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Abstract

Pairwise maximum likelihood (PML) estimation method is developed for factor analysis models with ordinal data
and �tted both in an exploratory and con�rmatory set-up. The performance of the method is studied via simulations
and comparisons with full information maximum likelihood (FIML) and three-stage limited information estimation
methods, namely the robust unweighted least squares (3S-RULS) and robust diagonally weighted least squares (3S-
RDWLS). The advantage of PML over FIML is mainly computational. Unlike PML estimation, the computational
complexity of FIML estimation increases either with the number of factors or with the number of observed variables
depending on the model formulation. Contrary to 3S-RULS and 3S-RDWLS estimation, PML estimates of all
model parameters are obtained simultaneously and the PML method does not require the estimation of a weight
matrix for the computation of correct standard errors. The simulation study on the performance of PML estimates
and estimated asymptotic standard errors investigates the e�ect of di�erent model and sample sizes. The bias and
mean squared error of PML estimates and their standard errors are found to be small in all experimental conditions
and decreasing with increasing sample size. Moreover, the PML estimates and their standard errors are found to
be very close to those of FIML.

Keywords: composite maximum likelihood; factor analysis; ordinal data; pairwise likelihood; three-stage estimation; item

response theory approach.

1. Introduction

Factor analysis is frequently employed in social sciences where the main interest lies in measuring and relating
unobserved constructs, such as emotions, attitudes, beliefs and behavior. The main idea behind the analysis is
that the latent variables (referred to also as factors) account for the dependencies among the observed variables
(referred to also as items or indicators) in the sense that if the factors are held �xed, the observed variables would be
independent. Theoretically, factor analysis can be distinguishable between exploratory and con�rmatory analysis,
but in practice the analysis always lie between the two. In exploratory factor analysis the goal is the following: for
a given set of observed variables x1, . . . , xp one wants to �nd a set of latent factors ξ1, . . . , ξk, fewer in number than
the observed variables (k < p), that contain essentially the same information. In con�rmatory factor analysis, the
objective is to verify a social theory. Hence, a factor model is speci�ed in advance and its �t to the empirical data
is tested.

The data usually encountered in social sciences is of categorical nature (ordinal or nominal). In the literature, there
are two main approaches for the analysis of ordinal variables with factor models. The Underlying Response Variable
(URV) approach (e.g. Jöreskog 1990, 1994; Lee et al. 1990, 1992; Muthén, 1984), and the Item Response Theory
(IRT) approach (e.g. Bartholomew et al., 2011; Bock & Moustaki, 2007; van der Linden & Hambleton, 1997). In
the URV approach, the ordinal variables are assumed to be generated by underlying continuous variables, which are
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partially observed through their ordinal counterparts. In the IRT approach, ordinal indicators are treated as they
are. In both approaches, one must specify the probability of each response pattern as a function of ξ1, ξ2, . . . , ξk:

Pr(x1 = c1, x2 = c2, . . . , xp = cp | ξ1, . . . , ξk) = f(ξ1, ξ2, . . . , ξk) , (1)

where c1, c2, . . . , cp represent the di�erent response categories of x1, x2, . . . , xp, respectively.

Marginal maximum likelihood, also known as full information maximum likelihood (FIML) (Muraki & Carlson,
1995), is used for estimating the model under the IRT framework. Whereas three-stage limited information robust
unweighted least squares (3S-RULS) and robust diagonally weighted least squares (3S-RDWLS) methods (see e.g.
Forero et al., 2009; Yang-Wallentin et al., 2010 for a comparison) are employed for estimating the model under
the URV framework. In the latter framework, FIML is infeasible for problems with more than �ve observed
variables. In both approaches, FIML involves high-dimensional integrations, the dimensions of which increase
either with the number of observed variables under the URV approach or with the number of factors under the IRT
approach. Under the URV approach, robust maximum likelihood (RML) estimation is also used. This is the standard
maximum likelihood estimation employed with continuous observed variables but with standard errors and chi-
square tests estimated under non-normality (see e.g. Browne, 1984; Satorra, 1989; Satorra & Bentler, 1988; Yang-
Wallentin et al., 2010). Recently Bollen & Maydeu-Olivares (2007) developed the polychoric instrumental variable
estimator (PIV) for structural equation models with categorical data, which is robust to structural misspeci�cations.
According to our knowledge, the PIV estimator has not yet been incorporated into any available software.

The restricted applicability of FIML in both URV and IRT approaches, along with knowledge of the theoretical
developments of Composite Maximum Likelihood (CML) estimation (Lindsay, 1988; Varin, 2008; Varin et. al.,
2011), motivated us to consider CML as an alternative estimation method. CML estimators have the desired
properties of being asymptotically unbiased, consistent, and normally distributed. Additionally, CML can be
applied to any of the two aforementioned model formulations; although the computational gain is only for the
URV approach, the computational complexity of which can be kept low regardless of the number of observed
variables or factors. To our knowledge, there are very few studies that investigate the applicability and performance
of CML approaches within the context of factor analysis with ordinal data. De Leon (2005) used the pairwise
maximum likelihood approach to estimate thresholds and polychoric correlations of ordinal data. His simulation
study indicates that the estimates are quite accurate, yielding minimal bias and small root mean squared errors.
Jöreskog & Moustaki (2001) suggest the use of the underlying bivariate normal (UBN) method within the URV
approach, which is found to yield estimates close to those of the FIML approach. UBN can be seen as a composite
maximum likelihood method, involving both univariate and bivariate marginal distributions. However, Jöreskog
& Moustaki (2001) do not incorporate their approach within the CML framework, nor within any other general
framework. Thus, they do not provide any discussion about the standard errors and the properties of the UBN
estimator. Liu (2007) proposes a multistage estimation method for structural equation models, an alternative to the
commonly used three-stage methods. In particular, in a �rst stage, thresholds, polychoric, and polyserial correlations
are estimated simultaneously by using the pairwise maximum likelihood approach. Given these estimates, structural
parameters, such as loadings and factor correlations, are estimated in a second stage using generalized least squares.
The simulation studies in Liu (2007) show that the proposed methodology performs equally well as the conventional
three-stage methods. Finally, Vasdekis et al. (2012) have developed a pairwise estimation for longitudinal ordinal
variables under the IRT approach.

Based on the results of the above studies, we develop a pairwise maximum likelihood (PML) estimation method
for factor analysis models with ordinal variables under the URV approach. We compare the method's performance,
in terms of bias and mean square error (MSE), with 3S-RULS, 3S-RDWLS, and FIML used with the IRT model
formulation. The structure of the paper is as follows: Section 2 provides a brief presentation of the URV and
IRT approaches, with a focus on the estimation. We discuss the computational issues arising in the case of FIML
and the advantages and disadvantages of the three-stage limited information estimators. Section 3 presents the
proposed methodology, namely the pairwise maximum likelihood estimation. It is followed by the simulation study
on the performance of PML in Section 4 and the simulation study on the comparison of FIML, PML, 3S-RULS,
and 3S-RDWLS in Section 5. The PML approach is applied to empirical data, both in the case of exploratory and
con�rmatory factor analysis, and a comparison of the estimates with those obtained by 3S-RULS, 3S-RDWLS, and
FIML is discussed in Section 6. Discussion and conclusions are provided at the end.
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2. Factor analysis models with ordinal observed variables

2.1. Basic framework and notation

Let x′ = (x1, x2, . . . , xp) denote the vector of p ordinal observed variables, where xi has mi ordered categories,

i = 1, . . . , p. Thus, there are R =
∏p
i=1mi possible response patterns of the form x

′

r = (c1, c2, . . . , cp), where
ci = 1, . . . ,mi. For a random sample of size n the log-likelihood is:

lnL(θ;x) =

R∑
r=1

nr lnπr(θ) , (2)

where θ is a parameter vector, nr and πr(θ) are the observed frequency and the probability under the model,

respectively, for the response pattern r, πr(θ) > 0,
∑R
r=1 nr = n, and

∑R
r=1 πr(θ) = 1. Each approach imposes a

di�erent model on the probability πr(θ), but both URV and IRT methods assume the presence of a k-dimensional
vector of continuous latent variables ξ′ = (ξ1, . . . , ξk), where k < p.

2.2. Underlying Response Variable (URV) approach

Under the URV approach, the observed ordinal variables are taken to be manifestations of underlying continuous
variables partially observed through their ordinal counterparts. The connection between an observed ordinal variable
xi and the underlying continuous variable x?i is

xi = ci ⇐⇒ τ
(xi)
ci−1 < x?i < τ (xi)

ci , (3)

where τ
(xi)
ci is the cthi threshold of variable xi and −∞ = τ

(xi)
0 < τ

(xi)
1 < . . . < τ

(xi)
mi−1 < τ

(xi)
mi = +∞. Since only

ordinal information is available, the distribution of x?i is determined only up to a monotonic transformation. In
practice it is convenient to assume a standard normal distribution. In the case that the mean and the variance of
x?i are of interest, Jöreskog (2002) discusses an alternative parametrization.

The factor model is of the form
x? = Λξ + δ , (4)

where x? is the p-dimensional vector of the underlying variables, Λ is the p × k matrix of loadings, and δ is the
p-dimensional vector of unique variables. In addition, it is assumed that ξ ∼ Nk(0,Φ) where Φ has 1's on its
main diagonal being this way, the correlation matrix of latent factors, δ ∼ Np(0,Θ) with Θ a diagonal matrix,
Θ = I − diag(ΛΦΛ′), and Cov(ξ, δ) = 0. The parameter vector θ′ = (λ,ϕ, τ ) contains λ and ϕ which are the
vectors of the free non-redundant parameters in matrices Λ and Φ, respectively, and τ which is the vector of all
free thresholds.

Under the model, the probability of a response pattern r is

πr(θ) = π (x1 = c1, x2 = c2, . . . , xp = cp;θ) =

ˆ τ(x1)
c1

τ
(x1)
c1−1

. . .

ˆ τ
(xp)
cp

τ
(xp)

cp−1

φp(x
?; Σx?)dx? , (5)

where φp(x
?; Σx?) is a p-dimensional normal density with zero mean, and correlation matrix Σx? = ΛΦΛ′ + Θ.

The maximization of log-likelihood de�ned in (2) over the parameter vector θ requires the evaluation of the p-
dimensional integral given in (5), which cannot be written in a closed form. Lee et al. (1990) discuss FIML
estimation in the case of the URV approach, but restrict their example to the case of four ordinal observed variables.
As a consequence, limited information estimation methods have been proposed and added to the analytical tools of
commercial software, the most widely used ones being the three-stage estimation methods (Jöreskog, 1990, 1994;
Muthén, 1984). In the application of these methods, thresholds are �rst estimated by maximizing the univariate
marginal likelihoods separately. Then, given the estimated thresholds, polychoric correlations are estimated by
maximizing the bivariate marginal likelihoods separately. In the third stage, the factor analysis model given in
(4) is �tted to the estimated polychoric correlation matrix using a version of generalized least squares (GLS), such
as unweighted least squares (ULS), diagonally weighted least squares (DWLS), and weighted least squares (WLS)
(e.g. Jöreskog, 1990, 1994; Jöreskog & Sörbom, 1996, pp. 23-24; Muthén, 1984; Muthén et al., 1997). In WLS, the
weight matrix is an estimate of the inverse of the asymptotic covariance matrix of polychoric correlations, while
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DWLS involves only the diagonal elements of that weight matrix. Several studies have been carried out to compare
these three least square methods (e.g. Forero et al., 2009; Yang-Wallentin et al., 2010) and all have led to similar
conclusions. The WLS estimator converges very slowly to its asymptotic properties and therefore does not perform
well in small sample sizes. DWLS and ULS are preferable to WLS and they seem to perform similarly well in �nite
samples. However, in order to compute correct standard errors, the full weight matrix is needed. The methods are
then called robust, which is applied to the beginning of the acronyms (hence: RULS, RDWLS). The advantages
of the three-stage RDWLS and RULS estimators are that they are computationally less demanding than FIML.
However, the estimate of the weight matrix is relatively unstable in small sample sizes.

2.3. Item Response Theory (IRT) approach

Under the IRT approach where conditional independence is assumed, the probability πr(θ) is written as:

πr(θ) =

ˆ
Rξ

πr(θ|ξ)f(ξ)dξ =

ˆ
Rξ

p∏
i=1

π(xi = ci;θ|ξ)f(ξ)dξ , (6)

where f(ξ) is the joint distribution of latent variables, usually assumed to be the k-dimensional standard normal
density function, π(xi = ci;θ|ξ) is the conditional response category probability which is given by

π(xi = ci;θ|ξ) = γ(xi ≤ ci;θ|ξ)− γ(xi ≤ ci − 1;θ|ξ) , (7)

and γ(xi ≤ ci;θ|ξ) is the cumulative probability of a response in category ci, or below, for variable xi. The
cumulative probability is modeled as follows:

link (γ(xi ≤ ci;θ|ξ)) = α(xi)
ci −

k∑
j=1

βijξj , (8)

where the α
(xi)
ci 's are thresholds (−∞ = α

(xi)
0 < α

(xi)
1 < . . . < α

(xi)
mi−1 < α

(xi)
mi = +∞), and the βij 's are factor

loadings. The link function can be any monotonically increasing function mapping (0, 1) onto (−∞,∞), such as
the logit (Samejima, 1969) or the inverse normal (also called probit). The log-likelihood is maximized using the
E-M algorithm (Bartholomew et al., 2011; Muraki, 1990; Muraki & Carlson, 1995). FIML requires the evaluation
of k−dimensional integrals as de�ned in (6). The integrals cannot be written in a closed form, but there are several
numerical methods that can be used to approximate them (see Schilling & Bock, 2005, for a discussion of various
methods). However, for all these methods, the computational burden increases rapidly with the number of factors
k, rendering FIML quite impractical or even infeasible beyond a certain number of factors.

3. Proposed methodology

The promising results of Jöreskog & Moustaki (2001), de Leon (2005), and Liu (2007) motivated us to develop the
pairwise maximum likelihood (PML) approach for factor analysis models with ordinal data. Using the results of
composite likelihood theory (see e.g. Varin, 2008; Varin et al., 2011), the computation of standard errors becomes
straightforward for PML. Furthermore, test statistics for inference and model selection criteria are also available
(see e.g. Maydeu-Olivares & Joe, 2005, 2006; Joe & Maydeu-Olivares, 2010; Varin & Vidoni, 2005). A main
di�erence between the work of de Leon (2005), and Liu (2007) and that of Jöreskog & Moustaki (2001) is that the
former de�ne their composite log-likelihood as the sum of the bivariate log-likelihoods, while the latter as the sum
of both the bivariate and the univariate log-likelihoods. Hence, a �rst thing to investigate is the role of the sum
of univariate log-likelihoods in determining the level of accuracy and e�ciency of estimation. In factor analysis
with ordinal data, the univariate log-likelihoods only contain information for thresholds, while the bivariate log-
likelihoods contain information for all URV model parameters, i.e. λ, ϕ, and τ . Thus we ask the question: can this
information overlap be balanced out by an �optimal� weighting scheme which improves the e�ciency of estimation?
Cox & Reid (2004) provide a general framework that can be used in order to deal with such a question. Their
proposed log-likelihood is very similar to the UBN log-likelihood of Jöreskog & Moustaki (2001), with the only
di�erence being that they put a weight on the sum of the univariate log-likelihoods. Following the suggestion of
Cox & Reid (2004), the UBN log-likelihood could be modi�ed as follows:

l(θ;x) =
∑
i<j

lnL (θ; (xi, xj))− ap
∑
i

lnL (θ;xi) ,
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where a is a constant to be chosen for optimal e�ciency, p is the number of observed variables, lnL (θ; (xi, xj)) is
the bivariate marginal log-likelihood of variables xi and xj , and lnL (θ;xi) is the univariate marginal log-likelihood
of variable xi. Cox & Reid (2004) point out that if the univariate likelihoods are independent of θ then the choice
of a = 0 is appropriate; taking a = 1

2 corresponds to the situation where all possible conditional distributions of
one variable, given another, are considered. In general, they suggest that a non-negative value of a is appropriate.
Trying di�erent values of a so that the value of ap ranges from 0 to 1, and conducting some small scale simulation
studies, our results indicate that, practically, the sum of univariate log-likelihoods a�ect neither the accuracy nor
the e�ciency of estimation. Therefore, we conclude that the most appropriate choice of a is zero in our case.
Subsequently, we suggest that one could consider the composite pairwise log-likelihood, pl(θ;x), to estimate the
URV parameter θ′ = (λ,ϕ, τ ). That is of the form:

pl(θ;x) =
∑
i<j

lnL (θ; (xi, xj)) =
∑
i<j

mi∑
ci=1

mj∑
cj=1

n(xixj)
cicj lnπ(xixj)

cicj (θ) , (9)

where n
(xixj)
cicj is the observed frequency of a response in category ci and cj for variables xi and xj , respectively, and

π
(xixj)
cicj (θ) is the corresponding probability under the model. Based on equation (5), the latter is of the form:

π(xixj)
cicj (θ) = π (xi = ci, xj = cj ;θ) =

= Φ2

(
τ (xi)
ci , τ (xj)

cj ; ρxixj

)
− Φ2

(
τ (xi)
ci , τ

(xj)
cj−1; ρxixj

)
−

−Φ2

(
τ

(xi)
ci−1, τ

(xj)
cj ; ρxixj

)
+ Φ2

(
τ

(xi)
ci−1, τ

(xj)
cj−1; ρxixj

)
, (10)

where Φ2 (a, b; ρ) is the bivariate cumulative normal distribution with correlation ρ evaluated at the point (a, b),

ρxixj (θ) = λi·Φλ
′

j· ,

and λi· is a 1 × k row vector containing the elements of the ith row of matrix Λ, i = 1, . . . , p − 1, j = i +
1, . . . , p. Maximizing the log-likelihood function in (9) over the parameter θ we get the composite pairwise maximum

likelihood estimator θ̂PML. The gradient of the pairwise log-likelihood ∇pl(θ;x) is equal to the sum of the gradients
of the bivariate log-likelihood components ∇ lnL (θ; (xi, xj)). The explicit form of the latter is given in Appendix 1.
Under regularity conditions upon the component likelihoods, the central limit theorem for the composite likelihood
score statistic can be applied, leading to the result

√
n
(
θ̂PML − θ

)
d→ Nq

(
0, G−1(θ)

)
,

where q is the dimension of θ, and G(θ) is the Godambe information (also known as sandwich information) matrix
of a single observation (Varin, 2008; Varin et al., 2011). In particular,

G(θ) = H(θ)J−1(θ)H(θ) ,

where H(θ) is the sensitivity matrix, H(θ) = E
{
−∇2pl(θ;x)

}
, and J(θ) is the variability matrix, J(θ) =

V ar {∇pl(θ;x)}. In general, the identity H(θ) = −J(θ) does not hold in the case of composite likelihoods.
The assumed independence among the likelihood components forming the composite likelihood is usually not valid
when the full likelihood is considered. The sample estimates of H(θ) and J(θ) are

Ĥ(θ̂PML) = ∇2pl(θ̂PML;x) , and

Ĵ(θ̂PML) =
1

n

n∑
h=1

(∇pl(θ;xh)) (∇pl(θ;xh))
T
.

The obvious advantage of PML over FIML estimation is that it only requires the evaluation of up to two-dimensional
normal probabilities, regardless of the number of observed or latent variables. In this way, it is always computa-
tionally feasible. The advantage of the PML approach when compared with the three-stage limited information

5



estimation methods is that the estimation of all parameters is carried out simultaneously. Moreover, the standard
errors of the estimates can be obtained without the usage of any weight matrix. Varin et al. (2011) discuss some
other qualities of the composite likelihood approach. Composite likelihood can be seen as a robust alternative
in terms of modeling. In some cases it is easier and more straightforward to model lower order dimensional dis-
tributions, while modeling uncertainty increases with dimensionality. By applying composite likelihood, possible
misspeci�cation of the higher order dimensional distributions can be avoided. In addition, a model assumed for
lower order distributions can be compatible with more than one of the possible model options available for higher
dimensional distributions. Moreover, in some settings, there are no obvious high dimensional distributions.

In the current study, the maximization of pl(θ;x) has been carried out by using the �maxLik� command in the
�maxLik� package of the 2.10.1 version of R software. As an input to the command we have speci�ed two �function
objects� (according to R terminology), which we wrote. One function is for the composite pairwise log-likelihood
as expressed in (9), and the other is for the gradient given in Appendix 1. The �maxLik� command o�ers several
options regarding the maximization algorithm. We have used one of the group of quasi-newton methods, namely the
Broyden-Fletcher-Goldfarb-Shanno method (denoted as BFGS in R software). Regarding the estimate Ĥ(θ̂PML),

it is part of the output of �maxLik� command. Concerning Ĵ(θ̂PML), we wrote our own function object.

4. Simulation study on the performance of PML estimator

4.1. Simulation study set-up

A simulation study has been conducted to evaluate the performance of the PML estimator within the framework of
con�rmatory factor analysis with ordinal data. Eight experimental conditions have been investigated by combining
four sample sizes, namely 100, 200, 500, and 1000, with two model sizes, which are referred to as Model I and Model
II, and are detailed below. For each condition, 1000 replications have been carried out.

Model I is regarded as a small size model with 6 observed variables (p = 6) and 2 factors (k = 2). The number of
indicators for each factor is relatively small: 3 or 4 indicators for each factor. The true values of matrices Λ and Φ
are:

Λ =


0.9
0.8
0.7
0.5 0.6

0.7
0.8

 , Φ =

(
1

0.5 1

)
.

As it can be seen, the loadings range from high (0.9) to relatively low (0.5), and there is one multidimensional
indicator, the loadings of which are relatively small and close in value (0.5 and 0.6). The factor correlation is of
moderate size (0.5). All observed variables are assumed to have 4 response categories, a case quite often met in

applications, and the same thresholds, namely τ
(xi)
1 = −1.2, τ

(xi)
2 = 0, τ

(xi)
3 = 1.2, i = 1, . . . , 6. Therefore, there

are 26 free parameters to be estimated for Model I.

Model II is of larger size, with 15 observed variables (p = 15) and 3 factors (k = 3). The number of indicators per
factor is moderate (5 or 6). The true values of matrices Λ and Φ are:

Λ =



0.4
0.5
0.6
0.7
0.8
0.3 0.8

0.7
0.6
0.5
0.4 0.5

0.6
0.7
0.8
0.9
0.4



, Φ =

 1
0.2 1
0.5 0.8 1

 .
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The loadings now range from 0.3 to 0.9. In this model, there are two multidimensional indicators; the �rst of which
has one high loading (0.8), and one low (0.3), while the second has loadings that are both low and close in value
(0.4 and 0.5), thus presenting a similar pattern as in Model I. The factor correlations range from low to high (0.2,
0.5, and 0.8 respectively). Again all observed variables are assumed to have 4 response categories and the same
thresholds as in Model I. There are 65 free parameters to be estimated in the larger model.

4.2. Data generation

Within each replication, the data are generated as follows:

1. A random vector ξ and a random vector δ are generated from Nk(0,Φ) and Np(0,Θ), respectively.

2. A random vector of underlying variables x? is generated by applying the assumed model x? = Λξ + δ.

3. A random vector of ordinal variables x is obtained from x? by applying the relationship in (3), which connects

the continuous underlying variables with the ordinal observed variables. Thus, the values of thresholds τ
(xi)
ci

are used in this step.

4. Steps 1-3 are repeated n times to get a sample of size n.

4.3. Performance Criteria

We compute the bias and mean squared error (MSE) for each parameter as follows:

Bias =
1

R

R∑
i=1

(
θ̂i − θ

)
,

and

MSE =
1

R

R∑
i=1

(
θ̂i − θ

)2

,

where R here is the number of valid replicates, θ̂i is the estimate of a parameter or of its asymptotic standard error
at the ith valid replication, and θ is the corresponding true value. In the case of standard errors, where the true
value θ is unknown, the standard deviation of parameter estimates across valid replications is used.

4.4. Results

First we report in Table 1 the percentage of replications per condition that produced a proper solution, i.e. estimated
loadings and factor correlations between -1 and 1. For the smaller model (Model I), the percentage is 100% for all
sample sizes except for n = 100. However, for Model II, the percentage ranges from 89.4% to 99.3%, increasing as
the sample size increases. It is worthwhile to note that, for the sample sizes 200, 500, and 1000, improper solutions
only occurred for the loadings of the second multidimensional indicator, λ10,2 and λ10,3 , and in some cases for the
correlation between the 2nd and 3rd factor, φ23. Interestingly, Forero et al. (2009) comment that �convergence
and estimation accuracy problems are aggravated in the presence of multidimensional indicators�. In our study, the
related indicator has, in addition, relatively low and close loadings on the two dimensions. For sample size 100,
improper solutions occurred for other parameters as well. The �nal results only consider replications with proper
solutions as in Forero & Maydeu-Olivares (2009) and Forero et al. (2009).

Sample size n Model I Model II

100 96.6% 89.4%

200 100% 94.6%

500 100% 98.2%

1000 100% 99.3%

Table 1: Percentage of valid replications per condition, PML

We present the results for the factor loadings and factor correlations, although our conclusions are valid for the
thresholds as well. Tables 2 - 4 give for each parameter: the true value, the average parameter estimate across
valid replications, the bias, the MSE, the standard deviation of the parameter estimate across valid replications, the
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average standard error of a parameter across valid replications and its corresponding bias and MSE. Figures 1 and
2 depict the bias and MSE of both estimates and their standard errors for all sample sizes for Model I and Model
II, respectively. On the horizontal axis of the graphs, the parameters are denoted with an index, and are presented
in the same order as in Tables 2 - 4. From the tables and the �gures, we conclude that for both models, the PML
parameter estimates and their estimated asymptotic standard errors have bias and MSE close to zero, decreasing
with the increase of the sample size. Concerning the estimated asymptotic standard errors, the bias is negative
in most cases, i.e. the standard deviations computed from the replications are slightly bigger than the average of
estimated asymptotic standard errors. In Model I, the MSE of both estimates and standard errors are relatively
higher for the loadings of the multidimensional indicator, λ41 and λ42 (parameter indices 4 and 5 respectively,
Figure 1). A similar pattern occurs in Model II regarding the loadings of the second multidimensional indicator,
λ10,2 and λ10,3, (parameter indices 11 and 12 respectively, Figure 2).

Estimate Estimated standard error

Standard
True Mean Bias MSE Deviation Mean Bias MSE

n = 100
λ11 0.9 0.897 -0.003 0.002 0.049 0.050 0.001 0.000114

λ21 0.8 0.803 0.003 0.003 0.058 0.058 0.000 0.000132

λ31 0.7 0.703 0.003 0.005 0.072 0.070 -0.002 0.000166

λ41 0.5 0.497 -0.003 0.012 0.109 0.106 -0.003 0.001183

λ42 0.6 0.605 0.005 0.013 0.112 0.109 -0.004 0.001175

λ52 0.7 0.703 0.003 0.007 0.085 0.083 -0.002 0.000261

λ62 0.8 0.804 0.004 0.007 0.085 0.082 -0.002 0.000379

φ12 0.5 0.509 0.009 0.013 0.113 0.113 0.000 0.000281

n = 200
λ11 0.9 0.901 0.001 0.001 0.035 0.034 -0.000 0.000026

λ21 0.8 0.803 0.003 0.002 0.044 0.041 -0.003 0.000041

λ31 0.7 0.701 0.001 0.003 0.051 0.050 -0.001 0.000042

λ41 0.5 0.500 -0.000 0.006 0.076 0.072 -0.004 0.000244

λ42 0.6 0.600 0.000 0.006 0.076 0.073 -0.003 0.000225

λ52 0.7 0.704 0.004 0.004 0.059 0.059 -0.001 0.000059

λ62 0.8 0.803 0.003 0.004 0.059 0.057 -0.002 0.000079

φ12 0.5 0.504 0.004 0.007 0.083 0.080 -0.002 0.000073

n = 500
λ11 0.9 0.900 0.000 0.001 0.022 0.022 0.000 0.000004

λ21 0.8 0.801 0.001 0.001 0.026 0.026 0.000 0.000005

λ31 0.7 0.701 0.001 0.001 0.031 0.032 0.001 0.000007

λ41 0.5 0.497 -0.003 0.002 0.044 0.045 0.001 0.000023

λ42 0.6 0.602 0.002 0.002 0.046 0.045 -0.001 0.000022

λ52 0.7 0.699 -0.001 0.002 0.038 0.037 -0.001 0.000010

λ62 0.8 0.801 0.001 0.001 0.036 0.036 0.000 0.000011

φ12 0.5 0.503 0.003 0.003 0.052 0.051 0.001 0.000012

n = 1000
λ11 0.9 0.901 0.001 0.000 0.016 0.016 -0.001 0.000001

λ21 0.8 0.800 0.000 0.000 0.018 0.019 0.000 0.000001

λ31 0.7 0.700 -0.000 0.001 0.022 0.023 0.001 0.000002

λ41 0.5 0.500 -0.001 0.001 0.032 0.031 -0.000 0.000006

λ42 0.6 0.601 0.001 0.001 0.032 0.031 -0.001 0.000006

λ52 0.7 0.700 -0.001 0.001 0.026 0.026 0.000 0.000002

λ62 0.8 0.801 0.001 0.001 0.027 0.026 -0.001 0.000004

φ12 0.5 0.500 0.000 0.001 0.038 0.036 -0.001 0.000005

Table 2: Simulation results for Model I, PML
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Figure 1: Bias and MSE of estimates and standard errors for all sample sizes, Model I

Figure 2: Bias and MSE of estimates and standard errors for all sample sizes, Model II
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Estimate Estimated standard error

Standard
True Mean Bias MSE Deviation Mean Bias MSE

n = 100
λ1,1 0.4 0.399 -0.001 0.015 0.122 0.121 -0.002 0.000359

λ2,1 0.5 0.494 -0.006 0.014 0.119 0.113 -0.006 0.000454

λ3,1 0.6 0.598 -0.002 0.012 0.111 0.103 -0.008 0.000435

λ4,1 0.7 0.695 -0.005 0.010 0.101 0.096 -0.005 0.000489

λ5,1 0.8 0.785 -0.015 0.011 0.106 0.092 -0.014 0.000979

λ6,1 0.3 0.305 0.005 0.012 0.110 0.112 0.002 0.001887

λ6,2 0.8 0.799 -0.001 0.005 0.068 0.071 0.003 0.000280

λ7,2 0.7 0.695 -0.005 0.006 0.079 0.078 -0.002 0.000371

λ8,2 0.6 0.598 -0.002 0.008 0.089 0.088 -0.001 0.000281

λ9,2 0.5 0.502 0.002 0.010 0.099 0.098 -0.001 0.000226

λ10,2 0.4 0.399 -0.001 0.039 0.199 0.234 0.036 0.319323

λ10,3 0.5 0.502 0.002 0.037 0.192 0.229 0.037 0.313953

λ11,3 0.6 0.600 0.000 0.007 0.082 0.079 -0.003 0.000162

λ12,3 0.7 0.697 -0.003 0.005 0.070 0.067 -0.003 0.000154

λ13,3 0.8 0.801 0.001 0.003 0.054 0.053 -0.001 0.000126

λ14,3 0.9 0.903 0.003 0.002 0.041 0.039 -0.001 0.000082

λ15,3 0.4 0.400 0.000 0.011 0.103 0.099 -0.004 0.000162

φ12 0.2 0.205 0.005 0.023 0.153 0.150 -0.003 0.002229

φ13 0.5 0.507 0.007 0.012 0.107 0.105 -0.002 0.000356

φ23 0.8 0.797 -0.003 0.006 0.075 0.076 0.000 0.000474

n = 200
λ1,1 0.4 0.399 -0.001 0.007 0.084 0.085 0.001 0.000074

λ2,1 0.5 0.496 -0.004 0.007 0.081 0.079 -0.002 0.000080

λ3,1 0.6 0.599 -0.001 0.005 0.072 0.072 0.000 0.000079

λ4,1 0.7 0.697 -0.003 0.004 0.065 0.066 0.001 0.000077

λ5,1 0.8 0.801 0.001 0.004 0.061 0.062 0.000 0.000077

λ6,1 0.3 0.304 0.004 0.006 0.076 0.075 -0.001 0.000094

λ6,2 0.8 0.799 -0.001 0.002 0.049 0.047 -0.002 0.000040

λ7,2 0.7 0.700 0.000 0.003 0.053 0.054 0.001 0.000051

λ8,2 0.6 0.600 0.000 0.004 0.063 0.062 -0.001 0.000054

λ9,2 0.5 0.499 -0.001 0.005 0.069 0.069 0.000 0.000055

λ10,2 0.4 0.409 0.009 0.018 0.134 0.137 0.004 0.002527

λ10,3 0.5 0.490 -0.010 0.017 0.131 0.134 0.003 0.002486

λ11,3 0.6 0.602 0.002 0.003 0.056 0.056 0.001 0.000040

λ12,3 0.7 0.701 0.001 0.002 0.049 0.047 -0.002 0.000039

λ13,3 0.8 0.799 -0.001 0.002 0.038 0.037 -0.001 0.000029

λ14,3 0.9 0.898 -0.002 0.001 0.029 0.028 -0.001 0.000019

λ15,3 0.4 0.397 -0.003 0.005 0.068 0.070 0.002 0.000038

φ12 0.2 0.199 -0.001 0.011 0.103 0.104 0.000 0.000091

φ13 0.5 0.504 0.004 0.006 0.077 0.073 -0.004 0.000077

φ23 0.8 0.799 -0.001 0.003 0.053 0.052 -0.000 0.000066

Table 3: Simulation results for Model II, n = 100 & n = 200, PML
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Estimate Estimated standard error

Standard
True Mean Bias MSE Deviation Mean Bias MSE

n = 500
λ1,1 0.4 0.401 0.001 0.003 0.054 0.054 0.000 0.000011

λ2,1 0.5 0.501 0.001 0.003 0.051 0.050 -0.001 0.000014

λ3,1 0.6 0.603 0.003 0.002 0.044 0.045 0.001 0.000014

λ4,1 0.7 0.701 0.001 0.002 0.042 0.041 -0.000 0.000012

λ5,1 0.8 0.798 -0.003 0.002 0.040 0.039 -0.001 0.000014

λ6,1 0.3 0.298 -0.002 0.002 0.048 0.047 -0.001 0.000014

λ6,2 0.8 0.799 -0.001 0.001 0.029 0.029 -0.000 0.000005

λ7,2 0.7 0.699 -0.001 0.001 0.040 0.034 -0.007 0.000009

λ8,2 0.6 0.600 0.000 0.002 0.041 0.039 -0.002 0.000011

λ9,2 0.5 0.499 -0.001 0.002 0.045 0.044 -0.001 0.000011

λ10,2 0.4 0.402 0.002 0.007 0.083 0.082 -0.001 0.000149

λ10,3 0.5 0.499 -0.001 0.007 0.082 0.080 -0.002 0.000157

λ11,3 0.6 0.599 -0.001 0.001 0.036 0.036 -0.000 0.000006

λ12,3 0.7 0.701 0.001 0.001 0.030 0.030 -0.001 0.000006

λ13,3 0.8 0.801 0.001 0.001 0.024 0.024 -0.000 0.000004

λ14,3 0.9 0.900 0.000 0.000 0.018 0.018 -0.000 0.000003

λ15,3 0.4 0.399 -0.001 0.002 0.043 0.044 0.002 0.000009

φ12 0.2 0.205 0.005 0.004 0.065 0.065 0.001 0.000014

φ13 0.5 0.504 0.004 0.002 0.046 0.046 0.000 0.000009

φ23 0.8 0.802 0.002 0.001 0.033 0.033 -0.001 0.000010

n = 1000
λ1,1 0.4 0.400 -0.000 0.002 0.038 0.038 -0.000 0.000003

λ2,1 0.5 0.499 -0.001 0.001 0.035 0.035 -0.000 0.000003

λ3,1 0.6 0.599 -0.002 0.001 0.032 0.032 0.000 0.000003

λ4,1 0.7 0.702 0.002 0.001 0.029 0.029 0.000 0.000003

λ5,1 0.8 0.800 -0.001 0.001 0.027 0.027 0.000 0.000003

λ6,1 0.3 0.299 -0.001 0.001 0.033 0.033 0.000 0.000003

λ6,2 0.8 0.801 0.001 0.000 0.021 0.020 -0.000 0.000001

λ7,2 0.7 0.700 0.000 0.001 0.025 0.024 -0.001 0.000004

λ8,2 0.6 0.600 0.000 0.001 0.028 0.028 -0.001 0.000003

λ9,2 0.5 0.499 -0.001 0.001 0.032 0.031 -0.001 0.000003

λ10,2 0.4 0.403 0.003 0.003 0.055 0.056 0.001 0.000028

λ10,3 0.5 0.497 -0.003 0.003 0.053 0.055 0.001 0.000030

λ11,3 0.6 0.601 0.001 0.001 0.026 0.025 -0.001 0.000002

λ12,3 0.7 0.700 0.000 0.000 0.021 0.021 0.000 0.000001

λ13,3 0.8 0.801 0.001 0.000 0.017 0.017 -0.000 0.000001

λ14,3 0.9 0.900 0.000 0.000 0.012 0.012 0.000 0.000001

λ15,3 0.4 0.402 0.002 0.001 0.032 0.031 -0.001 0.000002

φ12 0.2 0.200 0.000 0.002 0.046 0.046 0.000 0.000004

φ13 0.5 0.501 0.001 0.001 0.033 0.033 -0.000 0.000002

φ23 0.8 0.800 0.000 0.001 0.023 0.023 0.000 0.000003

Table 4: Simulation results for Model II, n = 500 & n = 1000, PML

5. A comparison of FIML, PML, 3S-RULS, 3S-RDWLS estimators with a simulation study

In this section, the performances of PML, FIML, 3S-RULS, and 3S-RDWLS estimators are compared using the
same simulated samples as in the previous simulation study and under the same experimental conditions. The FIML
estimates and standard errors are derived under the IRT approach with the probit link. Although the parameters

in this case are the α
(xi)
ci and βij given in equation (8), the corresponding estimates of λij and τ

(xi)
ci can be obtained
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easily. This is because the two sets of parameters are proved to be equivalent (see Takane & de Leeuw, 1987, and
Bartholomew et al., 2011), and the related formulas can be found in Jöreskog & Moustaki (2001). All statistical
packages provide both sets of parameters. The package Mplus 6.1 has been used to derive the FIML estimates
and standard errors. The numerical algorithm used to evaluate the integral in (6) was the default of Mplus, i.e.
adaptive quadrature with 15 integration points for each dimension. To get the 3S-RULS and 3S-RDWLS estimates
and standard errors either LISREL 8.80 or Mplus can be used. Both packages give very similar results. The 3S-
RULS estimation is denoted as ULS in LISREL and ULSMV in Mplus, while 3S-RDWLS is denoted as DWLS in
LISREL and WLSMV in Mplus.

Table 5 gives the percentage of valid replications per condition for each estimator. For Model I, replication with
improper solutions occur for all estimation methods when the sample size is 100, the lowest percentage being that of
3S-RULS, 95.3%. For the rest sample sizes (200, 500, and 1000) PML has 100% valid replications, while the other
three methods have a very minor percentage of improper solutions (of around 0.3%) for n = 200 and 100% valid
replications for sizes 500 and 1000. For Model II, all methods give quite a few improper solutions when n = 100,
indicating that this is a relatively small sample size compared to the model size. The lowest percentage is that of
PML, 89.4%. The percentage of improper solutions decreases with the increase of the sample size. All methods
reach 100% of valid replications for sizes 500 and 1000 except for PML, which reaches 99.3% when n = 1000. For
the performance comparisons, only the replications for which all four methods give valid solutions have been used.

Model I Model II

Sample size n FIML PML 3S-RULS 3S-RDWLS FIML PML 3S-RULS 3S-RDWLS

100 98.7% 96.6% 95.3% 96.6% 95.9% 89.4% 92.7% 94.5%

200 99.6% 100% 99.7% 99.8% 99.7% 94.6% 99.5% 99.7%

500 99.9% 100% 100% 100% 100% 98.2% 100% 100%

1000 100% 100% 100% 100% 100% 99.3% 100% 100%

Table 5: Percentage of valid replications per condition for FIML, PML, 3S-RULS, 3S-RDWLS

The performance of the estimators is compared on the basis of the following criteria: bias, MSE and standard
deviation of parameter estimates, as well as average, bias and MSE of estimated standard errors. To facilitate the
comparisons, instead of presenting the results for each model parameter as in Section 4, we calculated the average,
over all λ and φ parameters, of the aforementioned performance criteria. The results are reported in Table 6. All
methods give very close results. As expected, FIML performs slightly better with respect to almost all criteria with
almost all experimental conditions, and of course, it presents the smaller average standard deviation of estimates
and average of estimated standard errors. The only case where FIML presents slightly bigger average mean of
estimated standard errors is within Model I when n = 100. FIML presents slightly worse average MSE for the
standard errors for the small sample sizes (100 and 200). This is due to the relatively worse performance for the
standard errors of the loadings of the multidimensional indicators. Concerning the other three methods, the results
of PML and 3S-RDWLS are, on average, slightly closer to those of the FIML approach than the results of the
3S-RULS.
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Estimate Estimated standard error

Average Average Av. Standard Average Average Average
Bias MSE Deviation Mean Bias MSE

Model I

n = 100 - Results based on 937 (93.7%) valid replicates

FIML 0.003 0.007 0.080 0.088 0.009 0.015090

PML 0.002 0.008 0.085 0.084 -0.001 0.000464

3S-RULS 0.002 0.008 0.088 0.088 -0.001 0.000472

3S-RDWLS 0.003 0.008 0.086 0.084 -0.002 0.000509

n = 200 - Results based on 993 (99.3%) valid replicates

FIML 0.002 0.004 0.057 0.057 -0.001 0.001095

PML 0.002 0.004 0.060 0.058 -0.002 0.000098

3S-RULS 0.002 0.004 0.062 0.061 -0.002 0.000095

3S-RDWLS 0.003 0.004 0.060 0.058 -0.002 0.000101

n = 500 - Results based on 999 (99.9%) valid replicates

FIML 0.001 0.001 0.036 0.035 -0.000 0.000031

PML 0.001 0.002 0.037 0.037 -0.000 0.000012

3S-RULS 0.001 0.002 0.039 0.038 -0.000 0.000012

3S-RDWLS 0.001 0.002 0.037 0.037 -0.000 0.000012

n = 1000 - Results based on 1000 (100%) valid replicates

FIML 0.000 0.001 0.026 0.025 -0.000 0.000003

PML 0.000 0.001 0.026 0.026 -0.000 0.000003

3S-RULS 0.000 0.001 0.027 0.027 -0.000 0.000004

3S-RDWLS 0.000 0.001 0.026 0.026 -0.000 0.000004

Model II

n = 100 - Results based on 864 (86.4%) valid replicates

FIML 0.000 0.011 0.097 0.099 0.002 0.004104

PML -0.001 0.012 0.103 0.102 -0.001 0.001150

3S-RULS -0.000 0.012 0.103 0.099 -0.004 0.000758

3S-RDWLS 0.003 0.012 0.101 0.094 -0.007 0.000686

n = 200 - Results based on 942 (94.2%) valid replicates

FIML 0.000 0.005 0.067 0.067 0.000 0.000181

PML -0.000 0.006 0.070 0.070 0.000 0.000284

3S-RULS -0.000 0.006 0.073 0.071 -0.002 0.000192

3S-RDWLS 0.001 0.006 0.071 0.068 -0.003 0.000147

n = 500 - Results based on 982 (98.2%) valid replicates

FIML 0.001 0.002 0.042 0.042 -0.000 0.000020

PML 0.000 0.002 0.044 0.044 -0.001 0.000024

3S-RULS 0.000 0.003 0.046 0.045 -0.001 0.000028

3S-RDWLS 0.001 0.002 0.045 0.043 -0.001 0.000022

n = 1000 - Results based on 993 (99.3%) valid replicates

FIML 0.000 0.001 0.030 0.029 0.000 0.000005

PML 0.000 0.001 0.031 0.031 -0.000 0.000005

3S-RULS 0.000 0.001 0.032 0.032 -0.000 0.000006

3S-RDWLS 0.001 0.001 0.031 0.031 -0.000 0.000005

Table 6: Average, over λ and φ parameters, results for FIML, PML, 3S-RULS, 3S-RDWLS

6. Comparison of PML, FIML, 3S-RULS, 3S-RDWLS using empirical data

In this section, the PML estimation is demonstrated by applying the method in exploratory and con�rmatory
factor analysis, and using some empirical data. Moreover, the PML estimates and standard errors are compared
with those obtained by FIML, 3S-RULS, and 3S-RDWLS approaches. Again, the FIML estimates and standard
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errors are derived under the IRT approach with probit as the link function where an adaptive quadrature with 15
integration points for each dimension has been employed to evaluate the integral in (6). However, in the example of
the four-factor model, this numerical method is remarkably slow and a Monte Carlo method with the default settings
of Mplus has been used. In all the examples, we focus again on the estimates of factor loadings and correlations.

6.1. Exploratory factor analysis - Science & Technology (S&T) data

The data used in this example come from the Consumer Protection and Perceptions of Science and Technology
section of the 1992 Eurobarometer Survey (Karlheinz & Melich, 1992) and particularly, it is based on a sample from
Great Britain. Seven indicators are used in the current analysis, all presented in Appendix 2. All the indicators
were measured on a four-point scale with response categories �strongly disagree�, �disagree to some extent�, �agree
to some extent�, and �strongly agree�. Almost all indicators present a considerable amount of skewness. The sample
size is 392 after eliminating the cases with missing values in any of the indicators (listwise deletion). Exploratory
factor analysis with one and two factors have been carried out where the factors are assumed to follow standard
normal distribution. For the two-factor exploratory analysis, the loading of the �rst indicator on the second factor,
namely λ12, has been �xed to 0 for identi�cation reasons. The estimates of factor loadings obtained by the four
estimation methods in the case of one factor analysis are given in Table 7. As it can be seen, all methods give fairly
close parameter estimates and standard errors. However, the PML estimates are on average slightly closer to those
of the FIML than the 3S-RULS and 3S-RDWLS estimates. An interesting pattern regarding the standard errors is
that 3S-RULS and 3S-RDWLS give smaller standard errors for all parameters compared with those of FIML and
PML approaches.

Parameter FIML PML 3S-RULS 3S-RDWLS

λ1 0.491 0.536 0.568 0.580
(0.102) (0.121) (0.072) (0.069)

λ2 -0.018 0.044 0.069 0.196
(0.128) (0.215) (0.081) (0.077)

λ3 0.548 0.503 0.464 0.448
(0.070) (0.119) (0.069) (0.067)

λ4 0.795 0.752 0.713 0.670
(0.084) ( 0.135 ) (0.059) (0.058)

λ5 -0.023 0.042 0.068 0.203
(0.123) (0.214 ) (0.076) (0.071)

λ6 0.139 0.192 0.217 0.331
(0.122) (0.209 ) (0.077) (0.071)

λ7 0.511 0.538 0.562 0.530
(0.085) (0.083) (0.065) (0.064)

Table 7: Estimated loadings and standard errors (in brackets) for S&T data, one-factor exploratory analysis

Table 8 reports the results of the exploratory analysis with two factors. As with one factor analysis, all four
estimation methods give very similar estimates. However, the PML estimates and standard errors are slightly closer
to those of the FIML than those of the 3S-RULS and 3S-RDWLS approaches. Again, the 3S-RULS and 3S-RDWLS
approaches give the smaller standard errors among the four methods for almost all parameter estimates.
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Parameter FIML PML 3S-RULS 3S-RDWLS Parameter FIML PML 3S-RULS 3S-RDWLS

λ11 0.529 0.545 0.556 0.561 λ12 0* (�xed) 0* (�xed) 0* (�xed) 0* (�xed)

(0.081) (0.076) (0.069) (0.068) � � � �

λ21 0.197 0.183 0.174 0.176 λ22 0.637 0.633 0.634 0.634

(0.121) (0.116) (0.111) (0.109) (0.074) (0.074) (0.074) (0.073)

λ31 0.479 0.464 0.449 0.469 λ32 -0.312 -0.297 -0.283 -0.292

(0.079) (0.080) (0.079) (0.079) (0.101) (0.100) (0.087) (0.088)

λ41 0.731 0.719 0.707 0.715 λ42 -0.285 -0.279 -0.261 -0.267

(0.070) (0.069) (0.063) (0.063) (0.131) (0.127) (0.112) (0.112)

λ51 0.206 0.189 0.179 0.181 λ52 0.675 0.674 0.675 0.675

(0.120) (0.116) (0.111) (0.110) (0.073) (0.071) (0.070) (0.070)

λ61 0.369 0.353 0.345 0.344 λ62 0.554 0.549 0.552 0.552

(0.102) (0.100) (0.098) (0.096) (0.085) (0.083) (0.082) (0.082)

λ71 0.493 0.510 0.532 0.524 λ72 -0.153 -0.135 -0.140 -0.134

(0.083) (0.077) (0.066) (0.065) (0.080) (0.077) (0.087) (0.086)

Table 8: Estimated loadings and their standard errors (in brackets) for S&T data, two-factor exploratory analysis

6.2. Con�rmatory factor analysis - Relationship Learning (RL) data

In this example, we use part of the data gathered by Selnes & Sallis (2003) who aimed to study whether speci�c
factors a�ect the learning capabilities of targeted customer-supplier relationships. We focus on the data coming
from suppliers and referring to 18 speci�c indicators, which measure four factors: collaborative commitment (ξ1),
internal complexity (ξ2), relational trust (ξ3), and environmental uncertainty (ξ4) as named by Selnes & Sallis
(2003). The indicators used to measure each factor are presented in Appendix 3. All indicators were measured on
a seven-point scale; with 1 referring to �strongly disagree� or �low� and 7 to �strongly agree� or �high� depending on
the form of the question. Quite a number of the indicators present rather skewed observed distribution, while the
rest present a more symmetric distribution. The sample size is 286 after listwise deletion. The structure of matrices
Λ and Φ to be estimated is of the form:

Λ =



λ1,1

λ2,1

λ3,1

λ4,1

λ5,1

λ6,2

λ7,2

λ8,2

λ9,3

λ10,3

λ11,3

λ12,3

λ13,3

λ14,4

λ15,4

λ16,4

λ17,4

λ18,4



, Φ =


1
φ21 1
φ31 φ32 1
φ41 φ42 φ43 1

 .

Along with the thresholds which are six for each indicator, there are a total of 132 free parameters to be estimated.
The estimates of factor loadings and correlations are reported in Table 10. All four methods give very similar
estimates. The PML and 3S-DWLS estimates are slightly closer to those of the FIML than those of the 3S-RULS
approach. For the standard errors, it is those of the PML that are closer to those of the FIML approach.
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Parameter FIML PML 3S-RULS 3S-RDWLS Parameter FIML PML 3S-RULS 3S-RDWLS

λ1,1 0.880 0.882 0.905 0.888 λ14,4 0.775 0.767 0.774 0.768

(0.022) (0.023) (0.027) (0.015) (0.031) (0.033) (0.035) (0.027)

λ2,1 0.894 0.891 0.897 0.893 λ15,4 0.802 0.854 0.873 0.865

(0.016) (0.017) (0.023) (0.015) (0.032) (0.027) (0.028) (0.023)

λ3,1 0.900 0.884 0.867 0.889 λ16,4 0.783 0.752 0.740 0.752

(0.015) (0.018) (0.023) (0.015) (0.035) (0.040) (0.042) (0.029)

λ4,1 0.905 0.897 0.907 0.909 λ17,4 0.743 0.697 0.697 0.725

(0.015) (0.016) (0.018) (0.012) (0.044) (0.044) (0.043) (0.029)

λ5,1 0.886 0.875 0.850 0.871 λ18,4 0.724 0.705 0.710 0.739

(0.018) (0.020) (0.025) (0.015) (0.042) (0.042) (0.042) (0.030)

λ6,2 0.520 0.622 0.775 0.661 φ21 0.208 0.255 0.285 0.261

(0.064) (0.079) (0.113) (0.049) (0.084) (0.083) (0.080) (0.053)

λ7,2 0.849 0.821 0.711 0.838 φ31 0.627 0.627 0.630 0.626

(0.051) (0.065) (0.090) (0.041) (0.042) (0.044) (0.043) (0.035)

λ8,2 0.834 0.784 0.669 0.780 φ41 0.659 0.658 0.658 0.645

(0.050) (0.069) (0.093) (0.042) (0.049) (0.047) (0.047) (0.036)

λ9,3 0.801 0.808 0.826 0.813 φ32 0.113 0.125 0.135 0.126

(0.027) (0.027) (0.031) (0.024) (0.076) (0.073) (0.074) (0.056)

λ10,3 0.873 0.866 0.857 0.865 φ42 0.147 0.197 0.220 0.198

(0.022) (0.023) (0.026) (0.018) (0.079) (0.079) (0.077) (0.056)

λ11,3 0.884 0.867 0.842 0.867 φ43 0.641 0.651 0.638 0.645

(0.019) (0.024) (0.028) (0.018) (0.052) (0.048) (0.047) (0.037)

λ12,3 0.913 0.908 0.903 0.910

(0.015) (0.016) (0.019) (0.013)

λ13,3 0.865 0.871 0.888 0.873

(0.020) (0.020) (0.023) (0.017)

Table 9: Estimated loadings, correlations and their standard errors (in brackets) for RL data, con�rmatory factor analysis

7. Discussion and Conclusions

Within the context of factor analysis models there are two main approaches for the analysis of ordinal variables,
namely the item response theory (IRT) and the underlying response variable (URV) approaches. In both cases,
full information maximum likelihood (FIML) estimation cannot be considered as a practical general method, since
the level of computational complexity rises greatly with increases in the model size. In particular, the numerical
evaluation of multidimensional integrals are necessary, the dimensionality of which depend either on the number
of factors in the case of IRT approach, or on the number of observed variables in the case of URV approach. In
the latter case, as the number of observed variables is often large, FIML is not used at all in practice. Instead,
three-stage limited information estimation methods have been developed.

In this paper, we propose a pairwise maximum likelihood (PML) method that operates within the URV approach.
As such, it is considered to be a computationally general method since it involves the evaluation of up to two-
dimensional integrals written in a closed form, regardless of the number of observed variables or factors. Moreover,
the PML estimator is asymptotically unbiased, consistent, and normally distributed. The main advantages of our
proposed method over the commonly used three-stage limited information estimators (3S-RULS, 3S-RDWLS, 3S-
WLS) are that all model parameters are estimated in one single step, and it removes the need to estimate a weight
matrix to obtain the correct standard errors.

To investigate the performance of PML estimator, and the associated standard error, we conducted a simulation
study on the e�ect of model and sample sizes within the con�rmatory factor analysis framework. The main result
of the study is that the PML parameter estimates and their estimated asymptotic standard errors are found to have
very small bias and mean squared error, both of which decrease with the sample size. To compare the estimates
and standard errors provided by the FIML, PML, 3S-RULS, and 3S-RDWLS approaches we have both conducted
a simulation study and used some real data examples. The simulation study has been based on the same simulated
samples used to investigate the performance of the PML approach. In the case of real data, the comparisons are
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made in an exploratory and con�rmatory set-up, with one and two factors in the case of exploratory analysis, and
four factors in the case of con�rmatory analysis. The main conclusion is that the estimates and standard errors of
all four methods are fairly close to each other. However, there is a tendency for the PML and 3S-RDWLS estimates
and standard errors to be slightly closer to those of FIML than those of 3S-RULS approach.

Our study indicates that PML can be considered as a competitive estimation method for estimating factor analysis
models with ordinal data. Subsequently, further study is advised to examine the e�ciency of the proposed method
relatively to the FIML approach. Additionally, PML estimation can be readily extended to the case of full structural
equation models with a mixed type of data.
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Appendix 1 - The gradient of the bivariate log-likelihood lnL (θ; (xi, xj))

The gradient ∇ lnL (θ; (xi, xj)), i, j = 1, . . . , p, j 6= i, can be distinguished in three main blocks as follows:

∇ lnL (θ; (xi, xj)) =


∂ lnL(θ;(xi,xj))

∂λ
∂ lnL(θ;(xi,xj))

∂ϕ
∂ lnL(θ;(xi,xj))

∂τ

 .

The elements of the subvector
∂ lnL(θ;(xi,xj))

∂τ are the �rst derivatives with respect to thresholds
∂ lnL(θ;(x∗i ,x

∗
j ))

∂τ
(xi)
ci

and

are given in Olsson (1979, eq. (13)). In particular,

∂ lnL (θ; (xi, xj))

∂τ
(xi)
ci

=

mj∑
cj=1

n(xixj)
cicj

π
(xixj)
cicj

−
n

(xixj)

(ci+1)cj

π
(xixj)

(ci+1)cj

 ∂π
(xixj)
cicj

∂τ
(xi)
ci

,

where

∂π
(xixj)
cicj

∂τ
(xi)
ci

= φ1(τ (xi)
ci )

Φ1

τ (xj)
cj − ρxixjτ

(xi)
ci√

1− ρ2
xixj

− Φ1

τ (xj)
cj−1 − ρxixjτ

(xi)
ci√

1− ρ2
xixj

 ,

and φ1 and Φ1 are the standard univariate normal density and distribution respectively.

To �nd the partial derivatives with respect to λ and ϕ we use the chain rule, i.e.

∂ lnL (θ; (xi, xj))

∂λ
=
∂ lnL (θ; (xi, xj))

∂ρxixj

∂ρxixj
∂λ

and

∂ lnL (θ; (xi, xj))

∂ϕ
=
∂ lnL (θ; (xi, xj))

∂ρxixj

∂ρxixj
∂ϕ

.

The partial derivative with respect to ρxixj is

∂ lnL (θ; (xi, xj))

∂ρxixj
=

mi∑
ci=1

mj∑
cj=1

n
(xixj)
cicj

π
(xixj)
cicj

∂π
(xixj)
cicj

∂ρxixj
,

where
∂π

(xixj)
cicj

∂ρxixj
is given in Olsson (1979, eqs (8)) and it is

∂π
(xixj)
cicj

∂ρxixj
= φ

(
τ (xi)
ci , τ (xj)

cj ; ρxixj

)
− φ

(
τ (xi)
ci , τ

(xj)
cj−1; ρxixj

)
− φ

(
τ

(xi)
ci−1, τ

(xj)
cj ; ρxixj

)
+ φ

(
τ

(xi)
ci−1, τ

(xj)
cj−1; ρxixj

)
.

The partial derivative of ρxixj with respect to λ in vector - matrix form is as follows:

∂ρxixj
∂λ

=
∂ρxixj
∂λi·

∂λi·
∂λ

+
∂ρxixj
∂λj·

∂λj·
∂λ

= λj·Φ
∂λi·
∂λ

+ λ
(x)
i· Φ

∂λj·
∂λ

,

where the terms of type ∂λi·
∂λ are matrices of zeroes and ones with k rows (as many as the number of columns of

matrix Λ) and as many columns as the size of λ (the number of free parameters in matrix Λ).

The partial derivative of ρxixj with respect to ϕ in vector - matrix form is

∂ρxixj
∂ϕ

=
∂ρxixj
∂Φ

∂Φ

∂ϕ
=
(
λ

(x)
i·

)′
λ

(x)
j·
∂Φ

∂ϕ
,

where ∂Φ
∂ϕ is a matrix of zeroes and ones with k2 rows (as many as the total number of elements of matrix Φ)

and as many columns as the size of vector ϕ (the number of free non-redundant parameters in Φ). Note that ∂Φ
∂ϕ

is sometimes (more appropriately) denoted as ∂vec(Φ)
∂ϕ′ , where vec is the function transforming a mxn matrix to a

mnx1 vector by stacking its columns one underneath the other.
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Appendix 2 - The indicators of Science & Technology data

1. Science and technology are making our lives healthier, easier and more comfortable.

2. Scienti�c and technological research cannot play an important role in protecting the environment and repairing it.

3. The application of science and new technology will make work more interesting.

4. Thanks to science and technology, there will be more opportunities for the future generations.

5. New technology does not depend on basic scienti�c research.

6. Scienti�c and technological research do not play an important role in industrial development.

7. The bene�ts of science are greater than any harmful e�ects it may have.

Appendix 3 - The indicators of Relationship Learning data

Collaborative Commitment

1. To what degree do you discuss company goals with the other party in this relationship?

2. To what degree are these goals developed through joint analysis of potentials?

3. To what degree are these goals formalized in a joint agreement or contract?

4. To what degree are these goals implemented in day-to-day work?

5. To what degree have you developed measures that capture performance related to these goals?

Internal Complexity

6. The products we exchange are generally very complex.

7. There are many operating units involved from both organizations.

8. There are many contract points between di�erent departments or professions between the two organizations.

Relational Trust

9. I believe the other organization will respond with understanding in the event of problems.

10. I trust that the other organization is able to ful�ll contractual agreements.

11. We trust that the other organization is competent at what they are doing.

12. There is a general agreement in my organization that the other organization is trustworthy.

13. There is a general agreement in my organization that the contact people on the other organization are trustworthy.

Environmental Uncertainty

14. End-users needs and preferences change rapidly in our industry.

15. The competitors in our industry frequently make aggressive moves to capture market share.

16. Crises have caused some of our competitors to shut down or radically change the way they operate.

17. It is very di�cult to forecast where the technology will be in the next 2-3 years in our industry.

18. In recent years, a large number of new product ideas have been made possible through technological breakthroughs in

our industry.
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