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Abstract. In this paper, we discuss the behaviour of small cylindrical
microlenses, arranged in one-dimensional arrays and as single elements. For
this purpose, we apply a standard rigorous diffraction theory, commonly used
for diffraction gratings. We investigate the coupling effect between the ele-
ments. It turns out that single elements behave like periodic elements if the
spacing is chosen correctly. Furthermore, we compute the complex transmis-
sion function by rigorous diffraction theory and compare them with classical
theories (combined ray tracing and the thin-element approach). Finally, we
discuss the focal properties of microlenses in the rigorous regime.

1. Introduction

Today’s technology allows the realization of small microlenses which have
geometrical dimensions of the order of a few wavelengths (figure 1). These lenses
are typically realized by the reflow technique [1] and have perfect spherical
surfaces. In standard lens design, mainly two approaches are applied to describe
the behaviour of such elements. One method is ray tracing and the other is the
thin-element approach. In its simplest version, ray tracing applies the laws of
refraction and reflection to individual rays. No diffraction effects are taken into
account. However, it is possible to include the optical path length through the
optical elements (phase-sensitive ray tracing). This allows one to determine the
field in the plane of the exit pupil of an optical system. In a second step, the free-
space propagation of the field can be computed by diffraction theory (angular
spectrum, Rayleigh—-Sommerfeld or Fresnel). This method is referred to as
combined ray tracing [2]. In the thin-element approach, the plane of the entrance
pupil and the plane of the exit pupil coincide. In this case, the element alters only
the phase of the incident wave, that is the wave is delayed proportionally to the
surface relief of the element.

The classical theories lose their validity if the geometrical dimensions of the
element are of the order of the wavelength. For this purpose, different rigorous
diffraction theories have been investigated in the past. They are based on either the
integral or the differential representation of the wave equation. In the literature,
only a few examples are presented for the rigorous computation of microlenses.
Most of them are valid for diffractive microlenses [3, 4]. Rigorous computation of
refractive microlenses based on intergral boundary methods and applied to have
been presented by Tabbara [5] and more recently by Wang and Prata [6].
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Figure 1.  Scanning electron microscopy picture of an array of very small microlenses
(diameter, about 3 pum) [1].

However, these calculations are cumbersome and have been restricted to single
elements. On the other hand, there exist efficient rigorous theories valid for
periodic structures only [7-9]. They are mainly used to predict the diffraction
efficiency of high-frequency gratings.

In this paper, we apply the rigorous eigenmode method to microlens arrays
[10]. We restrict the analysis to arrays of continuous relief lenses illuminated with a
plane wave (two dimensions and transverse electric polarization). Furthermore, we
analyse the diffraction at single elements by introducing a large spacing between
the elements and we discuss the coupling effects between the elements. We
compare the transfer function of microlenses calculated by rigorous diffraction
theory and two classical theories (combined ray tracing and the thin-element
approach). Finally, we investigate the focusing properties of microlenses.

2. Rigorous diffraction theory
Illuminating periodically arranged elements by a plane wave results in a
discrete plane-wave spectrum. Therefore, the field can be written as

Ur(x,2) = Z T exp [1(Remx + kam2)], (1)

where k,,, and k., are the projections of the associate plane wave wave-vector K,
onto the x and z axis respectively. The diffraction problem consists in finding the
amplitudes T, of the individual plane waves (or diffraction orders). In the rigorous
eigenmode method [10] the periodically modulated surface structure or, in our
case, the periodically arranged scatters are divided into a stack of thin films. The
total number of layers depends on the thickness-to-wavelength ratio. We typically
chose 25 x h/\ layers, where h is the thickness of the structure and A the
wavelength. The dielectric constant distribution €(x, 2) = €,(x, 2,,) of each film is
expanded into a Fourier series, and the electric field into eigenmode functions.
Introducing these expansions in the wave equation results in an eigenvalue system
that can be easily solved. The dimension of the eigenvalue system depends on the
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Figure 2.  Calculated near-field phase contour plot of a microlens array. The elements

have a diameter of 8\, a height of 4\ and a refrative index n = 1.5. The array 1s
illuminated by a TE-polarized plane wave, with perpendicular incidence.

grating period-to-wavelength ratio. It has been shown that for dielectric structures
all propagating diffraction orders and some few evanescent diffraction orders
(typically ten) have to be retained in the analysis [10]. Once the eigenvalues are
determined, the amplitudes of the eigenmode functions are found by matching the
electromagnetic boundary conditions.

With this method, it is possible to find the rigorous complex transmission
function of any periodic structure, and in particular also the light distribution in
the near field of microlens arrays (figure 2).

In the following, we show how the method can be applied to modelling a single
microlens. There are mainly two points to consider when comparing microlens
arrays with single elements. First, there are interference effects during the free-
space propagation between the elements (e.g. the self-imaging effect or the Talbot
effect).

Secondly, since the geometrical dimensions are small, the individual lenses
couple with each other (intrinsic coupling). The coupling influence can be
illustrated by comparing the rigorous transmission function of periodically
arranged elements with the rigorous transmission function of a single element.
Unfortunately, there exist only a few analytic (rigorous) solutions for the inter-
action of light with single elements. One case is the diffraction at a cylinder (figure
3). In that case, it is possible to express the field outside the cylinder by a
superposition of Bessel and Hankel functions (for example [11])

Ugingle(r,0) = Uy i (=1)" exp (in0)[J,(kr) A, + H? (kr)B,]. (2)

n=-—oC
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Figure 3.  Configuration used to illustrate the coupling effect between elements. (a) The
calculated field Usingle of a cylinder illuminated with a plane wave is compared with
(b) the field of periodically arranged cylinders Upriodic-

A, and B, are coefficients which depend on the diameter of the cylinder and the
indices of refraction of the cylinder and the surrounding area. In parallel to that,
we compute the field generated by periodically arranged cylinders with the method
presented before. We denote this field by Uperiodic(x,¥) = Ur. The coupling
parameter y is now defined as the difference between the fields Usgpg, and
Ubperiodic in the output plane, integrated over a fixed interval of one wavelength:

A2

X(A) = J / ‘Usinglc(xv a) - Uperiodic(x7 a, A)|2 dx7 (3)
x=—X/2

where A is the grating period of the microlens array. Figure 4 illustrates the
coupling coefficient x in function of the grating period A for different diameters of
the cylinders. It it interesting to observe that a resonance occurs if the grating
period is a multiple of the wavelength. Furthermore, the coupling effect is larger
for small cylinders than for large cylinders. For very small structures the coupling
may occur even if the elements are spaced by several wavelengths. To understand
this behaviour, we compute the spectrum of (single) cylinders of different
diameters. If the size of the cylinders are large (figure 5), the spectrum is mainly
given by the propagating frequencies, that is |k,| < &k = 2n/A. For small cylinders
(figure 6), the spectrum is mainly given by the spatial frequencies around £k, that
is they correspond to evanescent waves (or surface waves) of wavelength A, also
called critical evanescent waves. If the elements are arranged periodically, the
spectrum becomes discrete. Depending on the grating period it is possible that the
sampling falls directly on the critical frequencies k, = £k. In this case, there is
maximum coupling between the elements. In addition the diffraction pattern
becomes dominated by the two surface waves (in the positive and negative
directions). This is due to the large penetration depthf of the evanescent waves.
It turned out that it is possible to simulate the diffraction of a single element
with the help of a grating diffraction theory, if the grating period is chosen
correctly. First, the grating period should not be a multiple of the wavelength

+The penetration depth of an evanescent wave is defined as z.f = 1/7, with
= (k- k2)1 2. For a critical evanescent wave (k, = k), 2. becomes infinite!
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Figure 4.  Coupling coefficient x (equation (3)) against grating period A for different
diameters 2a of the cylinders: (a) 2a = A/5; (b) 2a = \/2; (¢) 2a = X; (d) 2a =2\
The coupling coefficient shows a resonance if the grating period is a multiple of the
wavelength. The smaller cylinders in (@) show larger coupling effects than the larger
cylinders in (b) do.

and, second, the period should be larger than twice the diameter of the element.
This result is justified by figure 4.

3. Comparison of classical and rigorous theories

In this section we compare classical and rigorous diffraction theory applied to
two different microlenses: a thick (4 = 2A) and thin (A = A/5) cylinder lens of the
same diameter 2a = 4)\. In this context, the terms thick and thin are referred to
paraxial and non-paraxial elements, that is to small and large deflection angles
respectively. In our case the deflection angles at the border of the element are 41.8°
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Figure 5. Spectrum of a cylinder of diameter 2a =3\ (a.u.; arbitrary units).
Frequencies |k.| larger than % =2m/A correspond to evanescent waves. The
spectrum of such a large cylinder is mainly given by the propagating waves

(Vx| < k).
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Figure 6.  Spectrum of a cylinder of diameter 2a = A/2 (a.u., arbitrary units). The
spectrum of such a small cylinder is mainly given by the critical evanescent waves of
frequency k, = tk.

(thick) and 7.5° (thin). It turns out that the spectrum of thin lenses (figure 7)
calculated by the classical theories (combined ray tracing and the thin-element
approach) agree well with the rigorous computations. In this case, the influence of
the thin element on the wave front is small and the diffraction pattern is mainly
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Figure 7.  Calculated spectrum of a thin lens (a.u., arbitrary units): (——), rigorous
computation; (——-), ray tracing; (- - - - - ), the thin-element approach. The lens has

a diameter of 2a = 4) and a thickness of A = A\/5.
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Figure 8.  Calculated spectrum of a thick lens (a.u., arbitrary units): ( ), the rigorous
computaiton; (——-), ray tracing; (- - - - - ), the thin-element appraoch. The lens has
a diameter of 2a = 4\ and a thickness of 7= 2A.

given by the aperture, that is the spectrum has a sinc form. The only difference
between the theories is in the absolute intensities. The thin-element approach and
ray tracing show higher intensities, because there are no losses in the transmission
functions (only the phase is affected).

In the case of the thick element (figure 8), the prediction made by the thin-
element approach is wrong. The theory does not predict the bending of the border
rays through the element. Therefore, the spectrum of the transmission function is
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Figure 9.  Tllustration of the focal shift, where the focal position relative to the paraxial
focal position in function of the diameter of the lens is plotted for different aspect

ratios (3 = h/2a: (——), focal positions calculated by the thin-element approach;
(+), the rigorous calculated focus positions.

too smalll On the other hand, combined ray tracing shows smaller differences from
the rigorous computations. One can conclude that combined ray tracing is more
accurate than the thin-element approach and that the method is valid for elements
with diameters down to few wavelengths.

4. Focal properties of microlenses

The thin element approach predicts a focal shift for elements having low
Fresnel numbers [12]. The Fresnel number is defined as N = a*/\f, where f is the
(paraxial) focal length of the lens. Microlenses, which have a diameter 2a of a few
wavelengths are especially affected by this effect, because the minimum achievable
focal length is foim = a/(n — 1) & 2a, n being the refractive index of the lens. Thus,
the maximum achievable Fresnel number is of the order of

a

]Vmax ~
c2)

(4)
This means that, owing to the small size, their properties are dominated by
diffraction at the aperture. It has been shown in section 3 that the thin-element
approach does not describe thick lenses sufficiently well. Hence, we expect a
different behaviour of the rigorous computed focal shift than prediced by thin
theory. Figure 9 illustrates the focal shift in function of the diameter of the lens for
different aspect ratios 3. The aspect ratio 3 is defined as the ratio of the lens
thickness to the lens diameter, that is 8 =//2a. For small aspect ratios the
computations based on the thin-element approach agree well with the rigorous
computations. For high aspect ratios (and as consequence also thick elements)
there is quite a large difference between the two models. It turns out that the focal
shift of thick lenses is less severe than predicted by the thin-element approach.



5. Conclusions

We have shown that it is possible to simulate single-element diffraction with
the aid of a rigorous grating diffraction method by carefully choosing the grating
period. Furthermore, we presented a comparison between three different methods
to calculate the interaction of light with small lenses. For thin elements, all three
methods predict well their behaviour, even for very small lenses. This is mainly
because thin lenses are dominated by the edge diffraction which influences the
focusing behaviour of the lens. We have shown that there is a good agreement
between the classically predicted focal shift and rigorous computations.

For thick lenses, combined ray tracing is more precise than the thin-element
approach. For such elements, the focal shift turned out to be less pronounced than
predicted by the thin-element approach. In any case, it hs been illustrated that
very small lenses also exhibit some focusing behaviour. This result is in a good
agreement with the results presented by Wang and Prata [6].
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