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ABSTRACT 

In recent years many firms have been implementing small lot size production. Lot 
splitting breaks large orders into smaller transfer lots and offers the ability to move 
parts more quickly through the production process. This paper extends the deter­
ministic studies by investigating various lot splitting policies in both stochastic job 
shop and stochastic flow shop settings using performance measures of mean flow 
time and the standard deviation of flow time. Using a computer simulation experiment, 
we found that in stochastic dynamic job shops, the number of lot splits is more important 
than the exact fonn of splitting. However, when optimal job sizes are determined for 
each scenario, we found a few circumstances where the implementation of a small 
initial split, called a "flag," can provide measurable improvement in flow time 
performance. Interestingly, the vast majority of previous research indicates that 
methods other than equal lot splitting typically improves makespan performance. 
The earlier research, however, has been set in the static, deterministic flow shop 
environment. Thus, our results are of practical interest since they show that the 
specific method of lot splitting is important in only a small set of realistic environments 
while the choice of an appropriate number of splits is typically more important. 

Subject Areas: Job Shop Scheduling, Lot Splitting, Machine Scheduling and Sequencing, 
Process Design, and Simulation. 

INTRODUCTION 

Lately, a number of papers have been published on the topic of lot splitting, some­
times called "lot streaming." In the spirit of the just-in-time production approach, 
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lot splitting breaks large orders into smaller transfer lots and offers the ability to 
move parts more quickly through the production process. While the vast majority 
of this previous research indicates that methods other than equal lot splitting typically 
improve makespan performance, this research has been set in the static, determinis­
tic flow shop environment and has not addressed the efficacy of lot splitting in the 
more typical environment characterized by jumbled flows and high levels of variance. 
In this paper, we extend the deterministic studies by studying various lot splitting 
policies in both stochastic job shop and stochastic flow shop settings using perfonnance 
measures of mean flow time and the standard deviation of flow time. 

We recently encountered the lot splitting approach at two medium-size manu­
facturing facilities-one is a fabricator of integrated circuit materials and the other 
assembles printed circuit boards. In both cases, the manufacturers were also evaluating 
changes to a number of process factors. While previous research in lot splitting 
provided some insight into the problem for the deterministic, static problem for flow 
shops, we found that it did not adequately address how an order should be split in 
a stochastic process environment, especially one with jumbled routings and with 
multiple job types as seen in job shops. As Dudek, Panwalkar, and Smith [4] point 
out, real flow shop situations usually are dynamic rather than static, and there is 
questionable value to flow shop research unless it can be related to practical settings. 

This study extends the previous literature on lot splitting to settings that are 
likely to be found in industry. In contrast to most prior studies, our shop environment 
is stochastic and dynamic. In contrast to the results of the deterministic studies in 
this area, our results indicate that in such stochastic environments, the particular 
form of lot splitting makes little difference, although the choice of the number of 
splits is important. 

There are many ways to split an order: the splits may be equal or unequal, with 
the number of splits ranging from one to the number of units in the order. We thus 
consider various forms of lot splitting in stochastic environments for the two extreme 
flow dominance conditions, flow shops and job shops, and for various levels of setup 
times, operation time variance, job size and shop load. Unlike previous research in this 
area, we vary the job size so that we can examine the best combination of both job 
and transfer batch size. We investigate the situation of a closed job shop where we 
have a limited number of product types that can be produced in lot sizes determined 
by management. The closed job shop represents the manufacturing environment 
known in industrial practice as repetitive manufacturing. In typical repetitive manu­
facturing environments, a fixed product mix will be produced on a dynamic basis, 
depending upon actual demands and forecasts, during the short- to medium-term 
planning horizon. See Wagner and Ragatz [18] for a more thorough discussion of 
open versus closed job shops. 

We accomplish our research objective in two steps. First, we examine lot 
splitting forms that have been shown to be optimal for deterministic flow shops 
(Kropp and Smunt [13]). We do this to determine if these lot splitting forms can 
also improve performance in stochastic scenarios and in environments with jumbled 
flow dominance and to estimate differences, if any, between the various forms. 
Second, we test the effect of increasing the number of splits in order to better 
understand the tradeoff between reduced flow times offered by further splitting and 
the increased complexity of job tracking caused by this larger number of splits on 
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the shop floor. Due to the complex nature of this research problem, we use computer 
simulation methcxlology to examine the above issues. 

Our results provide managers with a better understanding as to which forms of 
lot splitting are best across a wide range of realistic scenarios. We found that 
differences between forms diminish with increased variability and capacity utilization 
in flow shops and in all job shop scenarios. Nevertheless, we identify one form, 
equal splits with "flag" (RL4F) that is more often the best form when such differ­
ences do exist. Our experiments further validate the benefit of lot splitting across a 
broad range of operating environments regardless of the specific form used. All lot 
splitting forms we considered reduced both mean flow time (MFT) and standard 
deviation of flow time (SOFT). 

The remainder of this paper is organized as follows. In the following section 
we review the relevant literature. Next, we describe the research model, the factors 
we varied, and the parameters considered. Then we describe both of the experiments 
to determine the effect of lot splitting forms and present results and an experiment 
that tests the effect of the number of splits. Our conclusions and applications of the 
results follow. Finally, we summarize the paper and suggest further research. 

LITERATURE REVIEW 

We know of no research that compares different forms of lot splitting in stochastic 
environments. Karmarkar, Kekre, and Kekre [11], and Karmarkar, Kekre, Kekre, 
and Freeman [12] use both a simulation mcxtel of a job shop and Q-LOTS, an 
analytical procedure based on queueing theory, to examine the impact of lot sizes 
on flow times. Other authors consider the relationship between lot sizing and job 
flow times (Szendrovits [15], Santos and Magazine [14], and Dobson, Karmarkar, 
and Rummel [3]). However, none of these papers compare different lot splitting 
forms in stochastic environments, as we have done in this paper. 

Those papers that have considered different lot splitting forms have done so 
under deterministic conditions. Graves and Kostreva [7] derived an expression for 
the optimal number of sublots under the conditions of constant demand, identical 
machine production rates, and equal sublot sizes. Baker and Pyke [2], Trietsch [16], 
and Trietsch and Baker [ 17] develop algorithms for minimizing makespan of a single 
job in a flow shop, with unequal sublot sizes permitted. Baker [1] proposed a 
geometric lot splitting form, which performs well in deterministic flow shops. Finally, 
Kropp and Smunt [13] developed both optimal and heuristic procedures for mini­
mizing either makespan or mean flow time for a single job in a flow shop. They 
suggested using equal size sublots when machine setup times were small and a 
"flag" heuristic to deal with situations in which setup times were large. With the 
flag heuristic, the first sublot has the smallest feasible nonzero size and all other 
sublots are equal in size. In their deterministic tests they found that these heuristic 
approaches had excellent performance when compared to the optimal procedures. 

Three more closely related papers have focused explicitly on lot splitting in 
stochastic environments. Jacobs and Bragg [IO] use a simulation mcxlel to examine 
the number of lot splits and resulting flow times in a stochastic job shop. They were 
among the first to use the concept of repetitive lots, in which jobs can be split into 
several transfer batches or sublots. Using the repetitive lots approach, when a work 
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center finishes processing on a sublot, priority is given to another sub lot of the same 
product. In this way, the number of setups is decreased, thus increasing the effective 
capacity of the system and reducing flow times. Jacobs and Bragg demonstrated 
that repetitive lots can indeed substantially reduce mean flow times, but they did 
not consider methods other than equal splits. In another paper that studied lot 
splitting in a stochastic job shop, Hancock [9] examined a simple lot splitting 
heuristic and found it to improve job timeliness under the three different routing 
strategies he tested. His paper only considered one lot splitting fonn and focused 
primarily on the impact of routing strategies. The most recent work in the stochastic 
environment area, by Wagner and Ragatz [18], focused on the open job shop problem, 
that is, where every job is assumed to be a custom order. In this problem, the use 
of the repetitive lots dispatching rule does not offer any benefits in setup time 
reduction since every job is unique. The benefits of lot splitting result from the 
ability to overlap operations. They show that in an open job shop setting due date 
oriented dispatching rules, when used in conjunction with lot splitting, can improve 
a due date performance measure like tardiness. 

THE MODEL 

As mentioned in the Introduction, we took MFr as our primary measure of effectiveness 
and SDFf as a secondary measure, for evaluating different lot splitting heuristics. 
More precisely, we measure the long-run mean flow time for the shop in steady­
state. That is, we assume that the shop has been in operation for a long time, so that 
steady-state is reached. We measure flow time for a particular job as the time 
between its release to the shop and its completion. Note that with lot splitting in 
effect, a job is not considered complete until all the sublots have been finished. 
Fonnally, we can express MFf as the expectation of the (stochastic) steady-state 
flowtime T for an arbitrary job aniving to the system in steady-state, and Tis given by: 

T = f (S,M,U,SU,CV ,JSJNTER) + e, (1) 

where S is the type of shop, M is the lot splitting method used, U is the process 
utilization, SU is the ratio of setup time to processing time, CV is the coefficient of 
variation for processing time, JS is the size of the job, INTER is the job interarrival 
pattern, and e is a zero-mean random variable. The objective is to minimize 
MFf=E[71 with respect to M. Our secondary perfonnance measure SDFf may be 
similarly expressed as SDFf=Var[7]. 

It is not possible to evaluate MFf as the expected value to Tin (1) in closed 
form. Consequently, it must be estimated using simulation. A simulation model was 
implemented in SIMSCRIPT II.5. We used this simulation software primarily due 
to its flexibility and its ability to implement complex scheduling heuristics. Examples 
of material flows for our two shop structures are shown in Figures 1 and 2. In our 
model, entering jobs are split into smaller transfer batches, which are then independently 
processed through their assigned task routing. Using the repetitive lots sequencing 
rule (RL), a transfer batch of the same job type as the current setup at a machine is 
always to be processed next. If no transfer batch with the current machine setup is 
in the machine queue, then the first-come, first-served rule (FCFS) is used for 
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Figure 1: The five workcenter flowshop: Ten distinct job types, all with identical 
routing. 

Figure 2: The ten workcenter jobshop: Ten distinct job types, all with identical 
routing (two are shown as examples). 
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sequencing. The use of FCFS as the secondary dispatch rule is consistent with 
Jacobs and Bragg's experiment. Other secondary dispatching rules, such as shortest 
operating time (SOT), can be incorporated into the RL approach to attempt to further 
reduce MFT or improve customer service level measures such as tardiness and lateness. 
We discuss the impact of SOT as a secondary dispatch rule in a later section. 

Experiment Approach 

We conducted two sets of experiments on the model. The first was to determine the 
impact of different forms of lot splitting on MFT performance and may be seen as 
a continuation of the work of Kropp and Smunt (13). We tested forms that were 
either optimal or performed well in deterministic environments. A comparison of 
our results with theirs will help determine the effect of randomness on the performance 
of their forms and measure the robustness of their results. The second set of experi­
ments focused on the number of equal splits. The results of these experiments will 
be presented in the following two sections. The factors and their levels used in this 
experiment are summarized in Table I . The experimental design was full factorial 
with 6912(6x2x2x6x4x3x4) combinations of factor settings. 
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Thble 1: Factors and levels for first experiment. 

Factor 

Lot splitting form 
Flow dominance 
Job arrival pattern 

Mean job size 

Operation CV 

Processing utilization 

Setup ratio 

Lot Splitting Forms 

Levels 

RLO, RL3E, RIAF, RLUl, RLU2, RLU3 

Job Shop, Flow Shop 
Deterministic, Stochastic 

75, 105, 135, 165, 195,225 

0.01, 0.50, 1.00, 1.50 

57%, 72%, 87% 

0.1, 0.5, 1.0, 1.5 

We classified the lot splitting forms into three categories, (1) equal splits (RL3E), 
(2) equal splits preceded by a flag split (RlAF), and (3) unequal splits (RLUl, 
RLU2, RLU3) (see Table 2). In Kropp and Smunt [13), it was shown that for 
detenninistic flow shops, a flag heuristic (one that initially sends a batch of one unit 
through the system) tends to work well if setup times are high. This result is due to 
the fact that the contribution of the setup to flowtime is mitigated by the overlap 
with processing of the following batches. Thus, the overlapping processing was 
extended to setups, and the subsequent batches spent Jess time in queue waiting for 
a setup. In Kropp and Smunt's study [13), the optimal splits following the flag often 
turned out to be nearly equal. As setup times approach zero, however, the optimal 
lot splitting strategy required that all Jot splits be of equal size, without a preceding 
flag split. We chose RLUl, RLU2, and RLU3 to test for robustness of lot splitting 
distributions, since these unequal forms are similar to those found optimal in a 
number of cases tested by Kropp and Smunt [13). 

Flow Dominance 

Our next experimental factor was flow dominance, with levels at the two extremes 
of flow shop and job shop. We modeled our job shop to have the same structure as 
Jacobs and Bragg [10), that is, with 10 departments, each with a single machine, 
and 10 job types (see Figure 2). In general, we used parameter settings similar to 
those used in [10). Each job type had an equally likely chance of arriving into the 
system and required five departments to complete its processing. Each department 
was utilized equally (no long-term bottlenecks at any machine) and was the first or 
last operation by any job an equal number of times. The flow shop scenario had 
five single-machine departments and 10 job types (see Figure 1 ). Each job type had 
the same sequence over the five departments, and was distinguished from the other 
job types by virtue of the required setup to change a machine from one job type to 
another. A five department flow shop was used in order to have the same number 
of tasks in the routing sequence for each job in both settings. The interarrival rates 
were adjusted to give identical utilizations with the job shop scenarios. 
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Thble 2: Definition of lot splitting forms. 

Lot splitting form 

RLO 

RL3E 

RL4F 

RLUl 

RLU2 

RLU3 

Job Arrival Patterns 

Definition 

Repetitive Lots, No Splitting 

Repetitive Lots, 3 Equal Splits 

Repetitive Lots, 3 Equal Splits plus Flag 

Repetitive Lots, 3 splits of 20%, 40%, 40% 

Repetitive Lots, 3 splits of 25%, 35%, 40% 

Repetitive Lots, 3 splits of 30%, 35%, 35% 
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Jobs arrived into the system having either deterministic or stochastic interarrival 
times (INTER). Deterministic interarrival times were used in order to mimic a steady 
release of work to the shop floor. Note that even though jobs arrived into the system 
on a regular pattern, the product type associated with the job was chosen randomly 
using a uniform distribution. The stochastic interarrival time scenario approximates 
the condition in which it is difficult to maintain a steady release of products to the 
shop floor, perhaps due to a high cost of holding inventory or a dynamic demand 
environment. Stochastic interanival times were gamma distributed with a coefficient 
of variation of 0.50. This produced a distinctly random pattern of job arrivals with 
a moderate degree of variability. Orders were released into the shop as they arrived. 

Mean Job Sizes 

Each arriving job had a size (number of units) that varied uniformly by ±67% of its 
mean job size (JS). Six levels of mean job size were chosen, ranging from 75 to 
225 in increments of 30, to represent typical lot sizes in a repetitive batch manufac­
turing environment. lnterarrival times were increased on a relative basis with mean 
job size in order to maintain the desired three levels of process utilization. These 
six levels were chosen since they represent values typically used in prior research 
and in practice for repetitive manufacturing. Note that with three splits, the transfer 
batch size is as low as 25 units and as high as 75. 

Operation Time Variance 

We used operation time variance as our surrogate for system variance, as is common 
in simulation studies of job shops. Variable operation times were modeled using a 
gamma distribution with a coefficient of variation (CV) level specified by the ex­
periment design. Empirical studies of task time distributions (e.g., [5]) indicate that 
such distributions tend to be unimodal and skewed to the right, making the gamma 
an appropriate distribution. 

It is difficult to predict a priori what the effect of variability will have (although 
a low variance flow shop should behave similarly to a deterministic flow shop). We 
tested four levels of operation time coefficient of variation (Table l, ranging from 
nearly deterministic (CV=0.01) to extremely high (CV=l.50)). Based on empirical 
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evidence (e.g., Dudley [5]), CV=0.50 is probably the closest to actual operation task 
times. Nevertheless, there are situations in which a high CV may be appropriate: 
unreliable machines with many machine breakdowns, excessive amounts of rework, etc. 

Shop Load 

The shop load, defined by processing utilization percentage ( U), can be an important 
factor in the impact of lot splitting forms. Highly congested shops could be im­
proved by increasing the amount of overlapping processing induced by lot splitting. 
On the other hand, with high congestion there is increased possibility that the flow 
time for some jobs would increase due to a "straggling" split being caught in a 
queue. Note that the total utilization level of the shop will be greater than the 
processing utilization level due to the effect of setup times. 

We varied the mean operation task times in order to obtain different levels of 
shop load. Within each utilization level, mean operation task times were identical 
in each department in order to have a balanced shop (i.e., to avoid long-run bottle­
necking). The levels for this factor were set, respectively, at 0.0456, 0.0576, and 
0.0696 hours per unit to achieve three different process utilization scenarios of 57%, 
72%, and 87%, respectively. The extreme levels are in a range of ±15% of the 
processing utilization of 72% used by Jacobs and Bragg (10]. We tested these 
utilization levels since we hypothesize that shop load has an effect on the performance 
of the different lot splitting forms. We insured that total utilization levels never 
exceeded 100% in any of our experiments. 

Setup Times 

Since the repetitive lots rule has the potential to reduce MFT by decreasing setups, 
the proportion of setup time to processing time becomes an important consideration. 
We used four levels of this setup ratio (SU) in our experiments: 0.1, 0.5, 1.0, and 
1.5. By increasing or decreasing the levels of setup ratio, total utilization also 
increased or decreased and ranged from approximately 60% to 95% in our experi­
ments. The observed ratio of setup time to total processing time (including setup) 
ranged from 22% to 57% per job, on the average. 

Performance Measures 

Our primary performance measure was mean flow time (MFT) rather than 
makespan, which is used in most of the previous deterministic studies. While 
makespan is a suitable criterion for static scenarios, MFT is a more appropriate 
measure of performance in a dynamic setting. Another measure of interest to studies 
of this type is the average amount of work in process inventory (WIP), particularly 
in light of the recent focus in manufacturing toward reducing levels of WIP. How­
ever, in steady-state, MFT will be proportional to WIP by Little's formula (see [8]). 
Thus, results for MFI' will translate into comparable results for WIP. In the context 
of this study, this fact means that lot splitting forms that reduce MFf will also reduce 
WIP proportionally, and consequently we need only consider MFf. This relationship 
was verified by our simulation experiments. We also computed the standard deviation 
of flow time (SDFT) as a measure of the variability of flowtime. We do not measure 



Smunt, Buss, and Kropp 223 

due date performance since we deal mostly with the repetitive manufacturing envi­
ronment in which we assume that most production is "to stock." In addition, flow­
time performance is a more generalizable measure since any due date setting 
mechanism may be correlated with dispatching rules. For example, total work con­
tent dispatching rules will typically provide good tardiness performance when the 
due date in the simulation was originally set by some function of total work content. 

We estimated MFT and SOFT for each experimental setting by first "wanning 
up" the system for 10,000 hours of operation, followed by the data collection portion 
of the run. Plots of the output for several combinations of factor settings, including 
those with the highest processing utilization, coefficient of variation and setup time 
to processing time ratio, indicated that 10,000 hours of transient observation was 
sufficient for each scenario to be in steady-state. Flow times were then collected in 
blocks of 5000 hours separated by periods of 1000 hours with no data collection. 
Thus, when repeated observations were desired, the resulting block means were 
taken as the data points. This procedure is similar to that of spaced batch means 
(see Fox, Goldsman, and Swain [6]). We verified that there was no significant serial 
correlation in the block means by performing lagged regression analyses of these means. 

THE EFFECT OF LOT SPLITTING FORM 

In this section we present our experiments to test different lot splitting forms. First, 
we will describe the experimental design, then present the results of ANOVA and 
multiple comparison tests for the lot splitting forms. 

ANOVA Results 

We conducted three different Analyses of Variance (ANOVA) to test the significance 
of the main and interaction effects for the different factors on mean flow time (MFT) 
and the standard deviation of flow time (SOFT). The ANOVAs were run for main 
effects only, for main and two-way interactions, and for main, two-way and three­
way interactions. We found that by adding two-way interactions to the ANOVA, the 
R2s for both MFT and SOFT increased from approximately .76 to .95. The incre­
mental explanation of variance from the further addition of three-way interactions 
was negligible, however, adding only .02 to .03 to the R2s. For conciseness, we 
show the ANOVAs with two-way interactions for both MFT and SOFT in Tables 3 
and 4. The R2 of .95 for MFT and SOFT indicates a reasonably good fit of the model 
and that the main effects and interactions explain most of the variance. 

All main and two-way interaction effects are significant at the .05 level or 
better, except for lot splitting form x setup interaction for both MFT and SOFT and 
for setup x operation time variance interaction for SOFT. Referring back to our 
performance model in (1), we can see from both ANOVA tables that the process 
utilization factor, U, provides the greatest contribution to the explained variance. 
The two factors that provide the least contribution are job size, JS, and the lot 
splitting form, M. While we see that the form of lot splitting does have a significant 
effect, other factors contribute much more to explaining performance. Therefore, in 
order to better understand the implications of lot splitting forms, we provide more 
detailed statistical comparisons of various interaction effects through the use of 
multiple comparison tests. 
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'Iilble 3: ANOVA, linear and two-way interactions, MFr dependent variable. 

Source d.f. ANOVASS Mean Square FValue p 

s 1 6383374.52 6383374.52 4536.01 .0001 
u 2 98794970.67 49397485.34 35101.74 .0001 
M 5 7444096.47 1488819.29 1057.95 .0001 
SU 3 18020869.26 6006956.42 4268.53 .0001 
CV 3 24805872.61 8268624.20 5875.67 .0001 
JS 5 5601346.17 1120269.23 796.06 .0001 
INTER 1 1525284.54 1525284.54 1083.86 .0001 
SxU 2 3856644.06 1928322.03 1370.26 .0001 
SxM 5 24344.21 4868.84 3.46 .0040 
SxSU 3 145163.62 48387.87 34.38 .0001 
SxCV 3 564881.11 188293.70 133.80 .0001 
SXJS 5 1222460.86 244492.17 173.74 .0001 
SxJNTER 1 400455.96 400455.96 284.56 .0001 
UxM 10 2400861.77 240086.18 170.60 .0001 
UxSU 6 6930988.48 1155164.75 820.86 .0001 
UxCV 6 13977018.02 2329503.00 1655.34 .0001 
UxJS 10 2581995.92 258199.59 183.48 .0001 
Ux/NTER 2 1690746.91 845373.46 600.72 .0001 
MxSU 15 10800.70 720.05 0.51 .9360 
MxCV 15 2531888.57 168792.57 119.94 .0001 
MxJS 25 759242.76 30369.71 21.58 .0001 
Mx/NTER 5 203201.85 40640.37 28.88 .0001 
SUxCV 9 576839.97 64093.33 45.54 .0001 
SUxJS 15 265697.99 17713.20 12.59 .0001 
SUx/NTER 3 320893.37 106964.46 76.01 .0001 
CVxJS 15 1234158.22 82277.21 58.47 .0001 
CV xi NT ER 3 636277.34 212092.45 150.71 .0001 
JSx/NTER 5 41530.10 8306.02 5.90 .0001 

R2 = .955428 

Multiple Comparison Tests 

A large number of multiple comparison tests are available to determine if significant 
differences exist between factor levels. We performed two widely used Multiple F 
tests, the Duncan and the Ryan-Einot-Gabriel-Welsch tests, on our data at various 
levels of interactions. We found that the results of these two comparison tests were 
almost identical in identifying where interaction effects are significant. For concise-
ness, we present only results of the Duncan tests in Tables S through 8. We show 
results for interaction effects with operation time and setup time separately. We also 
separate results for the deterministic and the stochastic interanival times. Note that 
the performance measures shown in the following tables are for the job size with 
the lowest MFr for each Shop/Form/Utilization combination. 

MFT--OperaJion 1ime Variance 

Tables S and 6 show multiple comparisons for the MFr measure for interactions 
with operation time variance. As one can see from Table 5, with deterministic 
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Tuble 4: ANOVA, linear and two-way interactions, SDFT dependent variable. 

Source d.f. ANOVASS Mean Square FValue p 

s 1 2049568.21 2049568.21 12291.57 .0001 
u 2 9643136.37 4821568.18 28915.68 .0001 
M 5 803863.36 160772.67 964.18 .0001 
SU 3 925282.80 308427.60 1849.69 .0001 
CV 3 3127547.16 1042515.72 6252.12 .0001 
JS 5 847644.70 169528.94 1016.69 .0001 
INTER 1 217373.57 217373.57 1303.62 .0001 
SxU 2 1084018.76 542009.38 3250.51 .0001 
SxM 5 3023.93 604.79 3.63 .0028 
SxSU 3 4780.04 1593.35 9.56 .0001 
SxCV 3 13722.04 4574.01 27.43 .0001 
SxJS 5 191814.53 38362.91 230.07 .0001 
Sx/NTER 1 19440.77 19440.77 116.59 .0001 
UxM 10 225793.01 22579.30 135.41 .0001 
UxSU 6 418666.77 69777.79 418.47 .0001 
UxCV 6 l159392.07 193232.01 1158.84 .0001 
UxJS 10 273386.02 27338.60 163.95 .0001 
Ux/NTER 2 101829.00 50914.50 305.34 .0001 
MxSU 15 1271.55 84.77 0.51 .9378 
MxCV 15 576226.78 38415.12 230.38 .000 l 
MxJS 25 73436.19 2937.45 17.62 .0001 
Mx/NTER 5 20962.46 4192.49 25.14 .000 l 
suxcv 9 2421.66 269.07 1.61 .1052 
SUxJS 15 12668.00 844.53 5.06 .0001 
SUx/NTER 3 8004.92 2668.31 16.00 .0001 
CVxJS 15 226587.28 15105.82 90.59 .0001 
CVxlNTER 3 101595.04 33865.01 203.09 .0001 
JSxlNTER 5 5608.66 l121.73 6.73 .0001 

R2= .951770 

interarrival times each of the six forms of lot splitting are significantly different 
from each other (at the .05 level) in a flow shop environment when CV=0.01 and 
the processing time utilization level is 57%. RL4F is clearly the best with a MFT 
of 21.7, less than half that of RLO and at least 15% lower than any other lot splitting 
fonn's MFT. These results validate the results obtained by Kropp and Smunt (13] 
in that they clearly show the superior perfonnance of the "flag" heuristic in flow 
shops operating with little variance in either input rates or operation times. Further 
examination of Table 5, however, illustrates that for a flow shop, statistical differ­
ences of the RL4F fonn dissipate as the utilization percentage or the CV increases. 
While RUF performs significantly better in the flow shop even for higher utiliza­
tions, as long as CV=0.01, it perfonns better in the job shop only for the lowest 
utilization level of 57%. 

Further review of Table 5 shows that RL4F gives the best MFT in 22 out of 
24 Shop/CV/Utilization settings. However, according to the Duncan tests, RUF is 
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'Thble 5: MFf comparison across CV levels using optimal job sizes for each 
Shop/CV/Form/Utilization combination, deterministic interarrival times. 

CV 

O.ot 

0.50 

1.00 

1.50 

Form 

RLO 
RLU3 
RLU2 
RLUI 
RL3E 
RL4F 

RLO 
RLU3 
RLU2 
RLUI 
RL3E 
RL4F 

RLO 
RLU3 
RLU2 
RLUI 
RL3E 
RL4F 

RLO 
RLU3 
RLU2 
RLUI 
RL3E 
RIAF 

57% 

45.4 
27.6 
27.0 
25.8 
28.6 
21.7 

62.2 

34.111 
33.7 
33.3 
34.7 I 
30.2 

84.8 

49.71 
49.3 
50.6 
50.2 
47.01 

109.9 
68.8 
69.1 
70.0 
68.8 
65.8 

Aow Shop 

72% 

68.8 
43.9 
42.9 
41.7 
45.l 
36.2 

121.3 
68.0 
67.9 
68.8 
67.6 
64.2 

163.7 
109.3 
110.2 
111.6 
110.4 
107.2 

222.0 
146.9 
147.8 
148.6 
143.6 
143.5 

Utilization 

87% 

130.1 
98.2 

100.4 
97.4 

101.7 
90.9 

292.5 
210.8 
205.6 
202.0 
203.1 
196.2 

409.9 
287.51 
321.2 11 
332.0 

305.011 
295.0 

576.4 
364.21 
408.l 

393.31 
366.7 
404.8 

57% 

61.3 
50.3 
50.3 
49.9 
50.8 
48.4 

66.3 
53.9 
53.4 
54.0 
53.2 
53.0 

80.4 
60.3 
60.8 
61.l 
60.5 
59.5 

100.8 
70.2 
71.0 
71.8 

11.2 I 
68.5 

Job Shop 

72% 

104.1 
89.2 
89.5 
88.9 
89.8 
88.2 

115.8 
96.8 
97.8 
98.2 
96.8 
96.0 

153.3 
112.l 
113.l 
114.0 
112.7 
110.0 

209.6 
137.1 
138.1 
139.9 
137.8 
135.0 

87% 

250.1 
239.3 
238.9 
234.3 
228.8 
234.4 

294.0 
260.6 
254.7 
253.4 
252.1 
251.4 

418.9 
313.5 
313.6 
318.4 
312.4 
304.5 

645.6 
400.8 
415.1 
406.8 
414.8 
397.8 

Note: Numbers in bold are the best for each Shop/CV/Utilization combination. Numbers with 
lines in the same vertical column are not significantly different. 

significantly different from the other forms in only four cases, three of which have 
CV=0.01, nearly deterministic processing times. When CV is moderate but realistic 
(i.e., 0.50), RlAF is significantly better than other forms only for the lowest utili­
zation level in the flowshop. For the job shop, RlAF gives the smallest MFf in all 
but one setting, although the difference is significant only for low CV and low 
utilization. 

Table S also demonstrates the superiority of all forms of lot splitting over no 
splitting (RLO). Not only did RLO have significantly higher MFI's in 23 out of 24 
settings, but the magnitude of the differences between RLO and the worst lot splitting 
forms were substantial, typically far greater than differences between the various lot 
splitting forms. 
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Table 6: MFT comparison across CV levels using optimal job sizes for each 
Shop/CV/Form/Utilization combination, stochastic interanival times. 

Utilization 

AowShop Job Shop 

CV Fonn 57% 72% 87% 57% 72% 87% 

0.01 RLO 46.9 68.3 93.9 56.7 90.2 209.81 
RLU3 30.4 44.8 68.61 47.8 79.1 186.9· 
RLU2 29.8 45.3 69.8 46.8 77.4 194.4 I 
RLUl 28.5 42.5 67.0 46.l 79.l 179.0 
RL3E 30.7 47.8 71.8 45.5 78.6 183.3 
RL4F 24.7 37.2 62.5 I 45.3 76.1 186.l 

0.50 RLO 64.0 113.7 222.5 61.l 100.6 241.2 
RLU3 35.7 69.6 189.7 47.6 81.0 200.2 
RLU2 35.4 66.7 184.6 50.9 86.2 199.0 
RLUl 34.4 67.5 183.6 49.6 79.7 200.0 
RL3E 36.0 69.6 171.6 47.1 80.8 196.8 
RL4F 33.3 63.9 167.5 47.2 81.5 197.7 

1.00 RLO 89.5 145.4 310.0 68.8 131.9 339.2 
RLU3 49.0 95.2 249.4 54.3 94.8 236.0 
RLU2 50.9 94.9 250.0 54.7 92.9 240.4 
RLUl 47.6 95.8 215.4 53.6 95.5 233.9 
RL3E 48.8 97.6 232.l 55.8 99.0 234.0 
RL4F 48.5 97.6 244.6 52.3 92.3 234.7 

1.50 RLO 96.2 162.0 386.7 80.0 150.3 447.6 
RLU3 59.2 127.9 294.4 56.0 103.1 322.7 
RLU2 59.3 129.8 296.l 55.4 100.5 318.6 
RLUI 63.6 136.8 296.4 56.l 99.0 316.9 
RL3E 60.8 124.0 297.5 56.6 98.1 308.5 
RL4F 59.9 119.2 289.9 60.9 109.6 287.5 

Note: Numbers in bold are the best for each Shop/CV/Utilization combination. 

Table 6, stochastic interanival times, further illustrates the deleterious effects 
of variance on the superiority of the "flag" heuristic. RlAF generally remains sta­
tistically better than the other forms for flow shop settings with CV=0.01, but for 
all other scenarios in the flow shop and for all scenarios in the job shop it is not 
significantly different than the other lot splitting forms. As with deterministic inter­
anival times, RLO is significantly worse than all lot splitting forms, in this case, 
over all factor settings. 

MFT-Stepup Time 

Tables 7 and 8 show multiple comparisons for the MFT measure for interactions 
with setup time. Note that when interanival times are deterministic (Table 7), RL4F 
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Table 7: MFT comparison across SU levels using optimal job sizes for each 
Shop/SU/Form/Utilization combination, deterministic interarrival times. 

Utilization 

Aow Shop Job Shop 

CV Form 57% 72% 87% 57% 72% 87% 

0.10 RLO 36.8 69.8 179.5 44.l 89.0 263.3 
RLU3 16.5 30.3 75.6 25.8 53.3 174.8 
RLU2 16.7 31.l 82.8 26.l 54.0 177.5 
RLUI 16.9 31.3 83.9 26.0 54.l 173.4 
RL3E 16.7 29.9 75.6 25.6 53.1 174.l 
RL4F 15.9 30.1 79.0 25.2 54.0 164.3 

0.50 RLO 51.0 100.8 276.0 60.9 122.5 353.9 
RLU3 25.8 54.0 172.0 42.l 81.8 242.9 
RLU2 25.2 53.3 178.5 42.0 83.3 242.3 
RLUI 24.8 54.8 179.7 42.6 83.7 252.1 
RL3E 26.0 54.0 169.0 42.l 82.5 251.8 
RUF 22.8 49.6 175.l 41.0 82.2 249.8 

1.00 RLO 82.6 162.l 400.3 86.9 162.3 448.l 
RLU3 46.5 99.3 297.6 68.5 125.5 348.l 
RLU2 46.6 97.9 313.6 68.l 126.3 353.3 
RLUl 46.5 98.7 312.7 68.8 127.4 343.9 
RL3E 47.6 100.2 295.6 68.5 126.9 347.3 
RUF 42.0 95.2 300.0 66.2 122.6 336.4 

1.50 RLO 118.2 243.5 553.l 116.9 209.0 543.3 
RLU3 67.9 144.2 436.1 98.3 174.6 448.3 
RLU2 68.1 139.5 436.3 99.l 175.0 449.3 
RLUl 68.l 144.7 418.8 99.3 175.8 443.6 
RL3E 69.7 143.6 439.5 99.4 I 174.7 434.9 
RUF 62.4 136.0 436.5 96.9 170.4 437.6 

Note: Numbers in bold are the best for each Shop/SU/Utilization combination. 

performs statistically better for a wider set of scenarios. Interestingly, RIAF is best 
for all setup ratios for the flow shop when utilization was low. RIAF also performs 
best for all setup ratios over 0.10 for the job shop, again when the utilization is low. 
For the medium and high utilization levels, RIAF is not significantly different than 
the other lot splitting forms in either the flow shop or job shop. With the additional 
variance caused by stochastic interarrival times (Table 8), there is no indication of 
the flag heuristic performing any better than other lot splitting forms. 

As with the comparisons across CV in Tables S and 6, all lot splitting forms 
perform significantly better than RLO. Furthermore, the magnitude of the improve­
ment from RLO to the worst lot splitting form is much greater than any differences 
between lot splitting forms. 
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Table 8: MFT comparison across SU levels using optimal job sizes for each 
Shop/SU/Form/Utilization combination, stochastic interarrival times. 

Utilization 

Flow Shop Job Shop 

CV Form 57% 72% 87% 57% 72% 87% 

0.10 RLO 36.0 69.1 152.2 40.9 74.6 200.1 
RLU3 17.1 35.8 80.7 24.7 47.1 136.3 
RLU2 19.0 37.9 I 83.9 25.2 46.3 129.5 
RLUI 18.3 38.8 I 85.4 24.7 47.1 138.0 
RL3E 17.5 34.o I 80.5 24.4 46.8 126.6 
RL4F 16.5 31.8 85.6 23.9 47.6 132.9 

0.50 RLO 52.2 98.0 213.3 53.9 99.3 264.6 
RLU3 31.3 62.5 150.1 38.0 70.2 189.6 
RLU2 32.2 64.3 145.7 37.8 70.5 197.5 
RLUI 29.8 62.1 143.6 37.5 67.8 189.1 
RL3E 31.1 61.7 150.4 38.2 68.5 192.3 
RlAF 26.9 59.6 147.7 36.9 66.7 174.2 

1.00 RLO 88.5 132.3 278.3 73.4 133.1 345.1 
RLU3 49.0 93.3 245.2 59.6 97.8 272.6 
RLU2 47.0 87.2 243.2 61.2 102.3 282.5 
RLUI 47.8 94.0 223.0 59.6 98.7 264.9 
RL3E 50.1 99.0 236.6 59.2 103.6 269.9 
RL4F 42.2 89.2 227.5 57.2 102.8 262.2 

1.50 RLO 113.9 189.9 369.2 98.5 166.1 427.9 
RLU3 60.8 131.91 326.1 83.4 142.9 347.3 
RLU2 63.7 131.5 328.0 83.6 138.0 42.9 
RLUI 66.6 132.51 310.6 83.6 139.7 337.9 
RL3E 65.2 130.0I 320.5 83.1 137.7 333.9 
RlAF 63.8 131.2 328.9 87.6 142.5 336.7 

Note: Numbers in bold are the best for each Shop/SU/Utilization combination. 

SDFT 

The standard deviation measure of flow time (SOFT) can also be a good measure 
of system performance since it represents the consistency of output, and, thereby, 
the ability to accurately predict job completion. Table 9 shows the multiple com­
parisons for the SOFT measure for the setup time interactions with deterministic 
interarrival times. The other scenarios showed similar results so we present only this 
one table of SOFT results for conciseness. 

As expected, SDFT is higher in job shops than in flow shops for identical factor 
settings. Somewhat surprisingly, SDFT behaves in a manner similar to MFT. In each 
setting, there is substantial and significant reduction in SDFT from RLO to the worst 
lot splitting form. The improvement is greater in the flow shop (30-50%) than the 
job shop (20-30% ). The differences between lot splitting forms are much smaller 
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Tuble 9: SDFf comparison across SU levels using optimal job sizes for each 
Shop/SU/Form/Utilization combination, deterministic interarrival times. 

Utilization 

AowShop Job Shop 

CV Fonn 57% 72% 87% 57% 72% 87% 

0.10 RLO 14.6 25.6 63.7 20.7 39.9 102.2 
RLU3 6.5 11.5 27.4 11.6 24.0 71.6 
RLU2 6.4 11.9 29.3 11.8 24.4 70.8 
RLUl 6.6 11.5 30.2 11.8 24.5 70.5 
RL3E 6.6 11.1 27.8 11.5 23.6 71.3 
RIAF 6.5 11.7 29.0 11.5 25.0 67.5 

0.50 RLO 16.2 33.4 78.8 24.0 49.7 126.7 
RLU3 7.7 16.8 

48.611 
15.9 31.6 87.6 

RLU2 7.6 17.3 51.6 15.9 32.3 87.0 
RLUl 7.7 17.5 53.1 16.4 32.5 89.7 
RL3E 7.7 17.4 45.31 15.9 32.2 90.8 
RIAF 7.8 16.3 50.0 I 15.8 32.4 90.2 

1.00 RLO 21.7 42.6 104.l 30.3 58.2 145.3 
RLU3 12.0 28.0 75.0 22.6 43.7 110.6 
RLU2 12.9 28.0 88.4 22.4 43.3 113.8 
RLUl 13.6 30.2 88.3 22.6 43.6 108.8 
RL3E 12.3 31.1 85.2 22.3 43.4 110.0 
RL4F 13.3 29.4 81.9 22.1 41.6 108.5 

1.50 RLO 31.2 62.5 141.8 36.5 69.0 164.6 
RLU3 17.0 39.6 112.8 29.1 54.5 I 131.5 
RLU2 18.1 40.2 117.l 29.4 54.3 136.0 
RLUl 18.7 42.6 120.2 29.7 56.0 130.2 
RL3E 18.5 38.6 109.5 29.6 55.2 I 128.0 
RL4F 20.2 41.4 118.6 29.1 53.0 130.9 

Note: Numbers in bold are the best for each Shop/SU/Utilization combination. 

and are mostly statistically insignificant according to Duncan's test. Unlike using 
the shortest processing time dispatching rule (without lot splitting), we see that lot 
splitting by itself reduces both MFf and SDFf. 

Secondary Dispatching Rules 

In all our scenarios, the primary dispatching rule at each workcenter is repetitive 
lots. In the above experiments, we used FCFS as the secondary rule when repetitive 
lots is not invoked. However, other secondary rules may be considered. For example, 
shortest operation time (SOT) is known to minimize MFf in certain cases. We 
investigated the impact of SOT as a secondary criterion for CV=0.50, SU=0.50, and 
show the results in Tables 10 and 11. 
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Tuble 10: Mean flow times with FCFS and SOT as secondary dispatching rule, 
detenninistic interarrival times: CV=0.50, SU=0.50. 

AowShop Job Shop 

u Fonn FCFS SOT FCFS SOT 

57% RLO 37.3 36.3 41.7 40.41 
RLU3 19.7 18.9 31.9 32.3 
RLU2 18.8 I 19.5 29.8 30.4 
RLUI 18.3 19.5 32.9 31.1 
RL3E 19.4 19.9 32.8 31.3 
RL4F 15.7 I 16.7 32.5 36.71 

72% RLO 65.9 57.2 71.81 83.31 
RLU3 35.4 33.0 60.3 62.7 
RLU2 34.7 31.3 54.2 60.2 
RLUI 35.2 36.1 56.4 55.3 
RL3E 35.5 32.2 56.3 62.71 
RL4F 28.9 28.9 54.7 66.0 

87% RLO 165.9 147.6 192.1 240.3 
RLU3 108.2 86.2 154.1 194.7 
RLU2 101.5 89.9 145.5 208.4 
RLUI 102.5 91.6 154.2 259.0 
RL3E 105.9 93.6 153.0 192.9 
RL4F 98.6 90.6 152.0 204.8 

Note: Numbers with lines in the same vertical column are not significantly different. 

Observe that, as expected, SOT reduces MFT for RLO in both flow shops and 
job shops. However, its impact under lot splitting is minimal. Only in the flow shop 
with high utilization did SOT substantially reduce the minimum possible MFT. In 
many other cases, especially in the job shop, the MFT actually increased when SOT 
was used as a secondary dispatch rule. Notice further that in every case, lot splitting 
by itself provided more improvements in MFT than using SOT without splitting. 
Thus, a shop currently using repetitive lots but not lot splitting (RLO) could benefit 
more by utilizing any of the lot splitting forms than by changing the FCFS rule to 
SOT as a secondary dispatching criterion. 

Note that the results presented by Wagner and Ragatz [18] are somewhat 
different than ours in that they indicate SOT always provides lower MFT than does 
FCFS. We suspect that either the fact that all jobs were unique in their simulation 
model (an open job shop) or that they allowed a wide range of task times within a 
job to be the reasons why SOT dominated FCFS in their study. In our experiment 
of a closed job shop, we tested a variety of utilization levels and setup times so as 
to illustrate the conditions where FCFS or SOT would provide better MFT performance 
in the repetitive batch manufacturing environment. 
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'IBble 11: Mean flow times with FCFS and SOT as secondary dispatching rule, 
stochastic interarrival times: CV=0.50, SU=0.50. 

Flow Shop Job Shop 

u Form FCFS SOT FCFS SOT 

57% RLO 42.2 40.5 50.4 46.1 
RLU3 22.3 24.5 35.9 37.2 
RLU2 23.2 20.5 34.5 35.4 
RLUl 20.6 21.0 37.0 39.9 
RL3E 22.3 22.4 37.7 39.7 
RL4F 17.1 18.9 37.7 39.0 

72% RLO 83.6 78.5 81.61 91.4 
RLU3 48.6 42.8 68.3 64.0 
RLU2 44.2 43.9 58.9 62.3 
RLUl 42.3 47.1 63.7 67.3 
RL3E 43.5 45.4 54.4 70.8 
RL4F 44.0 41.0 61.3 70.0 

87% RLO 177.2 146.8 200.6 242.2 
RLU3 117.4 102.8 146.0 208.8 
RLU2 111.0 101.l 159.6 256.0 
RLUl 111.2 100.9 149.7 189.8 
RL3E 117.0 105.4 140.9 216.3 
RL4F 122.2 98.8 150.6 232.6 

Note: Numbers with lines in the same vertical column are not significantly different. 

Discussion 

The preceding results address our objectives of this study. As had been pointed out 
elsewhere ([2], [9], and [13]), lot splitting can reduce MFT in deterministic and 
stochastic flow shop environments by use of overlapping processing of items from 
the same job. However, the differences between various forms of lot splitting diminish 
as the environment moves further from the deterministic flow shop. The only job 
shop scenarios in which there were any significant differences had very low processing 
utili:zations, moderate setup levels, and deterministic interarrival times; in other 
scenarios the exact method used does not seem to matter. 

The results are similar in the flow shop scenarios, although RIAF still performs 
well under high utili:zation levels. However, as the flow shop parameters approached 
more realistic levels of CV, this advantage disappears. Clearly, extending conclusions 
regarding lot splitting policies that perform well in deterministic settings to more 
realistic stochastic situations may not be justified. Whereas splitting the lots still has 
a beneficial effect on MFf in the stochastic environments, the exact method used 
matters in a relatively small subset of scenarios. The number of splits might matter 
most in stochastic environments. In the following section, we describe experiments 
that determine the effect of further splitting the Jot on flowtime performance. 
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THE EFFECT OF THE NUMBER OF EQUAL SPLITS 

We expected that the impact of increasing the number of transfer batches will be 
more dramatic for higher levels of the setup ratio, for higher processing utilization 
levels, and higher levels of variability (CV). We also expected that as the number 
of transfer batches gets very large, so the expected transfer batch size approaches 
1, deleterious effects of lot splitting will appear in the job shop. Conceivably, with 
many small splits in the job shop, and no dominant flow to coordinate the sequencing, 
there is increased likelihood that at least one straggler will arrive at a machine with 
the "wrong" setup and get delayed due to repetitive lots working against that small 
batch. As we shall see, however, this delay does not seem occur. 

The Experiment 

Using the same simulation model, we ran a series of experiments varying the 
number of equal splits. Except for the lot splitting form now being "RLnE," where 
"n" is the number of equal splits, the other parameters are identical to the experi­
ments above in which we studied the lot splitting forms. The number of splits was 
run at 1 (RLO), 2, 4, 8, 16, 32, 48, and 64. Due to the lengthy computer time required, 
especially in the 32-64 split cases, and with the results from the previous section in 
mind, we only considered a subset of the other parameters. We used high, medium, 
and low processing utilization levels as before (57%, 72%, and 87%) and CV levels 
of O.Ql, 0.5, and 1.0, respectively. We fixed the mean size of incoming jobs at 75 
units in order to allow the larger number of splits to result in transfer batch sizes of 
near 1. The setup ratio factor was kept at 1.00 for all experiments. 

Results 

The results for the CV x number of splits interaction are shown in Figure 3 for 
processing utilization levels of 57%, 72%, and 87%. We only show up to 16 equal 
splits since MFf stayed pretty much constant for 32-64 splits. There is a dramatic 
difference in the flow shop results between low CV (0.01) and the higher CVs. For 
near-deterministic CV (0.01), the MFf is substantially lower for all number of splits. 
However, in the job shop, MFf converges for all CV levels as the number of splits 
increases. Also, the greatest reduction in MFf due to additional splitting occurs in 
the high CV situations for both the flow shop and the job shop. As the flow shop 
utilization increases to 87%, the difference between the low-CV flow shop and the 
higher-CV flow shops is even more dramatic, suggesting that lot splitting is more 
valuable in flow shops with highly variable environments. 

In all scenarios, there was considerable improvement to MFf due to lot splitting. 
However, the incremental benefits of lot splitting become negligible after the first 
few splits. For example, for the job shop with utilization of 72% and CV ( 1.0), 
splitting from one Jot to two lots decreased MFf by 22%, splitting from two to four 
decreased MFf by 14% more, and splitting from four to eight decreased MFT by 
8% more. Only in the flow shop with 87% utilization and the higher two CV levels 
was there any appreciable improvement between 8 and 16 splits. As mentioned 
above, increasing the number of splits higher still resulted in virtually no further 
improvement. The amount of improvement increased with higher utilization and 
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Figure 3: Mean flow time versus number of equal splits for different levels of 
processing utilization (U) and operation CV. 
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with greater variability (higher CV). The overall benefits of lot splitting are greater 
in flow shops than job shops. It is also interesting to note that the MFf for job shops 
tended to converge with increased lot splitting, whereas in flow shops they stayed 
distinct for each CV level. 
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CONCLUSIONS 

Flow Dominance. Unlike previous research, we found that the fonn of lot splitting 
rarely matters in situations more likely to be found in practice. We did find that the 
flag lot splitting form worked generally well in a flow shop environment when the 
variability is at low to moderate levels and the system is not highly congested. In 
contrast, for a purely random job shop, significant differences between the lot 
splitting forms do not exist except for the low utilization/low variance case. Consider 
the managerial implications in a job shop that evolves into a more line-oriented flow 
(perhaps due to product maturation or standardization). Until there is clear flow 
dominance, the use of unequal lot splitting fonns offers little benefit over equal 
splits. Once there is clear flow dominance, the variability, congestion, and setup 
times should be considered to determine if there are possible improvements due to 
unequal lot splitting forms. In these circumstances, our results indicate that the use 
of the flag heuristic tends to best improve MFf. 

Deterministic/Static vs. Stochastic/Dynamic Settings. Our results indicate 
there is a large discrepancy between the orderly world of the deterministic, static 
flow shop models and the chaotic world of the stochastic, dynamic flow shop and 
job shop models. Since many production facilities processing in batch mode resemble 
the latter more than the former, lot splitting forms that work well only in determi­
nistic settings should be used with caution. As we have demonstrated, fonns such 
as the flag heuristic, which perfonned well in a deterministic flow shop, seem to 
have little or no advantage when there is even a moderate amount of variability or 
congestion. 

JIT/Kanban Issues. Current views of manufacturing, influenced by some 
Japanese companies, advocate smaller lot sizes, reduced WIP inventory, use of 
"pull" systems and the related production triggering mechanisms, such as kanban. 
Our results on the number of splits indicate that perhaps many of the benefits of 
such systems may be simply due to reduced lot sizes. If splitting orders into small 
transfer batches reduces mean flow time as indicated above, then WIP will be 
correspondingly reduced as well. Note that in our models we used a classic "push" 
system with batch processing, yet were able to reduce the flow time substantially 
by splitting. Furthermore, this worked well in both flow shops and in job shops. As 
Zipkin [19] points out, the application of Just-in-Time (JIT) methods can be prob­
lematic in a number of real settings. Therefore, firms that are not able to easily 
implement many aspects of JIT, including the use of kanban, may find that a large 
proportion of flow time benefits can be attained through lot splitting alone. Clearly, 
the above comments are speculative, since we do not explicitly test a number of 
important JIT issues in this study. 

When Lot Splitting Is Not Beneficial. Lot splitting is not necessarily always 
beneficial. One consequence of many smaller batches in the shop is that material 
handling costs could skyrocket. Furthermore, the likelihood of a batch getting mis­
placed in a job shop increases dramatically with the number of such batches in the 
shop. Thus, a facility that implemented lot splitting would be wise to rationalize 
their layout, routing and tracking mechanisms, and make sure their material handling 
capabilities were sufficiently flexible to handle the resulting load. On the other hand, 
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a flow shop already has a layout that is matched with the routing of its parts. 
Consequently, lot splitting may be more desirable in flow shops than job shops. 

In a similar vein, the existence of minor setups may also counteract the potential 
benefits of lot splitting. In this case, we would consider a minor setup to be one 
associated with the processing of any new batch on a machine, even if it is of the 
same type. With more splits, the effect of such setups on MFf would increase. 
However, in Wagner and Ragatz's "open" shop ([18]) each job is unique, thereby 
always incurring a setup. Since Wagner and Ragatz demonstrated improvements in 
system performance due to lot splitting in open shops, the benefits of lot splitting 
may indeed be persistent even in the face of minor setups. 

SUMMARY AND FURTHER RESEARCH 

We have extensively tested various forms of lot splitting in a closed job shop and 
flow shop environments with different levels of setup times, processing time vari­
ability, processing utilization, job size, and type of shop. In nearly every case, lot 
splitting substantially improved both MFf and SDFf over no lot splitting. We also 
found that as the environment moves away from a deterministic flow shop, the 
differential impact of lot splitting forms diminishes, and there is virtually no differ­
ence in most job shop settings. As the number of splits increases, MFf tends to 
keep improving, but with decreasing returns. The repetitive lots rule and lot splitting 
appear to work together in a complementary way. The benefits of lot splitting in the 
environments we have considered (stochastic, job shop and flow shop) may be even 
greater than in the simpler deterministic, flow shop environments previously studied. 
Lot splitting thus provides a relatively easy way to obtain some of the benefits of 
smaller batches under the classic push system still employed by most batch produc­
tion facilities without the need to radically change procedures. As discussed above, 
improved mean flow time goes hand-in-hand with decreased WIP, another practice 
that is currently advocated. 

Our initial tests constrained the number of machines per department to one, 
but this simulation model could be easily modified to allow multiple machines per 
department. We plan to test this environment in future research, since we hypothesize 
that the repetitive lots rule will mimic a cellular manufacturing environment, given 
a sufficient number of like machines per department. Since the repetitive lots rule 
scans the queue of jobs waiting to use a machine in a department for one that could 
be processed without requiring a setup, the availability of multiple, like machines 
should cause dedication of machines to similar job types. 

Even though we found that increasing the number of equal splits did not 
degrade MFf performance, a number of situations in which MFf would increase 
with more splits can be envisioned. We have discussed some issues regarding layout, 
minor setups, and material handling above. In certain settings there may indeed be 
an optimal number of splits that would minimize MFf, and in others, a transfer 
batch size of 1 may be optimal. 

Finally, we have only considered flow shops and pure job shops, which are 
extreme cases of flow dominance. It would be interesting to determine how our 
results would change for intermediate cases of flow dominance (i.e., between flow 
shops and pure job shops). We leave the exploration of these important issues to 
further study. [Received: June 24, 1994. Accepted: December 6, 1995.] 
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