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Abstract 

 

   In this thesis we present a method for calculating exact solutions to a system of equations for two 

phase flow. This solution is valid for a special case of initial condition called the Riemann problem. 

The system consists of three hyperbolic conservation laws including gas mass balance, liquid mass 

balance and total momentum balance. Also, there is a slip relation which relates the true velocities 

of each phase together. In solving the Riemann problem for the two-phase flow drift flux model, 

some assumptions have been taken like incompressible liquid. In this thesis the development of 

the final solution for the Riemann problem is presented. This development includes the star region 

parameter determination and the exact solution in the rarefaction waves. Using the Riemann exact 

method to solve the equation systems of hyperbolic conservation laws helps in making a 

fundamental understanding of the physics and characteristic behavior. Also determining the flow 

parameters in the interface by the Riemann solution builds a basis for numerical approaches in two 

phase flow drift flux models.     
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1. INTRODUCTION 

 

 

 

   In well bores and transport pipelines, the possibility of two-phase flow is high.  In this condition, 

usually drift flux models with associated numerical methods are used to find the important 

properties of the flow inside the well bore in the transient or steady state condition. Now in this 

thesis an exact solution for two phase flow will be used for determining the flow parameters. This 

solution is valid for a special case of initial condition called the Riemann problem. In the Riemann 

problem a single discontinuity is assumed at a location. Over this discontinuity the gas and oil 

properties change. Then by increasing time this discontinuity would change in shape.  

    

1.1. Motivation  

 

   As said previously, multiphase flow may appear during drilling operations or the production 

phase. For example, during the drilling phase the interaction of cuttings and mud create a two-

phase flow. Also, the underbalanced drilling is another example of two-phase flow. In 

underbalanced drilling the bottom hole pressure is less than the formation pressure, so the gas or 

oil would infuse into the well bore and create two phase flow. Also, during drilling, a gas kick or 

oil kick may be introduced into the well and the flow inside the well turns to two phase flow or 

multi-phase flow. In 2000, a study on two phase flow modeling was implemented for 

underbalanced drilling. In this paper , using the drift flux model, the transient condition in 

underbalanced drilling was investigated (Lage, Fjelde et al. 2000).  

Understanding the dynamic behavior in multiphase flow lets us build more accurate mathematical 

models for future software development and simulators. In previous studies for two phase flow, 

mostly numerical methods with drift flux theory has been used for different drilling and production 

simulators software. In this study, an exact solution to the Riemann problem is going to be used 

for a two-phase flow mixture of oil and gas. This exact method can be a verification for numerical 
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methods used previously for underbalanced drilling or other two-phase flow incidents. The 

Riemann problem, which is an initial value problem, has a variety of applications for fluid 

dynamics and gives good insights for understanding the characteristics and the whole concepts of 

flow dynamics. In the finite volume numerical method, the Riemann problem is used to determine 

flow parameters at the control volume interface.   

 

1.2. Thesis structure 

 

   This thesis has been structured based on four chapters. In Chapter one which is the introduction, 

first the general definition of the Riemann problem is presented. Then the motivation and thesis 

structure are presented.  

   In chapter two which is the theory part, the related literature review about the exact solution for 

linear scalar equations, application of the Riemann problem in the Buckley-Leverett equation, the 

Riemann problem for Euler isothermal gas flow, the problem of shallow water flow, and the exact 

solution for two phase flow are presented. Then the necessary concepts, definitions and the 

development of equations and final solutions for the Riemann problem for linear scalar PDEs, the 

inviscid Burgers equation, the system of linear equations of conservation laws, the system of 

nonlinear equations of Euler for isothermal gas  and  the system of full Euler equations are 

presented .   

   In chapter three which is the methodology part, the steps toward the exact Riemann solution 

development for two phase flow of a gas-oil mixture are described. Then the flow chart and 

procedure for computer programming is presented in this chapter.  

   In chapter four which is the results and discussion part, the results of the programming for the 

exact Riemann solution for two-phase flow is presented. In this chapter several initial conditions 

will be tried to test all types and configurations of possible waves. These configurations are: 

1) All shock waves 

2) All rarefaction waves  

3) Shock in first wave and rarefaction in second wave 

4) Rarefaction in first wave and shock in second wave 
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2. THEORY 

 

 

 

2.1. Literature review and background 

 

   A Riemann problem is an initial value problem made of a conservation equation or a system of 

conservation equations  together with constant initial data which has a single discontinuity.  

   The Riemann problem is applicable for the understanding of equations like the Euler 

equations since all properties, like rarefaction and shock waves , appear as characteristics in the 

solution. It also gives an exact solution to some complex nonlinear equations. 

   The inviscid Burgers equation is a partial differential equation which is very practical in many 

engineering fields like fluid mechanics. It is a nonlinear scalar equation and understanding the 

Riemann solution for this equation is useful for developing the final exact solution for two phase 

flow. The Riemann problem has been described for the  inviscid Burgers equation by (LeVeque 

2002). 

   The Buckley-Leverett is a nonlinear equation and the Riemann problem for this equation is more 

complex than for linear equations. The concept of characteristics and entropy conditions for the 

Buckley–Leverett Equation has been described by (LeVeque 2002).  

  

Figure 2-1: Buckley–Leverett Riemann solution. (a) triple-valued solution (b) area-preserving shock (c) Wave forms 

in x-t plane. 

https://en.wikipedia.org/wiki/Initial_value_problem
https://en.wikipedia.org/wiki/Conservation_law
https://en.wikipedia.org/wiki/Discontinuity_(mathematics)
https://en.wikipedia.org/wiki/Method_of_characteristics
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   Another important application of the Riemann problem is the solution of the Euler equations for 

isothermal gas. The isothermal equations consist of two conservation laws of mass balance and 

momentum balance. For solving the Riemann problem for this kind of equations, the theory of 

Hugoniot and integral curves is applicable. In the book “Numerical Methods for Conservation 

Laws” the details of the Riemann problem for isothermal gas have been worked out (LeVeque 

1992). The solution   development procedure for isothermal gas is much like the shallow water 

problem. The solution for the shallow water problem has been described in the book “Finite 

volume methods for hyperbolic equations” (LeVeque 2002). In this method the theories of 

nonlinear scalar and system of linear equations are combined to produce the general theory of 

nonlinear systems.   

 

 

Figure 2-2:An example of water wave propagation in the problem of shallow water  (LeVeque 2002) 

 

   For the context of two-phase flow, many analytical and numerical approaches have been used 

by several authors for example (Enwald, Peirano et al. 1996),(Stewart and Wendroff 

1984),(Gonthier and Powers 2000),(Lahey Jr, Drew et al. 2001), (Saurel and Abgrall 1999), 

(Städtke 2006), (Zeidan, Slaouti et al. 2007),(Zeidan and Slaouti 2009),(Luke, Cinnella et al. 

2007), (Zeidan 2011). 

   The Riemann problem for solving two phase flow is an initial value problem and has been 

developed for several flow models. The structure of equations for two phase flow is complex so 

proposed exact solutions were limited to some simplifications. For example, in the work of 
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(Andrianov and Warnecke 2004) a limited Riemann solution has been  proposed for the Baer and 

Nunziato equations (Baer and Nunziato 1986). It is an indirect solution because a solution has been 

assumed and they look for corresponding initial data. The first direct Riemann solution for two 

phase flow models has been proposed by (Schwendeman, Wahle et al. 2006). A direct solution 

which is like the Baer and Nunziato in mathematical form has been proposed by (Castro and Toro 

2006). Another Riemann solver for the two phase flow Baer and Nunziato equations has been 

proposed by (Deledicque and Papalexandris 2007) . 

 

   Also the Riemann solution structure for two phase flow was investigated by (Zeidan 2011). In 

his work, a hyperbolic conservative model without velocity equilibrium but with mechanical 

equilibrium has been used. In this paper it is assumed that the gas concentration is constant in the 

whole section which is a questionable assumption. 

 

 

Figure 2-3:General Riemann solution for mixture of gas and liquid (Zeidan 2011) 

 

 

As you see in the figure (2-3) the solution consists of 2 nonlinear waves which can be shock or 

rarefaction and one middle contact discontinuity which is linear. 

 

2.2. The Riemann problem for linear hyperbolic equations 

  

   It is possible to construct the analytical solution of the general initial value problem for the linear 

advection equation. The linear advection equation is the simplest hyperbolic conservation law. The 
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initial data which is shown by u0(x) is used to find the analytical solution for this equation. Now a 

special initial value problem is used here which is called the Riemann problem.  

 

𝑃𝐷𝐸:                                          𝑢𝑡 + 𝑎𝑢𝑥 = 0                                                                                         (2.1) 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛:                𝑢(𝑥, 0) = 𝑢0(𝑥) = {
𝑢𝐿         if 𝑥 < 0
𝑢𝑅         if 𝑥 > 0

          

 

In the equation (2.1), uL is the left value and uR is the right value which are constant. As you see 

there is a discontinuity at x = 0.  If this initial value problem is solved by the characteristic method, 

then we have:  

𝑑𝑥

𝑑𝑡
= 𝑎             𝑥 = 𝑎𝑡 + 𝑥0                                                                                                                        (2.2)                                 

𝑑𝑢(𝑥(𝑡), 𝑡)

𝑑𝑡
=
𝜕𝑢

𝜕𝑥
𝑎 +

𝜕𝑢

𝜕𝑡
= 0                                                                                                                (2.3) 

𝑑𝑢(𝑥(𝑡), 𝑡) = 0       𝑢(𝑥(𝑡), 𝑡) = 𝑢(𝑥(0), 0) = 𝑢0(𝑥0)                                                            (2.4) 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥0)                                                                                                                                       (2.5) 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥 − 𝑎𝑡)                                                                                                                               (2.6) 

So, the Riemann problem with the initial condition (2.1) is a special case of initial value problem 

and satisfies (2.6). Now we expect points on the initial data to go forward with speed a and pass 

distance d in time t. It means that the initial discontinuity propagates with speed a. This special 

characteristic curve x = at separates the left and right characteristics. So, the left part of this 

characteristic takes the value of uL and the right part of the characteristic takes the value of uR.   

𝑢(𝑥, 𝑡) =  𝑢0(𝑥 − 𝑎𝑡) =  {
𝑢𝐿         if 𝑥 − 𝑎𝑡 < 0
𝑢𝑅         if 𝑥 − 𝑎𝑡 > 0

                                                                                 (2.7) 
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Figure 2-4:Illustration of the Riemann solution in the x–t plane 

 

2.3. Non – linearities and wave formation   

 

   In this section some features of non–linear hyperbolic conservation laws, and the creation of 

waves are introduced. Here the focus is on the scalar nonlinear conservation law (Toro 2013). 

 
𝑢𝑡 + 𝑓(𝑢)𝑥 = 0 , 𝑢(𝑥, 0) = 𝑢0(𝑥)                                                                                                         (2.8) 

    

𝑢𝑡 +
𝜕𝑓

𝜕𝑢
𝑢𝑥 = 0 

𝑢𝑡 + 𝜆(𝑢)𝑢𝑥 = 0                                                                                                                                       (2.9) 
 

As you know the term of λ(u) is defined by equation (2.10): 

𝜆(𝑢) =
𝑑𝑓

𝑑𝑢
= 𝑓′(𝑢)                                                                                                                                (2.10) 

λ is the speed of the characteristic. For example, in the previous section λ(u) for the linear 

hyperbolic law is constant and equal to a. The convexity of  f(u) affects the structure of the solution 

u(x,t). 

There are three possibilities for λ(u) which include:  

 

1. Monotone increasing function of u:  

 

𝑑𝜆(𝑢)

𝑑𝑢
= 𝜆′(𝑢) = 𝑓′′(𝑢) > 0  (𝑐𝑜𝑛𝑣𝑒𝑥 𝑓𝑙𝑢𝑥)                                                                                 (2.11) 
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2. Monotone decreasing function of u: 

𝑑𝜆(𝑢)

𝑑𝑢
= 𝜆′(𝑢) = 𝑓′′(𝑢) < 0  (𝑐𝑜𝑛𝑐𝑎𝑣𝑒 𝑓𝑙𝑢𝑥)                                                                               (2.12) 

3. has extrema, for some u: 

𝑑𝜆(𝑢)

𝑑𝑢
= 𝜆′(𝑢) = 𝑓′′(𝑢) = 0                                                                                                               (2.13) 

Now we consider the characteristic curves x = x(t) which satisfy the initial value problem: 

𝑑𝑥

𝑑𝑡
= 𝜆(𝑢), 𝑥(0) = 𝑥0                                                                                                                   (2.14) 

If we assume u and x are both functions of t, the total derivative of u along the curve x(t) equals 

to:  

𝑑𝑢

𝑑𝑡
= 𝑢𝑡 + 𝜆(𝑢)𝑢𝑥 = 0                                                                                                                         (2.15) 

 

 
Figure 2-5:Typical characteristic curves for a non–linear hyperbolic conservation law 

 

 

2.3.1. Shock wave  

 

   A shock wave is the result of collision of characteristics with different speed. So, the average 

speed between two characteristics would be obtained by a special method.  In a control volume XL 

to XR, there is a line s = s(t) which create a jump discontinuity for U(x, t).  The two fixed points XL 

and XR on the x–axis has been selected such that XL < L(t) < XR  
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Figure 2-6:Schematic figure of conservation of U in the controlled volume 

𝛼 =
𝑔

𝐿
                                                                                                                                                        (2.16) 

At each time:  

𝑈 = 𝑈𝐿𝐿 𝛼 + 𝑈𝑅𝐿(1 − 𝛼)                                                                                                                   (2.17) 

𝜕𝑈

𝜕𝑡
= 𝑓(𝑈𝐿) − 𝑓(𝑈𝑅)                                                                                                                            (2.18) 

If we take the derivative of U and put α in the equation (2.18), we reach to a conclusion that the 

speed of the shock wave is: 

𝑠 =  
 f(𝑈𝐿) − f(𝑈𝑅)

𝑈𝐿 − 𝑈𝑅
                                                                                                                                              (2.19) 

The equation (2.19) is called the Rankine-Hugoniot condition. 

𝑠 =
∆𝑓

∆𝑈
                                                                                                                                                                   (2.20𝑎) 

𝜆(𝑈𝐿)  >  𝑠 >  𝜆(𝑈𝑅)                                                                                                                                         (2.20b) 

For shock waves, the condition (2.20b) should be satisfied. This rule is called the Lax entropy 

condition (Lax 1957). 

 

Figure 2-7: (a) initial data (b) picture of characteristics (c) solution on x–t plane (Toro 2013) 

𝑓(𝑈𝐿) 𝑓(𝑈𝑅) 
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2.3.2. Rarefaction wave 

 

We consider the initial value problem with convex flux function f(u):  

𝑢𝑡 + 𝑓(𝑢)𝑥 = 0 

𝑢(𝑥, 0) =  𝑢0(𝑥) = {
𝑢𝐿   if 𝑥 < 0
𝑢𝑅  if 𝑥 > 0

                                                                                                       (2.21) 

In the case of uL < uR , if we consider the wave as a shock one , the entropy condition would be 

violated. The entropy violating solution is like equation (2.7) but it is unstable. It means that small 

changes of initial data lead to large perturbations in the solution. 

As you see in the figure (2-8), uL < uR which makes the middle zone an expansive one. To find the 

solution in the middle zone we take another approach. As the first step, we assume the initial data 

has a linear transition between two points XL and XR (figure 2-9).  

 

𝑢0(𝑥) =  {

𝑢𝐿                                              if 𝑥 <  𝑥𝐿

𝑢𝐿 +
(𝑢𝑅−𝑢𝐿)

(𝑥𝑅−𝑥𝐿)
(𝑥 − 𝑥𝐿)   if   𝑥𝐿 < 𝑥 < 𝑥𝑅

𝑢𝑅                                             if 𝑥 >   𝑥𝑅

                                                                       (2.22)                                                                  

 
The solution for u (x, t), consists of two constant states, uL and uR, separated by a region of 

transition between the values of uL and uR.  It is called rarefaction wave.  

 

 

 
 

Figure 2-8:Centered rarefaction wave: (a) initial data (b) picture of characteristics (c) solution on x–t plane (Toro 

2013) 
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The characteristics emanate at time = 0 as shown in the figure (2-9). The solution for u(x, t) is 

obtained by this characteristics which consists of constant states of uL and uR which are the tail and 

the head of the solution. There is a transition zone between uL and uR. So, this wave is called 

rarefaction. 

 
 

Figure 2-9:Non–centered rarefaction wave (Toro 2013) 

 

In the figure of (2-9), XR is called the head of the rarefaction wave and XL is called the tail of the 

rarefaction wave.  

From XR we have:  

 
𝑥 = 𝑥𝑅 + 𝜆(𝑢𝑅)𝑡                                                                                                                                                     (2.23) 
 
And from XL we have:  

 

𝑥 = 𝑥𝐿 + 𝜆(𝑢𝐿)𝑡                                                                                                                                     (2.24) 
 

 
So, the entire solution becomes: 

 

𝑢(𝑥, 𝑡) =  𝑢𝐿               if               
𝑥−𝑥𝐿

𝑡
 < 𝜆𝐿

𝜆(𝑢) =  
𝑥−𝑥𝐿

𝑡
            if       𝜆𝐿 < 

𝑥−𝑥𝐿

𝑡
< 𝜆𝑅

𝑢(𝑥, 𝑡) =  𝑢𝑅                if              
𝑥−𝑥𝐿

𝑡
  >   𝜆𝑅

                                                                                    (2.25)  
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The size of ΔX of the interval over which the initial value has been spread over, is not effective on 

the final solution, in other words the solution just depends on term of (x/t). The structure of the 

above solution is totally different from the entropy violating solution and is stable.  

As you see in the figure (2-9), the initial data disintegrates because higher values move faster than 

lower values. In the case of a wave emanating from a single point, the wave is called a rarefaction 

wave and the solution becomes: 

 

𝑢(𝑥, 𝑡) =  𝑢𝐿               if               
𝑥

𝑡
 < 𝜆𝐿

𝜆(𝑢) =  
𝑥−𝑥𝐿

𝑡
            if       𝜆𝐿 < 

𝑥

𝑡
< 𝜆𝑅

𝑢(𝑥, 𝑡) =  𝑢𝑅                if              
𝑥

𝑡
  >   𝜆𝑅

                                                                                          (2.26)  

 
. 

2.3.3. The Riemann Problem for the inviscid Burgers equation 

 
   One good example of the Riemann problem for the nonlinear hyperbolic equation is the inviscid 

Burgers equation which has been described by (Toro 2013). 

 

𝑃𝐷𝐸 ∶  𝑢𝑡 + (
𝑢2

2
)
𝑥

= 0,                                              

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛:     𝑢(𝑥, 0) =  {
𝑢𝐿 ,    if      𝑥 < 0
𝑢𝑅 ,   if      𝑥 > 0

                                                                          (2.27) 

 
  

According to what was discussed previously, the exact Riemann solution is a single wave. If we 

apply the entropy condition, the wave is shock or rarefaction. If uL > uR, it is a shock wave and   if 

uL < uR, it is a rarefaction wave. So, the complete solution is: 

 

𝑢(𝑥, 𝑡) =  {
𝑢𝐿  𝑖𝑓 𝑥 − 𝑆𝑡 < 0 
𝑢𝑅 𝑖𝑓 𝑥 − 𝑆𝑡 > 0 

     if 𝑢𝐿 > 𝑢𝑅  (𝑠ℎ𝑜𝑐𝑘 𝑤𝑎𝑣𝑒)                       

𝑠 =
1

2
(𝑢𝐿 + 𝑢𝑅)   according to equation (2 − 20a)

𝑢(𝑥, 𝑡) =

{
 

 𝑢𝐿                   if 
𝑥

𝑡
< 𝑢𝐿

𝑥

𝑡
       if    𝑢𝐿 < 

𝑥

𝑡
< 𝑢𝑅

𝑢𝑅                   if  
𝑥

𝑡
> 𝑢𝑅

    if 𝑢𝐿 < 𝑢𝑅   (𝑅𝑎𝑟𝑒𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑤𝑎𝑣𝑒)

                                  (2.28) 
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In the general solution of the inviscid Burgers equation (2.28), the entropy condition helps us to 

recognize the wave type. An implementation of the solution (2.28) for the inviscid Burgers 

equation has been done in Python and the results are below: 

 

 

 

 

 

 

 

 

Figure 2-10:Simulation result of Inviscid Burgers Equation for different conditions of uL and uR  

 

2.4. Non-linear systems of conservation laws 

 

    In nonlinear scalar equations, if the solution is dependent on speed change, waves do not 

propagate unchanged. In general, waves are developed in the shape of compression or expansion. 

The Riemann problem solution in the simplest case where the flux function is convex, is a shock 

wave or rarefaction wave.  

   In this section, the theory of linear systems of hyperbolic equations and nonlinear scalar 

equations are combined to develop the concept of nonlinear systems of equations. Like the linear 

system, a system of m equations requires splitting the jump into m separate waves. It means that 

for each wave there is a jump and the waves can be shock or rarefaction.  

   This general theory is developed by using the one-dimensional isothermal Euler gas equations 

as an example. The isothermal Euler system is a suitable example since it is a system of 2 equations 

and the nonlinear structure is simple.  
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2.4.1. The isothermal Euler equations  

 

   In the model of one-dimensional isothermal Euler, as an example we consider a tube where 

velocity and density of the gas are the two basic parameters and other parameters like pressure and 

momentum can be determined by them. We will denote the fluid density by the symbol of ρ(x, t) 

and fluid velocity by u(x,t). As the fluid inside the pipe is gas, the density is not constant because 

gas is compressible. The mass equation showing mass balance is below (Toro 2013). 

   𝜌𝑡 + (𝜌𝑢)𝑥 = 0                                                                                                                                   (2.29)          

   If the density is higher than nearby, we expect the gas to push into neighboring gas so the velocity 

would change because of the variation in density. If the velocity is constant, the equation (2.29) 

reduces to equation (2.30). 

𝜌𝑡 + 𝑢𝜌𝑥 = 0                                                                                                                                           (2.30)       

   The equation (2.29) is for density and we need a new equation for velocity. We consider the 

momentum as a conserved quantity because it is physically conserved. The momentum flux is 

expressed with equation (2.31).  

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑙𝑢𝑥 =  𝜌𝑢2 + 𝑝                                                                                                             (2.31)   

   Here p is pressure. By the assumption that ρ, p, u are smooth, the differential equation of 

conservation of momentum is obtained by equation (2.32). 

(𝜌𝑢)𝑡 + (𝜌𝑢
2 + 𝑝)𝑥 = 0                                                                                                                      (2.32)                    

   The combination of equations (2.29) and (2.32) would be a system of two conservation laws. As 

you see ρ and ρu both appear in the equations, so they are coupled equations and since the product 

of unknowns exist, they are nonlinear. 

   In the isothermal flow we can drop the conservation of energy equation and use a simple equation 

of state which relates pressure to density (2.33). In this equation, the constant a is the sound 

velocity in the ideal gas.   

𝑝 =  𝑎2𝜌                                                                                                                                                    (2.33)                

 

So, the nonlinear system of conservation laws has the form of equation (2.34). 
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[
𝜌
𝜌𝑢]

𝑡
+ [

𝜌𝑢

𝜌𝑢2 + 𝑎2𝜌
]
𝑥

= 0                                                                                                                  (2.34)     

We can write the nonlinear system of equation (2.34) to another form. 

𝑞𝑡 + 𝑓′(𝑞)𝑞𝑥 = 0                                                                                                                                    (2.35)    

Where:

𝑞(𝑥, 𝑡) =  [
𝜌
𝜌𝑢] =  [

𝑞1
𝑞2
] 

𝑓(𝑞) =  [
𝜌𝑢

𝜌𝑢2 + 𝑎2𝜌
]
                                                                                                                         (2.36)    

The jacobian matrix  𝑓′(𝑞)  is:  

𝑓′(𝑞) =  [
0 1

−(
𝑞2

𝑞1
)
2

+ 𝑎2    
2𝑞2

𝑞1

] = [
0 1

−𝑢2 + 𝑎2 2𝑢
]                                                                      (2.37)   

The eigen values of  𝑓′(𝑞) are equal to: 

𝜆1 = 𝑢 − 𝑎,                   𝜆2 = 𝑢 + 𝑎                                                                                                      (2.38)  

And the related eigen vectors are equal to: 

𝑟1 = [
1

𝑢 − 𝑎
],      𝑟2 = [

1
𝑢 + 𝑎

]                                                                                                            (2.39)         

 

2.4.1.1.  Strategy for solving the Riemann problem 

 

   Solving the Riemann problem for the Euler isothermal model in a gas tube, one needs to find the 

solution for any arbitrary condition of qL and qR. For obtaining the exact solution we should 

consider the below steps:  

1- Using an appropriate entropy condition, determine the type of each wave (shock or 

rarefaction) 

2- The intermediate condition q* should be identified.  

3- In any rarefaction waves, the solution should be found.  

2.4.1.2.  Shock waves 

 

   In this section, a shock wave which separates two constant states is analyzed. In a shock wave 

there are some relations which connect the left and right state of the shock wave together. We 
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assume that one side is constant, then we find the middle state. Still we use the isothermal gas tube 

as an example here. We assume that there are 2 shock waves in the gas tube. There is an 

intermediate condition q* which is connected to qR and qL. Hence this q* should satisfy the two 

sides.  

According to section (2.3.1), the entropy condition is satisfied during a shock wave. So, the shock 

wave velocity equals to: 

𝑠(𝑞∗ − 𝑞) = 𝑓(𝑞∗ − 𝑞)                                                                                                                          (2.40)   

By using this formula for the gas tube, two equations would be obtained:  

𝑠(𝜌∗ − 𝜌) =  (𝜌∗𝑢∗ − 𝜌𝑢)                                

𝑠(𝜌∗𝑢∗ − 𝜌𝑢) =   𝜌∗𝑢∗
2 − 𝜌𝑢2 + 𝑎2(𝜌∗ − 𝜌)

                                                                                    (2.41)    

   As said before ρ* is a constant state. So (2.41) is a system of two equations with 3 unknowns. 

But for each wave there is a separate equation which satisfies the entropy condition.  There are 

many ways to parametrize the system of (2.41). A simple method is to find s from the first equation 

and put it in the second equation.  

 𝑠 =
(𝜌∗𝑢∗−𝜌𝑢)

(𝜌∗−𝜌)
                                                                                                                                                          (2.42)                                                        

By putting equation (2.42) to the second equation of (2.41) a formula would be obtained for u 

which is based on ρ.  

𝑢(𝜌) =  𝑢𝑐 ±√(𝑎2
𝜌𝑐

𝜌
+ 𝑎2

𝜌

𝜌𝑐
− 2𝑎2)                                                                                             (2.43)                  

The subscript c shows right or left value. For every 𝜌 ≠ 𝜌c , 2 values of u exist which belong to a 

specific wave family. Based on the sign of the equation of (2.43) we find that (+) is for the wave 

with eigenvalue family of  𝜆2 = 𝑢 + 𝑎  and (–) for the wave with eigenvalue family of 𝜆1 = 𝑢 −

𝑎. 

2.4.1.3.  All shock solution 

 

   Now assume we have some arbitrary condition of qL and qR  and we know that both waves are 

shock type. As said in the previous section there are two formulae which connect the middle state 

of q* to the right and left values. So, the formula which connects the middle state to the right state 

is:  
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𝑢(𝜌) =  𝑢𝑅 +√(𝑎2
𝜌𝑅

𝜌
+ 𝑎2

𝜌

𝜌𝑅
− 2𝑎2)                                                                                           (2.44)                                                                                                     

And the formula which connects the middle state to the left state is: 

𝑢(𝜌) =  𝑢𝐿 −√(𝑎2
𝜌𝐿
𝜌
+ 𝑎2

𝜌

𝜌𝐿
− 2𝑎2)                                                                                           (2.45) 

   So, as you see there are two equations with two unknowns. This system of equations can be 

easily solved by substituting the middle state of u in one equation to another one. In this case there 

would be a nonlinear equation which can be solved by the Newton iterative method. The solution 

of two shock waves has been coded with python and the results are in figure (2-11).  

 

2.4.1.4.  Rarefaction wave 

 

   As said before the rarefaction waves are expansive, and they are not discontinuous like shock 

waves. In this condition there would be a function of 𝑞̃(
𝑥

𝑡
) which equals to q (x, t). Keep in mind 

the 𝑞̃(
𝑥

𝑡
)  should satisfy the relation of (2.46). 

𝑓′(𝑞̃(𝑥/𝑡)) = (
𝑥

𝑡
)𝑞̃′(𝑥/𝑡)                                                                                                                      (2.46)  

We will consider how equation (2.46) is applied to find the q in the rarefaction wave and the 

Riemann problem is solved. 

   If we assume that 𝑞̃(𝜀) is a smooth curve that is defined by the variable of ε then this curve is an 

integral curve of the wave vector rp. Generally at each point in an integral curve of a vector field , 

the tangent vector is an eigenvector of 𝑓′(𝑞̃)(LeVeque 2002).In this condition at each point of 𝑞̃  

the tangent is an eigenvector of 𝑓′(𝑞̃(𝜀)).  

So, we can use this theory on the example of isothermal Euler gas as below: 

𝑞̃′(𝜀) =  𝑟1(𝑞̃(𝜀)) = [
1

𝑞̃2

𝑞̃1 
− 𝑎]                                                                                                            (2.47)  

𝑞̃1′ = 1                                                                                                                                                      (2.48)        
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Figure 2-11: The solution for two shock wave at time = 1s,2s,3s with the inputs of  uL = 1.5 ,   uR=-1.5, a=1 , ρL=1 

and ρR=1 
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And, 

𝑞̃2′ =  
𝑞̃2

𝑞̃1 
− 𝑎                                                                                                                                           (2.49)  

𝑞̃1 (𝜀) =  𝜀                                                                                                                                                (2.50)  

So 𝜌 = 𝜀  and according to the equation of (2.49),  

𝑞̃2′(𝜀) =  
𝑞̃2
𝜀
− 𝑎                                                                                                                                     (2.51) 

Equation (2.51) is an ODE which can be solved analytically. After solving (2.51) and substituting 

the value of density and velocity, the final integral curve of (2.52) is obtained.  

𝑢(𝜌) =  −𝑎 [ln
𝜌

𝜌𝐿
−
𝑢𝐿
𝑎
]                                                                                                                      (2.52) 

Also, we know that if 𝜆1(𝑞𝐿) <  𝜆
1(𝑞∗) the wave number 1 is a rarefaction wave and the smooth 

curve of q during a rarefaction wave is as below:  

𝜌(𝜀) =  𝜌𝐿 . 𝑒
𝑢𝐿−𝑎−𝜀

𝑎                                                                                                                                 (2.53) 

  

If we follow the previous procedure for the second wave, we reach to the following equations. 

Also, like the first wave if     𝜆2(𝑞𝑟) <  𝜆
2(𝑞∗) , the second wave is rarefaction.  

𝑢(𝜌) =  𝑎 [ln
𝜌

𝜌𝑅
+
𝑢𝑅
𝑎
]                                                                                                                        (2.54) 

And, 

𝜌(𝜀) =  𝜌𝑅 . 𝑒
𝜀−𝑢𝑅−𝑎

𝑎                                                                                                                                  (2.55)  

 

2.4.1.5. Two rarefactions 

 

   Now we consider two arbitrary values for qL and qR in a way that we know the two waves are 

rarefaction. So, the final form of the solution for one rarefaction wave is: 
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𝑞(𝑥, 𝑡) =

{
 
 

 
 𝑞𝑙               if            

𝑥

𝑡
< 𝜀1

𝑞̃ (
𝑥

𝑡
)        if 𝜀1 < 𝑥/𝑡 < 𝜀2 

𝑞𝑟              if               
𝑥

𝑡
> 𝜀2

                                                                                              (2.56)        

        

𝜀1 =  𝜆(𝑞𝑙)      𝜀2 =   𝜆(𝑞𝑟)                                                                                                                   (2.57) 

So, in a two-rarefaction wave we can find the middle state by solving the equations of (2.52) and 

(2.54). Like for two shock waves, this equation can be solved by the iterative Newton method. The 

solution of two rarefaction waves has been coded in Python and some results are below:  
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Figure 2-12: The solution for two rarefaction wave at time = 1s,2s,3s with the inputs of uL = -1 , uR=1, a=1 , ρL=3 

and ρR=3 
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2.4.1.6. The general Riemann solution for Euler isothermal gas  

 

   As you see in the figures of (2.11) and (2.12) the density of the middle condition determines the 

type of waves. If the density of the middle condition is greater than the left density, the first wave 

is shock and if the density of the middle condition is less than the left density, the first wave is 

rarefaction. Also, if the density of middle condition is greater than the right density, the second 

wave is shock and if the density of middle condition is less than the right density, the second wave 

is rarefaction. So, we can define two functions which are dependent on the middle state density. 

According to the equations (2.58), if the middle state density is greater than the left density, the 

left velocity is greater than the middle velocity and according to the left eigenvalue the wave is 

shock. This statement is also correct for the right wave.   

𝜑𝑙(𝜌) =  {

𝑢(𝜌) =  −𝑎 [ln
𝜌

𝜌𝐿
−
𝑢𝐿

𝑎
]                            if 𝜌 < 𝜌𝑙

𝑢(𝜌) =  𝑢𝐿 − √(𝑎2
𝜌𝐿

𝜌
+ 𝑎2

𝜌

𝜌𝐿
− 2𝑎2)   if 𝜌 > 𝜌𝑙

                                                     (2.58)        

 

𝜑𝑟(𝜌) =  

{
 
 

 
 𝑢(𝜌) =  𝑎 [ln

𝜌

𝜌𝐿
+
𝑢𝐿

𝑎
]                                 if 𝜌 < 𝜌𝑟

𝑢(𝜌) =  𝑢𝑅 +√(𝑎2
𝜌𝑅
𝜌
+ 𝑎2

𝜌

𝜌𝑅
− 2𝑎2)   if 𝜌 > 𝜌𝑟

                                                 (2.59) 

 

 In the case of  𝜑𝑙(𝜌) =  𝜑𝑟(𝜌), we can find the middle state of density. Then by the appropriate 

formula the middle state of the velocity is determined. The whole procedure of isothermal Euler 

gas tube has been coded in python and the results are below:  
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Figure 2-13:The solution for 1-rarefaction 2-shock wave at time = 1s,2s,3s with the inputs of uL = 0, uR=0, a=1 , 

ρL=2 and ρR=1 
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Figure 2-14: The solution for 1-shock 2-rarefaction wave at time = 1s,2s,3s with the inputs of uL = 0, uR=0, a=1 , 

ρL=1 and ρR=2 
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2.4.1.7.  Numerical verification for Euler isothermal gas 

 

   Numerical modeling for Euler isothermal gas flow has been done by Parham Barazesh in his 

master thesis(Barazesh 2019). He has used a method called X force scheme which consists of 

predictor and corrector steps. The initial condition which has been used for the Riemann exact 

solution is the same as figure (2-14).  

 

 

Figure 2-15:Numerical validation for density with the initial condition of figure (2-14) 

 

 

Figure 2-16:Numerical validation for velocity with the initial condition of figure (2-14) 
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2.5. Riemann Problem for linear systems  

 

   In this topic, the characteristic structure of a linear system will be investigated. Further the 

Riemann problem of linear hyperbolic systems is studied. The understanding of this problem 

develops a basis for more complex nonlinear system of equations.  

The linear hyperbolic system is in the form of equation (2.60) which is like equation (2.21) with 

this difference that in the Riemann problem for equation (2.21) there is only one jump but for a 

system of equations there are several jumps simultaneously.  

𝑞𝑡 + 𝐴𝑞𝑥 = 0                                                                                                                                           (2.60)           

The equation of (2.60) is hyperbolic as long as A Є 𝑅𝑚×𝑚  can be diagonalized with real 

eigenvalues, so:  

𝐴 = 𝑅 Ʌ 𝑅−1                                                                                                                                            (2.61)    

In the equation of (2.61), R is the matrix of eigenvectors. so, we can introduce a new variable 

which is defined as:  

⍵ = 𝑅−1 𝑞                                                                                                                                               (2.62)         

So, equation (2.62) lets us to reduce equation (2.60) to equation (2.63) 

⍵𝑡 +  Ʌ ⍵𝑥 = 0                                                                                                                                       (2.63) 

Now we consider the Euler equation with constant gas speed as a linear system. There are two 

conservation equations for isothermal gas: mass balance and momentum balance. The procedure 

for developing the nonlinear Euler isothermal gas equations has been presented in section (2.4.1). 

Now by considering the constant gas speed, the equation system (2.64) becomes linear.   

[
𝑞1
𝑞2
]
𝑡
+ [

0 1
𝑐2 − 𝑣2 2𝑣

] [
𝑞1
𝑞2
]
𝑥
= 0                                                                                                       (2.64)    

And the initial value for Riemann problem is: 

𝑞0 = {
𝑞𝐿 if  𝑥 < 0
𝑞𝑅 if 𝑥 > 0

                                                                                                                                 (2.65) 

In the equation of (2.64), c and v constants are symbols for sound velocity and gas velocity 

respectively.  

So, A =  [
0 1

𝑐2 − 𝑣2 2𝑣
]   and   𝜆1=𝑣 − 𝑐   and    𝜆2=𝑣 − 𝑐 .  
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𝑅 =  [
1 1

𝑣 − 𝑐 𝑣 + 𝑐
]                                                                                                                             (2.66) 

The inverse of matrix R is:  

𝑅−1 = [
𝑣 + 𝑐 −1
𝑐 − 𝑣 1

]                                                                                                                             (2.67)  

According to the equation of (2.62): 

[
⍵1
⍵2
] =

1

2𝑐
[
(𝑣 + 𝑐)𝑞1 − 𝑞2
(𝑐 − 𝑣)𝑞1 + 𝑞2

]                                                                                                                 (2.68)        

 

According to the characteristic solution of linear hyperbolic scalar:  

 ⍵ = ⍵0 (𝑥 −  𝜆𝑡)                                                                                                                                  (2.69)                        

So according to the equation of (2.68) the solution for ⍵ is:  

⍵ = [
⍵1
⍵2
] = [

𝑣 + 𝑐

2𝑐
 𝑞1
0(𝑥 − 𝜆1𝑡) − 

1

2𝑐
𝑞2
0(𝑥 − 𝜆1𝑡)

𝑐 − 𝑣

2𝑐
𝑞1
0(𝑥 − 𝜆2𝑡) +

1

2𝑐
𝑞2
0(𝑥 − 𝜆2𝑡)

]                                                                   (2.70) 

According to (2.62):  

 𝑞(𝑥, 𝑡) =  𝑅⍵(𝑥, 𝑡)                                                                                                                                (2.71)    

So, the final solution for q1 and q2 is as below: 

 𝑞(𝑥, 𝑡) = [

𝑣+𝑐

2𝑐
 𝑞1
0(𝑥 − 𝜆1𝑡) − 

1

2𝑐
𝑞2
0(𝑥 − 𝜆1𝑡) +

𝑐−𝑣

2𝑐
𝑞1
0(𝑥 − 𝜆2𝑡) +

1

2𝑐
𝑞2
0(𝑥 − 𝜆2𝑡)

𝑣2−𝑐2

2𝑐
 𝑞1
0(𝑥 − 𝜆1𝑡) − 

𝑣−𝑐

2𝑐
𝑞2
0(𝑥 − 𝜆1𝑡) +

𝑐2−𝑣2

2𝑐
𝑞1
0(𝑥 − 𝜆2𝑡) +

𝑣+𝑐

2𝑐
𝑞2
0(𝑥 − 𝜆2𝑡)

](2.72) 

The solution of equation (2.72) is coded in python and the results for a Riemann initial condition 

is as below:  
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Figure 2-17:The corresponding results for initial condition of U1L=2, U1R= -1, U2L = 1.5, U2R= -1, and constants of 

c=2, v=1. The graphs are plotted at T1 = 1, T2=2, T3=3 
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2.5.1. The Riemann problem for full Euler equation 

 

   In the previous section we assumed that the gas tube is immersed in a water bath and the 

temperature is constant. So, the model name was isothermal Euler equation. In this section the 

term of energy will be introduced, and the full Euler equation will be solved by Riemann problem. 

The procedure and theory behind is from the book of Riemann solvers and numerical methods for 

fluid dynamics (Toro 2013). 

   The initial value problem of full Euler equation in a way that there would be a discontinuity in 

x=0, and left and right values for gas properties, is Riemann problem. The conservation laws and 

initial conditions are as below:  

𝑈𝑡 + 𝐹(𝑈)𝑥 = 0                                                                                                                                      (2.73)       

𝑈 = [
𝜌
𝜌𝑢
𝐸
]      , 𝐹 =  [

𝜌𝑢

𝜌𝑢2 + 𝑃
𝑢(𝐸 + 𝑃)

]                                                                                                         (2.74)        

Where E is the energy of gas,  

The initial condition of Riemann problem is as below:  

𝑈(𝑥, 0) =  {
𝑈𝐿   if  𝑥 < 0
𝑈𝑅  if  𝑥 > 0

                                                                                                                     (2.75)       

In solving this nonlinear system, it is better to use the primitive variables (ρ, u, p) where u is the 

particle velocity, p is the pressure and ρ is the density. As you see the initial condition (2.75) 

consists of two constants of the primitive variables for two sides (UL and UR).Hence for shock 

waves the Rankine-Hugoniot condition should be determined on the conservation equations but 

the final formula is again based on the primitive variables.  Like the previous section the physical 

interpretation of Riemann problem is the gas inside a tube separated by a membrane. When the 

membrane is torn, this discontinuity would deform, and each wave propagates with own speed and 

shape.  

2.5.1.1.  Pressure and velocity equations 

 

   In this section, the related equations for determining the middle value of pressure and velocity 

are presented. 
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The root of the following equation gives the middle value pressure. 

𝑓(𝑝, 𝑈𝐿 , 𝑈𝑅) =  𝑓𝐿(𝑝, 𝑈𝐿) + 𝑓𝑅(𝑝, 𝑈𝑅) + 𝛥𝑢 = 0 , 𝛥𝑢 = 𝑢𝑅 − 𝑢𝐿                                      (2.76) 

The function for 𝑓𝐿  is given by (2.77): 

𝑓𝐿(𝑝, 𝑈𝐿) =  

{
 
 

 
 

(𝑝 − 𝑝𝐿) [
𝐴𝐿

𝑝 + 𝐵𝐿
]

1
2
                 if 𝑝 > 𝑝𝐿  (𝑠ℎ𝑜𝑐𝑘)      

2𝑎𝐿
(𝛾 − 1)

[(
𝑝

𝑝𝐿
)
𝛾−1
2𝛾 − 1]          if 𝑝 < 𝑝𝐿   (𝑅𝑎𝑟𝑒𝑓𝑎𝑐𝑡𝑖𝑜𝑛)

                                     (2.77) 

 

 And the function for 𝑓𝑅  is given by (2.78): 

𝑓𝑅(𝑝, 𝑈𝑅) =  

{
 
 

 
 

(𝑝 − 𝑝𝑅) [
𝐴𝑅

𝑝 + 𝐵𝑅
]

1
2
         if 𝑝 > 𝑝𝑅 (𝑠ℎ𝑜𝑐𝑘)     

2𝑎𝑅
(𝛾 − 1)

[(
𝑝

𝑝𝑅
)
𝛾−1
2𝛾 − 1]          if 𝑝 < 𝑝𝑅  (𝑅𝑎𝑟𝑒𝑓𝑎𝑐𝑡𝑖𝑜𝑛)

                                    (2.78) 

𝛾 , 𝑎𝐿 and 𝑎𝑅 are gas heat capacity and sound velocity constants in the left and right sides 

respectively.  

And the constants of  𝐴𝑅  , 𝐵𝑅 , 𝐴𝐿 𝑎𝑛𝑑 𝐵𝐿   are determined as below:  

𝐴𝐿 =
2

(𝛾 + 1)𝜌𝐿
 , 𝐵𝐿 =

(𝛾 − 1)

(𝛾 + 1)
𝑝𝐿                                                                                                     (2.79) 

𝐴𝑅 =
2

(𝛾 + 1)𝜌𝑅
 , 𝐵𝑅 =

(𝛾 − 1)

(𝛾 + 1)
𝑝𝑅                                                                                                    (2.80) 

And the velocity for middle state is determined by (2.81):  

𝑢 =  
1

2
(𝑢𝐿 + 𝑢𝑅) +

1

2
[𝑓𝑅(𝑝𝑚) − 𝑓𝐿(𝑝𝑚)]                                                                                          (2.81)   

As depicted in the figure (2-18), there are two possibilities for the right and left waves. There 

are shock or rarefaction. Also, there would be a contact discontinuity between these two waves 

showing the eigen value of u. Hence during the middle discontinuity just density changes.  
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Figure 2-18:Structure of waves in Riemann solution for full Euler equations(Toro 2013) 

 

For obtaining the formula for the function of f based on the wave type, shock or rarefaction the 

below conditions should be considered: 

If function f is for shock wave, the Rankine-Hugoniot condition should be satisfied on the 

conservation laws then the   necessary relations for function f can obtained based on the primitive 

variables.   

If function f is for rarefaction wave, the Riemann invariants should be implemented on the 

primitive variables. So, by the integral curve the necessary formula for function f are obtained.  

2.5.1.2.  function of 𝒇𝑳 for left shock 

 

   For the proof of left shock wave equation of 𝑓𝐿 (2.77) you can read (Toro 2013).  The middle 

left density is obtained by the equation of (2.82).  

𝜌𝑚𝐿 = 𝜌𝐿 [

(𝛾−1)

(𝛾+1)
+
𝑝𝑚
𝑝𝐿

(𝛾−1)

(𝛾+1)
(
𝑝𝑚
𝑝𝐿
)+1
]                                                                                                                         (2.82)       

And the middle value of velocity is obtained by (2.83): 

𝑢𝑚 = 𝑢𝐿 − 𝑓𝐿(𝑝𝑚, 𝑈𝐿)                                                                                                                         (2.83)  

2.5.1.3.  function of 𝒇𝑳 for left rarefaction 

 

   For the proof of left rarefaction wave equation of 𝑓𝐿 (2.74) you can read (Toro 2013).  The middle 

left density is obtained by the equation of (2.81). 
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𝜌𝑚𝐿 = 𝜌𝐿 (
𝑝𝑚
𝑝𝐿
)

1
𝛾
                                                                                                                                    (2.84) 

𝑎𝑚𝐿 = 𝑎𝐿 (
𝑝𝑚

𝑝𝐿
)

𝛾−1

2𝛾
                                                                                                                                  (2.85)      

𝑎𝑚𝐿 is the sound velocity constant in middle left region and the middle value of velocity is obtained 

by (2.80).  

2.5.1.4.  function of 𝒇𝑹 for right shock 

 

   For the proof of left shock wave equation of 𝑓𝑅 (2.78) you can read(Toro 2013). The middle right 

density is obtained by the equation of (2.86).  

𝜌𝑚𝑅 = 𝜌𝑅 [

(𝛾−1)

(𝛾+1)
+
𝑝𝑚
𝑝𝑅

(𝛾−1)

(𝛾+1)
(
𝑝𝑚
𝑝𝑅
)+1
]                                                                                                                        (2.86)  

And the middle value of velocity is obtained by (2.87): 

𝑢𝑚 = 𝑢𝑅 + 𝑓𝑅(𝑝𝑚, 𝑈𝑅)                                                                                                                        (2.87) 

 

2.5.1.5. function of 𝒇𝑹 for right rarefaction  

 

   For the proof of right rarefaction wave equation of 𝑓𝑅 (2.78) you can read (Toro 2013). The 

middle right density is obtained by the equation of (2.88): 

𝜌𝑚𝑅 = 𝜌𝑅 (
𝑝𝑚
𝑝𝑅
)

1
𝛾
                                                                                                                                   (2.88) 

And the middle value of velocity is obtained by (2.87). 

 

2.5.1.6.  Pressure numerical solution 

 

There are several methods for solving the equation of (2.76). A reliable and fast solution is 

obtained by newton iterative method. In this method the behavior of the function is important 

because in some case the solution may not be convergent. Also, the initial guess should be selected 
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wisely since the function may diverge by some initial guesses. The related formula for newton 

iterative method is as below: 

𝑝1 = 𝑝0 −
𝑓(𝑝0)

𝑓́(𝑝0)
                                                                                                                                    (2.89) 

The derivative of equation (2.77) and (2.78)  is as below:  

𝑓′𝐾 = 

{
 
 

 
 (

𝐴𝐾
𝐵𝐾 + 𝑝

)
1/2

[1 −
𝑝 − 𝑝𝐾

2(𝑝𝐾 + 𝑝)
]                         if 𝑝 > 𝑝𝐾    𝑆ℎ𝑜𝑐𝑘 𝑤𝑎𝑣𝑒

1

𝜌𝐾𝑎𝐾
(
𝑝

𝑝𝐾
)−(𝛾+1)/2𝛾                                if 𝑝 < 𝑝𝐾   𝑅𝑎𝑟𝑒𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑤𝑎𝑣𝑒

                      (2.90) 

As you see in the equation of (2.90) you can find the 𝑓′𝐿 𝑎𝑛𝑑 𝑓′𝑅  by substitution of K by R or L. 

 

2.5.1.7.  Complete solution for left wave 

 

The left wave is either a shock wave or a rarefaction wave. In the case of shock wave, the speed 

of shock is obtained by (2.91): 

𝑆𝐿 = 𝑢𝐿 − 𝑎𝐿 [
𝛾 + 1

2𝛾

𝑝𝑚
𝑝𝐿
+
𝛾 − 1

2𝛾
]

1
2
                                                                                                   (2.91) 

   If the left wave is rarefaction, there would be 2 points which move with different speeds. One 

point is the wave head and the other one is the wave tail. These two points are obtained as below:  

𝑆𝐻 = 𝑢𝐿 − 𝑎𝐿  and 𝑆𝑇 =  𝑢𝑚 − 𝑎𝑚𝐿                                                                                                  (2.92) 

 

Figure 2-19:Sampling in two possibilities for left wave. (a) is shock condition and (b) is rarefaction condition(Toro 

2013) 

 

In the case of rarefaction, the solution inside the wave should be determined by the integral curve.  
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𝑈𝐿𝑓𝑎𝑛 = 

{
 
 

 
 𝜌 =  𝜌𝐿 [

2

(𝛾+1)
+

(𝛾−1)

(𝛾+1)𝑎𝐿
(𝑢𝐿 −

𝑥

𝑡
)]

2

𝛾−1

𝑢 =  
2

𝛾+1
[𝑎𝐿 +

(𝛾−1)

2
𝑢𝐿 +

𝑥

𝑡
]                  

𝑝 = 𝑝𝐿 [
2

(𝛾+1)
+

(𝛾−1)

(𝛾+1)𝑎𝐿
(𝑢𝐿 −

𝑥

𝑡
)]

2𝛾

𝛾−1

                                                                         (2.93) 

 

2.5.1.8.  Complete solution for right wave  

 

   Like left wave, right wave is shock wave or rarefaction wave. For the shock wave the shock 

speed is obtained by (2.94):  

𝑆𝑅 = 𝑢𝑅 + 𝑎𝑅 [
𝛾 + 1

2𝛾

𝑝𝑚
𝑝𝑅

+
𝛾 − 1

2𝛾
]

1
2
                                                                                                  (2.94) 

If the right wave is a rarefaction wave, there would be two point which move with different speeds. 

One point would be the head and the other one is the  tail of the rarefaction wave. 

𝑆𝐻 = 𝑢𝑅 + 𝑎𝑅  𝑎𝑛𝑑 𝑆𝑇 =  𝑢𝑚 + 𝑎𝑚𝑅                                                                                                 (2.95) 

 

Figure 2-20:Sampling in two possibilities for right wave. (a) is shock condition and (b) is rarefaction condition(Toro 

2013) 

 

In the case of right rarefaction wave, the solution inside the wave is obtained by (2.96): 

𝑈𝑅𝑓𝑎𝑛 = 

{
 
 

 
 𝜌 = 𝜌𝑅 [

2

(𝛾+1)
−

(𝛾−1)

(𝛾+1)𝑎𝐿
(𝑢𝐿 −

𝑥

𝑡
)]

2

𝛾−1

𝑢 =  
2

𝛾+1
[−𝑎𝑅 +

(𝛾−1)

2
𝑢𝑅 +

𝑥

𝑡
]           

𝑝 = 𝑝𝑅 [
2

(𝛾+1)
−

(𝛾−1)

(𝛾+1)𝑎𝐿
(𝑢𝑅 −

𝑥

𝑡
)]

2𝛾

𝛾−1

                                                                          (2.96)  
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The procedure for solving full Euler equation has been coded in python and the results for all wave 

type are as below:  

 

Figure 2-21:All shock Riemann solution for full Euler model. The Initial condition is : uL=1.5 , uR= -1.5,pL=2, 

pR=2.1, rho_L= 1 , rho_R= 1.2, 𝛾 = 1.4 
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Figure 2-22:All Rarefaction Riemann solution for full Euler model. The Initial condition is: uL=-1, uR= 1, pL=2.5, 

pR=2, ρL= 3 , ρR= 3.5, 𝛾 = 1.4 
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Figure 2-23:1-Rarefaction 2- shock Riemann solution for full Euler model. The Initial condition is: uL=0, uR= 0, 

pL=4, pR=2.5, ρL= 3, ρR= 2, 𝛾 = 1.4 
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Figure 2-24:1-shock 2- rarefaction Riemann solution for full Euler model. The Initial condition is: uL=0, uR= 0, 

pL=2.5, pR=4, ρL= 2 , ρR= 3, 𝛾 = 1.4 

 

2.5.1.9. Numerical validation for full Euler model 

 

   The numerical solution for full Euler model has been done by Parham Barazesh in his master 

thesis. He has used a method called X force scheme consists of predictor and corrector steps  

(Barazesh 2019). The initial condition which has been used for the Riemann exact solution is the 

same as figure (2-24).  
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Figure 2-25:Numerical validation for density with initial condition of figure (2-24) 

 

 
Figure 2-26:Numerical validation for pressure with initial condition of figure (2-24) 

 
Figure 2-27:Numerical validation for pressure with initial condition of figure (2-24) 
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3. METHODOLOGY  

  

 

 

   In the previous chapter, the Riemann problem was presented for scalar linear equation, system 

of linear equations, system of nonlinear equations including isothermal gas and full Euler 

equations. In this chapter the Riemann problem for two phase flow drift flux model is going to be 

developed and solved. For two phase flow, three conservation equations including conservation of 

gas mass, liquid mass and total momentum exist.  

 

𝜕(𝜌𝑔𝛼𝑔)

𝜕𝑡
+
𝜕(𝜌𝑔𝛼𝑔𝑢)

𝜕𝑥
= 0                                                                                                                                      (3.1) 

 

𝜕(𝜌𝑙𝛼𝑙)

𝜕𝑡
+
𝜕(𝜌𝑙𝛼𝑙𝑢)

𝜕𝑥
= 0                                                                                                                                         (3.2) 

 

𝜕[(𝜌𝑔𝛼𝑔 + 𝜌𝑙𝛼𝑙)𝑢]

𝜕𝑡
+
𝜕[(𝜌𝑔𝛼𝑔 + 𝜌𝑙𝛼𝑙)𝑢

2 + 𝑝]

𝜕𝑥
= 0                                                                                       (3.3) 

 

The volumetric concentration of gas is obtained by equation (3.4): 

𝑦 =
𝜌𝑔𝛼𝑔

𝜌
                                                                                                                                                                    (3.4) 

Here 𝛼𝑔 is gas volume percentage and 𝑦 is the gas mass concentration.  

By substituting equation (3.4) in equation (3.1) a new equation would be obtained:  

𝜕(𝜌𝑦)

𝜕𝑡
+
𝜕(𝜌𝑦𝑢)

𝜕𝑥
= 0                                                                                                                                               (3.5) 

The mixture density is obtained by equation (3.6): 

𝜌 =  𝜌𝑔𝛼𝑔 + 𝜌𝑙𝛼𝑙                                                                                                                                                        (3.6)  

Here 𝛼𝑙 is liquid volume percentage. 

By substituting the equation of (3.6) in equation (3.2) a new equation would be obtained:  
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𝜕(𝜌)

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
= 0                                                                                                                                                    (3.7) 

Also, by substituting the equation of (3.6) in equation of (3.3) a new equation would be obtained:  

𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕(𝜌𝑢2 + 𝑝)

𝜕𝑥
= 0                                                                                                                                        (3.8) 

Now the equations of (3.5), (3.7) and (3.8) are another form for representing two phase flow 

conservation equations. Now we can define the function of f and q like in section (2-4-1). 

𝑞 = [

𝜌𝑦
𝜌
𝜌𝑢
]                                                                                                                                                                     (3.9)    

𝑓 = [

𝜌𝑦𝑢
𝜌𝑢

𝜌𝑢2 + 𝑝
]                                                                                                                                                        (3.10)  

 

For Riemann problem, solving for the vector of primitive variables make the problem easier. The 

primitive variables are pressure, velocity and density.  

𝑤 = [𝜌, 𝑢, 𝑝]                                                                                                                                                             (3.11) 

It is possible to reform the two-phase flow conservations laws to rewrite the equations in terms of 

primitive variables.  

If we expand (3.5), a new equation would be obtained for y:  

𝑦 (
𝜕(𝜌)

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
) + 𝜌 (

𝜕𝑦

𝜕𝑡
+ 𝑢

𝜕𝑦

𝜕𝑥
) = 0                                                                                                         (3.12) 

According to the equation of (3.7), the first term of equation (3.12) is equal to zero. So, the equation 

of (3.12) turns to:  

𝜕𝑦

𝜕𝑡
+ 𝑢

𝜕𝑦

𝜕𝑥
= 0                                                                                                                                                         (3.13) 

By expanding the equation of (3.8), a new equation will be obtained for velocity:  

𝑢 [
𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
] + 𝜌 [

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
] +

𝜕𝑝

𝜕𝑥
= 0                                                                                                     (3.14) 

Based on equation (3.7), Again the first term of equation (3.14) is equal to zero. So, a new equation 

for the primitive variable of u is obtained:  
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+
1

𝜌

𝜕𝑝

𝜕𝑥
= 0                                                                                                                                           (3.15) 

For obtaining an equation for pressure we should introduce a new function (3.16).  

𝐷𝑡 =
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
                                                                                                                                                       (3.16) 

𝐷𝑡𝑦 = 0                                                                                                                                                                     (3.17) 

𝐷𝑡𝑝 =  (
𝜕𝑝

𝜕𝜌
)𝑦𝐷𝑡𝜌 + (

𝜕𝑝

𝜕𝑦
)𝜌𝐷𝑡𝑦                                                                                                                            (3.18) 

𝐷𝑡𝑝 =  𝑐
2𝐷𝑡𝜌                                                                                                                                                           (3.19) 

𝐷𝑡𝜌 + 𝜌
𝜕𝑢

𝜕𝑥
= 0                                                                                                                                                       (3.20) 

By mixing the equations of (3.19) and (3.20), the equation of (3.21) would be obtained:  

𝐷𝑡𝑝 + 𝜌𝑐
2
𝜕𝑢

𝜕𝑥
= 0                                                                                                                                                  (3.21) 

If we expand the equation of (3.21), another equation will be obtained for the primitive variable of 

p. 

𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑥
+ 𝜌𝑐2

𝜕𝑢

𝜕𝑥
= 0                                                                                                                         ( 3. 22)  

So, three equations of two-phase flow can be written as equation (3.33):  

⌈

𝑢
𝑝
𝑦
⌉

𝑡

+ [
𝑢 𝜌 0

𝑐𝜌2 𝑢 0
0 0 𝑢

] [

𝑢
𝑝
𝑦
]

𝑥

= 0                                                                                                                            (3.23)  

The jacobian matrix for equation (3.23) is the second matrix which is multiplied by qx and the 

eigen values for this matrix is as below:  

𝜆1 = 𝑢 − 𝑐    𝜆2 = 𝑢    𝜆3 = 𝑢 + 𝑐                                                                                                                      (3.24) 

 

3.1. The Riemann problem 

 

   The Riemann problem for two phase flow equations is the initial value problem for conservation 

laws of (3.10).  

𝑈𝑡 + 𝐹(𝑈)𝑥 = 0                                                                                                                                                      (3.25) 
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𝑈(𝑥, 0) = 𝑈0(𝑥) = {
𝑈𝐿       if 𝑥 < 0
𝑈𝑅     if 𝑥 > 0

                                                                                                                    (3.26) 

As mentioned previously, in Riemann problem it is better to use primitive variables instead of 

conserved variables.  

 

Figure 3-1:Riemann solution structure for two phase flow in x-t plan 

 

   The exact Riemann solution for two phase flow has three waves and the eigen values of these 

wave were determined as equations (3.24). According to figure (3-1), theses waves separate the 

space into four zones. WR is data for right hand side, W*R is the data for second region from right, 

W*L is the data for third region and WL is the data for left hand side. The middle wave creates two 

sub regions by a contact discontinuity however the first and third waves are either shock or 

rarefaction wave. By further analyzing the eigen-structure it can be shown that the pressure and 

velocity doesn’t change across the middle contact discontinuity.  So just the gas mass concentration 

and the mixture density change across the middle wave. So, the unknowns are p*, u*, ρ*R and ρ*L.  

3.1.1. Equations for pressure and velocity 

 

   To find the pressure and velocity in the star zone we should find all equations which relate the 

right state and left state to the middle state. For finding these equations, we should consider all 

conditions which may happen including all shock wave, all rarefaction wave, 1-shock 2- 

rarefaction and 1-rarefaction 2- shock.  

For this problem we have assumed that the liquid is incompressible and the velocities of two phase 

are the same, so the slip velocity is zero.  
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𝑝 = 𝑎2𝜌𝑔                                                                                                                                                  (3.27) 

So, by substituting the equation of (3.27) in term of 𝜌𝑔 in the equation of (3.4) a new equation for 

pressure would be obtained:   

𝑝 =
𝜌𝜌𝑙𝑎

2𝑦

𝜌𝑙 − 𝜌(1 − 𝑦)
                                                                                                                                 (3.28) 

Here 𝜌𝑙 is the density of incompressible fluid. 

Also, by taking derivation of equation (3.28) by  𝜌 , an equation for c is obtained:  

 

𝑐 =  
𝜕𝑝
𝜕𝜌
                    

𝑐 =
𝜌𝑙𝑎√𝑦

𝜌𝑙 − 𝜌(1 − 𝑦)

                                                                                                                                 (3.29) 

 

3.1.1.1.  The velocity equation across left shock wave 

 

For left shock wave with the speed of SL we assume that the left shock is an immobile boundary 

which the parameters in each side can be defined as figure (3.2).  

 

Figure 3-2 Left Shock wave (a) the speed of wave is SL (b) the new frame in which shock speed is zero and relative 

velocities are defined 

 

𝑢̂𝐿 = 𝑢𝐿 − 𝑆𝐿   and  𝑢̂∗ = 𝑢∗ − 𝑆𝐿                                                                                                       (3.30)  
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By using Rankine-Hugoniot condition as described in section (2.3.1) for the conservation 

equations of (3.5) ,(3.7) and (3.8) the following equations are obtained:  

𝜌𝐿𝑢̂𝐿 = 𝜌∗𝑢̂∗                                                                                                                                             (3.31) 

𝜌𝐿𝑢̂𝐿
2 + 𝑝𝐿 = 𝜌∗𝑢̂∗

2 + 𝑝∗                                                                                                                         (3.32) 

𝑦𝐿 = 𝑦∗                                                                                                                                                      (3.33) 

Now mass flux rate across left shock can be introduced as:   

𝑄𝐿 = 𝜌𝐿𝑢̂𝐿 = 𝜌∗𝑢̂∗                                                                                                                                 (3.34) 

Now we can use equation (3.32) to solve mass flux based on pressure:  

𝑄𝐿 = −
𝑝∗ − 𝑝𝐿
𝑢̂∗−𝑢̂𝐿

                                                                                                                                       (3.35) 

From equation (3.30):  

𝑄𝐿 = −
𝑝∗ − 𝑝𝐿
𝑢∗ − 𝑢𝐿

                                                                                                                                      (3.36) 

From equation (3.36) we obtain:  

𝑢∗ = 𝑢𝐿 −
𝑝∗ − 𝑝𝐿
𝑄𝐿

                                                                                                                                 (3.37) 

Now we are close to obtain the middle velocity just based on middle pressure and left-hand side 

values. We can use the following relations:  

𝑢̂𝐿 =
𝑄𝐿
𝜌𝐿
  ,    𝑢̂∗ =

𝑄𝐿
𝜌∗

 

 The equation of (3.35) would turn to:  

𝑄𝐿
2 = −

𝑝∗ − 𝑝𝐿
1
𝜌∗𝐿

−
1
𝜌𝐿

                                                                                                                                    (3.38) 

Using the equation of (3.39) the density in the star zone can be related to the density behind the 

shock wave. 

𝜌∗𝐿 =
𝑝∗𝜌𝐿𝜌𝑙

𝑝𝐿𝜌𝑙 − 𝑝𝐿𝜌𝐿(1 − 𝑦𝐿) + 𝑝∗𝜌𝐿(1 − 𝑦𝐿)
                                                                                   (3.39) 

Here 𝜌𝑙 is the incompressible fluid density. By substituting (3.39) in (3.38), then (3.37),     a  new 

equation for  velocity in star zone would be accomplished .  



 

46 
 

𝑢∗ = 𝑢𝐿 −√[(
𝑝𝐿
𝑝∗𝜌𝐿

−
𝑝𝐿(1 − 𝑦𝐿)

𝑝∗𝜌𝑙
+
1 − 𝑦𝐿
𝜌𝑙

−
1

𝜌𝐿
) (𝑝𝐿 − 𝑝∗)]                                                   (3.40) 

Now we define a new function which describe the star region velocity: 

𝑢∗ = 𝑢𝐿 + 𝑓𝐿(𝑝∗,𝑊𝐿)                                                                                                                             (3.41) 

So 𝑓𝐿 for left shock is determined by equation (3.40) and (3.41): 

𝑓𝐿(𝑝∗,𝑊𝐿) = −√[(
𝑝𝐿
𝑝∗𝜌𝐿

−
𝑝𝐿(1 − 𝑦𝐿)

𝑝∗𝜌𝑙
+
1 − 𝑦𝐿
𝜌𝑙

−
1

𝜌𝐿
) (𝑝𝐿 − 𝑝∗)]                                          (3.42) 

 

3.1.1.2. The velocity equation for left rarefaction wave 

 

   For the case of left rarefaction wave, the generalized Riemann invariant is used to make 

connection between unknown star region and the left-hand side value. 

Any curves which connect the left-hand side to the star region should satisfy the following 

equation:  

𝜕𝑢

𝜕𝜌
= +

𝑐(𝜌)

𝜌
                                                                                                                                            (3.43) 

The plus or minus depends on which wave family is considered. By substituting (3.29) in (3.43), 

for left rarefaction wave the Riemann invariant would be:   

𝑢𝐿 − 𝑢∗ = −∫
𝜌𝑙𝑎√𝑦𝐿

[𝜌𝑙 − 𝜌(1 − 𝑦𝐿)]𝜌
𝜕𝜌                                                                                            (3.44)

𝜌𝐿

𝜌∗

 

The integral of (3.44) can be solved analytically:  

 𝑢∗ = 𝑢𝐿 + 𝑎√𝑦 ln [(
1

𝜌∗
−
1−𝑦𝐿

𝜌𝑙
) (

𝜌𝐿

1−
1−𝑦𝐿
𝜌𝑙

𝜌𝐿
)]                                                                                  (3.45) 

By substituting (3.39) in (3.45), the final equation for velocity across left rarefaction wave is 

obtained. 

𝑢∗ = 𝑢𝐿 + 𝑎√𝑦 ln [(
𝑝𝐿
𝑝∗𝜌𝐿

−
𝑝𝐿
𝑝∗𝜌𝑙

(1 − 𝑦𝐿))(
𝜌𝐿

1 −
1 − 𝑦𝐿
𝜌𝑙

𝜌𝐿

)]                                                 (3.46) 
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So 𝑓𝐿 for left rarefaction is determined by equation (3.46) and (3.41): 

𝑓𝐿(𝑝∗,𝑊𝐿) =  𝑎√𝑦𝐿 ln [(
𝑝𝐿
𝑝∗𝜌𝐿

−
𝑝𝐿
𝑝∗𝜌𝑙

(1 − 𝑦𝐿))(
𝜌𝐿

1 −
1 − 𝑦𝐿
𝜌𝑙

𝜌𝐿

)]                                          (3.47) 

 

 

Figure 3-3:Left rarefaction wave which connect left hand side condition to unknown left star zone 

 

3.1.1.3.  The velocity equation for right shock wave 

 

   Like left shock wave, for right rarefaction wave we consider a frame in which the right shock 

speed is zero and relative velocities are defined as below:  

𝑢̂𝑅 = 𝑢𝑅 − 𝑆𝑅   and  𝑢̂∗ = 𝑢∗ − 𝑆𝑅                                                                                                      (3.48)  

Also, by using Rankine-Hugoniot condition as described in section of (2.3.1) for the conservation 

equations of (3.5) ,(3.7) and (3.8)  the following equations are obtained: 

𝜌𝑅𝑢̂𝑅 = 𝜌∗𝑢̂∗                                                                                                                                            (3.49) 

𝜌𝑅𝑢̂𝑅
2 + 𝑝𝑅 = 𝜌∗𝑢̂∗

2 + 𝑝∗                                                                                                                        (3.50) 

𝑦𝑅 = 𝑦∗                                                                                                                                                      (3.51) 

Now mass flux rate across left shock can be introduced as:   

𝑄𝑅 = −𝜌𝑅𝑢̂𝑅 = −𝜌∗𝑢̂∗                                                                                                                         (3.52) 

Now by using equation (3.50), an expression for mass flux rate is obtained:  

𝑄𝑅 =
𝑝∗ − 𝑝𝑅
𝑢∗ − 𝑢𝑅

                                                                                                                                          (3.53) 

So,  



 

48 
 

𝑢∗ = 𝑢𝑅 +
𝑝∗ − 𝑝𝑅
𝑄𝑅

                                                                                                                                 (3.54) 

The equation of (3.53) can be written like equation (3.55):  

𝑄𝑅
2 =

𝑝∗ − 𝑝𝑅

−
1
𝜌∗𝐿

+
1
𝜌𝐿

                                                                                                                                    (3.55) 

The density of right star zone can be related to the right value of density by following equation:  

𝜌∗𝑅 =
𝑝∗𝜌𝑅𝜌𝑙

𝑝𝑅𝜌𝑙 − 𝑝𝑅𝜌𝑅(1 − 𝑦𝑅) + 𝑝∗𝜌𝑅(1 − 𝑦𝑅)
                                                                                (3.56) 

By substituting equation of (3.56) in (3.55) then the result in (3.54) , the final equation for star 

region velocity is obtained. 

𝑢∗ = 𝑢𝑅 +√[(
𝑝𝑅
𝑝∗𝜌𝑅

−
𝑝𝑅(1 − 𝑦𝑅)

𝑝∗𝜌𝑙
+
1 − 𝑦𝑅
𝜌𝑙

−
1

𝜌𝑅
) (𝑝𝑅 − 𝑝∗)]                                                (3.57) 

𝑢∗ = 𝑢𝑅 + 𝑓𝑅(𝑝∗,𝑊𝑅)                                                                                                                            (3.58) 

So, the 𝑓𝑅 for right shock wave is as below: 

𝑓𝑅(𝑝∗,𝑊𝑅) = √[(
𝑝𝑅
𝑝∗𝜌𝑅

−
𝑝𝑅(1 − 𝑦𝑅)

𝑝∗𝜌𝑙
+
1 − 𝑦𝑅
𝜌𝑙

−
1

𝜌𝑅
) (𝑝𝑅 − 𝑝∗)]                                           (3.59) 

3.1.1.4.  The velocity equation for right rarefaction wave 

 

   For the case of right rarefaction wave, the generalized Riemann invariant is used to make 

connection between unknown star region and the left-hand side value like left rarefaction wave. 

Any curves which connect the right-hand side to the star region should satisfy the following 

equation:  

𝜕𝑢

𝜕𝜌
= +

𝑐(𝜌)

𝜌
                                                                                                                                            (3.60) 

The plus or mine depends on which wave family is considered. By substituting (3.29) in (3.60),  

for right  rarefaction wave the Riemann invariant would be:   

𝑢𝑅 − 𝑢∗ = ∫
𝜌𝑙𝑎√𝑦𝑅

[𝜌𝑙 − 𝜌(1 − 𝑦𝑅)]𝜌
𝜕𝜌                                                                                               (3.61)

𝜌𝑅

𝜌∗

 

The integral of (3.61) can be solved analytically:  
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 𝑢∗ = 𝑢𝑅 − 𝑎√𝑦 ln [(
1

𝜌∗
−
1−𝑦𝑅

𝜌𝑙
) (

𝜌𝑅

1−
1−𝑦𝑅
𝜌𝑙

𝜌𝑅
)]                                                                                 (3.62) 

By substituting (3.39) in (3.62), the final equation for velocity across right rarefaction wave is 

obtained. 

𝑢∗ = 𝑢𝑅 − 𝑎√𝑦𝑅 ln [(
𝑝𝑅
𝑝∗𝜌𝑅

−
𝑝𝑅
𝑝∗𝜌𝑙

(1 − 𝑦𝑅))(
𝜌𝑅

1 −
1 − 𝑦𝑅
𝜌𝑙

𝜌𝑅

)]                                             (3.63) 

So 𝑓𝑅 for right rarefaction is determined by equation (3.62) and (3.63). 

𝑓𝑅(𝑝∗,𝑊𝑅) =  −𝑎√𝑦𝑅 ln [(
𝑝𝑅
𝑝∗𝜌𝑅

−
𝑝𝑅
𝑝∗𝜌𝑙

(1 − 𝑦𝑅))(
𝜌𝑅

1 −
1 − 𝑦𝑅
𝜌𝑙

𝜌𝑅

)]                                    (3.64) 

So, the final equation by which the star region pressure can be determined is:  

𝑓(𝑝∗,𝑊𝐿 ,𝑊𝑅) = 𝑓𝐿(𝑝∗,𝑊𝐿) − 𝑓𝑅(𝑝∗,𝑊𝑅) + ∆𝑢                                                                             (3.65) 

Where, 

∆𝑢 = 𝑢𝐿 − 𝑢𝑅                                                                                                                                          (3.66) 

The solution for  𝑓(𝑝∗,𝑊𝐿 ,𝑊𝑅) = 0 , gives the star region pressure. after the star region pressure 

is determined, star region velocity is determined by the following equation:  

𝑢∗ =
1

2
(𝑢𝐿 + 𝑢𝑅) +

1

2
[𝑓𝐿(𝑝∗,𝑊𝐿) + 𝑓𝑅(𝑝∗,𝑊𝑅)]                                                                            (3.67) 

3.1.2. Pressure numerical solution 

 

   Like the Riemann problem for isothermal gas and full Euler equation, for determining the middle 

state pressure there are several methods. The newton iterative method is practical and efficient 

which has had accurate results for previous Riemann problems. So, for two phase flow Riemann 

problem this method is used.  

So, the related equations for right and left waves are as below:  

 



 

50 
 

𝑓𝐿(𝑝∗,𝑊𝐿) =

{
  
 

  
 
−√[(

𝑝𝐿
𝑝∗𝜌𝐿

−
𝑝𝐿(1 − 𝑦𝐿)

𝑝∗𝜌𝑙
+
1 − 𝑦𝐿
𝜌𝑙

−
1

𝜌𝐿
) (𝑝𝐿 − 𝑝∗)]        𝑖𝑓 𝑝∗ > 𝑝𝐿  

𝑎√𝑦𝐿 ln [(
𝑝𝐿
𝑝∗𝜌𝐿

−
𝑝𝐿
𝑝∗𝜌𝑙

(1 − 𝑦𝐿))(
𝜌𝐿

1 −
1 − 𝑦𝐿
𝜌𝑙

𝜌𝐿

)]      𝑖𝑓 𝑝∗ < 𝑝𝐿  

                           (3.68) 

 

𝑓𝑅(𝑝∗,𝑊𝑅) =

{
  
 

  
 
√[(

𝑝𝑅
𝑝∗𝜌𝑅

−
𝑝𝑅(1 − 𝑦𝑅)

𝑝∗𝜌𝑙
+
1 − 𝑦𝑅
𝜌𝑙

−
1

𝜌𝑅
) (𝑝𝑅 − 𝑝∗)]                𝑖𝑓 𝑝∗ > 𝑝𝑅 

−𝑎√𝑦𝑅 ln [(
𝑝𝑅
𝑝∗𝜌𝑅

−
𝑝𝑅
𝑝∗𝜌𝑙

(1 − 𝑦𝑅))(
𝜌𝑅

1 −
1 − 𝑦𝑅
𝜌𝑙

𝜌𝑅

)]       𝑖𝑓 𝑝∗ < 𝑝𝑅    

                  (3.69) 

 

 

As said previously the equation of (3.65) can be solved by the iterative method. For this approach 

the derivative of (3.65) should be obtained.  

𝑝1 = 𝑝0 −
𝑓(𝑝0)

𝑓′(𝑝0)
                                                                                           𝑁𝑒𝑤𝑡𝑜𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑚𝑒𝑡ℎ𝑜𝑑 

𝑓′(𝑝∗,𝑊𝐿 ,𝑊𝑅) = 𝑓𝐿′(𝑝∗,𝑊𝐿) − 𝑓𝑅′(𝑝∗,𝑊𝑅)                                                                                     (3.70) 

𝑓𝐿′(𝑝∗,𝑊𝐿)

=

{
 
 
 
 
 

 
 
 
 
 

−
1

2
[(

𝑝𝐿
𝑝∗𝜌𝐿

−
𝑝𝐿(1 − 𝑦𝐿)

𝑝∗𝜌𝑙
+
1 − 𝑦𝐿
𝜌𝑙

−
1

𝜌𝐿
) (𝑝𝐿 − 𝑝∗)]

−
1
2

∗

[[−
1

𝑝∗
2 (
𝑝𝐿
𝜌𝐿
−
𝑝𝐿(1 − 𝑦𝐿)

𝜌𝑙
) (𝑝𝐿 − 𝑝∗)] − [(

𝑝𝐿
𝑝∗𝜌𝐿

−
𝑝𝐿(1 − 𝑦𝐿)

𝑝∗𝜌𝑙
+
1 − 𝑦𝐿
𝜌𝑙

−
1

𝜌𝐿
)]]  𝑖𝑓 𝑝∗ > 𝑝𝐿

𝑎√𝑦𝐿

[
 
 
 
 −

1
𝑝∗
2 (
𝑝𝐿
𝜌𝐿
−
𝑝𝐿
𝜌𝑙
(1 − 𝑦𝐿))

(
𝑝𝐿
𝑝∗𝜌𝐿

−
𝑝𝐿
𝑝∗𝜌𝑙

(1 − 𝑦𝐿))
]
 
 
 
 

     𝑖𝑓 𝑝∗ < 𝑝𝐿

    (3.71)  
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𝑓𝑅′(𝑝∗,𝑊𝑅)

=

{
 
 
 
 
 

 
 
 
 
 1

2
[(

𝑝𝑅
𝑝∗𝜌𝑅

−
𝑝𝑅(1 − 𝑦𝑅)

𝑝∗𝜌𝑙
+
1 − 𝑦𝑅
𝜌𝑙

−
1

𝜌𝑅
) (𝑝𝑅 − 𝑝∗)]

−
1
2

∗

[[−
1

𝑝∗
2 (
𝑝𝑅
𝜌𝑅
−
𝑝𝑅(1 − 𝑦𝑅)

𝜌𝑙
) (𝑝𝑅 − 𝑝∗)] − [(

𝑝𝑅
𝑝∗𝜌𝑅

−
𝑝𝑅(1 − 𝑦𝑅)

𝑝∗𝜌𝑙
+
1 − 𝑦𝑅
𝜌𝑙

−
1

𝜌𝑅
)]] 𝑖𝑓 𝑝∗ > 𝑝𝑅

−𝑎√𝑦𝑅

[
 
 
 
 −

1
𝑝∗
2 (
𝑝𝑅
𝜌𝑅
−
𝑝𝑅
𝜌𝑙
(1 − 𝑦𝑅))

(
𝑝𝑅
𝑝∗𝜌𝑅

−
𝑝𝑅
𝑝∗𝜌𝑙

(1 − 𝑦𝑅))
]
 
 
 
 

     𝑖𝑓 𝑝∗ < 𝑝𝑅

  (3.72)  

3.1.3. The complete solution 

 

   In the previous section we found the algorithm to find the star region pressure and velocity. By 

equation of (3.39) and (3.65) the value of density in right star region and left star region can be 

determined. The next task is finding the left and right waves completely. For shock wave, the 

shock velocity and density in the star region should be determined. For the case of rarefaction 

wave, it is more complex. First the head and tail of rarefaction wave should be determined then 

the primitive variables value should be determined inside the rarefaction fan.  

3.1.3.1.  Left shock wave 

 

   If star region pressure is more than left pressure, the wave is shock. Previously we determined 

the velocity and pressure in the star region. For determining density in the left star region, equation 

(3.39) is used. The shock speed can be determined by applying Rankine-Hugoniot condition for 

the conservation equation of (3.7).   

𝑆𝐿 =
𝜌𝐿𝑢𝐿 − 𝜌∗𝐿𝑢∗
𝜌𝐿 − 𝜌∗𝐿

                                                                                                                                 (3.73) 

So, we have completely determined the solution for the entire region by the contact discontinuity 

in the case of left shock wave. 

3.1.3.2.  Left rarefaction wave  

 

   If the star region pressure is less than the left pressure, the wave is rarefaction. As said previously, 

first the tail and head of a rarefaction wave should be determined as below:  
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𝑆𝐻𝐿 = 𝑢𝐿 − 𝑐𝐿                                                                                                                                          (3.74)  

𝑆𝑇𝐿 = 𝑢∗ − 𝑐∗𝐿                                                                                                                                        (3.75) 

Where c can be determined through equation of (3.29).  

The next step would be determining pressure, velocity and density in the rarefaction fan. We 

consider a characteristic ray from the origin and an arbitrary point of (x, t) in the fan.  

𝑑𝑥

𝑑𝑡
=
𝑥

𝑡
= 𝑢 − 𝑐                                                                                                                                      (3.76) 

Also, there is a relation between velocity and density by using Riemann invariant from section 

(3.1.1.2). By substituting equation (3.29) in (3.76), an expression for density is obtained:  

𝜌 = (𝜌𝑙 −
𝜌𝑙𝑎√𝑦𝐿

𝑢 −
𝑥
𝑡

) (
1

1 − 𝑦𝐿
)                                                                                                            (3.77) 

By substituting (3.77) in (3.45) an expression for velocity in the rarefaction fan is obtained.  

𝑢 = 𝑢𝐿 + 𝑎√𝑦𝐿 ln

[
 
 
 
 
 

(

 
 
 1

(𝜌𝑙 −
𝜌𝑙𝑎√𝑦𝐿

𝑢 −
𝑥
𝑡

) (
1

1 − 𝑦𝐿
)

−
1 − 𝑦𝐿
𝜌𝑙

)

 
 
 
(

𝜌𝐿

1 −
1 − 𝑦𝐿
𝜌𝑙

𝜌𝐿

)

]
 
 
 
 
 

                      (3.78) 

The equation of (3.78) can be solved iteratively for velocity. In this method an initial guess for 

velocity is considered and u is solved iteratively until the difference between guessed and the 

solved u is less than desirable amount.  

After finding velocity at point (x, t), density can be determined through equation of (3.77). Then 

pressure can be determined by equation (3.28).  
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Figure 3-4:Solution sampling at the left hand side of contact discontinuity: (a) : left shock wave  (b): left rarefaction 

wave(Toro 2013) 

 

3.1.3.3.  Right shock wave 

 

   If star region pressure is more than right pressure, the wave is shock. Previously we determined 

the velocity and pressure in the star region. For determining density in the right star region, 

equation (3.56) is used. The shock speed can be determined by applying Rankine-Hugoniot 

condition in the conservation equation of (3.7).   

𝑆𝑅 =
𝜌𝑅𝑢𝑅 − 𝜌∗𝑅𝑢∗
𝜌𝑅 − 𝜌∗𝑅

                                                                                                                               (3.79) 

So, we have completely determined the solution for the entire region by the contact discontinuity 

in the case of right shock wave. 

3.1.3.4.  Right rarefaction wave 

 

   If the star region pressure is less than the right pressure, the wave is rarefaction. As said 

previously, first the tail and head of a rarefaction wave should be determined as below:  

𝑆𝐻𝑅 = 𝑢𝑅 − 𝑐𝑅                                                                                                                                         (3.80)  

𝑆𝑇𝑅  =  𝑢∗ − 𝑐∗𝑅                                                                                                                                      (3.81) 

Where c can be determined through equation of (3.29).  

The next step would be determining pressure, velocity and density in the rarefaction fan. We 

consider a characteristic ray from the origin and an arbitrary point of (x, t) in the fan.  
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𝑑𝑥

𝑑𝑡
=
𝑥

𝑡
= 𝑢 + 𝑐                                                                                                                                      (3.82) 

Also, there is a relation between velocity and density by using Riemann invariant from section of 

(3.1.1.4). By substituting equation (3.29) in (3.82), an expression for density is obtained:  

𝜌 = (𝜌𝑙 +
𝜌𝑙𝑎√𝑦𝑅

𝑢 −
𝑥
𝑡

) (
1

1 − 𝑦𝑅
)                                                                                                           (3.83) 

By substituting (3.83) in (3.62) an expression for velocity in the rarefaction fan is obtained.  

𝑢 = 𝑢𝑅 − 𝑎√𝑦𝑅 ln

[
 
 
 
 
 

(

 
 
 1

(𝜌𝑙 +
𝜌𝑙𝑎√𝑦𝑅

𝑢 −
𝑥
𝑡

) (
1

1 − 𝑦𝑅
)

−
1 − 𝑦𝑅
𝜌𝑙

)

 
 
 
(

𝜌𝑅

1 −
1 − 𝑦𝑅
𝜌𝑙

𝜌𝑅

)

]
 
 
 
 
 

                   (3.84) 

The equation of (3.84) can be solved iteratively for velocity. In this method an initial guess for 

velocity is considered and u is solved iteratively until the difference between guessed and the 

solved u is less than desirable amount.  

After finding velocity at point (x, t), density can be determined through equation of (3.83). Then 

pressure can be determined by equation (3.28).  

 

Figure 3-5:Solution sampling at the right hand side of contact discontinuity: (a) : right shock wave  (b): right 

rarefaction wave(Toro 2013) 
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3.1.4. Solution sampling 

 

   In previous section the complete solver and wave structure for two phase flow Riemann problem 

at any point (x, t) was presented. In this section an approach for solution sampling is presented 

which is useful for computer programming. Assume we want to find the solution for vector of 

primitive variable  𝑊(𝜌, 𝑢, 𝑝) in an arbitrary point of (x, t). The sampling is performed in term of 

S = x/t. In this situation two condition may happen. Left side of contact and right side of contact. 

3.1.4.1. If  𝑺 < 𝒙 𝒕⁄   which means the left side of the contact discontinuity 

 

   As mentioned previously, there are two possibilities for left wave: shock and rarefaction. In the case of 

shock wave, the complete solution for left side of contact is as below: 

𝑊(𝑥, 𝑡) =  {
𝑊∗𝐿      𝑖𝑓    𝑆𝐿 <

𝑥

𝑡
< 𝑢∗

𝑊𝐿       𝑖𝑓              
𝑥

𝑡
< 𝑆𝐿

                                                                                                                  (3.85)  

Where 𝑊∗𝐿 equals to the primitive variables value in the left star region and  𝑆𝐿 is the left shock 

speed. If the left wave is rarefaction, the complete solution for left hand side of contact is as below:  

𝑊(𝑥, 𝑡) =  

{
 
 

 
 𝑊𝐿          𝑖𝑓               

𝑥

𝑡
 < 𝑆𝐻𝐿

𝑊𝐿𝑓𝑎𝑛    𝑖𝑓    𝑆𝐻𝐿 <
𝑥

𝑡
< 𝑆𝑇𝐿

𝑊∗𝐿         𝑖𝑓     𝑆𝑇𝐿 <
𝑥

𝑡
 < 𝑢∗

                                                                                                        (3.86) 

Where  𝑊𝐿𝑓𝑎𝑛  is the solution in left rarefaction fan which is obtained by   the   procedure    

explained     in     section (3.1.3.2).  

3.1.4.2. If  𝑺 > 𝒙 𝒕⁄    which means the right side of the contact discontinuity 

 

   Like left side of contact, there are two possibilities for the right wave: shock and rarefaction. In 

the case of shock wave, the complete solution in the right side of contact is as below:  

𝑊(𝑥, 𝑡) =  {
𝑊∗𝑅     𝑖𝑓    𝑢∗ <

𝑥

𝑡
<  𝑆𝑅

𝑊𝑅      𝑖𝑓              
𝑥

𝑡
> 𝑆𝑅

                                                                                                               (3.87) 
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Where 𝑊∗𝑅 equals to the primitive variables value in the right star region and  𝑆𝑅 is the right shock 

speed. If the right wave is rarefaction, the complete solution for right hand side of contact is as 

below:  

𝑊(𝑥, 𝑡) =  

{
 
 

 
 𝑊∗𝑅                 𝑖𝑓         𝑢∗ < 

𝑥

𝑡
 < 𝑆𝑇𝑅

𝑊𝑅𝑓𝑎𝑛            𝑖𝑓         𝑆𝑇𝑅 <
𝑥

𝑡
< 𝑆𝐻𝑅

𝑊𝑅                 𝑖𝑓                    
𝑥

𝑡
 >  𝑆𝐻𝑅

                                                                                         (3.88) 

Where  𝑊𝑅𝑓𝑎𝑛 is the solution in right rarefaction fan which is obtained by the procedure explained 

in section (3.1.3.4). 

3.2. Computer programming for drift flux Riemann problem  

 

   In this thesis the computer coding has been done in Python and the codes can be fined in the 

GitHub link provided. The section (3.1.4) has been provided for determining the main algorithm 

for computer coding. For left of contact discontinuity below algorithm has been used:  
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Figure 3-6:Flow chart for solution sampling at an arbitrary point of (x, t) in left of  contact discontinuity 

 

For the right side of the contact, below flow chart has been used:  

 

 

 

 

 

 

 

 

𝑆 < 𝑢∗ 

 

𝑝∗ > 𝑝𝐿 

 

Left fan 

 

Left shock 

No Yes 

S < 𝑆𝐻𝐿 

 

Yes 

No 

𝑊 = 𝑊𝐿 

 

𝑆 > 𝑆𝑇𝐿 

 

𝑊 = 𝑊∗𝐿 

 

Yes 

No 

𝑊 = 𝑊𝐿𝑓𝑎𝑛 

 

𝑆 < 𝑆𝐿 

 

𝑊 = 𝑊𝐿 

 

Yes 

No 

𝑊 = 𝑊∗𝐿 

 



 

58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7: Flow chart for solution sampling at an arbitrary point of (x, t) in right of contact discontinuity 
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4. RESULTS AND DISCUSSION 

 

 

 

4.1. Numerical test  

 

   In this section some Riemann problems with initial condition are selected to investigate the 

Riemann solver presented in section of (3.1.2). The data of four tests in terms of primitive variables 

is shown in table (4-1). In all cases the density of incompressible liquid is 1 kg/liter and the sound 

velocity in gas is 340 m/s. 

Table 4-1:data for initial condition for the Riemann problem  

Test 𝝆𝑳(
𝒌𝒈

𝒎𝟑⁄ ) 𝒖𝑳(
𝒎
𝒔⁄ ) 𝒑𝑳(𝒑𝒂) 𝝆𝑹(

𝒌𝒈
𝒎𝟑⁄ )  𝒖𝑹(

𝒎
𝒔⁄ ) 𝒑𝑹(𝒑𝒂) 

1 850 1 110000 950 -1 120000 

2 900 -1 170000 800 1 160000 

3 950 0 160000 850 0 120000 

4 850 0 120000 950 0 160000 

 

   The computed values for pressure, velocity and density in star region for mentioned 4 tests have 

been shown in table (4-2). The pressure in the star zone has been determined by solving   𝑓(𝑝) =

0  by iterative newton Rapson method and velocity and densities have been determined by the 

related formula presented in chapter 3. 

  

Table 4-2:Exact solution for pressure, velocity and densities in the star region 

Test 𝒑∗(𝒑𝒂) 𝒖∗(
𝒎
𝒔⁄ ) 𝝆∗𝑳(

𝒌𝒈
𝒎𝟑⁄ ) 𝝆∗𝑹(

𝒌𝒈
𝒎𝟑⁄ ) 

1 151403.14 -0.41 886.39 959.96 

2 135988.51 -0.029 878 772.67 

3 134118.49 0.51 940.90 863.65 

4 134118.49 -0.51 863.65 940.90 
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4.2. All shock waves, test No 1  

 

   According to the table 4.2 and 4.1, the star zone pressure in test 1 is larger than the left and right-

sides pressures so all shock wave happens in this situation. Figure (4-1) shows the graphs of 

pressure and velocity against location in different times. Although the solution depends only on 

(x/t),  it is plotted for 3 different times to illustrate how the discontinuity deforms over the time  

 

Figure 4-1:Illustration of pressure  and density against location in different times of  t1=0 , t2=0.03 and t3=0.12 for 

test number 1. 
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Figure 4-2::Illustration of velocity  and gas concentration against location in different times of  t1=0 , t2=0.03 and 

t3=0.12 for test number 1 
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4.3. All rarefaction waves, test No 2  

 

   According to the table 4.2 and 4.1, the star zone pressure in test 2 is smaller than the left and 

right-side pressures so all rarefaction wave happens in this situation. Figure (4-3) shows the graphs 

of pressure and velocity against location in different times. 

 

Figure 4-3: Illustration of pressure and density against location in different times of  t1=0 , t2=0.03 and t3=0.12 for 

test number 2. 
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Figure 4-4: Illustration of velocity and gas concentration  against location in different times of  t1=0 , t2=0.03 and 

t3=0.12 for test number 2. 
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4.4. 1th-Rarefaction 2th- shock waves, test No 3 

 

   According to the table 4.2 and 4.1, the star zone pressure in test no 3 is smaller than the left side 

pressure and larger than the right-side pressure so the first wave is rarefaction and the second wave 

is shock wave. Figure (4-5) shows the graphs of pressure and velocity against location in different 

times. 

 

Figure 4-5:Illustration of pressure and density against location in different times of  t1=0 , t2=0.03 and t3=0.12 for 

test number 3. 
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Figure 4-6:Illustration of velocity and gas concentration against location in different times of  t1=0 , t2=0.03 and 

t3=0.12 for test number 3. 
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4.5. 1th-shock 2th- rarefaction waves, test No 4 

 

   According to the table 4.2 and 4.1, the star zone pressure in test no 4 is larger than the left side 

pressure and smaller than the right-side pressure so the first wave is shock and the second wave is 

rarefaction wave. Figure (4-7) shows the graphs of pressure and velocity against location in 

different times. 

 

Figure 4-7: Illustration of pressure and density against location in different times of  t1=0 , t2=0.03 and t3=0.12 for 

test number 4. 
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Figure 4-8: Illustration of velocity and gas concentration against location in different times of  t1=0 , t2=0.03 and 

t3=0.12 for test number 4. 

As the contact discontinuity moves with much lower speed than shock or rarefaction waves, the plot of gas 

mass concentration seems to be immobile.  
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4.6. The Riemann solution and computer coding verification 

 

  The Riemann solution and computer coding verification can be implemented by various methods. 

Using of mirroring technique and equivalent numerical solution are famous among these methods. 

In the mirroring technique the Riemann initial condition becomes exactly the opposite and the 

results should be the same however different in sign. For example, the test number 3 and number 

4 are exactly mirror of each other. According to figures (4-5), (4-6) , (4-7) and (4-8) and table (4-

2), the middle value of middle pressure and the absolute value of middle velocity are the same. 

Also, the middle values of densities are the same with opposite locations. 

 

Figure 4-9:The Riemann solution for the mirroring initial condition of test number 1 
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Figure 4-10:The Riemann solution for the  mirroring initial condition of test number 2. 

 

4.6.1. Numerical validation 

 

   In 2005 a study was implemented on numerical solution of Riemann problem for two phase flow 

drift flux model(Baudin, Berthon et al. 2005). In one of the experiments the liquid is assumed to 

be incompressible and the relative velocity between each phase is zero. These assumptions are like 

the assumption have been used for the Riemann exact solution here. So, the exact solution results 

can be verified by the numerical results for the same initial condition. 
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Table 4-3: Initial condition for the Riemann problem (comparison of numerical and exact solution) 

Test 𝝆𝑳(
𝒌𝒈

𝒎𝟑⁄ ) 𝒖𝑳(
𝒎
𝒔⁄ ) 𝒚𝑳 𝝆𝑹(

𝒌𝒈
𝒎𝟑⁄ )  𝒖𝑹(

𝒎
𝒔⁄ ) 𝒚𝑹 

 500 10 0.2 400 -10.4261 0.4 

 

 
Figure 4-11:Numerical result for the Riemann problem for two phase flow with the initial condition in table(4-3) by 

(Baudin, Berthon et al. 2005) 

 

 

 

 

 

Figure 4-12:Exact solution for the Riemann problem for two phase flow with the initial condition in table(4-3) 

 

4.7. Conclusion 

 

   The most important achievement in this thesis has been learning and understanding the 

characteristic behavior of two-phase flow system of equation, the Riemann problem and the wave 

structure during which the primitive variable behaves accordingly. 

   The development of Riemann exact solution for two phase flow has been a step by step process 

to let the readers understand it easily. First the Riemann problem for linear hyperbolic equation 

then the Riemann problem for nonlinear hyperbolic equation were investigated. After that the 
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Riemann problem for nonlinear and linear system of equation was implemented. Finally, the exact 

Riemann solution for two phase flow drift flux model was developed.  

   For two phase flow model the fluid was assumed to be incompressible and the drift flux is zero 

which produce unchanged gas mass coefficient during any rarefaction or shock waves. But this 

coefficient changes only across the contact discontinuity. 

   For verification of the results obtained from the exact solution for the Euler isothermal gas flow 

and the full Euler gas flow , the mentioned numerical solutions obtained by (Barazesh 2019) were 

used. Also for verification of the Riemann exact solution for the two phase flow drift flux model , 

numerical results obtained by (Baudin, Berthon et al. 2005) were used.  

4.8. Future study  

 

   In this thesis, for the Riemann exact solution it has been assumed that the fluid is incompressible, 

and the drift flux is zero. although it is more complex, Developing the Riemann solution for non-

zero drift flux and compressible fluid, produces more realistic results. 

   Using finite volume method and Riemann solution builds a practical method for determining two 

phase flow parameters during transient or steady state conditions in drilling well bore. Drilling 

incidents like gas kick and under balanced operation can be modeled efficiently by the finite 

volume method.  

   One simple example of finite volume method application is determining two phase flow 

parameters in underbalanced drilling. One method to estimate the bottom hole pressure in steady 

state condition   is the shooting method. Also, the bottom hole pressure can be estimated by finite 

volume method and the result can be compared with the shooting method results. So, the efficiency 

of the finite volume method and the Riemann solution for two phase flow can be investigated. 
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