be a scheme and V a rank m vector bundle over X . If tV is
the Thom class of V in H2m,m(Th(V),Z/p) then

(0, . . . , 0,
n
1)(tV ) = spn−1(V) ∈ H2m+2(pn−1),m+pn−1(Th(V),Z/p)

Given this result, to prove property (3) we use the equality

(68) Qt = [Q0, (0, . . . , 0,
t
1)] = Q0(0, . . . , 0,

t
1)− (0, . . . , 0,

t
1)Q0

which happens to hold at any prime p. The general formulae for the commutators
can be found in [4, Corollary 4] and, at the prime 2, differ from their topological
counterparts. The degree of Q0 is (1, 0), so Q0tV = 0 if X is smooth by the
Thom isomorphism and degree considerations. Thus, we are reduced to prove that
Qt(tν) = Q0(0, . . . , 0, 1)(tν) 6= 0, where in this algebraic case ν is a “normal”
bundle suitably defined for this purpose (see Voevodsky [20] or Borghesi [5]). By
Proposition 5.11 and because we know that Q0 is the Bockstein we are reduced to
show that spn−1(ν) is nonzero, (we know that because it is the opposite of the same
characteristic number of TX which has nonzero degree by assumption) and that it is
not the reduction modulo p of a class in H2∗,∗(Th(ν),Z/p2). This requires a short
argument using the assumption on the degree of spn−1(TX).

A natural question to ask is whether A∗,∗m = A∗,∗ , that is if all the bistable motivic
cohomology operations are those of the Z/p vector space A∗,∗ . In the case the
characteristic of the base field is zero, this result has been claimed few times, the latest of
which is in [21, Lemma 2.2]. In the general case, the canonical inclusion A∗,∗ ↪→ A∗,∗m

makes the latter a graded left A∗,∗ module. Moreover, when motivic cohomology is
representable in H(k), eg if k is a perfect field, we know that such inclusion is split in
the category of graded left A∗,∗ modules (combine [4, Remark 5.2] with [3]). In fact,
A∗,∗m is a graded free left A∗,∗ module because of [10, Theorem 4.4].

5.3 Final remarks

Corollary 4.26 asserts the representability of motivic cohomology groups in the category
H(k). In this last section we will mention to two more interesting aspects, which we
have not planned to cover thoroughly in this manuscript. We have been pretty vague
about motivic cohomology since we were just interested in representing it in a suitable
category simply as functor with values in abelian groups. However, the reader should
know that such cohomology theory is expected to have several properties encoded by
the Beilinson Conjectures. In particular, one of them states that the motivic cohomology
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of a smooth scheme X should be isomorphic to the Zariski hypercohomology of X with
coefficients in some complex of sheaves. In Definition 4.1 motivic cohomology has
been defined to the Nisnevich hypercohomology of X with coefficients in a complex
of sheaves A(j). In general, these groups differ from the ones obtained by taking the
Zariski hypercohomology. An important result of Voevodsky in [24] states that, if X is
a smooth scheme over a perfect field, and D∗ is a complex of Nisnevich sheaves with
transfers and with homotopy invariant homology sheaves then H∗Nis(X,D) ∼= H∗Zar(X,D).
The homotopy invariance of the homology sheaves of a complex of Nisnevich sheaves
with transfers is strictly related to the concept of the complex being A1

k local. In fact, if
the base field is perfect, for such complexes the two notions are equivalent. More tricky
is the condition for a sheaf to have transfers. These supplementary data on sheaves
relates motivic cohomology to algebraic cycles and to the classical theory of motives
(see Voevodsky’s use of Rost’s results on the motif of a Pfister quadric in [20]). These
considerations suggest that the sheaves of the complexes A(j) should have transfers and
the complexes have homotopy invariant homology sheaves. Now, congruence (41) in
particular implies “representability” of motivic cohomology in the category D+(Nk)
and Corollary 4.26 in the category DA1

k
+ (Nk). To preserve this property even when

switching to the definition of motivic cohomology as Zariski hypercohomology (as
opposed to Nisnevich hypercohomology), Voevodsky’s theorem indicates we should
work just with sheaves with transfers and complexes with homotopy invariant homology
sheaves. The category of Nisnevich sheaves of abelian groups with transfers N tr

k is an
abelian subcategory of Nk with enough injectives. Thus, we can consider its derived
category of bounded below chain complexes. It is nontrivial to show that motivic
cohomology is representable in D+(N tr

k ). In this case the functor Z[X] is replaced by an
appropriate “free” sheaf with transfers Ztr[X]. The further restriction to complexes with
homotopy invariant homology sheaves is more straightforward as it may be encoded in
a localizing functor, making the procedure very similar to the A1

k localization of Hs(k).
The outcome is a category denoted by DM+(k). For the details of these constructions,
see Suslin–Voevodsky [17, Theorem 1.5]. Using the terminology introduced in that
paper, the sheaf A(j) is then defined to be

Z(1)
L
⊗
tr

j
· · ·

L
⊗
tr

Z(1)
L
⊗
tr

A

where Z(1) := C∗(Ztr[Gm])[−1] and C∗(−) is the “homotopy invariant homology
sheaves” localizing functor. An advantage of the category DM+(k) over H(k) is
that it is triangulated, whereas the latter it is not although the latter has fibration and
cofibration sequences. To overcome this disadvantage there are some procedures to
stabilize H(k) and make it triangulated in a way that cofibration sequences become
exact triangules. Once again it is possible to prove that representability of motivic
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cohomology is preserved, always under the assumption of perfectness of the base field
(see [5]). This makes the stable homotopy category of schemes an effective working
place for using homotopy theory on algebraic varieties and consistently exploited in [4]
as well as [5].
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