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Abstra
t. In this paper we 
onsider an inverse problem for determining time - dependent heat


ondu
tion 
oeffi
ient whi
h vanishes at initial moment as a power tβ. The 
ase of strong degeneration

(β ≥ 1) is studied. To prove the existen
e of solution we employ the S
hauder fixed point theorem. The

uniqueness of the solution is established too.

1. Introdu
tion

Degenerate paraboli
 problems arise in a lot of fields of natural and so
ial s
ien
es and te
hnology

(see, e.g., [1-5℄). These problems may be divided on different 
lasses a

ordingly to the way of degeneration

with respe
t either to spatial variables or to time variable, weak or strong degeneration. Dire
t problems

for degenerate paraboli
 equations are suffi
iently well studied. As examples, we 
an mention the works

[6-12℄. On the other hand, inverse problems for non-degenerate paraboli
 equations are no less investigated

[13-17℄. However, inverse problems for degenerate partial differential equations are almost not 
onsidered.

There are some works [18-20℄ dedi
ated to inverse problems for partial differential equations degenerating

with respe
t to a spatial variable.

In this paper we 
onsider an inverse problem for the heat equation with unknown heat 
ondu
tion


oeffi
ient depending on time variable t. It is supposed that the unknown 
oeffi
ient vanishes at the initial
moment as a power tβ. The 
ase of weak degeneration (β < 1) was studied in [21℄. Here we investigate

the 
ase of strong degeneration (β ≥ 1).
In a domain QT ≡ {(x, t) : 0 < x < h, 0 < t < T } we 
onsider the following heat equation

ut = a(t)uxx + f(x, t) (1)

with unknown 
oeffi
ient a(t) > 0, t ∈ (0, T ], initial 
ondition

u(x, 0) = ϕ(x), x ∈ [0, h], (2)

boundary 
onditions

u(0, t) = µ1(t), u(h, t) = µ2(t), t ∈ [0, T ], (3)

and overdetermination 
ondition

a(t)ux(0, t) = µ3(t), t ∈ [0, T ]. (4)

In this problem both u(x, t) and the 
oeffi
ient a(t) are unknown, are to be determined from data

f(x, t), ϕ(x), µ1(t), µ2(t), µ3(t). As a solution of the problem (1)-(4) we mean a 
lassi
al solution whi
h is

defined as follows.

De�nition. The pair of fun
tions a(t) and u(x, t) is a solution of (1)-(4) if the following 
onditions

are ful�lled:

(a) (a, u) ∈ C[0, T ]× C2,1(QT ) ∩C(QT ), ux(0, t) ∈ C(0, T ];

(b) a(t) is positive for t ∈ (0, T ];

(
) there exists the limit lim
t→+0

a(t)

tβ
> 0 , β ≥ 1 - a given number;

(d) (1)-(4) are satis�ed.
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Note that the analogous problem for a non-degenerate heat equation was for the first time studied

in [22℄.

We establish the 
onditions of existen
e and uniqueness of solution for the problem (1)-(4) whi
h

are formulated in the following theorem.

Theorem. Suppose that the following 
onditions hold:

1) ϕ ∈ C2[0, h];µi ∈ C1[0, T ], i = 1, 2;µ3 ∈ C[0, T ]; f ∈ C2,0(QT );

2) ϕ′(x) ≥ 0, x ∈ [0, h]; f(0, t) − µ′
1(t) > 0, µ′

2(t) − f(h, t) ≥ 0, t ∈ [0, T ];µ3(t) > 0, t ∈ (0, T ], the limit

lim
t→+0

µ3(t)

t
β+1

2

> 0 exists; fx(x, t) ≥ 0, (x, t) ∈ QT ;

3) ϕ(0) = µ1(0), ϕ(h) = µ2(0).

Then there exists an unique solution of problem (1)-(4).

To prove the existen
e of solution, the S
hauder fixed point theorem is applied. The proof of the

uniqueness of solution is divided in two parts: first we establish it for a small time interval and after this

we prove a global (in time) uniqueness of solution of the problem (1)-(4).

The part of the paper that follows is 
omposed of four se
tions. In Se
tion 2 the inverse problem

(1)-(4) is redu
ed to an integral equation with respe
t to unknown 
oeffi
ient a(t). In Se
tion 3 we study

the behavior of ux(0, t) as t → 0 and we show that under the assumptions of the theorem the solution

of the integral equation is bounded from below and above by a power tβ with 
oeffi
ients whi
h depend

on given data. In Se
tion 4 we apply the S
hauder fixed point theorem to the integral equation and we


omplete the proof of the existen
e of solution of the problem (1)-(4). In the first part of Se
tion 5 we

show that the integral equation with respe
t to unknown 
oeffi
ient a(t) admits at most one solution

on the interval [0, t̃] where t̃ > 0 is, in general, a small number defined by given data. Then using this

statement, we prove the uniqueness of solution of the problem (1)-(4) in whole.

2. Redu
tion of the problem (1)-(4) to an integral equation

Apply the overdetermination 
ondition (4) to obtain an equation for the fun
tion a(t). Denote by
Gk(x, t, ξ, τ), k = 1, 2, the Green fun
tions of the first (k = 1) and the se
ond (k = 2) boundary value

problems for equation (1)

Gk(x, t, ξ, τ) =
1

2
√

π(θ(t) − θ(τ))

∞
∑

n=−∞

(

exp

(

− (x− ξ + 2nh)2

4(θ(t)− θ(τ))

)

+ (−1)k exp

(

− (x+ ξ + 2nh)2

4(θ(t)− θ(τ))

))

, (5)

where θ(t) =

t
∫

0

a(τ)dτ. Temporarily assuming that the fun
tion a(t) is known, we 
an write the solution

of dire
t problem (1)-(3) with the aid of the Green fun
tion

u(x, t) =

h
∫

0

G1(x, t, ξ, 0)ϕ(ξ)dξ +

t
∫

0

G1ξ(x, t, 0, τ)a(τ)µ1(τ)dτ

−
t
∫

0

G1ξ(x, t, h, τ)a(τ)µ2(τ)dτ +

t
∫

0

h
∫

0

G1(x, t, ξ, τ)f(ξ, τ)dξdτ. (6)

Evaluate the first derivative ux(x, t), taking into a

ount the relationships

G1x(x, t, ξ, τ) = −G2ξ(x, t, ξ, τ) and G2ξξ = −G2τ (x, t, ξ, τ)

a(τ)
, (7)
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and integrating by parts with using 
ompatibility 
ondition. We obtain

ux(x, t) =

h
∫

0

G2(x, t, ξ, 0)ϕ
′(ξ)dξ +

t
∫

0

G2(x, t, 0, τ)(f(0, τ) − µ′
1(τ))dτ+

+

t
∫

0

G2(x, t, h, τ)(µ
′
2(τ)− f(h, τ))dτ +

t
∫

0

h
∫

0

G2(x, t, ξ, τ)fξ(ξ, τ)dξdτ. (8)

We substitute this expression into overdetermination 
ondition (4) and we 
ome to the equation for

a(t) :

a(t) = µ3(t)

(

h
∫

0

G2(0, t, ξ, 0)ϕ
′(ξ)dξ +

t
∫

0

G2(0, t, 0, τ)(f(0, τ)− µ′
1(τ))dτ

+

t
∫

0

G2(0, t, h, τ)(µ
′
2(τ) − f(h, τ))dτ +

t
∫

0

h
∫

0

G2(0, t, ξ, τ)fξ(ξ, τ)dξdτ

)−1

, t ∈ [0, T ]. (9)

Taking into a

ount the 
onditions of the theorem it is easy to verify that the fun
tion a(t) is positive
on (0, T ] and belongs to C(0, T ].

3. A priori estimates

In order to prove the existen
e of the solution of equation (9) we apply the S
hauder fixed point

theorem. First of all, we estimate the solution of equation (9). As a 
onsequen
e of the se
ond 
ondition

of the theorem and the expli
it representation of the fun
tion G2(x, t, ξ, τ) we obtain the inequality

ux(0, t) ≥
t
∫

0

f(0, τ)− µ′
1(τ)

√

π(θ(t) − θ(τ))
dτ. (10)

This allows us to write the following inequality for the fun
tion a(t)

a(t) ≤ µ3(t)
t
∫

0

f(0, τ)− µ′
1(τ)

√

π(θ(t) − θ(τ))
dτ

. (11)

Let

a0(t) ≡
a(t)

tβ
, amax(t) ≡ max

0≤τ≤t
a0(τ). (12)

Then from (11) we find

a0(t) ≤
√
πµ3(t)

√
β + 1tβ

t
∫

0

f(0, τ)− µ′
1(τ)√

tβ+1 − τβ+1
dτ

√

amax(t).

Denote

H(t) ≡
√
πµ3(t)

√
β + 1tβ

t
∫

0

f(0, τ)− µ′
1(τ)√

tβ+1 − τβ+1
dτ

. (13)
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It follows from the 
onditions of the theorem that the fun
tion H(t) is positive on (0, T ] and belongs to

C(0, T ]. Establish the existen
e of the limit lim
t→+0

H(t). To this end, we apply the theorem on average

and 
hange of variables z =
τ

t
:

lim
t→+0

H(t) = lim
t→+0

√
πµ3(t)

√
β + 1tβ(f(0, t)− µ′

1(t))

t
∫

0

dτ√
tβ+1 − τβ+1

=

=

√

π

β + 1
lim

t→+0

µ3(t)

t(β+1)/2(f(0, t)− µ′
1(t))

1
∫

0

dz√
1− zβ+1

, t ∈ [0, t].

Denote

1
∫

0

dz√
1− zβ+1

= I1, (14)

then we obtain lim
t→+0

H(t) =

√
πM√

β + 1(f(0, 0)− µ′
1(0))I1

> 0, where M = lim
t→+0

µ3(t)

t
β+1

2

. Applying (13) we


ome to the inequality a0(t) ≤ H(t)
√

amax(t), whi
h leads to an estimation of amax(t) from above

amax(t) ≤ H2
max(t) < ∞, t ∈ [0, T ], (15)

where Hmax(t) ≡ max
0≤τ≤t

H(τ). Taking into a

ount the existen
e of the limit lim
t→+0

µ3(t)

t
β+1

2

and notation

(14), we estimate H(t)

H(t) ≤
√
πM1√

β + 1min
[0,T ]

(f(0, t)− µ′
1(t))I1

≡ H1, where M1 = max
[0,T ]

µ3(t)

t
β+1

2

. (16)

Then the estimate of a(t) from above follows:

a(t) ≤ H2
max(t)t

β ≤ H2
1 t

β , t ∈ [0, T ]. (17)

Estimate a(t) from below. To this end, provide some estimates for expression in the denominator of

(8). From the equality

h
∫

0

G2(x, t, ξ, τ)dξ = 1 the first and the fourth summands are estimated

h
∫

0

G2(0, t, ξ, τ)ϕ
′(ξ)dξ ≤ C1,

t
∫

0

h
∫

0

G2(0, t, ξ, τ)fξ(ξ, τ)dξdτ ≤ C2.

It 
an be easily verified that

t
∫

0

G2(0, t, h, τ)(µ
′
2(τ) − f(h, τ))dτ ≤ C3,

where C1, C2, C3 > 0 � the 
onstants determined by the problem data. Transform the se
ond summand,

separating out of the series the term that 
orresponds to n = 0 :

t
∫

0

G2(0, t, 0, τ)(f(0, τ)− µ′
1(τ))dτ =

1√
π

t
∫

0

f(0, τ)− µ′
1(τ)

√

θ(t)− θ(τ)
dτ

+
2√
π

t
∫

0

f(0, τ)− µ′
1(τ)

√

θ(t)− θ(τ)

∞
∑

n=1

exp

(

− n2h2

θ(t)− θ(τ)

)

dτ.
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Sin
e the integral fun
tion of the last summand has no singularities and is bounded, we estimate it by a


onstant. Denote amin(t) ≡ min
0≤τ≤t

a0(τ). By formula (8) and previous estimates we obtain

a0(t) ≥
µ3(t)

tβ



C4 +

√
β + 1

√

πamin(t)

t
∫

0

f(0, τ)− µ′
1(τ)√

tβ+1 − τβ+1
dτ





≥
√

amin(t)

C5t
β

µ3(t)
+

tβ
√
β + 1√

πµ3(t)

t
∫

0

f(0, τ)− µ′
1(τ)√

tβ+1 − τβ+1
dτ

.

Taking into a

ount (13), redu
e the inequality to the form

a0(t) ≥
√

amin(t)

C5t
β

µ3(t)
+

1

H(t)

=

√

amin(t)H(t)

C5t
βH(t)

µ3(t)
+ 1

.

From (16) it follows

C5t
βH(t)

µ3(t)
≤ C6t

β−1

2 .

Hen
e, we obtain

a0(t) ≥
√

amin(t)H(t)

C6t
β−1

2 + 1
.

From here we establish the estimate

amin(t) ≥
H2

min(t)

(C6t
β−1

2 + 1)2
, (18)

where Hmin(t) ≡ min
0≤τ≤t

H(τ). Finally, we have for a(t):

0 < A0 ≤ H2
min(t)

(C6t
β−1

2 + 1)2
≤ a(t)

tβ
≤ H2

max(t) ≤ A1 < ∞, t ∈ [0, T ]. (19)

Therefore, we have established a priori estimates for the solution (9). Having a priori estimates of solution

of equation (9), we 
an apply to it the S
hauder fixed point theorem.

4. Existen
e of solution

We 
onsider the equation (9) as an operator equation a(t) = Pa(t) with respe
t to a(t) and the

operator P is defined by equality Pa(t) =
µ3(t)

ux(0, t)
. Denote N = {a ∈ C[0, T ] : A0 ≤ a(t)

tβ
≤ A1}. As a


onsequen
e of a priori estimates (19) the operator P maps N into N . We are going to show that the set

PN is 
ompa
t or equivalently, by Arzela-As
olli theorem, PN is uniformly bounded and equi
ontinuous.

We have to establish that ∀ε > 0 ∃ δ > 0 su
h that

|Pa(t2)− Pa(t1)| < ε for arbitrary |t2 − t1| < δ, a(t) ∈ N . (20)

As Pa(t) = a(t) and

a(t)

tβ
≤ A1 for all a(t) ∈ N we 
on
lude that for arbitrary ε > 0 there exists

suffi
iently small number t∗ > 0, su
h that the inequality

|Pa(t)| < ε, 0 ≤ t ≤ t∗,

holds.
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Establish the inequality (20) in the 
ase when ti > t∗, i = 1, 2. Assume t2 > t1. Consider one of the
summand whi
h is 
ontained in (20):

R1 =

∣

∣

∣

∣

∣

∣

t2
∫

0

G2(0, t2, 0, τ)(f(0, τ)− µ′
1(τ))dτ −

t1
∫

0

G2(0, t1, 0, τ)(f(0, τ)− µ′
1(τ))dτ

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

t1
∫

0

(G2(0, t2, 0, τ)−G2(0, t1, 0, τ))(f(0, τ) − µ′
1(τ))dτ

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

t2
∫

t1

G2(0, t2, 0, τ)(f(0, τ) − µ′
1(τ))dτ

∣

∣

∣

∣

∣

∣

≡ R1,1 +R1,2.

The estimate of G2(0, t, 0, τ) [17℄ allows us to write

R1,2 ≤
max
[0,T ]

(f(0, t)− µ′
1(t))

√
π

t2
∫

t1

(

1
√

θ(t2)− θ(τ)
+ C7

)

dτ

≤ C8

t2
∫

t1

dτ
√

θ(t2)− θ(τ)
+ C9(t2 − t1).

Apply the definition of the set N for investigation of the first summand in R1,2 :

t2
∫

t1

dτ
√

θ(t2)− θ(τ)
≤
√

β + 1

A0

t2
∫

t1

dτ
√

tβ+1
2 − τβ+1

≤
√

β + 1

A0t
β
2

t2
∫

t1

dτ√
t2 − τ

≤ C10

√
t2 − t1.

Finally, we have

R1,2 ≤ C11

√
t2 − t1 + C9(t2 − t1).

From R1,1, using the Green fun
tion representation and separating out of the series the term that 
orre-

sponds to n = 0, we have

R1,1 ≤ 1√
π
max
[0,T ]

(f(0, t)− µ′
1(t))





t1
∫

0

∣

∣

∣

∣

∣

1
√

θ(t2)− θ(τ)
− 1
√

θ(t1)− θ(τ)

∣

∣

∣

∣

∣

dτ

+ 2

t1
∫

0

∣

∣

∣

∣

∣

1
√

θ(t2)− θ(τ)

∞
∑

n=1

exp

(

− n2h2

θ(t2)− θ(τ)

)

− 1
√

θ(t1)− θ(τ)

∞
∑

n=1

exp

(

− n2h2

θ(t1)− θ(τ)

)

∣

∣

∣

∣

∣

dτ

)

≡ R1,1,1 +R1,1,2.

Note that

1
√

θ(t2)− θ(τ)
− 1
√

θ(t1)− θ(τ)
=

=
θ(t1)− θ(t2)

√

(θ(t2)− θ(τ))(θ(t1)− θ(τ))(
√

θ(t1)− θ(τ) +
√

θ(t2)− θ(τ))
.

Then we employ the definition of the set N :

R1,1,1 ≤ 1√
π
max
[0,T ]

(f(0, t)− µ′
1(t))

A1

2A
3/2
0

t1
∫

0





1
√

tβ+1
1 − τβ+1

− 1
√

tβ+1
2 − τβ+1



 dτ.

6



Transform this inequality by the 
hange of variable z =
τ

t1
:

R1,1,1 ≤ C12

t
β−1

2

1





1
∫

0

dz√
1− zβ+1

−
1
∫

0

dz
√

(t2/t1)
β+1 − zβ+1



 .

Denote

I(ω) ≡
1
∫

0

dz√
ω − zβ+1

, where ω ∈ [1,∞). (21)

Obviously

1
∫

0

dz√
ω − zβ+1

≤
1
∫

0

dz√
1− z

. It follows that I(ω) is 
ontinuous on [1,∞). This means that for

arbitrary ε > 0 there exists δ1 > 0, su
h that R1,1,1 < ε for |t2 − t1| < δ1.
We represent R1,1,2 in the form:

R1,1,2 =
2√
π
max
[0,T ]

(f(0, t)− µ′
1(t))

t1
∫

0

∣

∣

∣

∣

∣

∣

∣

θ(t2)−θ(τ)
∫

θ(t1)−θ(τ)

d

dz

(

1√
z

∞
∑

n=1

exp

(

−n2h2

z

)

)

dz

∣

∣

∣

∣

∣

∣

∣

dτ.

Estimating R1,1,2 by means of inequality xne−x2 ≤ Mn < ∞, x ∈ [0,∞), n ∈ N, we 
ome to the estimate

R1,1,2 ≤ C13|θ(t2)− θ(t1)| ≤ C14|tβ+1
2 − tβ+1

1 | < ε for |t2 − t1| < δ2,

where δ2 > 0 depends on ε and known data. Others summands o

uring in (20) 
an be estimated

analogously. It follows that the 
onditions of the S
hauder theorem for equation (9) hold, and, therefore

there exists the solution a = a(t) of the equation (9), whi
h belongs to C[0, T ].
Substituting a(t) in (6), we obtain a solution u = u(x, t) of dire
t problem (1)-(3) whi
h possesses

ne
essary smoothness.

5. Uniqueness of solution

To prove the uniqueness of the solution of the problem (1)-(4), suppose that (ai(t),
ui(x, t)), i = 1, 2 are two solutions of the problem (1)-(4). Denote a(t) ≡ a1(t)− a2(t),
u(x, t) ≡ u1(x, t) − u2(x, t). From the overdetermination 
ondition (4) we obtain

a(t) =
µ3(t)(u2x(0, t)− u1x(0, t))

u2x(0, t)u1x(0, t)
. (22)

or, after using the notation (12),

a0(t) =
µ3(t)

tβu1x(0, t)

µ3(t)

tβu2x(0, t)

tβ(u2x(0, t)− u1x(0, t))

µ3(t)
.

Next, we apply the equality

µ3(t)

tβuix(0, t)
=

ai(t)

tβ
, i = 1, 2, and the estimate (15):

|a0(t)| ≤ H4
max(t)

tβ |u2x(0, t)− u1x(0, t)|
µ3(t)

. (23)

Estimate one of the summands whi
h is 
ontained in the expression |u2x(0, t)− u1x(0, t)|. Denote

I1 ≡ 1√
π

t
∫

0

(f(0, τ)− µ′
1(τ))

(

1
√

θ2(t)− θ2(τ)
− 1
√

θ1(t)− θ1(τ)

)

dτ

+
2√
π

t
∫

0

(f(0, τ)− µ′
1(τ))

∞
∑

n=1

(

1
√

θ2(t)− θ2(τ)
exp

(

− n2h2

θ2(t)− θ2(τ)

)

− 1
√

θ1(t)− θ1(τ)
exp

(

− n2h2

θ1(t)− θ1(τ)

)

)

dτ ≡ I1,1 + I1,2.

7



Represent the se
ond summand in the form:

|I1,2| ≤
2√
π
max
[0,T ]

(f(0, t)− µ′
1(t))

∣

∣

∣

∣

∣

∣

∣

t
∫

0

dτ

θ2(t)−θ2(τ)
∫

θ1(t)−θ1(τ)

∣

∣

∣

∣

∣

d

dz

(

1√
z

∞
∑

n=1

exp

(

−n2h2

z

)

)∣

∣

∣

∣

∣

dz

∣

∣

∣

∣

∣

∣

∣

.

From boundedness of the integrand we 
on
lude

|I1,2| ≤ C15

t
∫

0

|θ2(t)− θ2(τ)− θ1(t) + θ1(τ)|dτ = C15

t
∫

0

dτ

t
∫

τ

|a2(σ)− a1(σ)|dσ =

= C15

t
∫

0

dτ

t
∫

τ

|a0(σ)|σβdσ ≤ C15t
β+2ãmax(t),

where ãmax(t) ≡ max
0≤τ≤t

|a0(τ)|.
Transform I1,1 to the form

I1,1 =
1√
π

t
∫

0

(f(0, τ)− µ′
1(τ))(θ1(t)− θ1(τ) − θ2(t) + θ2(τ))

√

(θ2(t)− θ2(τ))(θ1(t)− θ1(τ))(
√

θ1(t)− θ1(τ) +
√

θ2(t)− θ2(τ))
dτ.

Taking into a

ount (19), we obtain

|θ1(t)− θ1(τ) − θ2(t) + θ2(τ)| ≤
t
∫

τ

|a0(σ)|σβdσ ≤ tβ+1 − τβ+1

β + 1
ãmax(t),

θi(t)− θi(τ) =

t
∫

τ

ai0(σ)σ
βdσ ≥ H2

min(t)

(C6t
β−1

2 + 1)2

tβ+1 − τβ+1

β + 1
, i = 1, 2,

where ai0 =
ai(t)

tβ
, i = 1, 2.

Finally, we have the estimate of I1,1

|I1,1| ≤
√
β + 1(C6t

β−1

2 + 1)3

2
√
πH3

min(t)
ãmax(t)

t
∫

0

f(0, τ)− µ′
1(τ)√

tβ+1 − τβ+1
dτ,

or if we use (13)

|I1,1| ≤
(C6t

β−1

2 + 1)3

2H4
min(t)

µ3(t)

tβ
ãmax(t).

Other summands in the expression |u2x(0, t)− u1x(0, t)| are estimated analogously to I1,2. We 
ontinue

to estimate (23) as follows:

ãmax(t) ≤
(C6t

β−1

2 + 1)3H4
max(t)

2H4
min(t)

ãmax(t) + S(t)ãmax(t), (24)

where S(t) is the sum of terms depending on t whi
h vanishes for t = 0. The existen
e of the limit

lim
t→+0

H(t) > 0 implies the existen
e of the limit lim
t→+0

(C6t
β−1

2 + 1)3H4
max(t)

2H4
min(t)

=
1

2
. Therefore, there exists

t1 : 0 < t1 ≤ T su
h that the following inequality holds:

(C6t
β−1

2 + 1)3H4
max(t)

2H4
min(t)

≤ 3

4
, t ∈ [0, t1]. (25)
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Hen
e, we 
an rewrite (24) in the form:

ãmax(t)

(

1

4
− S(t)

)

≤ 0, t ∈ [0, t1].

There exists t2 : 0 < t2 ≤ T, su
h that

1
4 − S(t) > 0 for any t ∈ [0, t2]. We 
ome to the 
ontradi
tion.

This implies that a1(t) ≡ a2(t) when t ∈ [0, t̃] with t̃ = min(t1, t2).
Now we establish the uniqueness of the solution problem (1)-(4) for any t ∈ [0, T ]. The fun
tions

(a(t), u(x, t)) satisfy the 
onditions

ut = a1(t)uxx + a(t)u2xx, (x, t) ∈ QT , (26)

u(x, 0) = 0, x ∈ [0, h], (27)

u(0, t) = u(h, t) = 0, t ∈ [0, T ], (28)

a1(t)ux(0, t) = −a(t)u2x(0, t), t ∈ [0, T ]. (29)

Denote by G
(i)
1 (x, t, ξ, τ), i = 1, 2, the Green fun
tions of the equations ut = ai(t)uxx with the boundary


ondition (28). The solution of the (26)-(28) 
an be written with the aid of G
(1)
1 (x, t, ξ, τ)

u(x, t) =

t
∫

0

h
∫

0

G
(1)
1 (x, t, ξ, τ)a(τ)u2ξξ(ξ, τ)dξdτ. (30)

Substituting (30) into (29), we obtain the integral equation for a(t)

a(t)u2x(0, t) = −a1(t)

t
∫

0

h
∫

0

G
(1)
1x (0, t, ξ, τ)a(τ)u2ξξ(ξ, τ)dξdτ, t ∈ [0, T ]. (31)

Using the notation (12), it is easy to see that

a0(t) = − a1(t)

tβu2x(0, t)

t
∫

0

h
∫

0

G
(1)
1x (0, t, ξ, τ)a0(τ)τ

βu2ξξ(ξ, τ)dξdτ, (32)

or

a0(t) =

t
∫

0

K(t, τ)a0(τ)dτ, t ∈ [0, T ], (33)

where

K(t, τ) ≡ − a1(t)τ
β

tβu2x(0, t)

h
∫

0

G
(1)
1x (0, t, ξ, τ)u2ξξ(ξ, τ)dξ. (34)

Establish that the kernel K(t, τ) is integrable, using the fa
t that u2(x, t) is the solution of the problem

(1)-(4). From (6) we find the derivative

u2xx(x, t) =

h
∫

0

G
(2)
1 (x, t, ξ, 0)ϕ′′(ξ)dξ +

t
∫

0

G
(2)
1ξ (x, t, 0, τ)(µ

′
1(τ)− f(0, τ))dτ

+

t
∫

0

G
(2)
1ξ (x, t, h, τ)(f(h, τ) − µ′

2(τ))dτ +

t
∫

0

h
∫

0

G
(2)
1 (x, t, ξ, τ)fξξ(ξ, τ)dξdτ. (35)
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Substituting (35) into (34), we obtain:

K(t, τ) = − a1(t)τ
β

tβu2x(0, t)

h
∫

0

G
(1)
1x (0, t, ξ, τ)





h
∫

0

G
(2)
1 (ξ, τ, η, 0)ϕ′′(η)dη

+

τ
∫

0

G
(2)
1η (ξ, τ, 0, σ)(µ

′
1(σ) − f(0, σ))dσ +

τ
∫

0

G
(2)
1η (ξ, τ, h, σ)(f(h, σ)− µ′

2(σ))dσ

+

τ
∫

0

h
∫

0

G
(2)
1 (ξ, τ, η, σ)fηη(η, σ)dηdσ



 dξ ≡ − a1(t)τ
β

tβu2x(0, t)

4
∑

i=1

Ki(t, τ).

Consider the summand K2(t, τ), using the expli
it representation of the Green fun
tions

K2(t, τ) =
1

4π

h
∫

0

τ
∫

0

µ′
1(σ)− f(0, σ)

((θ1(t)− θ1(τ))(θ2(τ) − θ2(σ)))3/2

×
∞
∑

n,m=−∞

(ξ + 2nh)(ξ + 2mh) exp

(

− (ξ + 2nh)2

4(θ1(t)− θ1(τ))
− (ξ + 2mh)2

4(θ2(τ) − θ2(σ))

)

dσdξ.

Separating out of the series the term whi
h 
orresponds to n = 0 and m = 0, we shall estimate the

expression

K2,0 =
1

4π((θ1(t)− θ1(τ))(θ2(τ) − θ2(σ)))3/2
×

×
h
∫

0

ξ2 exp

(

− ξ2

4(θ1(t)− θ1(τ))
− ξ2

4(θ2(τ) − θ2(σ))

)

dξ.

Changing the variable in the latter integral z =
ξ

2

√

θ1(t)− θ1(τ) + θ2(τ) − θ2(σ)

(θ1(t)− θ1(τ))(θ2(τ) − θ2(σ))
, we have

K2,0 =
2

π(θ1(t)− θ1(τ) + θ2(τ)− θ2(σ))3/2

T (t,τ,σ)
∫

0

z2 exp(−z2)dz,

where T (t, τ, σ) =
h

2

√

θ1(t)− θ1(τ) + θ2(τ) − θ2(σ)

(θ1(t)− θ1(τ))(θ2(τ)− θ2(σ))
.

Integrating by parts we redu
e the previous expression to the form

K2,0 = − h

2π(θ1(t)− θ1(τ) + θ2(τ)− θ2(σ))
√

(θ1(t)− θ1(τ))(θ2(τ)− θ2(σ))

× exp

(

−h2

4

(

1

θ1(t)− θ1(τ)
+

1

θ2(τ) − θ2(σ)

))

+

+
1

π(θ1(t)− θ1(τ) + θ2(τ) − θ2(σ))3/2

T (t,τ,σ)
∫

0

exp(−z2)dz.

Estimating K2,0, we obtain the inequality

|K2,0| ≤
C16

(θ1(t)− θ1(τ) + θ2(τ) − θ2(σ))3/2
.

Applying (19) we have

|K2,0| ≤
C17

(tβ+1 − σβ+1)3/2
.
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Obviously, the estimates of other summands in K2(t, τ) are similar. Returning to the estimate of K2(t, τ)
and using the notation (14), we obtain

∣

∣

∣

∣

a1(t)τ
β

tβu2x(0, t)
K2(t, τ)

∣

∣

∣

∣

≤ C18A1τ
β

t
∫

0

dτ√
tβ+1−τβ+1

τ
∫

0

dσ

(tβ+1 − σβ+1)3/2

≤ C19τ
β t

(β−1)/2

I1

τ
∫

0

dσ

(tβ+1 − σβ+1)3/2
.

Consider the integral in the latter inequality:

τ
∫

0

dσ

(tβ+1 − σβ+1)3/2
=

1

t3(β+1)/2

τ
∫

0

dσ

(1− (σ/t)β+1)
3/2

≤ 1

t3β/2

τ
∫

0

dσ

(t− σ)3/2
≤

≤ 2

t3β/2
√
t− τ

.

Finally we have

∣

∣

∣

∣

a1(t)τ
β

tβu2x(0, t)
K2(t, τ)

∣

∣

∣

∣

≤ C20τ
βt(β−1)/2

t3β/2
√
t− τ

≤ C21
√

t(t− τ)
.

Other summands Ki(t, τ) are estimated analogously. It follows that we get su
h inequality for

K(t, τ) :

|K(t, τ)| ≤ C22
√

t(t− τ)
.

Taking into a

ount that a0(t) ≡ 0 for t ∈ [0, t̃], we finally have

|K(t, τ)| ≤ C22
√

t̃(t− τ)
≤ C23√

t− τ
, t ∈ [0, T ].

This means that the equation (33) as a homogeneous Volterra integral equation of the se
ond kind

has only trivial solution a0(t) ≡ 0. Then a(t) ≡ 0, t ∈ [0, T ] and u(x, t) ≡ 0, (x, t) ∈ QT as a 
onsequen
e

of the uniqueness of the solution of dire
t problem (26)-(28).

Remark 1. The theorem of existen
e and uniqueness of solution for the problem (1)-(4) may be

expanded to the problem with another boundary and overdetermination 
onditions. Really, 
onsider

the analogous problem for equation (1) with initial 
ondition (2), boundary 
onditions ux(0, t) = µ1(t),
ux(h, t) = µ2(t) and overdetermination 
ondition u(0, t) = µ3(t). Then by 
hange of unknown fun
tion

ux ≡ v the given problem is redu
ed to the following one:

vt = a(t)vxx + fx(x, t), (x, t) ∈ QT ,

v(x, 0) = ϕ′(x), x ∈ [0, h],

v(0, t) = µ1(t), v(h, t) = µ2(t), t ∈ [0, T ],

a(t)vx(0, t) = µ′
3(t)− f(0, t), t ∈ [0, T ].

Remark 2. The assumptions of the theorem on fun
tions ϕ and f may be relaxed and redu
ed to

the following 
onditions: ϕ ∈ C1[0, h], f ∈ C1,0(QT ). To 
he
k this statement, it is suffi
ient to study the

behavior of the 
orresponding summands in (35).
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