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Abstract. In this paper we consider an inverse problem for determining time - dependent heat
conduction coefficient which vanishes at initial moment as a power t°. The case of strong degeneration
(8 > 1) is studied. To prove the existence of solution we employ the Schauder fixed point theorem. The
uniqueness of the solution is established too.

1. Introduction

Degenerate parabolic problems arise in a lot of fields of natural and social sciences and technology
(see, e.g., [1-5]). These problems may be divided on different classes accordingly to the way of degeneration
with respect either to spatial variables or to time variable, weak or strong degeneration. Direct problems
for degenerate parabolic equations are sufficiently well studied. As examples, we can mention the works
[6-12]. On the other hand, inverse problems for non-degenerate parabolic equations are no less investigated
[13-17]. However, inverse problems for degenerate partial differential equations are almost not considered.
There are some works [18-20] dedicated to inverse problems for partial differential equations degenerating
with respect to a spatial variable.

In this paper we consider an inverse problem for the heat equation with unknown heat conduction
coefficient depending on time variable ¢. It is supposed that the unknown coefficient vanishes at the initial
moment as a power t°. The case of weak degeneration (3 < 1) was studied in [21]. Here we investigate
the case of strong degeneration (5 > 1).

In a domain Qr = {(z,t) : 0 <z < h,0 <t < T} we consider the following heat equation

ur = a(t)uge + f(2,t) (1)

with unknown coefficient a(t) > 0,¢ € (0,77, initial condition

u(z,0) = p(x), x€][0,h], (2)
boundary conditions
’LL(O, t) = Ml(t>7 u(h7 t) = ll'?(t)? te [07 T]? (3)
and overdetermination condition
a(t)uy (0,t) = pus(t), te|0,T]. (4)

In this problem both u(z,t) and the coefficient a(t) are unknown, are to be determined from data
fz,t), o(x), p1(t), pa(t), ps(t). As a solution of the problem (1)-(4) we mean a classical solution which is
defined as follows.

Definition. The pair of functions a(t) and u(z,t) is a solution of (1)-(4) if the following conditions
are fulfilled:

(8) (a,u) € C10,T] x C*1(Qr) N C@r), ua(0,1) € C(0,T);
(b) a(t) is positive for t € (0,T7;
a(t)

c) there exists the limit lim —= >0, 8 >1 - a given number;
t—+0 5
—

(d) (1)-(4) are satisfied.
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Note that the analogous problem for a non-degenerate heat equation was for the first time studied
in [22].

We establish the conditions of existence and uniqueness of solution for the problem (1)-(4) which
are formulated in the following theorem.

Theorem. Suppose that the following conditions hold:
1) ¢ € C*[0,h); i € CH[0,T),i =1,2; 3 € C0,T]; f € C*°(Qr);
2) ¢'(z) > 0,2 € [0,h]; £(0,) — py(t) > 0, u5(t) — f(h,t) = 0,¢ € [0,T]; us(t) > 0,¢ € (0,T], the limit

p3(t)

lim 531 > 0 exists; fo(7,t) >0, (2,t) € Qr;

t—=+0 =5
3) ¢(0) = p1(0),(h) = p2(0).

Then there exists an unique solution of problem (1)-(4).

To prove the existence of solution, the Schauder fixed point theorem is applied. The proof of the
uniqueness of solution is divided in two parts: first we establish it for a small time interval and after this
we prove a global (in time) uniqueness of solution of the problem (1)-(4).

The part of the paper that follows is composed of four sections. In Section 2 the inverse problem
(1)-(4) is reduced to an integral equation with respect to unknown coefficient a(t). In Section 3 we study
the behavior of wu,(0,t¢) as ¢ — 0 and we show that under the assumptions of the theorem the solution
of the integral equation is bounded from below and above by a power t? with coefficients which depend
on given data. In Section 4 we apply the Schauder fixed point theorem to the integral equation and we
complete the proof of the existence of solution of the problem (1)-(4). In the first part of Section 5 we
show that the integral equation with respect to unknown coefficient a(t) admits at most one solution
on the interval [0,] where £ > 0 is, in general, a small number defined by given data. Then using this
statement, we prove the uniqueness of solution of the problem (1)-(4) in whole.

2. Reduction of the problem (1)-(4) to an integral equation
Apply the overdetermination condition (4) to obtain an equation for the function a(t). Denote by

Gi(x,t,&,7),k = 1,2, the Green functions of the first (k = 1) and the second (k = 2) boundary value
problems for equation (1)

_ 1 v ((exp [~ (E=EH20h)°
el b6 T) = S o =0 n_Zm( p( 40(0) = 0(r)) )
(z 4+ &+ 2nh)?
+ (=1)* exp<—W>)’ ©)

t
where 6(t) = / a(7)dr. Temporarily assuming that the function a(t) is known, we can write the solution
0

of direct problem (1)-(3) with the aid of the Green function

o—_

h
w(z t) = / G (2.1, €,0)5 (§)d§+ Che(2,4,0, 7)a(r)ps ()dr

t h
/Glg x,t,h,T) dT—i—//Gl(x,t,f,T)f(f,T)dde. (6)
0 0
Evaluate the first derivative u,(z,t), taking into account the relationships
Gor(z,t, &, 7
Glz(xatvgaT) = _G2E(‘I7ta§77-) and G2§§ - _Z(T)g)a (7)



and integrating by parts with using compatibility condition. We obtain

t

h
uz(xv t) = GQ(Ia t, 5) 0)90/(5)615 + GQ(xv t,0, T)(f((), T) - :ull (T))dT+
J i

0

t t h
+!@@mmm%m—ﬂmmm+zzc2 ) fe€, )ddr. ®

We substitute this expression into overdetermination condition (4) and we come to the equation for

a(t) :

h t
a’(t) = M3(t) (/ G?(Ou ta 67 O)spl(g)dg + /G2 (07 tu 07 T)(f(07 T) - ll’/l (T))dT
0 0

t

¢ h .
+/G2(O,t,h,T)(u/2(T)—f(h,T))dT—i—b/O/Gg(O,t,f,T)fg(f,T)dde) e 0,T]. )

0

Taking into account the conditions of the theorem it is easy to verify that the function a(t) is positive
on (0,7] and belongs to C(0,T].

3. A priori estimates
In order to prove the existence of the solution of equation (9) we apply the Schauder fixed point

theorem. First of all, we estimate the solution of equation (9). As a consequence of the second condition
of the theorem and the explicit representation of the function Ga(x,t, &, 7) we obtain the inequality

w(0,0)> LD Zm@ (10)

\/77
This allows us to write the following inequality for the function a(t)

ps(t)

a(t) < — (11)
JEIET
| @ 00)
Let ;
ap(t) = ?, Amax(t) = Jnax, ap(T). (12)
Then from (11) we find
ao(t) < */—“3( ) e (1)
T f pA(7)
Denote
H(t) = \F“?’( ) . (13)
a1 f pA(7)



It follows from the conditions of the theorem that the function H(t) is positive on (0,7] and belongs to
C(0,T)]. Establish the existence of the limit tlirJrrlOH (t). To this end, we apply the theorem on average
—

and change of variables z = %:

lim H(t) = lim Vs (i)

t—+0 t—+0 t

VBFTE(f(0,T) — ph () / \/Wfliiﬁ
0

B T ps3(t) <
_\/5+1t£T0 el

1
HBYD/2(£(0, / ——
0
Denote 1
[ = .
0
VM (t)

- - B3 .
then we obtain tLHEOH(t) = JFET0.0) = O, > 0, where M = tLHEO g Applying (13) we

come to the inequality ag(t) < H(t)\/amax(t), which leads to an estimation of amax(t) from above

amax( ) < Hr2nax( ) < 00, te [O7T]7 (15)

t
where Hpax(t) = max H(7). Taking into account the existence of the limit lim Ha(t) and notation

0<r<t t—+0 4251
(14), we estimate H (t)

VM, p3(t)
H(t) < = H,, where M; = max . 16
W= T - mon LR 1o
Then the estimate of a(t) from above follows:
a(t) < Hio (7 < H{t?, € 0,7, (17)
Estimate a(t) from below. To this end, provide some estimates for expression in the denominator of
h
(8). From the equality / Gao(z,t,&,7)d€ = 1 the first and the fourth summands are estimated
0
h t h
[ea0rend©ican [ [Gotenidenicr <c.
0 00

It can be easily verified that
t
[ G20, 1.7 (r) s < €,
0

where Cy,Cs,C3 > 0 — the constants determined by the problem data. Transform the second summand,
separating out of the series the term that corresponds to n =0:

fO.7) —pi(m)
t Vo) —0(r)

70/ N i”‘p( zh;u)‘”'

\./

/G2(07t7077—)(f(077—) /1'1

o\“



Since the integral function of the last summand has no singularities and is bounded, we estimate it by a
constant. Denote amin(t) = 0r<nigt ao(7). By formula (8) and previous estimates we obtain
_T_

t
ao(t) > ,ug,(t
VB+T [ f(0, (1)
tB
Cy+ \/Wamm / t5+1 = Tﬁ“ dr
0
Z amin(t)

Cot  PVEFT [ f0.0) i)
us(t)  mus(t) ) VBT BT

Taking into account (13), reduce the inequality to the form

\/ amin(t) Gmin (t)H(t)

t) > = .
wl) = G 1 T CaPHQ) o
ps(t)  H(t) 3 (t)
From (16) it follows
B
CstP H(t) Oﬁt_l
ps(t)
Hence, we obtain
min H
oty > YomnDHE)
Ogt 2 +1
From here we establish the estimate
H2
tmin(t) > — () (18)
(CGt +1)2
where Hyin(t) = 0r<nigt H(7). Finally, we have for a(¢):
H? t
0<A0§¢()<a(ﬁ) <HZ. ()<A <oo, te€[0,T)]. (19)
(Ogt 2 +1) 13

Therefore, we have established a priori estimates for the solution (9). Having a priori estimates of solution
of equation (9), we can apply to it the Schauder fixed point theorem.

4. Existence of solution

We consider the equation (9) as an operator equation a(t) = Pa(t) with respect to a(t) and the

t t

operator P is defined by equality Pa(t) = ui(() )t) Denote N' = {a € C[0,T] : Ay < t( ) <A} Asa
Uz (Y,

consequence of a priori estimates (19) the operator P maps N into A. We are going to show that the set

PN is compact or equivalently, by Arzela-Ascolli theorem, PN is uniformly bounded and equicontinuous.

We have to establish that Ve > 0 3 § > 0 such that

|Pa(te) — Pa(t1)| < e for arbitrary |t —t1] <d, a(t) € N. (20)
t
As Pa(t) = a(t) and % < A; for all a(t) € N we conclude that for arbitrary ¢ > 0 there exists
sufficiently small number t* > 0, such that the inequality
|Pa(t)| <e, 0<t<t",

holds.



Establish the inequality (20) in the case when ¢; > t*,¢ = 1,2. Assume t2 > t;. Consider one of the
summand which is contained in (20):

to ty

R = / G (0. 12,0, 7)(F(0,7) — iy (r))dr — / Ga(0.11,0,7)(f(0,7) — iy ())dr

0 0
ty

< /(Gg(o,tg, 0,7) — Ga(0, 11,0, 7))(F(0,7) — .())dr
0

+ /GQ(O,tQ,O,T)(f(O,T) —ph(7))dr| = R11 + Ry 2.

t1

The estimate of G2(0,t,0,7) [17] allows us to write

max(f(0,t) — pi(t)) 2

f0,7] !
Rz = VT ; <W ’ C7> ”
ch/\/i‘FCQtZ_tl)

Apply the definition of the set A for investigation of the first summand in Ry o :

to to ta
dr B—f—l/ dr ﬁ—i—l/ dr
< < < Ciovita —ty.
t/w/e(tz)—e(T) =V 4 S e\ Aty ) VR=T v

Finally, we have

Ry < C1ivta —t1 + Cy(ta — t1).

From R 1, using the Green function representation and separating out of the series the term that corre-
sponds to n = 0, we have

Ris < == max(£(0.1) = 4 (1) ( / . .

Volta) —0(r)  \/0(tr) —

7 [0,T)

ty

w2/

ﬁze’“@( 2h26< >)

wizm( 2h20< >)

dT) =Ri110+ R

Note that

1
V(O(t2) = 0(n)(0(t1) = 0(m) (v/0(t:) = 6(7) + /B(t2) = 0(7))

Then we employ the definition of the set N:




Transform this inequality by the change of variable z = ’.

ty
1
= % (o
111 < L 1—zﬂ+1 \/t (t2/t1) 6+1 _ LBl
Denote
1
)= where w € [1,00). (21)
Vw — 25+1
0
1
Obviousl / dz < / dz It follows that I(w) is continuous on [1,cc0). This means that for
v . w ,00).
Y Vw =281 7 ) 1 -2
0

0
arbitrary € > 0 there exists 61 > 0, such that Ry 11 <e for |to —t1| < d1.
We represent R; ;2 in the form:

wloesen o
_ j— ! JE— _ j—
Rise= —=mas(r00 ) [| [ £ ( 22 e

0 p(t)—0(r)

2h2
)) dz|dr.

Estimating R1,; 2 by means of inequality zre?’ < M, < oo,z € [0,00),n € N, we come to the estimate
Ry < Cislf(ts) — 0(t1)| < Cralth Tt — 9T <& for |ty —t1] < 0o,

where d > 0 depends on ¢ and known data. Others summands occuring in (20) can be estimated
analogously. It follows that the conditions of the Schauder theorem for equation (9) hold, and, therefore
there exists the solution a = a(t) of the equation (9), which belongs to C[0,T7.

Substituting a(t) in (6), we obtain a solution v = u(x,t) of direct problem (1)-(3) which possesses
necessary smoothness.

5. Uniqueness of solution

To prove the uniqueness of the solution of the problem (1)-(4), suppose that (a;(¢),
ui(x,t)),i = 1,2 are two solutions of the problem (1)-(4). Denote a(t) = ai(t)— aa(t),
u(z,t) = ur(z,t) — uz(z,t). From the overdetermination condition (4) we obtain

p3(t) (u22(0,) — u12(0, 1))

t) = 22
a( ) ugm(O, t)ulw(O, t) ( )
or, after using the notation (12),
ao(t) = p3(t) ps(t) 17 (u22(0,) — u1(0,1))
0 tﬁulx (07 t) tﬁu?f (07 t) u3 (t) '
t it . .
Next, we apply the equality tﬁlljii((()), 5 _ até )7 i =1,2, and the estimate (15):
P, (0,1) — u14(0,1)]
|ao(t)] < Hiyax (1) (23)

w3 (t)

Estimate one of the summands which is contained in the expression |us,(0,t) — u1,(0,t)|. Denote

t
1 1
F0,7) — i ( dr
0/ ! ( 02(t) — Oa(r)  \/Or(t) — 01 (7 )

9 t / oo 1 n2h2
= O/(f(OaT) — p(7)) ; (—W(t) =0 (—792(15) — 92(7)>

1 h
91( ))) H e

-

BN ORI R <_ 01(t)



Represent the second summand in the form:

Rl € —=max(7(0.0) = (1) | [ dr
0 01(t)—91(7’)

From boundedness of the integrand we conclude

|ILQ| S 015/|92(t) — 92(7’) — 91(15) +91(T>|d7’ = 015/d7/ |a2(a) — CLl(O')|dO' =
0 0 T

t

t
= C15/d7'/|a0(a)|aﬁda < C15t5+2dmax(t),

0

where amax(t) = Jax, |ao (7).

Transform I; ; to the form

. / H0.1) = 1600 ~ ) ~6ol) + a(r))_ e
VR ) —% D) — 6:()) (V1 (D) — 02(7) + /B2(D)

Taking into account (19), we obtain

B+ _ B+

61(6) = 61(7) = 02(6) + 62(1)| < [ faa(o)lo”dr < T an(t),
t
2 B+1 _ B+1
ez(t) - 91'(7') = /aio(a)aﬂda > Hmm( ) t u ; 1= 17 27
(Ogt —|— 1) p+1
where a;o = a;(ﬁt) ,i = 1, 2.
Finally, we have the estimate of I; ;
v 5 1)3
|Il 1| S ﬂ+ (CG 2 + amax /f )dTa
1 \/_ rnm( A+ — TﬁJrl

or if we use (13)
(Cot ™= + 1) pg(t) .
CTTEmG o tmaxll)

min

|[I11] <

Other summands in the expression |ug;(0,t) — u15(0,t)| are estimated analogously to I; o. We continue
to estimate (23) as follows:

(06t52 + l)gHélax( )~
2H 3,1, (1)

min

amaX(t) < maX( ) + S( )amaX(t)a (24)

where S(t) is the sum of terms depending on ¢ which vanishes for t = 0. The existence of the limit

Otz +1)3H4 1
(e iy ) Hipax () = —. Therefore, there exists

tEI-Ii}O H(t) > 0 implies the existence of the limit tl_1>r£0 0 5
t1 : 0 < t; < T such that the following inequality holds:
(Cﬁt B +1)3Hé1ax( ) 3
< -, tel0,tq]. 25
2H;4nm() _45 6[ ) 1] ( )



Hence, we can rewrite (24) in the form:
_ 1
tnaslt) (3 - 50) 0. 1€ 001

There exists t2 : 0 < to < T, such that % —NS’(t) > 0 for any ¢ € [0,%2]. We come to the contradiction.
This implies that a1 (t) = a2(t) when ¢ € [0,¢] with ¢ = min(¢1, t2).

Now we establish the uniqueness of the solution problem (1)-(4) for any ¢ € [0,7]. The functions
(a(t),u(z,t)) satisfy the conditions

up = a1 () uge + a(t)uoee, (z,t) € Qr, (26)
u(z,0) =0, =z€]0,h], (27)
u(0,t) = u(h,t) =0, te][0,T], (28)
a1 (t)uz(0,t) = —a(t)ug,(0,¢), te[0,T]. (29)

Denote by Ggi) (,t,&,7),1 = 1,2, the Green functions of the equations u; = a;(t)uy, with the boundary
condition (28). The solution of the (26)-(28) can be written with the aid of Ggl)(x, t,€,7)

t h
— / / G\ (2,1, €, T)a(T)unee (€, 7)dEdr. (30)
0 0

Substituting (30) into (29), we obtain the integral equation for a(t)

t h

( )UQz 0 t —a1 // 1) 0 t ( )u255(§,7')d§d7', te [O,T] (3].)

0

Using the notation (12), it is easy to see that

-
olt) =~ g [ [ 621046 Dar) el s (32)
Or .
ao(t) = / K(t,7)ao(r)dr, te[0,T], (33)
where 0 )
K(tr) =~ gﬁt / G(0,1, €, m)unec (€, 7)dE. (34)
)

Establish that the kernel K (¢, 7) is integrable, using the fact that us(x,t) is the solution of the problem
(1)-(4). From (6) we find the derivative

t

h
U (,1) = / G (x,t,€,0)0" (€)dE + / G (,1,0,7) (1 (1) — f(0,7))dr
0

0

t t h
+ [ G, h, ) (f(h,T) — ph(7))dr + el 7) fee (& 7)dédr. (35)
/ []en



Substituting (35) into (34), we obtain:

h h
B
K(tr) =~ / G0 (0,t,¢,7) (/ G (€, 7.0, 0)0" (n)dn
0

tﬁUQx (O, t)
0

+ / G2 (€,7,0,0) (4 (o) — £(0,0))do + / G2 (&, 7, h,0)(f(h,0) — py(0))do
0 0
T h
@, : a7 e
+/ 0/ G &7 1:0) fan( 0)dnd )d§ a0 2 )

Consider the summand K5 (¢, 7), using the explicit representation of the Green functions

T

h
K2<tvf>—4w0/ ) (@) —el<r>><9z<f>—92< N2

(€ + 2nh)? (€ +2mh)?
X Z (€ + 2nh)(§ + 2mh) exp <_4(91(t) — 00 100 = 02(0))> dodé.

Separating out of the series the term which corresponds to n = 0 and m = 0, we shall estimate the
expression

n,m=—oo

1
17 ((02(1) — 02(7)(Ba(7) — 02(0)))2

h
S R
/ oo (~3m 07 ~ T )

Koo =

01(t) — 01(7) + b2(1) — 02(0)
(01(t) — 01(7))(02(7) — O2(0))’

T(t,1,0)

we have

Changing the variable in the latter integral z = g\/

2

Kzo0= m(01(t) — 01(7) + 02(7) — O2(0))3/2 0/ 2% exp(—2?)dz,

_ ﬁ 01(t) — 01(7) + b2(1) — 02(0)
where T'(t,7,0) = 2\/(01(t) = 01(7)) (62 (7) — Ba(0)

Integrating by parts we reduce the previous expression to the form
h
21(01(t) — 01(7) + 02(7) — 02(0))/ (01(t) — 01(7))(02(7) — 02(0))

e (‘hz (elm—lelm G >i02< >>)+

T(t,1,0)

+ ! /
w(0:(0) ~02(7) + 02(7) — Ba(0))% ) exp(=

Koo =—

Estimating K> o, we obtain the inequality

Cie

Hool < G =00 + 6207) — a0V P

Applying (19) we have
Chr
(tBHT — gB+1)3/2°

|K20| <

10



Obviously, the estimates of other summands in Ko(¢,7) are similar. Returning to the estimate of K(t,7)
and using the notation (14), we obtain

ay(t)r?
t'B U2y (0, t)

r
ClgAlTB do
dr (t6+1 _ 0—,8+1)3/2
g«/tﬁ+1—rﬁ+1 0

t(ﬁ 1)/2
< Cyor? / IS 05+1)3/2.
0

K2(t7 T)’ <

Consider the integral in the latter inequality:

T T T

do - 1 do < 1 do <
(tB+1 — gB+1)3/2 T 3(B+1)/2 (1- (o/t)ﬂ+1)3/2 = ¥38/2 (t—o)3/2 =
0 0 0
2

< — .
T8t —1

Finally we have

CoorPt(B=1)/2 C
K(t, 1) < =220 <
312/t —1 tt—r)
Other summands K;(t,7) are estimated analogously. It follows that we get such inequality for
K(t,7):

aq (t)Tﬂ
tPuo, (0, 1)

Caa

|K(t,7)| < T—T)

Taking into account that ao(t) = 0 for ¢ € [0, ], we finally have

1< Caa < Caz
h \/f(t—T) TVE=T

This means that the equation (33) as a homogeneous Volterra integral equation of the second kind
has only trivial solution ag(t) = 0. Then a(t) = 0,t € [0,7] and u(x,t) =0, (x,t) € Qp as a consequence
of the uniqueness of the solution of direct problem (26)-(28).

Remark 1. The theorem of existence and uniqueness of solution for the problem (1)-(4) may be
expanded to the problem with another boundary and overdetermination conditions. Really, consider
the analogous problem for equation (1) with initial condition (2), boundary conditions us(0,t) = u1(t),
ug(h,t) = p2(t) and overdetermination condition u(0,t) = ps(t). Then by change of unknown function
u; = v the given problem is reduced to the following one:

[K(t,7) € [0,T].

vy = aft )vm + fo(z,t), (2,t) € Qr,

(2,0) =¢'(z), = €0,h],

v(0,t) = ul( ), w(h,t) =ua(t), te]0,T],

(£)v2(0,1) = ps(t) — £(0,1), te€(0,T].

Remark 2. The assumptions of the theorem on functions ¢ and f may be relaxed and reduced to

the following conditions: ¢ € C*[0, h], f € C1°(Q7). To check this statement, it is sufficient to study the
behavior of the corresponding summands in (35).

11
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