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A form of classica I electrodynamic field exists which 

gives exact agreement with the operator field of quantum 

electrodynamics (QED) for the Lamb shift of a harmonically 

bound point electron. Here it is pointed out that this form 

of classical theory with its physically acceptable 

interpretation is the result of an unconventional 

resolution of a mathematically ambiguous term in classical 

field theory. Finally a quantum-classical correspondence 

principle is shown to exist in the sense that the classical 

field and expectation value of the QED operator field are 

identical if retardation is neglected in the latter. 



There is confusion in the literature regarding the limitations of 

classical electrodynamics’ to describe the Lamb shift of a bound 

electron. Usually it is assumed that the Abraham-Lorentz model [l], 

although physically flawed, is the natural outcome of a consistent 

application of classical electrodynamics to the fundamental problem 

of the self interaction of an electron with its own radiation field. 

On the other hand at least two other applications exist in the 

literature [2-31 in which exact agreement is obtained with quantum 

electrodynamics (QED) for this quantity. 

In this paper it is pointed out that the confusion arises from 

writing down the classical field in two different mathematical 

forms, one of which, 

i&t) =; 
I 

dt’B(t-t’)[G’+‘- G(-)1 &t’> 
0 , 

where CI(t-t’) is the theta function, G(+) (G(-)) are the retarded 

(1) 

(advanced) Green’s functions, 

G(i) = w+ R/c -0 
R 
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&) _ d;‘w 
dt’ is the velocity for an electron whose trajectory is 

;(t’), and R= G- ;(t’)l, contains mathematical ambiguities at R = 0 in 

the second term which are resolved in favor of the vanishing of the 

term. The second form [2-31, however, arises from writing the field 

in terms of inverse Fourier integrals over the radial variable in c 

space and evaluating the field at R = 0 before performing the 

integration over k = o/c. In other words if the k integration is 

performed first, then Eq. (1) is the result; however if the k 

integration is performed after finding the field at R = 0, then the 

result is a field whose application to the Lamb shift gives exact 

agreement with the QED result, where the k integral is recognizable 

from QED as the unbounded frequency integral which diverges 

linearly as 0. The familiar high-frequency divergence simply 

reflects the capacity of a point charged particle to radiate at 

infinitely high frequencies either quantum mechanically or 

classically. The latter problem, which appears to arise from an 

incompleteness of the physical model, is dealt with of course using 



physical arguments to renormalize the result such that the infinite 

contributions are cancelled. 

While this would seem to be an unsatisfactory situation from a 

mathematical point of view, yet mathematical physics abounds with 

examples in which ambiguities are resolved in favor of obtaining a 

result with a satisfactory physical interpretation. Here we point 

out that the usual choice of dropping the second term of Eq. (I), in 

the sense that it seems inevitably to lead to physically unsuccessful 

concepts such as the finite extent and charge distribution of the 

electron, is not as compelling physically’ as the prescription just 

outlined [2-31. 

For completeness we outline below the derivation of the two 

forms of the classical field. The Maxwell equation 

field arising from the motion of a point electron is, 

(V2 - ’ a2 ) ii = -? eu’(t) SF - 7(t)] 
c2a t2 

for the vector 

, (3) 

Eq. (3) can be expeditiously solved by first Fourier transforming in 

space and then solving the resulting second-order differential 

equation in the time, namely, 
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2 & + w;a (i;,t) = 4mc;yt)e-~~~(t~ = ;I;, t) at2 
o=kc, 

PW 

(44 

whose solution is 

a(&) = f I -~t’e-iO(t>-t)~(~,tl) 
0 

, (5) 

where t., (tJ is the greater (lesser) of t and t’. Eq. (5) can be 

written out explicitly, 

a&t., 
. (6) 

In fact the integral from t to infinity can be recast as the integral __ 

from zero to infinity minus the integral from zero to t. Then on 

dropping the term containing the constant integral, the result is 

still a solution to Eq. (4a), namely, 

because the term we dropped is a solution of the homogeneous 

equation. One may easily verify that Eq. (7) is indeed a particular 



solution of Eq. (4a) by direct substitution. 

Boundary conditions have been used corresponding to the 

propagation of positive-frequency solutions forward in time. In the 

temporal inverse Fourier transformation satisfying this condition, 

the contour is closed in the lower half-plane with detour including 

: . 
(excluding) the positive (negative) real axis. These boundary 

conditions are discussed in detail for the solution of the Dirac 

equation in Bjorken and Drell [4]. 

The final expression for the field follows on taking the spatial 

inverse Fourier transformation of Eq. (7), 

X&t> = -J- 
(2703 

1 dii ei’;s ,(G,t) 

I 
. 

= ?f?m 

I 

-&) Ce 
-h(t-t’) 

dt’ -e 
@t-t 

1 

XC R 
sin($) u’(t) 

‘0 

[G(t-t’-R/c) - qt-t’+R/c)] U’(t) 
R 

t (8) 

where the identity, 

(9) 
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has been used. On recognizing that the integral from zero to t can be 

replaced by the intergral from zero to infinity if the term in 

brackets on the right side of Eq. (8) is weighted by the theta 

function @(t-t’), we can immediately write Eq. (8) in the compact 

form given by Eq. (1). On the other hand the other prescription for 

writing the field [2-31 is simply to defer the integration over o until 

the field, as given by the second line on the right side of Eq. (8), is 

evaluated at R = 0 and used in the Lamb shift application, whereupon 

the o integral is the familiar divergent integral over emitted 

frequencies. 

In summary the result depends critically on the order in which 

the limits are taken: a+-followedbyR+O or R+Ofollowedbyo+-. 

The second choice leads to agreement with QED, while the first 

choice leads to the well known models of radiation reaction which 

are plagued by unphysical behavior (run-away and acausality). 

Finally we demonstrate the classical-QED correspondence, which 

was first stated in [3]. First however we require the projection of 

the classical field (as given by the second line of Eq. (8) evaluated at h 
R = 0) onto the unit vector E in the direction of polarization of the 
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emitted radiation, namely, a- 

where the factor of 2 accounts for the two possible polarization 

states. On the other hand the QED operator field is written for a 

where Eq. (11) is evaluated at the center of the atom such that 

retardation is neglected and where PH is the Heisenberg momentum 

operator, where, in order to compare with the form given in 151, we 

have used the operator identity, 

-e$[R+-RJqz 1 

, (12) 

where 00 and d are the transition frequency and dipole moment of 

the two-level atom, respectively, and R,, R, are the raising and 

lowering operators. Note that Eq. (10) is indeed the expectation 



value of Eq. (11); thus within the principal approximation of 

Eq. (1 I), neglect of retardation, the correspondence principle is 

established. A result identical to Eq. (11) has also been presented 

[3] .when the model is that for the linear oscillator rather than a 

two-level atom. 

It is not surprising that the correspondence exists only when 

retardation is neglected in the QED field because here the 

distinction between a classical point particle and a quantum point 

particle described by a spatially distributed wave function is made. 

What may be surprising however to a community which believes that 

quantum field theory is necessary to describe effects such as the 

Lamb shift is the mathematical similarity of the classical 

electrodynamic and QED descriptions once the decision is made in 

the former to represent the field as a mode sum over continuously 

distributed frequencies of the emitted radiation. This decision 

effectively lifts the mathematical ambiguity at R = 0 of Eq. (1) in 

favor of an unbounded frequency model, in agreement with QED but in 

disagreement with the model which diverges Coulombically as R-l 

as R goes to zero. 
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