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Abstract
Direct-to-consumer (DTC) genetic testing is a recent commercial endeavor
that allows the general public to access personal genomic data. The
growing availability of personal genomic data has in turn stimulated the
development of non-commercial tools for DTC data analysis. Despite this
new wealth of public resources, no systematic research has been carried
out to assess these tools for interpretation of DTC data. Here, we provide
an initial analysis benchmark in the context of a whole family, using single
nucleotide polymorphism (SNP) data. Five blood-related DTC SNP chip
data tests were analyzed in conjunction with one whole exome sequence.
We report findings related to genomic similarity between individuals,
genetic risks and an overall assessment of data quality; thus providing an
evaluation of the current potential of public domain analysis tools for
personal genomics. We envisage that as the use of personal genome tests
spreads to the general population, publicly available tools will have a more
prominent role in the interpretation of genomic data in the context of health
risks and ancestry.
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Introduction
Direct-to-Consumer (DTC) genetic testing is a relatively new com-
mercial endeavor offering access to personal genomic tests to the gen-
eral public. Individuals wishing to learn about their genomes today 
enjoy a range of options. DTC providers typically offer chip-based 
genotyping of genome-wide markers, currently in the range of hun-
dreds of thousands to a million single-nucleotide polymorphisms 
(SNPs). This current wealth of personal genomic data is likely to 
grow at an increasing pace as DNA sequencing become ubiquitous 
in personal genome testing. Genome sequencing allows elucidation 
of not just SNPs, but copy number variants (CNVs), insertions, inver-
sions and many other genomic features currently underrepresented in 
personal genome analyses. Yet personal SNP data has proven to be a 
valuable resource for making personalized inferences about the risk 
of developing medical conditions, the probability of having certain 
phenotypic traits, and one’s likely ancestral origins1,2. Taking advan-
tage of the growing body of statistical associations accumulated in the 
scientific literature, DTC providers have been able to offer personal-
ized genomic ‘reports’ that present accessible scientific information 
of relevance to their customers’ observed genotypes. It is precisely in 
these genomic annotations where customers realize the value of their 
DTC product purchase.

A feature of DTC genomic test interpretation is that, being a com-
mercial product, genomic annotations and analysis tools are propri-
etary and not freely available to the research community. This has 
motivated the parallel development of public resources and low cost 
genotype analysis tools. SNPedia3 is a wiki-styled resource that col-
lects and annotates SNPs from the scientific literature and provides 
tools with which to associate these annotations to those observed 
in DTC genomic tests. openSNP4 is a public resource that collects 
genotypes from people willing to share them, allows annotation of 
phenotypes, and the search of occurrences of a particular SNP in 
scientific publications using Mendeley5. Although all resources, 
public or commercial, are limited by the reliability of the data avail-
able for any given marker, public and low cost resources have the 
potential of engaging community wide efforts (‘crowd-sourcing’) 
to an extent to which closed commercial applications cannot.

We decided to explore the extent to which phenotype inference and 
genotype analysis can be carried out solely using existing public or 
very low cost resources. This is motivated by our belief that no DTC 
company will ultimately be able to match the rapid pace of genomic 
data accumulation and annotation that the research community is 
producing. Apart from SNPedia or openSNP, a wiki-based model, 
perhaps integrated with existing genetics resources such as the 
Gene Wiki6 or Gene Wiki+7, may offer a good solution for rapid, 
accurate and comprehensive community annotation of personal 
genomic data.

In this paper we carry out a systematic analysis of DTC genomic data 
from a family of five blood relatives using mostly public annotations 
and tools. We present a) our findings related to the quality of the 
data, b) a comparison of the similarity between members of the fam-
ily and an undisclosed individual of a different ethnic background 
and c) phenotype inferences as described by SNPedia trait annota-
tions. We also incorporate analysis of DTC exome sequence data to 
supplement the genotype findings of one individual. We thus offer a 
pioneering methodical study of a whole family analyzed using only 

DTC data. Since comparable data could, in principle, be bought by 
any individual, this study benchmarks the personal genomic analy-
ses available to non-experts using open, web-based tools.

Results
We analyzed DTC genomic data from a family of five of self-
reported European ancestry, two males and three females across 
two generations (Figure 1).

The family has lived in the southern-most region of Western Europe 
(Andalusia, Spain) for at least 4 generations. Principal component 
analyses of ancestry informative markers confirm tight parental clus-
tering with Southern European populations (Figure 2). We thus expect 
their ethnic background to be relatively homogeneous. The CEU Hap-
Map ethnic group8 was taken as the reference genotype for SNPedia 
phenotype predictions. Two kinds of SNP chip were used in this analy-
sis, the 23andMe9 versions 2 and 3. All family members except ‘Son’ 
(denoted with red diamond in Figure 1) were tested with version 3. 
Son was tested using version 2 and whole exome sequencing.

Family SNP chip analysis
Whole family genotypes provide an additional genetic context 
that individual data analyses cannot offer, enabling enhanced er-
ror correction and inheritance state analysis10. We found that data  
downloaded from 23andMe at different times may vary, probably 
as a consequence of changes in genotype-calling algorithms. To en-
sure consistency in our analyses, we downloaded the most recent 
data, for all family members, on May 30th 2012.

23andMe SNP chip genotype data

5 Data Files

http://dx.doi.org/10.6084/m9.figshare.92682

Figure 1. Family tree analyzed using DTC genotyping services. 
Squares and circles denote male and female respectively. Filled 
shapes represent those for which genome data is available. ‘Son’, 
the individual whose exome was sequenced, is denoted with a red 
diamond. Other family members include Father, Mother, Daughter 
and Aunt, who is Mother’s sister.

Aunt Mother

Daughter Son

Father
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some differences are observed for Son (v2) when compared to all 
other v3 individuals (Figure 3). V3 individuals show a very similar 
distribution of genotypes.

Calculation of error rates
23andMe reports a 98% or greater call rate11, meaning that the 
chip can provide accurate data for more than 98% of those vari-
ants in any particular person. When an allele variant present in het-
erozygous state is “undercalled” (not observed), the locus may be  
reported as being homozygous for the other variant, leading to 
missed heterozygosity. Such sites may significantly impact the 
disease risks predicted for the individual. Under the simplifying 
assumption of uniform undercall probability, we estimated the 
number of heterozygous sites mistakenly reported as homozygous 
(Table 2). This means that for Son, 1 in every 400 sites is mistaken-
ly called. For Father, 1 in every 200. Next, we analyzed Mendelian 
Inheritance Errors (MIEs). If at one site a reported genotype is ‘CC’ 
but the genotypes for both parents is ‘TT’, one possible explanation 
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Figure 2. Admixture analysis of individuals from Southern Europe from the Eurogenes Genetic Ancestry Project. Mother (ES7) is 
denoted by a red arrow and Father (ES8) by a blue arrow. Mother and Father are the only family individuals included here as they have the 
most divergent genotypes within the family.

Table 1. Summary of reported no-call rates for 
all 23andMe chips included in this study.

Family member No call rate Chip version

Mother 0.24% v3

Father 0.21% v3

Daughter 0.19% v3

Aunt 0.17% v3

Son 0.16% v2

In order to facilitate comparison between different genotypes, we 
excluded non-autosomal SNP data (chromosomes X, Y and MT). 
All v3 chips had a total of 930,342 autosomal SNPs; the v2 SNP 
chip had 556,694. The reported ‘no call’ rate (shown as ‘- -’ in the 
downloaded data) varied slightly for each individual (Table 1), but 
overall, when genotypes are expressed as percentages of the total, 
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For the remaining 6 relationships, only part of the genome is ex-
pected to be identical by descent (IBD). Fully incompatible sites 
can be numbered as “pseudo-MIEs” (Table 4).

The reduced numbers of MIEs and pseudo-MIEs between the Son 
and all other family members were due to the lower total number 
of SNPs assayed for the Son. The Daughter has more MIEs relative 
to the Mother than relative to the Father. This may be due to having 
inherited a few deleted segments leading to a hemizygous state: 
hemizygous sites are reported as homozygous for the allele present, 
leading to an accumulation of apparent MIE sites. For example, at 
chr2:41093584 (rs12465519) (Table 5). The ISCA analysis explains 
how we inferred a deletion from observed discordant genotypes.

A deletion inferred from mismatching genotype data

1 Data File

http://dx.doi.org/10.6084/m9.figshare.92821
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Figure 3. A distribution of all the different occurring genotypes as a percentage of the total for all individuals is shown. For the purposes 
of unbiased comparison, only autosome data is included. I and D indicate insertion and deletion, respectively. Son’s percentages (v2) show 
slight differences to all other v3 individuals whose genotype proportions are more similar. 

Table 2. Number of heterozygous sites 
mistakenly reported as homozygous 
(based on the undercall rate, in 
autosomes).

Member Undercall Heterozygous to 
Homozygous

Son 0.25% 661

Daughter 0.53% 2007

Mother 0.60% 2269

Father 0.50% 2010

Aunt 0.51% 1905

Table 3. Mendelian Inheritance errors 
as estimated by direct parent/offspring 
relations.

Relation MIEs

Son/Father: 36

Son/Mother: 24

Daughter/Father: 108

Daughter/Mother: 129

is that one of the parents is actually heterozygous ‘CT’ but was 
undercalled as ‘CC’, and likewise the son is heterozygous ‘CT’ but 
was undercalled ‘TT’. Given 5 people, there are 10 possible pair-
wise relations. Four of these represent direct parent/offspring rela-
tions, for which discrepancies can be counted as MIEs (Table 3).

One SNP in the Daughter (chr4:7, 9957, 622) is in disagreement 
with both parents: Father=CC, Mother=CC, Daughter=TT.

Table 4. Incompatible sites between remaining 
relationships, identified as pseudo-MIEs.

Relation Pseudo-MIEs

Son/Daughter [siblings]: 7,777

Mother/Aunt [siblings]: 15,401

Son/Aunt: 17,390

Daughter/Aunt: 30,215

Father/Mother [unrelated]: 53,937

Father/Aunt [unrelated]: 54,522
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SNP similarity analyses
We compared the 23andMe genotypes of the family members at three 
levels: 1) pairwise all-against-all comparison, 2) inheritance state 
analysis in family quartets, and 3) analysis of population admixture.

1. Pairwise comparison. We performed an all-against-all genotype 
comparison among all family members. As an external point of refer-
ence, we included in our analysis a male individual of Indian ethnic 

background (denoted as non-CEU, chip version 3). Table 6 shows 
a summary of the SNP similarity patterns found among all family 
members and the non-CEU individual. When comparing the simi-
larity of tested SNPs between family members (for information on 
how similarity scores are calculated see Methods section) we find 
that Son is most similar to Daughter (85.7%), then to Father (83.8%) 
and Mother (83.7%), and least to Aunt (78.7%) and the non-CEU 
individual (75.4%). Among individuals sharing the same platform, 
we find that siblings, Aunt and Mother share the greatest number of 
identical genotypes (84.5%). When comparing whose SNPs are the 
most similar to Father, neither Mother nor Aunt are found signifi-
cantly different (p-value = 0.5561). The non-CEU individual has, on 
average, a similarity of 75.3% to all family members tested on plat-
form v3. Contrary to our expectation that both Sister and Son should 
be equally similar to Mother and Father, we found that Daughter is 
84.8% identical to Mother and 85.0% to Father, potentially explained 
by the inheritance of a deletion (see previous section). This difference 

Table 5. Example of hemizygous site 
reported as homozygous.

Status Father Mother Daughter

Reported GT GG TT

Actual GT G- T-

Mother

matches: 930342 100.0%
half matches: 0 0.0%
conflict: 0 0.0%
identity: 930342 100.0%
difference: 0 0.0%
total: 930342 100.0%

Father

matches: 537331 57.8% 930342 100.0%
half matches: 335157 36.0% 0 0.0%
conflict: 57854 6.2% 0 0.0%
identity: 704910 75.8% 930342 100.0%
difference: 225433 24.2% 0 0.0%
total: 930342 100.0% 930342 100.0%

Daughter

matches: 650399 69.9% 653926 70.3% 930342 100.0%
half matches: 276334 29.7% 273483 29.4% 0 0.0%
conflict: 3609 0.4% 2933 0.3% 0 0.0%
identity: 788566 84.8% 790668 85.0% 930342 100.0%
difference: 141776 15.2% 139675 15.0% 0 0.0%
total: 930342 100.0% 930342 100.0% 930342 100.0%

Aunt

matches: 661316 71.1% 537723 57.8% 586549 63.0% 930342 100.0%
half matches: 250278 26.9% 335063 36.0% 310933 33.4% 0 0.0%
conflict: 18748 2.0% 57556 6.2% 32860 3.5% 0 0.0%
identity: 786455 84.5% 705254.5 75.8% 742016 79.7% 930342 100.0%
difference: 143887 15.5% 225088 24.2% 188327 20.2% 0 0.0%
total: 930342 100.0% 930342 100.0% 930342 100.0% 930342 100.0%

Son

matches: 357419 67.7% 358003 67.8% 386014 73.1% 321410 60.9% 556694 100.0%
half matches: 168682 32.0% 168344 31.9% 132693 25.1% 187749 35.6% 0 0.0%
conflict: 1807 0.3% 1561 0.3% 9201 1.7% 18749 3.6% 0 0.0%
identity: 441760 83.7% 442175 83.8% 452361 85.7% 415285 78.7% 556694 100.0%
difference: 86148 16.3% 85733 16.2% 75548 14.3% 112624 21.3% 0 0.0%
total: 527908 100.0% 527908 100.0% 527908 100.0% 527908 100.0% 556694 100.0%

Non-CEU

matches: 530234 57.0% 528933 56.9% 528747 56.8% 530171 57.0% 283484 53.6% 934670 100.0%
half matches: 340807 36.6% 341639 36.7% 342833 36.9% 341419 36.7% 209091 39.5% 0 0.0%
conflict: 59106 6.4% 59575 6.4% 58567 6.3% 58557 6.3% 36191 6.8% 0 0.0%
identity: 700638 75.3% 699753 75.2% 700164 75.3% 700881 75.4% 388030 73.4% 934670 100.0%
difference: 229510 24.7% 230395 24.8% 229984 24.7% 229267 24.6% 140737 26.6% 0 0.0%
total: 930147 100.0% 930147 100.0% 930147 100.0% 930147 100.0% 528766 100.0% 934670 100.0%

Mother Father Daughter Aunt Son Non-CEE

Table 6. Similarity comparison of all-against-all family genotypes plus a non-European (non-CEU) male of Indian ethnic background. 
Matches denote identical genotypes for the same SNP (e.g. AA/AA); half-match, only one of the alleles is identical (e.g. AT/AA) and conflict 
means both alleles are different (e.g. CG/AT).
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Father/Daughter vs. Mather/Daughter similarity was found signifi-
cant (p-value = 1.731e-05). Son however, exhibited 83.7% identity to 
Mother and 83.8% to Father and his tested SNPs were not found to 
be significantly different to either of them (p-value = 0.2751).

2. Inheritance state analysis. The availability of nuclear families 
with two or more offspring enables the identification of inherit-
ance states10. These represent whether the offspring inherited the 
same alleles from both parents (“identical” state), the same allele 
from one parent but different alleles from the other (“haploidenti-
cal” state, maternal or paternal according to the parent from which 
the same allele was inherited), or different alleles from both parents 
(“nonidentical” state). Some family genotypes are consistent with all 
inheritance states (e.g. when all family members are homozygous) 

and are thus non-informative. Some family genotypes are consistent 
only with a subset of the inheritance states. For example if both par-
ents are heterozygous A/G, and both offspring are homozygous A/A, 
clearly the offspring inherited the same alleles from both parents, 
which is consistent only with the “identical” state. Some family gen-
otypes are consistent with two inheritance states. By combining the 
evidence from individual SNPs along a chromosome, it is possible 
to identify contiguous blocks of consistent inheritance, bounded by 
recombination events in either parent (Figure 3). The overall frac-
tion of the genome present in each inheritance state (Figure 3 inset) 
deviates little from the expected 25%.

We found that 23andMe genotypes are sufficient for performing 
this analysis and identifying well-defined inheritance state blocks, 

chr1 chr22
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chr20

chr19

chr18

chr17

chr16
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chr13

chr12

chr2

chr3
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chr10

chr11

hp

id ni
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Figure 4. Inheritance State Consistency Analysis (ISCA) plot for the Father-Mother-Son-Daughter quartet, depicting for each autosome 
the number of informative SNPs supporting each of the four possible inheritance states: “identical” (“id”, red), “haploidentical 
maternal” (“hm”, green), “haploidentical paternal” (“hp”, yellow) and “nonidentical” (“ni”, blue). SNPs consistent with two inheritance 
states contribute 0.5 weight to each. SNP counts are binned in non-overlapping 1 Mb windows; within each window, the four inheritance 
states are sorted by decreasing level of support. Regions without support typically overlap centromeric repeats and heterochromatic regions. 
Pie chart inset: fraction of the genome observed in each inheritance state.
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despite covering a very small fraction of the genome (approx. half 
a million shared SNPs, limited by the lower density version used 
for Son). This is due to the largely uniform sampling of SNPs along 
the genome.

3. Admixture analysis. Visualization of admixture for Mother and 
Father was done with ADMIXTURE12 in the context of other simi-
lar Southern European individuals. Figure 2 showed an admixture 
mapping for a selection of individuals from the Eurogenes Genetic 
Ancestry project13. Mother was denoted as ES7 (red arrow) and  
Father as ES8 (blue arrow). Mother and Father seemed to be mark-
edly different yet in and around the Portuguese and Spanish cluster 
of individuals.

Combining SNP chip data and exome SNPs in Son for 
SNPedia annotation
To leverage all genotype data contained in all different sources, 
we combined the SNP chip data v2 (574,406 SNPs) with those 
found in Son’s exome data. 10,203 genotypes were annotated in  
SNPedia when exome SNPs were pooled with the SNP chip ver-
sion 2 (generated on 11th June, 2012). Processing just the exome, 
only 925 genotypes were found annotated in SNPedia. It is not 
surprising that so few additional SNPs were found, as the exome 
comprises a very small percentage of the total genome. Two SNPs 
were discovered to have conflicting genotypes between the two 
platforms: rs12344615 reported as ‘AG’ and ‘GG’ and rs2290272 
reported as ‘CT’ and ‘TT’ respectively. The most likely informa-
tive SNPs from the exome data are summarized as judged by their 
observed frequency in HapMap8.

SNPs from the Son’s exome data

1 Data File

http://dx.doi.org/10.6084/m9.figshare.92819

Exome data summary statistics
For the analysis of similarities between genotypes only 23andMe 
data was analyzed. Although exome sequencing is not widely mar-
keted yet within the DTC providers as an option, this is likely to 
change in the near future. With our current budget constraints, we 
were able to sequence Son’s exome and relevant SNP and varia-
tion data was added for further analysis. A BAM file was created 
out of 4 FASTQ files downloaded from a server from the Beijing 
Genomics Institute. A compressed VCF file was also created. A total 
of 2.54 Gigabases of sequence was aligned at high quality. Summary 
metrics of the exome were calculated using Picard14 and showed a 
minimum of 61.42% of the on-target regions were covered with a 
depth at least 20x. Genotyping with GATK15 identified 37,702 vari-
ations relative to the reference genome (GRCh37). This was noted 
to be lower than expected if additional samples had been genotyped 
concurrently. 97% of the variants identified were within a known 
gene, 58% of them overlapped a protein domain and 5,565 were 
non-synonymous (15%) with serious predicted consequences on 
the protein product (as determined by SIFT16, PolyPhen17 or Con-
del18). Of these 5,565 potentially pathogenic SNPs, 413 had not been 
previously identified (verified against dbSNP release 132). This 
represents a normal figure for the private, novel, non-synonymous 

changes carried by most individuals. No more serious, novel chang-
es were identified (such as stop codons gained or lost).

Visualization with SNPedia tools
We used SNPedia’s Hilbert curve visualization tool to compare 
chromosomes between different individuals. Figure 5 shows an 
example of a Hilbert curve comparison between chromosome 1 
of Mother and all family members and the non-CEU individual. 
Each pixel corresponds to a SNP, colored according to four cat-
egories: match (light blue), half-match (dark blue), mismatch (red) 
and no data (grey). Two patches of light blue are apparent in the  
Mother-Aunt comparison of chromosome 1, and more appear in 
other chromosomes (not shown). These correspond to ‘identical’ 
segments in which the Mother and the Aunt inherited identical hap-
lotypes from both their parents.

ISCA analysis for the quartet (missing grandfather), (missing 
grandmother), mother and aunt

1 Data File

http://dx.doi.org/10.6084/m9.figshare.92820

The next most similar graph can be seen to be the Mother/Daughter 
comparison. Much of the graph comparing Mother and Son is grey, 
representing SNPs present only on 23andMe v3 but absent from v2.

Inference of phenotypes using SNP data
We inferred phenotypes from the observed genotypes, by comparing 
to all available SNPedia SNP annotations. We analyzed family 
genotypes using the Promethease tool19, which allows annotation of 
observed genotypes from DTC analyses with SNPedia-annotated 

Mother

Mother

Mother Father

Daughter Aunt

Son

Non-CEU

Figure 5. A graphical representation of the SNPs from 
chromosome 1 for Mother compared with herself, Father, Son, 
Sister, Aunt and non-CEU. Each pixel represents a SNP. Light 
blue represents match, dark blue half-match and red conflict. SNPs 
in Son that are not present in the genotypes of the other individuals 
are represented in grey.

23andMe SNPs for which SNPedia annotations are available

5 Data Files

http://dx.doi.org/10.6084/m9.figshare.92757
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phenotype associations. These are collected directly from the 
scientific literature. All family members were analyzed using 
Promethease and associated phenotypes were collected for further 
interpretation. SNPedia’s annotation Magnitude, denoting a 
subjective degree of importance for an observed trait as judged 
by the curator, was used to discriminate between traits that should 
be considered further in our analyses. A magnitude of 0 denotes 

a common genotype for which no associated phenotypic data is 
known. Magnitude >3 is defined as ‘probably’ interesting. The 
maximum number is 10. In order to compare family phenotype 
annotations, all SNPs or ‘genosets’ (groups of SNPs) with equal 
or greater than magnitude 3 were extracted and summarized in  
Table 5. Results for Son are not directly comparable as he has 
fewer SNPs analyzed.

Condition Mother Father Daughter Aunt Son Phenotype

Baldness
7x risk of baldness according to an article in Nature. That site may require paid 
access; the abstract is accessible.

2x increased risk of baldness 2x increased risk of baldness

Diabetes
Increased risk for type-2 diabetes

1.3x increased risk for type-2 diabetes

Cardiovascular/
Thrombosis

1.7x increased risk for heart disease. People with this genotype and a long history of 
high blood sugar are at 7x risk of CAD

1.5x increased risk for CAD; 1.5x higher risk for coronary artery disease

7.3x increased risk of hypertension

Watch out for high fat in diet

2.6 times higher odds of developing early stent thrombosis

Cancer
Increased risk of various types of cancer. This variant increases risk of numerous 
types of cancer in many studies. It is in a microRNA

2–3x higher prostate cancer risk if routinely exposed to the pesticide fonofos

Metabolism

You have 2 variations in MTHFR which influence homocystine levels. People with 
gs193 are more strongly affected.

Impaired NSAID drug metabolism, which is a risk factor for gastrointestinal bleeding 
when taking any of these medications: aceclofenac, celecoxib, diclofenac, 
ibuprofen, indomethazine, lornoxicam, meloxicam, naproxen, piroxicam, tenoxicam 
and valdecoxib. You have one of these *CYP2C8*3 (rs11572080 and rs10509681) 
*CYP2C9*2 (rs1799853) *CYP2C9*3 (rs1057910)

CYP2C19 Intermediate Metabolizer. Your body breaks down some medicines at 
a slightly slower than normal rate (which is represented by gs150). Individuals 
with gs152 genotypes have even slower metabolism. *anti-epileptics (such as 
diazepam, phenytoin, and phenobarbitone) *anti-depressants (such as amitriptyline 
and clomipramine) *anti-platelet drug clopidogrel (Plavix) *anti-ulcer proton pump 
inhibitors like omeprazole (trade names Losec and Prilosec), esomeprazole (trade 
name Nexium), and lansoprazole (Prevacid) *hormones (estrogen, progesterone).

Higher odds of alcoholic liver disease, increased liver fat alcohol seems to be 
3x more damaging to your liver than typical. Higher risk for developing fatty liver, 
fibrosis, and fibrosis progression, with a per allele odds ratio of 2.55, 3.13 and 2.64, 
respectively. news

Warfarin 
Metabolism

Approximately 30% of people are intermediate metabolizers of the popular 
anticoagulant Warfarin and would probably need a decreased dosage. This due to 
rs1799853 or rs1057910 respectively leading to the CYP2C9*2 or CYP2C9*3 alleles. 
For prodrugs that require activation by CYP2C9, an alternative treatment or increased 
dose should be considered. See also gs126

Probably impaired Warfarin metabolism.

Approximately 7–10% of people are poor metabolizers of the popular anticoagulant 
Warfarin and would probably need a decreased dosage. This due to mutations in 
rs1799853 or rs1057910 causing an inactive CYP2C9 gene. You are at increased risk 
of drug-induced side effects due to diminished drug elimination. Prodrugs dependent 
on CYP2C9 metabolism may fail to generate the active form of the drug.

Miscellaneous

Substantially increased odds of developing V617F-positive MPN.

You are heterozygous at all 3 of the SNPs which are known to influence the ability to 
taste bitterness. This means you are better than average at detecting bitter tastes 
while young, but that this ability will decrease to less than average during adulthood. 
As a child you will probably hate brussel sprouts, and by early adulthood will discover 
that olives and brussel sprouts now taste good. A 2010 study shows the change bitter 
sensitivity which occurs over the lifespan (from bitter sensitive to less so) is more 
common in people with this genoset. Children with this genotype could perceive a bitter 
taste at lower PROP concentrations than could heterozygous adults. The threshold for 
adolescents was intermediate. The 3 SNPs are rs10246939, rs1726866, rs713598 in 
the gene TAS2R38.

Table 7. A comparison of all SNPedia annotations with Magnitude >= 3 for all family members. Traits have been classified according to 
the general condition they relate. Red boxes are indicative of a particular phenotype being predicted in the individual. Descriptions for every 
matched phenotype, extracted directly from SNPedia, are shown in the right column.
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Based on observed results, the maternal hereditary line seems to carry 
greater risks related to diabetes and cardiovascular/thrombosis related 
conditions. In addition, both males (Son and Father) have greater risk of 
baldness as well as mixed results in terms of their ability to metabolize 
drugs. All the family shares a common trait of substantially increased 
odds of developing V617F-positive Myeloproliferative neoplasms.

Discussion
We have presented here, to our knowledge, the first systematic analy-
sis of DTC genomic data using non-commercial or low cost resources, 
combining data from 5 blood-related family members. The purpose 
of this study does not lie in uncovering the phenotypic predictions or 
genetic findings in these individuals’ genomes. Instead we aimed to 
demonstrate to what extent, in principle, any individual can interpret 
their personal genome using only public resources with an affordable 
budget and no laboratory equipment. We stress that our goal is not to 
diminish the value of DTC industry services, which have catalyzed 
the access to, and interest in, personal genomics data in the wider 
public. However, as the adoption of DTC personal genomics tests 
becomes ever more widespread, we envisage community phenotype 
association and third party public tools to become more significant in 
the overall interpretation of personal genomics results.

Although we found the no-call rate to be comparable between both 
versions of the 23andMe platform, Mother had a greater undercall 
rate than the other individuals. Also, results given by no-call rates 
suggest that there might be some intrinsic differences between the 
two chips. Nevertheless the current number of samples analyzed is 
not large enough to make this conclusion, as only five chips of data 
analyzed do not provide any basis for their overall performance. 
Therefore our error estimation rates presented here should only be 
considered in the context of this analysis and not as representative 
of the DTC company’s overall quality scores.

Based on the no-call rate and the relative ratios of homozygous and 
heterozygous sites reported, we computed an ‘undercall’ rate and 
used it to estimate the number of heterozygous sites mistakenly 
reported as homozygous. The frequency of such events is small 
(~0.2%). Nevertheless, the fact that up to 2,000 heterozygous vari-
ants may be missed is a reminder that interpretation of personal 
disease risks should be done with caution. Findings of potential 
medical relevance should always be verified for correctness. Wher-
ever possible, it is beneficial to perform the analysis in the context 
of families: identification of MIEs and State Consistency Errors10 is 
a powerful tool to assess genotyping quality.

The similar level at which identical genotypes is shared between 
the relatives and the non-CEU individual is consistent with the eth-
nically close background for the family members. This, however, 
does not suggest that Mother or Father are directly related. In fact, 
when performing an admixture analysis with unrelated individuals 
of Southern European descent (Figure 2) it is clear that while the 
parents cluster within reasonably close distance to other Spanish in-
dividuals, they display a typical level of genotype sharing between 
two people from the Iberian Peninsula.

We also indicated that when comparing genotype similarities be-
tween siblings and parents, we found that Daughter was significantly 
closer to Father than Son was. Although the expectation was that 

both Daughter and Son should be equally similar to both parents, 
these unexpected results may be the reflection of bias in the subset 
of markers used in the DTC analysis. These results are not therefore 
indicative of Daughter’s genome being closer to either parent, as 
most of the genome is missing and hence any inference in this re-
spect cannot be made. In the context of SNP analysis, however, it is 
worthwhile reporting such SNP differences as these will influence 
the overall results reported back to the DTC customer. This in turn 
may explain why observed susceptibility risks vary among family 
members when comparing their phenotypic annotations.

The identification of blocks of identical, haploidentical or nonidentical 
genotype between family members (e.g. Son and Daughter in Figure 4), 
highlights the location of meiotic recombinations. These blocks provide 
well defined expectations for whether the genes included in them should 
display similar or distinct genotypes. This information is valuable in the 
context of genetic research10 but also to the general public, to predict 
shared phenotypes among family members. Within ‘identical’ blocks, 
siblings are essentially identical twins: this fact gains special personal 
meaning in the context of DTC genetic analysis.

Publicly curated data, like that available in SNPedia, is exposed 
to error due to human mistakes or malicious intent. Although this 
is a legitimate concern, it has been shown that with similar public 
annotation resources (Wikipedia for example), vandalism rates are 
very low in areas of specialist academic interest20. As these open 
access resources mature and grow, maintaining accuracy will be an 
important consideration for the contributing community.

In this study we have not found any annotated genotype that is 
likely to raise significant health concerns among the family indi-
viduals. It is inevitable, however, that as more individuals investi-
gate their own personal genomes, and more statistical associations 
are uncovered, genotype/phenotype correlations with serious health 
implications will be accessible through open access resources.  
Interpreting such information appropriately is bound to be difficult for 
individuals who are not expert geneticists; this poses special ethical 
challenges from the point of view of how to present the data. DTC 
companies have recognized this ethical issue by implementing addi-
tional access controls to some particularly sensitive annotations, such 
as those genotypes associated with a high risk of developing Alzhei-
mer’s disease or some forms of breast cancer. To our knowledge, pub-
lic annotation resources do not currently make such distinctions. We 
therefore urge caution when investigating personal genomic data for 
health risks, especially when using open access information. We rec-
ommend those who uncover personal genomic information of medical 
concern seek the advice of genetic counselors, who can interpret and 
advise on the context of what it really means to the tested individual.

Methods
SNP chip data
Five 23andMe genome analysis kits were purchased at two time 
points. Son’s kit was bought in May 2009 and was tested with 
23andMe version 2 (~576,000 SNPs). The other 4 family members 
were analyzed in one batch, with kits bought in December 2010 
and results returned in February 2011. The second batch used 
23andMe’s chip version 3 with ~967,000 SNPs per genome ana-
lyzed. After discussion of results, consent was given by all family 
members of the family to publish their genotypes.
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Son exome files

7 Data Files

http://dx.doi.org/10.6084/m9.figshare.92584

Phenotype inference using promethease
Promethease, a SNPedia tool for phenotype inference, was used for 
assignment of SNPedia annotations to observed SNPs. SNPedia 
annotations contain manually curated SNPs that summarize phe-
notype associations observed in a particular population. Phenotype 
associations were inferred using SNPedia’s SNP ids, which corre-
spond to dbSNP23. In our analysis only SNPedia annotations of >= 3 
Magnitude were examined. Magnitude is a subjective score that helps  
prioritize SNPs according to their expected importance and the phe-
notypic annotation itself in the form of free text. Magnitude is  
assigned by SNPedia entry curators.

Calculation of similarity scores
We calculated similarity scores using our own Perl scripts and 
MySQL. Similarity between any given two individuals was cal-
culated as the total number of matching SNPs plus half-matches 
divided by 2. Negative results were counted as the total number of 
conflicts plus the number of half-matches divided by 2. As the plat-
forms used are different for Son as compared to the rest, Son can 
only be compared relative to himself and not against other individu-
als. Similarities between individuals were statistically tested using 
the R package for Pearson’s Chi-squared with Yates’ correction.

Consent
Written consent for publication of their genotype and phenotype 
was obtained from all family individuals.
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Calculation of error rates
Assume N SNPs were tested, and of these, fN are truly hete-
rozygous. We wished to compute f (heterozygous fraction) from  
the observed numbers of homozygous, heterozygous and failed 
SNPs.

For each SNP with a dbSNP ‘rs’ identifier, we assumed that 1) the 
SNP is biallelic, 2) it is present in diploid state. We further assumed 
a probability x of not observing a given allele (the “undercall rate”), 
and assumed this probability was equal for both alleles, at all sites. 
Finally, we assumed that the probability of observing a wrong allele 
was zero (“overcall rate”).

If the true state of the SNP was heterozygous, the following could 
have happened. 1) If neither allele was observed (double undercall), 
the SNP was called “NULL” (with conditional probability = x2). 
2) If one allele was not observed (single undercall), the SNP was 
called “HOM” (conditional probability = 2x). 3) If both alleles 
were observed, the SNP was called “HET” (conditional probability 
= 1-2x-x2).

If the true state of the SNP was homozygous, there was only one 
type of allele to be observed. Thus, the following could have 
happened. 1) If the allele was not observed, the SNP was called 
“NULL” (conditional probability = x). Otherwise, 2) the SNP was 
called “HOM” (conditional probability = 1-x).

The expected frequencies for NULL, HET and HOM were:

    •  NULL’ = fx2+(1-f)x

    •  HET’ = f(1-2x-x2)

    •  OM’ = (1-f)(1-x)+2fx = 1-x+f(3x-1)

Since HOM + HET + NULL = 1, the undercall rate x was given by 
solving:

x3 + (1+HOM)x2 + (3HET+2HOM-3)x + NULL = 0

The heterozygous fraction f was then given by: f = HET/(1-2x-x2), 
and the number of “missing” heterozygous sites could be computed 
by: missing = (f-HET)N. Finally, the number of heterozygous sites 
reported as homozygous was given by:

het2hom = missing - N*NULL*HET/(HET+HOM)

Extraction of SNPs from exome data
Raw reads were aligned to the reference GRCh37 using bwa 
0.6121. Local realignment was performed around indels with the 
Genome Analysis Toolkit (GATK v1.4)15 framework for variation 
discovery and genotyping using next-generation DNA sequencing 
data. Optical and PCR duplicates were marked in BAM files using 
Picard 1.6214. Original HiSeq base quality scores were recalibrated 
using GATK TableRecalibration and variants called with GATK 
UnifiedGenotyper. Indels and SNPs were hard-filtered according to 
Broad Institute best-practice guidelines22 to eliminate false posi-
tive calls and produce the final VCF.
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Major concerns
Although the analyses are carried out very well, the overall purpose and conclusion of the paper is
rather mixed and somewhat unclear. The authors state that they “explore the extent to which
phenotype inference and genotype analysis can be carried out solely using existing public or very
low cost resources.” or as in the abstract “providing an evaluation of the current potential of public
available analysis tools for personal genomics”.
The discussion section focuses very much on the results of the different analyses, whereas that is
(according to the purpose of the paper) not that relevant. Rather in that context it would be more
interesting to speculate on other aspects (for example, how easy it is for a typical DTC customer to
apply the publicly available tools, or how easy it is to (correctly) interpret the outcome of such tools)
and to provide a real conclusion on “the extent to which phenotype inference and genotype
analysis can be carried out solely using existing public or very low cost resources.”
It is not clear whether the tools that were investigated compromise all public domain tools for these
kinds of analyses. If the authors do not investigate all available tools, the authors should motivate
their choice for the described tools

Given the purpose of the paper, a table with the available tools and their “potential” would be very useful.

Minor concerns
The fact that “Son” was done with a V2 assay complicates all comparisons in the paper. It seems to
paper would be a lot more straightforward if the authors used a V3 assay for the son as well.
Page 7, “Exome data summary statistics”, authors mention that the numbers they find are what is
to be expected. Please add a reference to substantiate this.
Page 10, the cond. prob. of a heterozygous call for a heterozygous SNP reads “1-2x-x2” and
should probably be “1-2x-x^2”. Similar with the expected frequency for NULL’.
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Is the article well constructed and clear? Yes, the article is well constructed, but could do with
a conclusion and discussion that is more in line with the purpose of the paper. (see
comments above)
Is there adequate analysis, including information on how the data were analyzed (e.g. programs,
code, stats etc.)? Yes
Are the conclusions sensible and balanced? The conclusions does not answer the questions
that were asked at the outset of the paper.
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23andMe and several other companies have been offering Direct-to-consumer (DTC) genomic testing for
several years now. In general, such tests seem to have a bad reputation amongst human geneticists
because of the perception that individuals may not be able to interpret the findings in a useful way.

Additionally, although genetic testing has an important and widely accepted role in the diagnostics of
Mendelian disease and several other areas, many feel that the clinical utility of genomic testing for
common disorders such as heart disease or hypertension has not been shown to date. For instance, the
Evaluation of Genomic Applications in Practice and Prevention Working Group (EWG) found insufficient
evidence to recommend testing for the 9p21 genetic variant or 57 other variants in 28 genes to assess
risk for cardiovascular disease in the general population (Genetics in Medicine (2010) 12, 839–843).

Be that as it may, has become well known and the range of variants now tested by companies such as
23andMe is increasing; with the advent of relatively cheap exome and even genome sequencing, it
seems quite likely that DTC exome and genome sequencing will be offered in the not too distant future.
Therefore, it is important to understand several aspects about DTC testing, including the quality of the raw
product (i.e., are the genotype calls correct), the depth, correctness, and utility of annotations provided by
DTC companies or widely available to the public, and perhaps most importantly, to know how typical
consumers of DTC products use the findings for their own health care or, say, for planning life-style
modifications.
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This paper offers a detailed look at several of these aspects, and I think does an excellent job at providing
the reader with a sense of what kind kind of data consumers of DTC products can expect. I think the
paper would profit from a number of minor revisions. The paper essentially deals with two different topics.
The first involves a number of computational quality control procedures that require a good deal of
bioinformatics expertise (I doubt that much of this would be in the reach of most of the customers of DTC
sequencing), ranging from a calculation of error rates, an analysis of Mendelian inheritance errors,
genotype distributions, and admixture analysis. It was not entirely clear to me how the p-values reported
for the SNP similarity analysis were calculated, and a more precise definition of how pseudo-MIEs were
counted should be provided. The authors should provide full methodological details of how this analysis
was performed. It is also something of a distraction that one of the samples was analyzed using the
23andMe v2 kit, while the rest of the family was analyzed using the v3 kit. I imagine simply that the Son
was the person who “went first”, but the apparently different error characteristics of the two versions limit
somewhat the findings of the paper.

The second major aspect of this paper involves analysis that could be done by non-specialists, using
tools such as SNPedia. It was not entirely clear to me why the authors performed the analysis in Figure 5.
The heading called “Inference of Phenotypes Using SNP data” is misleading because actually what the
findings reveal is a genotype, say, a risk for going bald. However, if the son is not currently bald, then he
does not now have the phenotype “baldness”. Instead, the only thing that can be inferred from the
genotype is an increased risk of baldness. This is a very important distinction, and it is very important
especially for the general public to realize that having a genotype that is associated with an increased risk
of some phenotype does not necessarily mean that one will actually develop that phenotype.

It would be a nice addition to this paper to hear more about how the family reacted to these findings. Have
the increased risks for some of the diseases mentioned led to life style changes? Did the family members
report the findings to their physicians? Was a family member worried or uncomfortable about hearing the
findings?
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