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The density of states of Dirac fermions with a random mass on a two-dimensional lattice is
considered. We give the explicit asymptotic form of the single-electron density of states as a function
of both energy and (average) Dirac mass, in the regime where all states are localized. We make
use of a weak-disorder expansion in the parameter g/m2, where g is the strength of disorder and
m the average Dirac mass for the case in which the evaluation of the (supersymmetric) integrals
corresponds to non-uniform solutions of the saddle point equation. The resulting density of states
has tails which deviate from the typical pure Gaussian form by an analytic prefactor.

71.23.An, 72.15.Rn, 73.20.Dx

I. INTRODUCTION

Dirac fermions in two dimensions play a prominent role in the description of some notable two-dimensional (2D)
condensed matter systems. Examples are the plateau transition in the Integer Quantum Hall Effect (IQHE) [1,2], D–
wave superconductivity in CuO-planes [3] and quasiparticles in the resonant valence bond state of the two-dimensional
Heisenberg model [4]. Notwithstanding, of course, the 2D Ising model in the framework of a Grassmann field repre-
sentation (for a review, see [5]). The Dirac mass creates a gap between the hole and the particle band and, therefore,
gives an opportunity for the description of an insulating fermionic system when the Fermi energy lies inside this gap.
The tuning of the mass allows us to go through a transition to a metallic state when the mass (i.e. the gap) vanishes.
This behavior is relevant for the description of, e.g., the plateau transition in the IQHE. However, at zero energy
(measured with respect to the Fermi level) the density of states (DOS) is always zero, as it turns out, for the pure
Dirac fermions, even for the case of a vanishing mass.
In practice, in a real system there are always relevant impurities such that the pure Dirac fermions model is

insufficient as a description. In order to take these impurities into accout we can simply add randomness to the Dirac
fermions’ Hamiltonian. This has severe consequences on the properties of the Dirac fermions; in particular, as it turns
out, randomness is a non-perturbative effect [6]. Randomness can lead to new (localized) states even in the gap of
the pure system due to the formation of Lifshitz tails. This phenomenon will be studied in the present paper for the
limit case of a large mass. We stress that, although there are different types of randomness which can be in principle
included in the Dirac model, we will concentrate here on the physically relevant case of a random Dirac mass only.
Moreover, we will only investigate here the form of the average DOS for the localised states. The average DOS has
been evaluated via various other approaches. Fradkin, for example, computed this quantity for Dirac fermions with a
random energy [7] by means of the coherent potential approximation (CPA) and found a filling of the pure system’s
gap. In the case of a Lorentzian mass distribution, e.g. P (Mr) = (τ2 + (Mr −m)2)−1τ/π, the average DOS can be
even calculated exactly [8]. At energy E = 0 it has, in contrast to the vanishing DOS of the pure Dirac fermions’s
case, a non-zero value

ρ(m,E = 0) ≡ ρ(m) = τ log[1 + λ/(τ2 +m2)]. (1.1)

The lattice constant 1/λ shows up as a cut-off for an infrared divergency. The power law of the tails at large mass
m is an artefact of the Lorentzian distribution, which has strong tails itself. For more realistic distributions, like
the Gaussian P (Mr) = exp(−(Mr − m)2/2g)/

√
πg, we expect much weaker tails; for this case the renormalization

group (RG) calculation gives a vanishing DOS. This is a consequence of the fact that a random mass is an infrared
marginally-irrelevant perturbation which drives the system always back to free Dirac fermions’ theory as its fixed
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point [9,3,10,11]. This somewhat bizarre result must be traced back to the intrinsic perturbative nature of the RG
calculation: the β-function is indeed always evaluated by means of a perturbative expansion of the disorder strength
g. Although the solution of the RG equations may pick up some non-perturbative feature for small g, since these
equations make statements valid to all orders, there is nevertheless no guarantee that all non-perturbative effects are
duly taken into account. There are in fact rigorous estimates of the DOS at m = 0 which give a deviation from the
vanishing DOS of the free Dirac fermions’ fixed point [6]

ρ(0) > c1e
−c2/g, (1.2)

where c1 > 0 and c2 > 0 are constants independent of g. This result is similar to the one from the (uniform)
saddle-point (SP) approximation (large N limit), where ρ(0) ∼ e−π/g/g was found [12].
For the Dirac fermions, a non-perturbative approach based on the SP approximation of a suitable functional-integral

representation has given, again for the extended states, a finite bandwidth in the DOS having a characteristic semi-
circular form [12]. Perturbative calculations (leading, however, to different and sometime unphysical results) have
also concentrated on the extended states. Therefore, hitherto no specific information on the features of the DOS
for the localized states has been obtained from the Dirac fermion approach and it certainly of some great interest to
characterize the localized states in view of a possible resolution of the still open problem of the localization length
near the Integer Quantum Hall Transition (IQHT).
In this paper, we produce such a calculation for the Dirac fermions model characterized by a Gaussian random

mass distribution. In order to make the calculation feasible, we consider the behavior of the non-uniform SP solution
in the small g/m2 regime. The behavior for small g/m2 can be in fact explained in terms of an SP approach to the
supersymmetric functional integral for the averaged DOS [13,14]. Instead of doing the SP integration, we choose to
expand the functional integral directly in powers of 1/m.

II. THE MODEL

In this Note we carry out an investigation on the form of the localized DOS at zero energy, which leads us to
characterizing the tails of this quantity in the asymptotic limit of a large average mass (or, as it turns out, in the
limit of weak disorder in the single-particle random potential). Our starting point is the Dirac fermions’ Hamiltonian
for the independent quasiparticles

HD = i∇1σ1 + i∇2σ2 +Mσ3 ≡ i∇ · σ +Mσ3, (2.1)

where the energy is measured in units of the hopping parameter of some original lattice model, ∇j is the lattice
differential operator in the j-direction and {σj} are the Pauli matrices. This Hamiltonian, with a random mass term
Mr and no random vector potential, is a reasonable starting point for the description of a number of interesting
physical systems, as discussed in the Introduction. The average local DOS is obtained as usual from the averaged
one-particle Green function G(E − iω) = (HD − E + iω)−1 as

ρ(m,E) = − lim
ω→0

1

π
Im〈Tr2Gr,r(M,E − iω)〉, (2.2)

where Tr2 stands for the trace over the 2 × 2 matrix structure. We have characterized the random Dirac mass
effectively by its average value 〈Mr〉 = m and correlation function 〈MrMr′〉 = gδr,r′ . The representation for the
Green’s function in terms of both commuting and anticommuting functional integrals is well-known [12] and we arrive
at a collective fields representation which for the Green’s function with r′ = r gives

〈Gr,r(M,E − iω)〉 = 1

g

∫

τQrτe
−SDPDQDΘDΘ̄. (2.3)

τ is here the diagonal matrix (1, i), i.e τ2 = σ3. The mixed commuting-anticommuting (supersymmetric) effective
action has the form (setting, for convenience, E = 0)

S =
1

g

∑

r

(Tr2Q
2
r +Tr2P

2
r + 2Tr2ΘrΘ̄r) +

+ ln det[(H0 + iωσ0 − 2τQτ)(HT
0 + iωσ0 + 2iτPτ)−1]

+ ln det[1− 4τΘ̄τ(HT
0 + iωσ0 + 2iτPτ)−1τΘτ(H0 + iωσ0 − 2τQτ)−1]. (2.4)

Here, H0 is the Dirac Hamiltonian without disorder : H0 = iσ · ∇+mσ3.
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III. SADDLE POINT APPROXIMATION

At E = 0 the DOS of the pure Dirac fermions is always vanishing. Near m = 0 – the point where the pure
system closes the energy gap – the above supersymmetric effective action enables us to recover the average DOS of
the random system. From the uniform solution for the SP equation (δS = 0) in the matrix argument Qr we obtain
a semicircular DOS with radius mc = 2e−π/g with respect to its dependence on the mass m [12]. Thus this predicts,
within a large-N approach, a finite bandwidth for the states between two critical points m = ±mc.
In order to work with localized states, a non-uniform solution for the SP equation for Qr must be sought, as in

the approach by Cardy [13] and Brézin [14], who considered a random Schrödinger Hamiltonian using the bosonic
replica trick. The situation is more complicated in the case of our supersymmetric field theory because of the presence
of anticommuting variables. To avoid the difficulty of solving a differential equation with both commuting and
anticommuting field components, only a schematic discussion in terms of the classical field equation (SP equation) is
given in this section. From these qualitative arguments we then devise a procedure to obtain the large m behavior of
the field theory.
In order to obtain a non-uniform (soliton-like) solution for the SP equation of our action S, Eq. (2.4), it is convenient

to work in the continuum limit of this model. For this purpose we introduce the characteristic length scale a/
√
g on

the
∑

r. Then the continuum limit, a/
√
g → 0, can be taken. Our action thus transforms as follows

S =
a2

g

∑

r

(Tr2Q
2
r + · · ·) →

∫

(Tr2Q
2
r + · · ·)d2r. (3.1)

The SP method leads to the equation

σ3τQrτσ3 = g(H0 + iωσ0 − 2τQτ)−1
rr . (3.2)

We notice that we can replace H0 by mσ3 + iσ · ∇. Then the SP equation can be expanded in powers of 1/m because
we are only interested in the large m behavior. To this end we pull out a factor mσ3

σ3τQrτσ3 = g
σ3

m
(1+

i

m
σ · ∇σ3 + i

ω

m
σ3 −

2

m
τQτσ3)

−1
rr (3.3)

and multiply by σ3 from both sides, which gives

τQrτ =
g

m
(1+

i

m
σ · ∇σ3 + i

ω

m
σ3 −

2

m
τQτσ3)

−1
rr σ3. (3.4)

Using the notation Q̄r = τQrτ and taking the limit ω = 0, the SP equation reads, in leading order in powers of 1/m
and in lowest non-trivial order in ∇Qr

Q̄r −
g

m
σ3 =

g

m

[ 2

m
Q̄r +

4

m2
Q̄rσ3Q̄r −

2

m3
(σ · ∇σ3Q̄σ3σ · ∇)rr + · · ·

]

. (3.5)

In the expansion we have taken a second order term in Q̄ as well as the second order gradient term (the first order
term being traceless). The constant term can be removed by introducing the shifted new field

Q̃r = Q̄r −
g

m
σ3

and by keeping only the leading order in 1/m for each power of Q̃r. Then the SP equation can be written schematically
(omitting the Pauli matrices) as

1

g
Q̃r =

a

m3
Q̃2

r +
b

m4
(∇2Q̃)r, (3.6)

where a and b are numbers. This equation can be interpreted as the SP equation for the following effective action

Seff =

∫

(1

2
Q̃2

r − g
a

3m3
Q̃3

r − g
b

2m4
(∇Q̃)2r

)

d2r. (3.7)

We are interested in finding the dependence of the effective action on the physical parameters m and g. For this
purpose we use as an ansatz for the non-linear SP equation, Eq. (3.6)
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Q̃r =
m3

g
Q(

m2

√
g
r),

where Q is now some dimensionless function. Moreover, we introduce the rescaled two-dimensional space variable

R =
m2

√
g
r.

Then we obtain from the differential equation (3.6) a non-linear differential equation for Q(R), where the coefficients
are numbers

m3

g2
(Q− aQ2 − b∇2

RQ) = 0. (3.8)

Furthermore, the effective action reads in terms of Q(R) and

m2

g

∫

[
1

2
Q2 − a

3
Q3 − b

2
(∇RQ)2]d2R.

Since the integral is now just a number (it depends, of course, on the function Q(R) which needs to be determined
as a solution of the differential equation (3.8)), the action is proportional to m2/g. This implies that for large m the
DOS must be of the form

ρ(m) ∼ ρ0e
−αm2/g.

The parameter α and the coefficient ρ0 of the exponential factor will be evaluated below.

IV. BEHAVIOR FOR A LARGE DIRAC MASS

Having determined the functional dependence for the DOS via a saddle point approximation, in the following we
shall use a more direct route by focusing on the large-m limit, or on the tail corrections, without actually using the
saddle point approximation. The approach we use is based on an expansion of the action S in powers of 1/m up
to lowest order in this parameter. It will result in an expansion in the parameter g/m2, so the following calculation
holds good for the tails of the localized states in the DOS, and for weak disorder.
For this purpose, we can separate the off-diagonal contribution of H0, namely H ′

0 = iσ · ∇, from the logarithmic
term of the action of Eq. (2.4), as follows:

H0 + iωσ0 − 2τQτ = Bq +H ′
0

H0 + iωσ0 + 2iτPτ = Bp +H ′
0. (4.1)

Then we expand the logarithmic term of the action around the diagonal part of the Hamiltonian. We obtain, e.g., for
the Q-dependent expression to leading order in the off-diagonal term

ln det(H0 + iωσ0 − 2τQτ) = ln det(mσ3 + iωσ0 − 2τQτ) + Tr(H ′
0B

−1
q ). (4.2)

Thus, for the complete expression we get, from the expansion in terms of the off-diagonal part H ′
0

e−S = e−S
′

[1− Tr(H ′
0B

−1
q ) + Tr(H ′

0B
−1
p ) + 4Tr(τΘ̄τB−1

p τΘτB−1
q ) + · · ·] (4.3)

with the unperturbed part of the action

S
′

=
1

g

∑

r

(Tr2Q
2
r +Tr2P

2
r + 2Tr2ΘrΘ̄r)− ln det(Bq) + ln det(Bp). (4.4)

This is a local action and all non-local expressions appear in the expansion terms. This means that the unperturbed
“weight” e−S′

factorizes on the lattice. In particular, we obtain for the diagonal part of the Green’s function in leading
order the expression
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∫

Qr0

∏

r det2(mσ3 + iωσ0 + i2τPrτ)
∏

r det2(mσ3 + iωσ0 − 2τQrτ)
e−S

′′

DPrDQrDΘrDΘ̄r

=

∫

Qr0P(r0)DPr0DQr0DΘr0DΘ̄r0

∏

r 6=r0

∫

P(r)DPrDQrDΘrDΘ̄r, (4.5)

where S
′′

= 1
g

∑

r(Tr2Q
2
r+Tr2P

2
r +2Tr2ΘrΘ̄r) and P(r) is the r-dependent part of the integrand (i.e. the ratio of the

two determinants times the corresponding factor of e−S′′

). Due to the supersymmetric representation and because
terms involving Bpr

and Bqr are local operator at site r, we have the following relation [15]:

∫

P(r)DPrDQrDΘrDΘ̄r = 1. (4.6)

Thus we are left with the computation of the integral at the site r0, namely:

∫

Qr0

det2(mσ3 + iωσ0 + i2τPr0τ)

det2(mσ3 + iωσ0 − 2τQr0τ)

exp[−1

g
(Tr2Q

2
r0 +Tr2P

2
r0 + 2Tr2Θr0Θ̄r0)]DPr0DQr0DΘr0DΘ̄r0 . (4.7)

For the Hermitean matrices Qr0 , Pr0 we use the following parametrizations

Qr0 =

(

q0 + q3 q1 − iq2
q1 + iq2 q0 − q3

)

, Pr0 =

(

p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

)

.

This gives, for instance

Tr2Q
2
r0 + Tr2P

2
r0 = 2(p20 + p22 + p22 + p23 + q20 + q21 + q22 + q23).

We can immediately perform the Pr0 -integration (see Appendix A), obtaining

∫

det2(mσ3 + iωσ0 + i2τPr0τ) exp(−
1

g
(Tr2P

2
r0)DPr0 = −(

π

2
g)2(ω2 +m2 + 2g). (4.8)

The integration over the Grassmannian fields Θ and Θ̄ contributes a factor ( 2
πg )

4. Then the DOS reads, according to

Eqs. (2.2) and (2.3)

ρ(m) =
4

π3g3
lim
ω→0

(ω2 +m2 + 2g)Im
∫

q3
det2(Bq)

e−2(q2
0
+q2

1
+q2

2
+q2

3
)/gdq0 · · · dq3. (4.9)

At this point, we have to carry out the integration with respect to Qr0 . This integral is evaluated in Appendix B and
gives, finally

ρ(m) =
1

8
√
πg

(1 +m2/2g)2e−m2/4g. (4.10)

The typical form of the DOS, as a function of m and at the Fermi energy (i.e. E = 0) is shown in Figure 1 (where a
comparison with the corresponding extended-states (uniform SP solution) semi-circular DOS is also shown). We can
now see that the DOS becomes, in the limit of large m and as anticipated, a function of m2/g which characterizes
the tails of the localized electron states distribution. These tails become more pronounced as the disorder, and thus
g, increases. The exponential dependence on m2/g is characteristic of a soliton-like solution of the SP approximation.
In particular, we are now able to determine the parameters of the SP approximation of the previous Section as

α = 1/4, ρ0 =
1

8
√
πg

(1 +m2/2g)2

without solving the SP equation (3.8) directly.
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V. CONCLUSIONS

Dirac fermions have two bands with an energy gap proportional to the mass m. We evaluate the DOS at E = 0,
i.e. in the middle of the gap, whilst varying the mass m. This means that we measure the DOS of the tails which

develop inside the gap and find that the DOS acquires the asymptotic form (1 + m2/2g)2e−m2/4g for small values

of g/m2. Thus the behavior is controlled by the the exponential part e−m2/4g. Conversely, in the case of ordinary
Schrödinger particles subject to a Gaussian white-noise potential, Cardy [13] and (with a different prefactor) Brèzin
and Parisi [14] found tails in the energy E for the DOS which follow the more simple exponential decay. In our case,
the Gaussian decay of the DOS with m reflects the Gaussian distribution of the Dirac mass. With other distributions
for the disorder, we would expect also other forms for the DOS tails.
We have addressed the question of the existence of localized states created by a random mass in the gap of the

Dirac fermions’ model in 2D. Our findings are in reasonable agreement with previous calculations for this model based
on the homogenous SP method [8] and for 2D Dirac fermions with a random energy term [7]. It is interesting that
the expansion parameter is here g/m2 (i.e. that the expansion is valid for weak randomness g), whereas localized
states are usually related to strong randomness. Of course, it is crucial that also a relatively large mass m is present
in order to obtain a valid expansion parameter. This regime is complementary to what we have in the homogeneous
saddle point approximation where weak randomness is considered at any mass m. In the latter we have critical points
m = ±mc ≡ ±2e−π/g. It would be interesting to approach these critical points, which are related to mobility edges
with extended states for small |m|, using the non-local method developed in this paper. This could contribute, e.g.,
to the long-standing problem of the divergence of the localization length ξ(m) as the mobility edge is approached.
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APPENDIX A

In this Appendix we work out the P -block integration. With the expression

Bp = mσ3 + iωσ0 + 2iτPτ =

(

iω + 2ip3 +m+ 2ip0 2ip2 − 2p1
−2ip2 − 2p1 iω + 2ip3 −m− 2ip0

)

, (A.1)

so that

− det2Bp(r0) = (ω + 2p3,r0)
2 + (m+ 2ip0,r0)

2 + 4p22,r0 + 4p21,r0, (A.2)

we see that the integration over the 2×2 P -block is easily carried out. Bearing in mind that Tr2(P
2
r0) = 2

∑

i p
2
i,r0 , we

get

−
∫

dp1dp2det2Bpe
− 2

g
(p2

1
+p2

2
) =

π

2
g2 +

π

2
g[(ω + 2p3)

2 + (m+ 2ip0)
2], (A.3)

∫

dp3[
π

2
g2 +

π

2
g((ω + 2p3)

2 + (m+ 2ip0)
2)]e−

2

g
p2

3

= [
π

2
g2 +

π

2
g(ω2 + (m+ 2ip0)

2)](
π

2
g)

1

2 + π
3

2 (
g

2
)

5

2 (A.4)

and finally

∫

dp0

{

[
π

2
g2 +

π

2
g(ω2 + (m+ 2ip0)

2)](
π

2
g)

1

2 + (
g

2
)

5

2π
3

2

}

e−
2

g
p2

0 = (
π

2
g)2[ω2 +m2 + 2g]. (A.5)
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APPENDIX B

At this point we carry out the integration over the elements of the Q-block. We first of all notice that

Bq = mσ3 + iωσ0 − 2τQτ =

(

iω − 2q3 +m− 2q0 −2q2 − i2q1
2q2 − i2q1 iω − 2q3 −m+ 2q0

)

(B.1)

so that det2Bq = (iω − 2q3)
2 − (m− 2q0)

2 + 4q22 + 4q21 . Then we can write

4

det2Bq
=

q21 + q22 + q23 − (q0 − m
2 )

2 − ω2

4 + iωq3

(q21 + q22 + q23 − (q0 − m
2 )

2 − ω2

4 )2 + ω2q23
. (B.2)

The contribution to the imaginary part of Eq. (4.9) comes from the integral

iω

4

∫

q23
(q21 + q22 + q23 − (q0 − m

2 )
2 − ω2

4 )2 + ω2q23
e−2(q2

0
+···+q2

3
)/gdq0 · · · dq3.

First of all, we perform the angular integration of the two-dimensional integral over q1 and q2. This gives, with the
definition q2 = q21 + q22

iω

4
2π

∫ ∫ ∞

0

q23q

(q2 + q23 − (q0 − m
2 )

2 − ω2

4 )2 + ω2q23
e−2(q2+q2

0
+q2

3
)/gdqdq0dq3. (B.3)

Next we evaluate the q-integration for ω ∼ 0

ω q23

∫ ∞

0

qe−2q2/g

(q2 + q23 − (q0 −m/2)2 − ω2/4)2 + ω2q23
dq

∼ π

2
|q3|e2(q

2

3
−(q0−m/2)2−ω2/4)/gΘ((q0 −m/2)2 + ω2/4− q23),

and carry out the q3 integration
∫

|q3|Θ((q0 −m/2)2 + ω2/4 − q23)dq3 = (q0 −m/2)2 + ω2/4.

Finally, the q0-integration yields

∫

[(q0 −m/2)2 + ω2/4]e−2(q2
0
+(q0−m/2)2)/gdq0 =

√
πg

16
e−m2/4g(g +m2/2 + 2ω2).

The combination all these results leads to an expression for Eq. (B.3) as

i
π2√πg

64
e−m2/4g(g +m2/2 + 2ω2). (B.4)
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Figure Caption

Density of states as a function of the average mass m at energy E = 0 and disorder strength g = 2. The g/m2

expansion (full curve) is compared with the result of the large-N limit (homogeneous saddle point solution) of Ref.
[12] (broken curve).
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