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Abstract 

Transient flow modelling used for hydraulic calculations and well control evaluations is a vital 

part to the safety in the industry to properly prepare and build correct procedures when 

constructing wells. Modeling liquid and gas flow is complex and it’s important to keep 

introducing new, efficient ideas to reduce model uncertainties and run time. This can help 

reduce numerical liabilities, risk and cost. The objective in this thesis has been to implement a 

new way of treating the boundary conditions in a transient flow model and compare it to more 

widely used methods. In addition, demanding benchmark cases have been developed to 

properly test the different boundary condition treatment methods against one another. 

The AUSMV scheme is used for modeling the flow and pressures in the work in this thesis. The 

AUSMV scheme uses a simplified transient drift flux model for two-phase flow to predict flow 

and pressures in the system. Water and air are used instead of oil and gas to reduce the model 

complexity and instead put focus on the boundary treatment. The model makes a variety of 

assumptions and include conservation of mass and momentum and is supplied with closure 

laws. 

Previous work with AUSMV scheme has mostly used a zero-order extrapolation technique to 

treat the boundary condition. The first-order extrapolation technique has been introduced 

recently to improve upon the zero-order. With the work in this thesis, it would be possible to 

avoid the use of extrapolating the mid-cell value to the boundary completely. The compatibility 

relations method uses characteristics that transport information from the interior 

computational domain toward the boundary. On the outgoing boundary, the characteristic 

compatibility relations together with the imposed physical conditions are used to determine the 

unknown variables at the boundary points. 

For a horizontal pipeline with an open end, when considering pressure pulse propagation both 

the use of compatibility relations method and first-order extrapolation technique worked well. 

However, the compatibility relations method seems to work slightly better avoiding some 

unphysical oscillation that was seen initially in the simulation. 
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For a closed well with a migrating kick, the compatibility relations method had no clear benefit 

over first-order extrapolation technique. The compatibility relations method even had some 

stability issue for a finer grid. 

For the open hole cases (case 3 and case 4), a kick is migrating on its own or being circulated 

out. This leads to an unloading situation where the liquid in front of the kick is forced out of the 

well violently before the gas breaches through. For the rough grid of 25 cells, there were large 

differences in results when comparing zero-order and first order extrapolation techniques and 

compatibility relations method. However, for a fine grid of 100 cells, all models seem to give the 

same results regarding pressure development. However, there was a difference in maximum 

liquid and gas flowrates predicted between the boundary condition treatment methods. 

Compatibility relations method tended to predict a lower maximum liquid flowrate and higher 

maximum gas flowrate.  

The input of using a sufficiently refined grid was demonstrated. This reduces numerical diffusion 

and the difference between the different boundary condition treatment methods are reduced. 

One can also note that for rough grids, the zero-order extrapolation technique tended to be 

more unstable. 

In general, increasing the number of cells in the well will have a greater impact than which 

boundary condition treatment is chosen. The reason for this is reduced numerical diffusion 

which is an important factor in simulation results accuracy. In addition, with an increased 

number of cells, the numerical errors that were introduced with a zero-order extrapolation 

technique (when considering large gas expansion effect) is reduced. There was a tendency that 

first-order extrapolation technique in combination with a rough grid produced more numerical 

problems. 

There was an issue with extra gas being added in the system for all simulations (except case 1). 

It was always a similar amount gas being added and it happened early in the simulation. 

However, this issue is unlikely to have anything to do with the newly implemented boundary 

condition treatment as it was present whether the compatibility relations method was used or 
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not. There was also a compatibility relations method stability issues for case 2 when using a 

refined grid. These issues were not solved and needs further investigation.  
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1. Introduction 

Running kick simulations is a vital part of the planning phase of drilling oil and gas wells. There 

are countless risks associated with the drilling and completion operations and being able to 

predict what will occur if a kick were to take place with some degree of accuracy helps minimize 

the risk and build the correct procedures. To simulate a kick, we use a transient flow model 

which can show how different parameters vary in time. Two-phase models are popular within 

the oil and gas industry to describe the flow and pressures of liquid and gas. In this thesis, a two-

phase model is used to describe the flow of liquid through a long horizontal pipe and simulating 

a kick through a vertical well. Due to the complex nature of flow of liquid and gas, a simpler drift 

flux model is commonly used. The drift flux model is here used to describe the transient flow 

that will predict well pressures and flowrates.  

There are different kick models in the industry, and they all contain uncertainties that need to 

be accounted for. That’s why it’s important to keep introducing new, efficient ideas to reduce 

the numerical liabilities in the models to avoid the wrong decisions being made because of 

them. One interesting kick model has been presented in [9] where they look at a Managed 

Pressure Drilling (MPD) system with the focus of reducing the numerical diffusion in the system 

by implementing slope limiters or front tracking in combination with grid refinement. This is 

particularly important in an MPD system as there are small pressure margins for bottomhole 

pressure [9]. 

As for transient models, there are only a few of them in the industry as they are very complex 

and require a vast number of well specific information to give any sort of accurate result. In 

addition, they require years of testing and calibration but can provide critical information to 

understand how different scenarios may develop throughout the operations. In [6] and [15], a 

glimpse is given of how many factors and mathematical models that are required in a rigorous 

simulation model. These models can have a wide scope of use which include hydraulic 

calculations, kick simulations, underbalanced drilling and many more. They are used during the 
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planning phase, training and are also important when monitoring the operations to detect any 

abnormalities that may occur. 

In this thesis, the upwind scheme, the advection-upstream-splitting-model hybrid scheme 

(AUSMV), is used to solve the drift flux model. The AUSMV scheme is well described in [5]. The 

drift flux model is a non-linear hyperbolic system of partial differential equations which 

describes propagation of sonic waves and mass transport waves. As AUSMV is a first-order 

scheme, numerical diffusion will smear out sharp discontinuities. There are some methods to 

counteract this which will be looked at later in the thesis.  

For the different type of cases that will be studied in this thesis, the numerical fluxes of the 

boundary cells will be different and will require different methods to find their values. At a 

boundary, certain values will be given by the physics of the system (physical conditions). An 

example of this is atmospheric pressure at the outlet of a well. The other variables have to be 

found by different numerical approaches using interior information from the computational 

domain. The total number of physical and numerical boundary condition we can set at a 

boundary equals the number of conservation laws that is defined by the drift flux model (3) and 

the three waves this system describes (pressure pulses propagating upstream and downstream 

and mass transport of gas.) 

In this thesis, we will explore extrapolation techniques and compatibility relations. Extrapolation 

method is simpler method, which according to [7], “is generally sufficient for second-order 

schemes” (Hirsch, 353). Compatibility relations is a more advanced method and involves more 

complex mathematics to calculate the fluxes at the boundaries. Compatibility relations 

equations will be implemented and compared to simulations that have been run using 

extrapolation method. 

1.1 Objective 

The objective of this thesis is to implement compatibility relations into the AUMSV scheme for 

the boundary treatment and compare the results with the AUMSV scheme using extrapolation 

technique. Then one will draw conclusion whether it is better to invest the time to implement 
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the compatibility relation or stick with the simpler method of using extrapolation methods to 

find the boundary flux values. 

To get a good understanding of the accuracy of the results, a set of different robust benchmark 

cases have been developed to compare the results using different approaches for handling the 

boundary conditions. 

• A horizontal pipe with generation of a pressure pulse propagating in the system. 

• Closed well with a migrating kick. 

• Open well with a migrating kick. 

• Circulate kick out with open well. 

A part of the work in this thesis has been to build robust benchmark test cases for the models to 

be compared against. As the hope with this study is to find what sort of strengths and 

weaknesses each method will have. One method may be better at predicting certain aspects of 

a model compared to the other, e.g. one method could be more reliable at predicting pressures 

pulses early in the simulation or the other could be more reliable at predicting the outlet gas 

and liquid flowrates. By comparing the results from the different methods, we can identify what 

could be the optimal numerical boundary treatment. 
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2. Transient Drift Flux Model 

Two-phase modeling is widely used within the oil and gas industry as it can be used to predict 

the flow and pressure of liquids and gas. However, from a modeling and numerical perspective, 

two-phase flow is known for being quite complicated. As described in [2], “two-phase flow can 

be described by a one-dimensional two-fluid model involving six first order non-linear partial 

differential equations describing mass, momentum and energy balances for each of the phases.” 

In addition, it has to be supplemented with different closure laws including PVT models, friction, 

etc. Here, we will use a simpler two-phase flow model named the drift flux model which is 

obtained by adding the momentum equations. A gas slip relation has to be supplied to model 

that gas moves faster than liquid [5]. Although the fluids in the industry consists of oil and gas, 

this thesis uses water and air as this will reduce some of the complexity from the model. Within 

reasonable range of the parameters, the drift-flux model has been shown to be hyperbolic [16]. 

2.1 Conservation Laws 

A description of the model is given in [8]. 

With the assumption that the flow is isothermal, the drift-flux model takes the form: 

Mass conservation equation for liquid phase: 

𝜕𝑡[𝛼𝑙𝜌𝑙] + 𝜕𝑧[𝛼𝑙𝜌𝑙𝜐𝑙] = Γ𝑙  2.1 

 

Mass conservation equation for gas phase: 

𝜕𝑡[𝛼𝑔𝜌𝑔] + 𝜕𝑧[𝛼𝑔𝜌𝑔𝜐𝑔] = Γ𝑔  2.2 

 

Mixture momentum equation: 

𝜕𝑡[𝛼𝑙𝜌𝑙𝜐𝑙 + 𝛼𝑔𝜌𝑔𝜈𝑔] + 𝜕𝑧[𝛼𝑙𝜌𝑙𝜐𝑙
2 + 𝛼𝑔𝜌𝑔𝑣𝑔

2 + 𝑝] + 𝜕𝑥𝑃 = −𝑞  2.3 

 

In these equations t represents time and z is the spatial variable along the flow. The subscripts l 

and g represent liquid and gas, respectively. 𝛼, 𝜌, 𝜐 are volume fraction, density, and velocity, 

respectively, for the different phases and P is the pressure. 
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2.2 Closure Laws 

To be able to solve for the unknowns in the drift-flux model, a set of closure laws are used. The 

necessary amount of closure laws must be equal to the number of unknowns in the drift-flux 

model. Additional assumption must also be established [8]: 

There is no mass transfer between the phases: 

Γ𝑙 = Γ𝑔 = 0  2.4 

 

Where Γ𝑙 and Γ𝑔 represent mass exchange between the two phases. 

The mixture properties of the two phases: 

𝜌𝑚𝑖𝑥 = 𝛼𝑙𝜌𝑙 + 𝛼𝑔𝜌𝑔  2.5 

   

𝜇𝑚𝑖𝑥 = 𝛼𝑙𝜇𝑙 + 𝛼𝑔𝜇𝑔  2.6 

   

𝜈𝑚𝑖𝑥 = 𝛼𝑙𝜈𝑙 + 𝛼𝑔𝜐𝑔  2.7 

 

The sum of the phase volume fraction will always be equal to one: 

𝛼𝑙 + 𝛼𝑔 = 1  2.8 

 

Source term is expressed as: 

𝑞 = 𝐹𝑤 + 𝐹𝑔  2.9 

 

The effect of gravitational forces is expressed as: 

𝐹𝑔 = 𝑔𝜌𝑚𝑖𝑥 cos 𝜃  2.10 

 

The effect of frictional forces has in our model been expressed as: 
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𝐹𝑤 =
2𝑓𝜐𝑚𝑖𝑥𝜌𝑚𝑖𝑥𝑎𝑏𝑠(𝜈𝑚𝑖𝑥)

(𝑑𝑜 − 𝑑𝑖)
 

 2.11 

 

The 𝜃 represents the inclination of the system and g is the acceleration due to gravity. 𝑑𝑜 and 𝑑𝑖 

are the outer and inner diameter of the annular flow area. To find the friction factor, the 

Reynolds number must be calculated. 

𝑅𝑒 =
𝜌𝑚𝑖𝑥(𝑑𝑜 − 𝑑𝑖)𝑎𝑏𝑠(𝜈𝑚𝑖𝑥)

𝜇𝑚𝑖𝑥
 

 2.12 

 

The Reynolds number tells us whether the flow is turbulent or laminar. If Re < 2000, the flow 

will be laminar and if Re > 3000, the flow is turbulent. 

Friction factor, laminar: 

𝑓 =
24

𝑅𝑒
    (for annulus)  2.13 

 

Friction factor, turbulent: 

𝑓 = 0.052𝑅𝑒−0.19  2.14 

 

Between Reynold’s number 2000 and 3000, there is a transition zone. In this zone, it is hard to 

determine the friction factor precisely, and therefore there is a linear interpolation used 

between laminar friction factor at 2000 and turbulent friction factor at 3000. This ensures a 

smooth transition between the two different flow regimes.   

There are some simple models to predict the density of liquid and gas in the system. The liquid 

density model: 

𝜌𝑙 = 𝜌𝑙,0 +
(𝑃 − 𝑃0)

𝑎𝑙
2  

 

 2.15 
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Gas density model: 

𝜌𝑔 =
𝑃

𝑎𝑔
2

 

 

 2.16 

Where 𝑎𝑙 represents the speed of sound in liquid: 𝑎𝑙 = 1500 𝑚/𝑠. 𝑎𝑔 represents the speed of 

sound in gas: 𝑎𝑔 = 316 𝑚/𝑠. 𝑃0 is the pressure at standard condition (1 bar). 

The gas slip model: 

𝑣𝑔 = 𝐾(𝛼𝑔𝑣𝑔 + 𝛼𝑙𝑣𝑙) + 𝑆    𝑜𝑟    𝑣𝑔 = 𝐾𝑣𝑚𝑖𝑥 + 𝑆  2.17 

 

𝑣𝑚𝑖𝑥 is mixture velocity and is the sum of the superficial velocities of gas and liquid. K and S are 

flow dependent coefficients. K is a coefficient and S is the slip velocity. E.g. K = 1.0 and S = 0 the 

gas and liquid will move with the same velocity. In our model, K = 1.2 and S = 0.55. 

It should be noted that the closure laws used here are simple and that for field conditions, more 

advanced models must be adapted. For instance, the gas slip relation will change when there 

are different flow patterns in the well. The closure models used here have been used in previous 

paper presenting the model and one example is given in [8]. 

2.3 Eigenvalues 

As mentioned, the drift-flux model is a hyperbolic system and describes propagation of pressure 

pulses and mass waves. A kick is an example of a mass wave that would be migrating upwards. 

When changes happen to the system, opening of valves or starting a pump for example, sonic 

waves are generated throughout the system [1]. For a nonlinear system of partial differential 

equations, it is possible to analyze the system and find the so-called eigenvalues of the system. 

They represent the speed of the waves propagating in the system. If the values of these are real 

values, we have a so-called hyperbolic system. The sign of these waves (propagating upstream 

or downstream) will also determine how the flow conditions should be handled at the 

boundaries.  
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Under the condition that liquid is incompressible and that 𝛼𝑔𝜌𝑔 ≪ 𝛼𝑙𝜌𝑙, in the two-phase region 

where 𝛼𝑔 𝜖 (0,1) the following approximation for sound velocity can be derived [16]. 

𝜔2 =
𝜌𝑔𝑎𝑔

2

𝛼𝑔𝜌𝑙(1 − 𝐾𝛼𝑔)
 

 2.18 

 

The eigenvalues are given as: 

𝜆1 = 𝜈𝑙 − 𝜔  2.19 

   

𝜆2 = 𝜈𝑔  2.20 

   

𝜆3 = 𝜈𝑙 + 𝜔  2.21 

 

(2.20) is the wave speed of the gas volume wave that travels downstream and (2.19) and (2.21) 

represent the pressure pulses propagating upstream and downstream. When gas fraction is 

zero (𝛼𝑔 = 0) the eigenvalues are given as: 

𝜆1 = 𝜈𝑙 − 𝑎𝑙  2.22 

 

𝜆3 = 𝜈𝑙 + 𝑎𝑙  2.23 

 

(2.22) and (2.23) correspond to pressure pulses propagating upstream and downstream, 

respectively. 𝛼𝑙  is the sound velocity in the liquid phase (𝑎𝑙 = 1500 𝑚/𝑠). Correspondingly, in 

pure gas regions (𝛼𝑔 = 1): 

𝜆1 = 𝜈𝑔 − 𝑎𝑔  2.24 

 

𝜆3 = 𝜈𝑔 + 𝑎𝑔  2.25 

Where 𝑎𝑔 is the sound velocity in the gas phase (𝑎𝑔 = 316 𝑚/𝑠). 



9 
 

2.4 Characteristics  

One-phase Flow 

The characteristics for one-phase flow in the (z,t) plane are defined by: 

𝐶1:     
𝑑𝑧

𝑑𝑡
= 𝜆1 = 𝜈𝑙 − 𝑎𝑙 

 2.26 

𝐶2:    
𝑑𝑧

𝑑𝑡
= 𝜆2 = 𝜈𝑙 + 𝑎𝑙 

 2.27 

 

The characteristics show how information is propagating in the system. Along the linearized 

characteristics, it is possible to transform the partial differential equations into a system of 

ordinary differential equations named compatibility relations. They will represent the 

information that is carried along the characteristic. Whether a characteristic is leaving or 

entering the computational domain will have impact on how the boundary should be treated. 

Whether a characteristic is leaving or entering will be determined by the sign of the eigenvalue. 

Numerical and physical boundary conditions 

At the boundary of the computational domain, one of the characteristics leaves the domain and 

brings information from the computational domain toward the boundary. This is called a 

numerical boundary condition. Hence, a numerical technique is needed to bring information 

toward the boundary. In this thesis both extrapolation techniques and use of compatibility 

relations will be explored. Additionally, another characteristic enters the domain that brings 

information from the boundary toward the interior. This data must be given by the physics of 

the problem and is called the physical boundary condition. [7] 

In Fig. (2.1), the characteristics can be seen entering and leaving the domain at the inflow 

boundary. The information that is transported from the inside of the domain 𝜔1 represents the 

numerical boundary condition. 𝜔2 is information entering the domain and must be given, which 

represents the physical boundary condition [7]. 



10 
 

 

Figure 2.1: One-phase inflow boundary [3]. 

 

In Fig. (2.2), the characteristics entering and leaving the domain can be seen at an outflow 

boundary. Here, 𝜔2 is the numerical boundary condition and must be calculated. 𝜔1 is the 

information that enters the domain and must be given [3]. 

  

 

Figure 2.2: One-phase outflow boundary [3]. 
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Two-phase flow 

The characteristics for two-phase flow in the (z,t) plane: 

𝐶1:    
𝑑𝑧

𝑑𝑡
= 𝜆1 = 𝜈𝑔 

 2.28 

 

𝐶2:    
𝑑𝑧

𝑑𝑡
= 𝜆2 = 𝜈𝑙 + 𝜔 

 2.29 

 

𝐶3:    
𝑑𝑧

𝑑𝑡
= 𝜆3 = 𝜈𝑙 − 𝜔 

 2.30 

 

Where 𝜔 is given by Eq. (2.18). 

In two-phase flow, two of the characteristics will correspond to two physical boundary 

conditions and one will be the numerical condition if it’s inflow. For outflow, there will be two 

numerical conditions and one physical condition.  

Numerical and physical boundary conditions 

In Fig. (2.3), the characteristics for two-phase flow at inlet is shown. 𝜔1 and 𝜔2 are entering the 

domain and must be given. While 𝜔3 is the numerical condition and must be calculated. 

 

Figure 2.3: Two-phase inflow boundary [3]. 
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In Fig. (2.4), the characteristics for two-phase flow at the outlet can be seen. 𝜔1 and 𝜔2 are 

leaving the domain and must be calculated, i.e. the numerical boundary condition. While 𝜔3 is 

entering the domain and must be given, i.e. the physical condition. 

 

Figure 2.4: Two-phase outflow boundary [3]. 

 

2.5 Discretization  

When applying conservation and closure laws in a simulation model, the well is divided into M 

number of segments where each cell has a length of Δ𝑧. The number one cell is at inlet (bottom) 

and M at the outlet (top). Increasing the number of cells in the model will increase the accuracy 

of the solution but will require more computational time to execute. The equations will be 

solved in each segment and flow variables will be considered constant for each cell. A 

discretization typically consists of 50 to 100 segments. This will for instance ensure that the local 

variations in temperature and pressure are reflected in the density calculations which will have 

an impact on the total hydrostatic pressure in the well [4]. 
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Figure 2.5: Discretization in an explicit AUSMV scheme [4]. 

 

Each cell is updated in time using the expression: 

𝑈𝑗
𝑛+1 = 𝑈𝑗

𝑛 −
Δ𝑡

Δ𝑧
(𝐹𝑗+1/2

𝑛 − 𝐹𝑗−1/2
𝑛 ) − Δ𝑡𝑄𝑗

𝑛 
 2.31 

 

Here U represents the conservative variables defined by the conservation laws while F 

represents the numerical fluxes across the boundaries. Δt represents the timestep chosen. 

When the flux F is calculated based on old vales at time level n, the scheme is explicit. In this 

case, the scheme has to satisfy the CFL condition: 

Δ𝑡 =
𝐶𝐹𝐿 ∗ Δ𝑧

max (𝜆)
 

 2.32 

 

This will ensure that the characteristic cannot pass more than one cell for each time step. CFL is 

a number between 0 and 1. One must note that the conservative variables are defined in the 

midpoint at the cells. This is important to have in mind when treating the boundary. 
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The simulation starts the calculation at a known initial stage where all flow variables either are 

known and/or can be calculated. From there on, every cell is updated in time. The newly 

calculated variables of mass and momentum in the cells will depend on the fluxes of mass and 

momentum at cell boundaries. The cells are updated at the new time level for the current well 

situation at the new time level [4]. There are many different numerical methods available to 

base the simulation on. For the work in this thesis, the AUSMV scheme is used which is an 

explicit scheme [2]. In the explicit scheme, the variables are updated in time based on variables 

from the previous time level. In addition, for the AUSMV scheme, it’s vital to have a solid 

understanding of sonic wave propagation speed in the fluid mixture to get accurate simulation 

results [5]. 

2.6 Primitive Variables 

When calculating the pressure and phase-volumes for a new time level, 𝑈1,𝑗 and 𝑈2,𝑗 are used to 

determine the new values in each cell. Eq. (2.15) and (2.16) are used to calculate the liquid and 

gas densities for the pressure at new time level. The momentum-conservative variable 𝑈3,𝑗 is 

used to calculate the phase velocities in combination with Eq. (2.17). The next equations show 

how the phase-volume fractions and velocities are calculated [8]: 

𝛼𝑔,𝑖
𝑛+1 =

𝑈2,𝑖
𝑛+1

𝜌𝑔,𝑖
𝑛+1  

 2.33 

𝛼𝑙,𝑖
𝑛+1 = 1 − 𝛼𝑔,𝑖

𝑛+1  2.34 

𝑈3,𝑖
𝑛+1 = (𝑈1𝑣𝑙)𝑗

𝑛+1 + (𝑈2𝑣𝑔)𝑗
𝑛+1  2.35 

 

From Eq. (2.17) 

𝑣𝑔 = 𝐾(𝛼𝑙𝑣𝑙 + 𝛼𝑔𝑣𝑔) + 𝑆 →  𝑣𝑔 =
𝐾𝛼𝑙𝑣𝑙 + 𝑆

1 − 𝐾𝑎𝑔
 

 2.36 

 

Substituting 𝑣𝑔 from Eq. (2.36) into Eq. (2.35).  

𝑣𝑙,𝑗
𝑛+1 =

𝑈3,𝑗
𝑛+1(1 − 𝐾𝛼𝑔,𝑗

𝑛+1) − 𝑆𝑈2,𝑗
𝑛+1

𝑈1,𝑙
𝑛+1(1 − 𝑘𝛼𝑔,𝑗

𝑛+1) + 𝑈2,𝑗
𝑛+1𝐾𝛼𝑙,𝑗

𝑛+1
 

 2.37 
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2.7 Well Status 

The following presents how the numerical boundary treatment has been presented in previous 

papers – [6], [9], and [10].  

Open Well 

At the inlet boundary of the well (bottom), the mass flowrates for the two different phases will 

be inputs and therefore known. With this information, both mass and convective momentum 

fluxes can be determined. However, the inlet pressure or pressure flux must be calculated, and 

the following expression can be used [6]: 

𝑃𝑖𝑛𝑙𝑒𝑡 = 𝑃1 +
Δ𝑧

2
𝜌𝑚𝑖𝑥𝑔 cos 𝜃 +

Δ𝑧

2
𝐹𝑤 

 2.38 

 

While at the outlet boundary (top), both mass and convective momentum fluxes have been 

extrapolated using the middle value in the boundary cell [6]. One should keep in mind that only 

a zero-order extrapolation have been used here (will be explained later). However, if the values 

are changing much from cell to cell (a large gradient), a zero-order extrapolation may be too 

simple. For instance, at the top of the well, a gas kick migrating will experience large expansion. 

The outlet pressure flux has been set to atmospheric condition as it’s open to the environment.  

Closed Well 

The same Eq (2.38) is also used for finding the inlet pressure flux and the values for mass and 

convective momentum fluxes are set to zero. The outlet pressure flux will be defined by the 

expression [6]: 

𝑃𝑜𝑢𝑡𝑙𝑒𝑡 = 𝑃𝑀 −
Δ𝑧

2
𝜌𝑚𝑖𝑥𝑔 cos 𝜃 −

Δ𝑧

2
𝐹𝑤 

 2.39 

 

It must also be mentioned that in paper [8], one used first-order extrapolation techniques 

instead of Eq. (2.32) and Eq. (2.38) to define the pressures. 

𝑃𝑖𝑛𝑙𝑒𝑡 = 𝑃1 +
1

2
(𝑃1 − 𝑃2) 

 2.40 
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𝑃𝑜𝑢𝑡𝑙𝑒𝑡 = 𝑃𝑀 +
1

2
(𝑃𝑀 − 𝑃𝑀−1) 

 2.41 

 

The extrapolation technique will be explained more in general later. 

2.8 Water Hammer Effect 

Water hammer effect is something that people can experience in everyday life without giving it 

a second thought. By closing the water tap quickly it’s possible to hear a thud and this thud is a 

result of moving fluids coming to an immediate stop. By stopping moving fluids in an instant 

there is a large pressure spike in the system, and this is not dangerous in normal household 

pipes. However, in an industrial scale, it can very quickly destroy equipment and become 

deadly.  

Generally, it is wise to slowly shut off pipes that have liquid flowing as the pressure spike can 

severely wear down equipment. In [14], Yuan et al. investigated water hammer effect when 

shutting in riser when rapid loading event was taking place and if the equipment could handle 

the pressure increase. Many factors were investigated in the paper, including oil-based mud, 

water-based mud, size of influx volume and shut-in time. The paper concludes that shutting in a 

riser in approximately 10 seconds the water hammer effect did not contribute too significantly 

high pressure when closing the riser during rapid unloading [14]. For this thesis, closing of the 

BOP will take place early in the simulation and the flow has not at this stage increased much so 

the water hammer effect is reduced. 
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3. AUSMV Scheme 

The AUSMV scheme is a hybrid flux-vector splitting scheme (FVS) and is short for “Advection 

Upstream Splitting Method” and the V is for velocity splitting functions. The AUSMV scheme 

was specifically developed for use in petroleum engineering applications. Compared to other 

numerical methods, it does not rely on thorough mathematical analysis of the models and is 

simple to implement. However, it does require an approximate expression for the sound 

velocity [5]. 

3.1 Numerical Flux Formulas for AUSMV 

The numerical FVS flux is presented in [5] and are as follows:  

𝐹
𝑗+

1
2

𝐹𝑉𝑆(𝑼𝐿, 𝑼𝑅) = (𝛼𝑙𝜌𝑙)𝐿𝚿𝑙,𝐿
+ + (𝛼𝑙𝜌𝑙)𝑅𝚿𝑙,𝑅

− + (𝛼𝑔𝜌𝑔)𝐿𝚿𝑔,𝐿
+ + (𝛼𝑔𝜌𝑔)𝑅𝚿𝑔,𝑅

− + (𝐹𝑝)𝑗+1/2  3.1 

 

Where  𝐹𝑝 = (0,0, 𝑝)𝑇 and 

𝚿𝑙,𝐿
+ = 𝚿𝑙

+(𝜈𝑙,𝐿 , 𝑐𝑗+1/2),         𝚿𝑙,𝑅
− = 𝚿𝑙

−(𝜈𝑙,𝑅 , 𝑐𝑗+1/2)  3.2 

 

Where 

𝚿𝑙
+(𝜐, 𝑐) = 𝑉+(𝜐, 𝑐) (

1
0
𝜐

),     𝚿𝑙
−(𝜐, 𝑐) = 𝑉−(𝜐, 𝑐) (

1
0
𝜐

) 
 3.3 

   

And in the same manner for gas phase: 

𝚿𝑔,𝐿
+ = 𝚿𝑔

+(𝜈𝑔,𝐿, 𝑐𝑗+1/2),       𝚿𝑔,𝑅
− = 𝚿𝑔

−(𝜈𝑔,𝑅 , 𝑐𝑗+1/2)  3.4 

 

And 

𝚿𝑔
+(𝜐, 𝑐) = 𝑉+(𝜐, 𝑐) (

0
1
𝜐

),    𝚿𝑔
−(𝜐, 𝑐) = 𝑉−(𝜐, 𝑐) (

0
1
𝜐

) 
 3.5 
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The velocity splitting formulas 𝑉+ are defined as: 

𝑉±(𝜐, 𝑐) = {
±

1

4𝑐
(𝜐 ± c)2    𝑖𝑓 |𝜈| < 𝑐

1

2
(𝜈 ± |ν|)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 3.6 

 

The AUSMV replaces the velocity splitting functions 𝑉+ by a more general pair 𝑉̃+. The new 

velocity splitting function is defined as: 

𝑉̃±(𝜐, 𝑐, 𝜒) = {
𝜒𝑉±(𝑣, 𝑐) + (1 − 𝜒)

𝑣 ± |𝑣|

2
,    |𝜈| < 𝑐

1

2
(𝜈 ± |𝑣|)                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 3.7 

 

The pressure term 𝐹𝑝 is the same as in the FVS type discretization:  

𝑝𝑗+1/2 = 𝑃+(𝜈𝐿, 𝑐𝑗+1/2)𝑝𝐿 + 𝑃−(𝜈𝑅 , 𝑐𝑗+1/2)𝑝𝑅  3.8 

 

The parameter 𝜒 must be specified to get “good” numerical fluxes and is the main challenge as 

𝜒 defines a whole family of AUSMV schemes [5]. In [5], the following was proposed: 

𝜒𝐿 = 𝛼𝑅,    𝜒𝑅 = 𝛼𝐿  3.9 

   

The parameter c is the approximation of sound velocity and is associated with a gas liquid 

mixture. c is defined as: 

𝑐(𝛼𝑔) = {
𝑚𝑖𝑛(𝛼𝑙 , 𝜔) ,    𝑖𝑓 𝛼𝑔 < 0.5

𝑚𝑖𝑛(𝛼𝑔, 𝜔) ,    𝑖𝑓 𝛼𝑔 > 0.5
 

 3.10 

 

The AUSMV scheme has replaced the velocity splitting function 𝑉+ with a more general 𝑉̃+ in 

the convective flux part and with the weighting functions 𝜒𝐿 , 𝜒𝑅. The conservative variables in 

the different cells at the new time level are found with the following expression: 
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𝑈𝑖,𝑗
𝑛+1 = 𝑈𝑖,𝑗

𝑛 −
Δ𝑡

Δ𝑥
(𝐹𝑗+1/2

𝐴𝑈𝑆𝑀𝑉 − 𝐹𝑗−1/2
𝐴𝑈𝑆𝑀𝑉) − Δ𝑡𝑞𝑖

𝑛 
 3.11 

 

Where 𝑈𝑖,𝑗 is the mass conservative variables and the mixture momentum conservative variable 

and 𝑞𝑖 is the sum of external forces. 𝐹𝐴𝑈𝑆𝑀𝑉 represents mass and momentum fluxes defined by 

the formulas above. i, j, n are conservative variables, cell number and time level, respectively. n 

is old time level and n + 1 will be the new time level. 

3.2 Boundary Treatment 

The AUSMV scheme has a hyperbolic nature and therefore one must be careful treating the 

boundaries in the model. It is vital that the information going in and out of the system to be 

precise. Before the work on this thesis, the simulation model has used an extrapolation method 

to find the boundary flux values (e.g. used in [6], [8] and [9]), as the AUSMV scheme itself does 

not have formulas to calculate them. The main principle has been to impose the variables that 

are physically determined by the system and extrapolate the variables that are unknown using 

the values defined by the mid values in the boundary cells. There are slightly different methods 

to handle the boundary depending on the status of the well [6]. However, the work in this thesis 

has been to implement the ideas from [3] to compare how and if compatibility relations 

improves the simulation model. 

 

Figure 3.1: Difference between boundary cell value and outlet boundary flux value. 
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3.3 Extrapolation 

The boundary cells in the AUSMV scheme have been estimated using extrapolation methods. 

There are many different forms of extrapolation methods can be applied to schemes but only a 

few different relevant ones will be listed. These methods can be applied to any set of variables 

(conservative, primitive or characteristic) and first order is generally sufficient for second-order 

schemes [7]. The illustration and formulas below are from [7] and give a quick overview of the 

difference between zero-order and first-order extrapolation. 

 

Figure 3.2: Illustration of different forms of variable extrapolation. 
Space extrapolation of variable X at fixed time [7]. 

 

A. For space extrapolation 

Zero-order extrapolation 

𝑋𝑀
𝑛+1 = 𝑋𝑀−1

𝑛+1     or    ΔX𝑚 = Δ𝑋𝑚−1  3.12 

Where 

Δ𝑋 = 𝑋𝑛+1 − 𝑋𝑛 =̅ Δ𝑋𝑛  3.13 

First-order extrapolation 

𝑋𝑀
𝑛+1 = 2𝑋𝑀−1

𝑛+1 − 𝑋𝑀−2
𝑛+1     or    Δ𝑋𝑀

𝑛 = 2Δ𝑋𝑀−1
𝑛 − Δ𝑋𝑀−2

𝑛   3.14 
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B. For space-time extrapolation 

Zero-order extrapolation 

𝑋𝑀
𝑛+1 = 𝑋𝑀−1

𝑛+1     or    Δ𝑋𝑚
𝑛 = Δ𝑋𝑀−1

𝑛−1   3.15 

First order space/zero order in time 

𝑋𝑀
𝑛+1 = 2𝑋𝑀−1

𝑛 − 𝑋𝑀−2
𝑛     or    Δ𝑋𝑀

𝑛 = 2Δ𝑋𝑀−1
𝑛−1 − Δ𝑋𝑀−2

𝑛−1   3.16 

First order in space and time 

𝑋𝑀
𝑛+1 = 2𝑋𝑀−1

𝑛 − 𝑋𝑀−2
𝑛−1     or    Δ𝑋𝑀

𝑛 = 2Δ𝑋𝑀−1
𝑛−1 − Δ𝑋𝑀−2

𝑛−2   3.17 

C. Time extrapolation 

Zero order 

𝑋𝑀
𝑛+1 = 𝑋𝑀

𝑛     or    ΔX𝑚 = 0  3.18 

First order 

𝑋𝑀
𝑛+1 = 2𝑋𝑀

𝑛 − 𝑋𝑀
𝑛−1    or    Δ𝑋𝑀

𝑛 = Δ𝑋𝑀
𝑛−1  3.19 

The space-extrapolation method can either be used with an implicit or explicit treatment of the 

numerical boundary condition. The space-time extrapolation is, however, adapted for explicit 

schemes and the pure time extrapolations are better adapted for implicit schemes. As for 

accuracy, for linear equations, the boundary scheme may be one lower order than the interior 

schemes without sacrificing accuracy of the complete scheme [7]. 

3.3.1 Practical Implementation of Extrapolation Techniques 

Inlet Boundary: 

For the work in this thesis, it is necessary to use first-order extrapolation due to the large 

gradient involved in the calculations as a result of the big contributions from the source terms 

(hydrostatic pressure). For the inlet boundary it is possible to use Eq. (2.40) to calculate the inlet 

pressure. A zero-order extrapolation would be too simple and most likely give incorrect values. 

Instead, the Eq. (2.38) was chosen to find the inlet pressure. This will be more reliable at 

including the effect of the large pressure gradient – in the same way as first-order extrapolation. 
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Outlet Boundary: 

For the outlet boundary, it is necessary to differentiate between open and closed well status. If 

one has a closed well, then the mass and momentum fluxes will naturally be zero throughout 

the simulation. The pressure has to be calculated, and similarly to inlet pressure, one has to 

decide whether to use first-order extrapolation for calculating pressure or use the momentum 

equation more directly. The first-order equation Eq. (2.41) can be used, but Eq. (2.39) was used 

for the work in this thesis. 

For an open well status, the mass and momentum fluxes will not be zero and will have to be 

calculated. However, the pressure at outlet will be surface pressure (1 bar). In an open well, 

there will be a large gas expansion when a kick starts approaching the surface of the well. If a 

zero-order extrapolation is used, one must be able to tolerate a higher margin of error in the 

simulation results. The following equations show how the fluxes are defined in a zero-order 

extrapolation technique. 

𝐹1,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑀𝑎𝑠𝑠
𝐴𝑈𝑆𝑀𝑉 = 𝛼𝑙,𝑀𝜌𝑙,𝑀𝑣𝑙,𝑀     3.20 

   

𝐹2,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑀𝑎𝑠𝑠
𝐴𝑈𝑆𝑀𝑉 = 𝛼𝑔,𝑀𝜌𝑔,𝑀𝑣𝑔,𝑀     3.21 

 

𝐹3,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚
𝐴𝑈𝑆𝑀𝑉 = 𝛼𝑙,𝑀𝜌𝑙,𝑀𝑣𝑙,𝑀

2 + 𝛼𝑔,𝑀𝜌𝑔,𝑀𝑣𝑔,𝑀
2 + 𝑃𝑜𝑢𝑡𝑙𝑒𝑡      3.22 

Here we can see that the flux terms related to mass transport are using zero-order 

extrapolation technique. For the momentum flux, the part related to mass movement use also 

zero-order extrapolation while the pressure term is defined by the physical boundary condition 

(e.g. having atmospheric pressure at the outlet). 

By using first-order extrapolation method, the simulation will be better at handling the large 

gradient between cells and will have a more accurate result. This approach starts by using first-

order extrapolation of the physical variables toward the boundary.  

𝛼𝑙,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝛼𝑙,𝑀 +
1

2
(𝛼𝑙,𝑀 − 𝛼𝑙,𝑀−1)      3.23 
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𝜌𝑙,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝜌𝑙,𝑀 +
1

2
(𝜌𝑙,𝑀 − 𝜌𝑙,𝑀−1)         3.24 

   

𝑣𝑙,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝑣𝑙,𝑀 +
1

2
(𝑣𝑙,𝑀 − 𝑣𝑙,𝑀−1) 

 3.25 

The above equations are similar for gas phase. Then we form the expression for the fluxes: 

𝐹3,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝐿𝑖𝑞𝑢𝑖𝑑 𝑀𝑎𝑠𝑠
𝐴𝑈𝑆𝑀𝑉 =  𝛼𝑙,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝜌𝑙,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑣𝑙,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦     3.26 

 

𝐹3,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝐺𝑎𝑠 𝑀𝑎𝑠𝑠
𝐴𝑈𝑆𝑀𝑉 = 𝛼𝑔,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝜌𝑔,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑣𝑔,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦      3.27 

 

𝐹3,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚
𝐴𝑈𝑆𝑀𝑉 = 𝛼𝑙,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝜌𝑙,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑣𝑙,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦

2 +

                                                       𝛼𝑔,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝜌𝑔,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑣𝑔,𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦
2 + 𝑃𝑜𝑢𝑡𝑙𝑒𝑡     
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3.4 Compatibility relations 

When using compatibility relations, the numerical scheme will give the solution in the interior of 

the domain. The outgoing characteristics compatibility relations together with the imposed 

physical conditions are used to determine the unknown variables at the boundary points. The 

compatibility relation equations are explicitly discretized in an upwind manner where the 

imposed physical conditions are added to the discretization [3].  

There are four distinct compatibility relations methods used in this thesis and a better overview 

and explanation can be found in [3] and [17]. More details about how they were originally 

derived can be found in [16]: 

- One-phase inlet 

- One-phase outlet 

- Two-phase inlet 

- Two-phase outlet 
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One-phase inlet 

For the one-phase inlet, the outgoing characteristics C1 can be seen in the figure below: 

 

Figure 3.3: One-phase inlet boundary [3]. 

The velocity 𝑣𝑙
∗ is known at the inlet boundary. The corresponding compatibility equation is 

discretized with the imposed velocity 𝑣𝑙
∗: 

𝑃1/2
𝑛+1 − 𝑃1/2

𝑛

Δ𝑡
+ (𝑣𝑙 − 𝑎𝑙)1

𝑛 (
𝑃1

𝑛 − 𝑃1/2
𝑛

Δ𝑧/2
) − (𝜌𝑙𝑎𝑙)1

𝑛[
𝑣𝑙

∗ − 𝑣𝑙1/2

𝑛

Δ𝑡
+ (𝑣𝑙 − 

𝑎𝑙)1
𝑛 (

𝑣𝑙1

𝑛 − 𝑣𝑙1/2

𝑛

Δ𝑧/2
)] = (𝑔𝜌𝑙𝑎𝑙)1

𝑛 + [𝑓𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑣𝑔 − 𝑣𝑙 + 𝜔)]1
𝑛 
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This calculates the pressure for the inlet boundary for the next time step, 𝑃1/2
𝑛+1 [3]. 

One-phase outlet 

For the one-phase outlet, the pressure 𝑃∗ is known: 
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Figure 3.4: One-phase outlet boundary [3]. 

As the 𝑃∗ is known at the outlet boundary, the compatibility equation is then discretized using 

the imposed outlet pressure 𝑃∗ to find velocity at the new time step at the outlet boundary. 

𝑃∗ − 𝑃𝑀+1/2
𝑛

Δ𝑡
+ (𝑣𝑙 − 𝑎𝑙)𝑀

𝑛 (
𝑃𝑀+1/2

𝑛 − 𝑃𝑀
𝑛

Δ𝑧/2
) + (𝜌𝑙𝑎𝑙)𝑀

𝑛 [
𝑣𝑙𝑀+1/2

𝑛+1 − 𝑣𝑙𝑀+1/2

𝑛

Δ𝑡
+ (𝑣𝑙 − 

𝑎𝑙)𝑀
𝑛 (

𝑣𝑙𝑀+1/2

𝑛 − 𝑣𝑙𝑀

𝑛

Δ𝑧/2
)] = −(𝑔𝜌𝑙𝑎𝑙)𝑀

𝑛 − (𝑓𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙)𝑀
𝑛  
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With this expression, it’s possible to calculate the unknown velocity 𝑣𝑙𝑀+1/2

𝑛+1  and use this to 

calculate the fluxes at the outlet boundary [3]. 

Two-phase inlet 

In two-phase it becomes slightly more complex as there are more unknown variables. The mass 

rates at the inlet are given. From there, one can determine the superficial velocities by using the 

density from the previous time level. By using the gas slip relation, these can be used to 

determine phase velocities and gas volume fraction at the inlet (𝑣𝑙
∗, 𝑣𝑔

∗, 𝛼𝑔
∗) 
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Figure 3.5: Two-phase inlet boundary [3]. 

By discretizing the compatibility relation, the inlet pressure 𝑃1/2
𝑛+1 is found. 𝑣𝑙

∗ and 𝛼𝑔
∗  are known 

variables and are added to the discretization [3].  

𝑃1/2
𝑛+1 − 𝑃1/2

𝑛

Δ𝑡
+ (𝑣𝑙 − ω)1

𝑛 (
𝑃1

𝑛 − 𝑃1/2
𝑛

Δ𝑧/2
) − (𝜌𝑙𝜔(𝑣𝑔 − 𝑣𝑙))1

𝑛[
𝛼𝑔

∗ − 𝛼𝑔1/2
𝑛

Δ𝑡
+ 

(𝑣𝑙 − w)1
𝑛  (

𝛼𝑔1
𝑛 − 𝛼𝑔1/2

𝑛

Δ𝑧/2
)] − (𝜌𝑙(𝑣𝑔 − 𝑣𝑙 + 𝜔)(1 − 𝜆))1

𝑛[
𝑣𝑙

∗ − 𝑣𝑙1/2

𝑛

Δ𝑡
+ 

(𝑣𝑙 − 𝜔)1
𝑛 (

𝑣𝑙1

𝑛 − 𝑣𝑙1/2

𝑛

Δ𝑧/2
)]   = 𝑔[(𝜌𝑙𝛼𝑙 + 𝜌𝑔𝛼𝑔)(𝑣𝑔 − 𝑣𝑙 + 𝜔)]1

𝑛  + 

[𝑓𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑣𝑔 − 𝑣𝑙 + 𝜔)]1
𝑛 
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Two-phase outlet 

At the outlet boundary for two-phase, the pressure or zero velocity may be imposed as a 

physical boundary condition. In the experiments run in this thesis both open and closed well 

scenarios will be studied. For an open well, the atmospheric pressure 𝑝∗ is known at the outlet 

boundary. Other unknown variables are 𝑣𝑙𝑀+1/2

𝑛+1 , 𝑣𝑔𝑀+1/2
𝑛+1  and 𝛼𝑔𝑀+1/2

𝑛+1  will be determined by 

using compatibility relations together with gas slip relation [3]. 
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Figure 3.6: Two-phase outlet boundary [3]. 

 

The void fraction 𝛼𝑔𝑀+1/2
𝑛+1  can be found by using the following equation: 

𝑃∗ − 𝑃𝑀+1/2
𝑛

Δ𝑡
+ (𝑣𝑔)𝑀

𝑛 (
𝑃𝑀+1/2

𝑛 − 𝑃𝑀
𝑛

Δ𝑧/2
) + (𝜌𝑙𝜔2)𝑀

𝑛 [
𝛼𝑔𝑀+1/2

𝑛+1 − 𝛼𝑔𝑀+1/2
𝑛

Δ𝑡
+ 

(𝑣𝑔)𝑀
𝑛 (

𝛼𝑔𝑀+1/2
𝑛 − 𝛼𝑔𝑀

𝑛

Δ𝑧/2
)] = 0 
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The liquid velocity 𝑣𝑙𝑀+1/2

𝑛+1  can then be found using the following equation where 𝛼𝑔𝑀+1/2
𝑛+1  is 

given by Eq. (3.32). 

𝑃∗ − 𝑃𝑀+1/2
𝑛

Δ𝑡
+ (𝑣𝑙 + 𝑤)𝑀

𝑛 (
𝑃𝑀+1/2

𝑛 − 𝑃𝑀
𝑛

Δ𝑧/2
) + (𝜌𝑙𝑤(𝑣𝑔 − 𝑣𝑙))𝑀

𝑛 [
𝛼𝑔𝑀+1/2

𝑛+1 − 𝛼𝑔𝑀+1/2
𝑛

Δ𝑡
+ 

(𝑣𝑙 + 𝑤)𝑀
𝑛 (

𝛼𝑔𝑀+1/2
𝑛 − 𝛼𝑔𝑀+1/2

𝑛

Δ𝑧/2
)] − (𝜌𝑙𝛼𝑙(𝑣𝑔 − 𝑣𝑙 − 𝑤))𝑀

𝑛 [
𝑣𝑙𝑀+1/2

𝑛+1 − 𝑣𝑙𝑀+1/2

𝑛

Δt
+ 

(𝑣𝑙 + 𝑤)𝑀
𝑛 (

𝑣𝑙𝑀+1/2

𝑛 − 𝑣𝑙𝑀

𝑛

Δ𝑧/2
)] = 𝑔[(𝜌𝑙𝛼𝑙 + 𝜌𝑔𝛼𝑔)(𝑣𝑔 − 𝑣𝑙 − 𝑤)]𝑀

𝑛 + 

[𝑓𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑣𝑔 − 𝑣𝑙 − 𝜔)]𝑀
𝑛  
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The following equation can be used to find the gas velocity from the gas slip relation: 

𝑣𝑔𝑀+1/2
𝑛+1 =

𝐾𝛼𝑙𝑀+1/2

𝑛+1 𝑣𝑙𝑀+1/2

𝑛+1 + 𝑆

(1 − 𝐾𝛼𝑔𝑀+1/2

𝑛+1 )
 

 3.34 

 

For the transition from single-phase to two-phase calculations, an if statement was used 

imposing single-phase calculations if 𝛼𝑔𝑀
𝑛  is less than 0.001 and two-phase calculations if the gas 

volume fraction was above 0.001. 

In the case of a two-phase closed well, 𝑣𝑙𝑀+1/2

𝑛+1  will equal to zero and both 𝑃∗ and 𝛼𝑔𝑀+1/2
𝑛+1  will be 

unknowns in Eq. (3.33). In addition, due to the uncertainty of the importance of 𝛼𝑔𝑀+1/2
𝑛+1 , a zero-

order space-time extrapolation [7] as shown in Eq. (3.15) was used. This allows us to 

approximate the void fraction, 𝛼𝑔𝑀+1/2
𝑛+1 = 𝛼𝑔𝑀

𝑛 , and avoid the use of Eq. (3.32) completely for 

the two-phase closed well case. However, another method of solving this would be to solve Eq. 

(3.32) for 
𝛼𝑔𝑀+1/2

𝑛+1 −𝛼𝑔𝑀+1/2
𝑛  

Δ𝑡
 and insert this solution into Eq. (3.33) in order to solve for 𝑃∗. With 

this method, one would solve for all the variables in Eq. (3.32) and Eq. (3.33) at the same time. 

This method may be a more accurate solution if 𝛼𝑔𝑀+1/2
𝑛+1  plays a larger role than initially 

assumed.  

3.5 Slope Limiters 

The basic AUSMV scheme is a first order scheme, which means numerical diffusion will have a 

significant impact on the simulation results. The numerical diffusion makes what should be very 

sharp edges in the liquid-gas transition very smooth and make the transition more gradual than 

it is supposed to be. This problem could be reduced by increasing the number of cells in the 

simulation but at the cost of increased computational execution time. However, a more reliable 

solution is to make the scheme second order by use of the slope limiter concept [11]. With this 

concept, the variables in a cell are no longer constants and a slope is formed throughout the cell 

and is used to calculate the boundary values in each cell. With the boundary values in the cell 
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calculated, they can be used to calculate the numerical fluxes between the cells. The figure 

below gives a good illustration of what it looks like in each cell [6]. 

 

Figure 3.7: Slope limiter concept [6]. 
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4. Simulations & Discussion 

The main idea with this thesis was to compare the use of compatibility relations with the use of 

both zero- and first-order extrapolation techniques. There are alternative approaches for 

handling the numerical boundary condition, i.e. transporting information from the interior 

computational domain to the boundary. The concept of compatibility relations is taken from 

[16] and [17] and these are defined in chapter 3.4. Here they have been implemented into the 

AUSMV scheme. Each simulation test case was partly taken or inspired from similar simulation 

cases defined before in [2] and [6]. They were chosen to cover quite different flow situations to 

provide a broad test basis for testing and comparing the different ways of treating the 

numerical boundary condition. One objective has been to test both rapid propagating pressure 

pulses and the more slow mass transport phenomena. For two-phase flow gas mass transport, 

one has considered both open and closed well condition to test both the effects. The idea has 

been to capture the situation where large gas volume expansion takes place (kick in open well) 

but also a situation where there is a 100% transition between a liquid and gas zone (a kick that 

has migrated to the top of the closed well). All cases used in thesis are generally very different 

from each other as the fluid behavior will be completely different for each case: 

1. Generating pressure pulses through an open horizontal pipe. 

2. Migrating kick in a vertical well that is closed at the top. 

3. Migrating kick in a vertical well that is open at top. 

4. Migrating kick in a vertical well that is open at top and circulating the kick out. 

The horizontal pipe has no annulus and only pure liquid will be used for this case. All the cases 

have also been simulated with different amounts of cells. The number of cells will generally 

have a significant impact on the accuracy and execution time of the simulation. Three standard 

number of cells are used in the simulations, 25 cells, 50 cells and 100 cells for each case. For 

case 1, the CFL was kept constant for all simulation runs at CFL = 0,15. For the rest of the cases, 

the CFL was kept constant at 0,1875. 
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Depth/Length 

For the first case (1), the pipe will be horizontal, have no annulus and have a length of 10.000 

meters with modified atmospheric pressure. In case two (2) and three (3), the well will be 

vertical with a depth of 4000 meters. 

Diameter 

The horizontal pipe in case one (1) has a diameter of 0,2 m and will result in a cross-sectional 

flow area of 0,0314 m2. For case two (2) and three (3) the outer diameter is 0,311 m (12,25”) 

and inner diameter is 0,127 m (5”). This gives a cross-sectional flow area of 0,0634 m2 (98,22 

in2). 

Fluid properties 

As the goal is to test the robustness of the boundary condition treatment in this thesis, water 

has been selected as the main fluid phase and air is used for the gas phase. These phases come 

with standard water and air properties. 

Friction model 

As case one (1) does not have an annulus, the Dukler friction factor model is used. For laminar 

and turbulent flow, respectively: 

𝑓 = 16/𝑅𝑒   4.1 

   

𝑓 = 0,046𝑅𝑒−0,2   4.2 

 

Case two (2) and three (3) has an annulus and uses an annulus friction factor model. For laminar 

and turbulent flow, respectively: 

𝑓 = 24/𝑅𝑒   4.3 

   

𝑓 = 0,052𝑅𝑒−0,19   4.4 



32 
 

4.1 Case 1 – Horizontal Pipe Flow 

The first case was set up similar to [2] with the main idea of quickly generating pressure pulses 

through the system that consists entirely of liquid. The entire pipe is filled with liquid and has an 

open end. The pump has a ramp up time of 0,5 seconds from 0 kg/s to 16,7 kg/s (1000 lpm). The 

ramp up will start at 1 second and end at 1,5 seconds. This quick (but unrealistic) ramp up of the 

pump will generate very powerful pressure pulses propagating throughout the system and 

should make it possible to see the effect of implementing a different boundary condition 

treatment. There was a slight issue with this simulation if it were run with atmospheric pressure 

of 1 bar. When the pressure pulse that was generated had bounced from the outlet and was on 

its way back, the pressure in the pipe would approach vacuum condition and possibly become 

negative. This would lead to an abnormal behavior as seen in the graph below:  

  

Figure 4.1: Graph showcasing the vacuum issue at inlet due to low atmospheric pressure. 

There are probably several methods to work around this, but just for the sake of simplicity the 

atmospheric pressure for this case was set to 10 bars. After implementing the new atmospheric 

pressure, it is easier to see the generated pressure pulses propagating back and forth in the 

system. The amplitude of these will dampen when time passes due to friction effects as seen in 

Fig. 4.2. 
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Figure 4.2: Inlet pressure vs. time with atmospheric pressure set to 10 bar. 

With this implementation, it will be easier to compare the different boundary condition 

treatments. As case 1 has only a liquid phase, the propagating pressure pulses will have a speed 

of 1500 m/s and moving to the end of the pipe will take approximately 6,7 seconds. As seen in 

Fig. 4.2, the pressure pulse starts propagating forward at 1,0 seconds and uses about 13,3 

seconds to the outlet of the pipe and back where it influences the inlet pressure of the pipe 

again. 
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Figure 4.3: Inlet pressure vs. time of first-order extrapolation technique. 

In Fig. 4.3, shows the inlet pressure using grid refinement when using first-order extrapolation 

technique in the model. With the lower cell count in the model, the oscillation is quite 

significant and is about 3 bars above the intended pressure after the pump has reached its 

maximum flow rate. The figure also shows that increasing the cell number for the model will 

reduce the oscillation issues quite significantly. In addition, by increasing the number of cells 

also reduces the numerical diffusion that occurs between 13 and 16 seconds. The same 

simulation has been run with compatibility relation method for the next graph to see the effect 

of different boundary condition treatment. 
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Figure 4.4: Inlet pressure vs. time of compatibility relations method. 

Fig. 4.4, shows the inlet pressure vs. time of the same simulation run previously with 

compatibility relation method. As seen from this figure, the oscillation issue for the lower cell 

count grid, has been reduced by large margin and keeps improving by increasing the cell count. 

For 25 cells, the initial oscillation is just shy of 1 bar above the intended pressure and for the 

higher cell count grid, 100 cells, the oscillation is barely noticeable. However, the different 

boundary treatment does not affect the numerical diffusion issue occurring between 13 and 16 

seconds and which is the same for both boundary condition treatment methods. Although it 

does not reduce the numerical diffusion, it does improve on the oscillation occurring after the 

pressure drop when the pressure pulse has propagated back. The large oscillation improvement 

here is due to the different method to treat the inlet boundary condition. The different outlet 

boundary condition treatment will only play a minor role as it does not affect the inlet pressure 

until the pressure pulse propagates back. The next graph has the two previous simulation runs 

plotted in the same figure to better show the improvements. 
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Figure 4.5: Inlet pressure vs. time for both boundary condition treatment methods. 

As it clearly shows in Fig. 4.5, the different inlet boundary condition treatment improves the 

oscillation issue occurring early in the simulation but has practically not impact on the numerical 

diffusion in the simulation. In addition, it shows that the number of cells chosen for simulation 

has more importance than the boundary condition treatment. 

 

Figure 4.6: Pressure vs. distance for first-order extrapolation technique. 



37 
 

Fig. 4.6, shows where the pressure pulse is located throughout the pipe at specified times. This 

allows us to see the effect of the numerical diffusion between the 25 cell and 100 cell simulation 

runs. The case with the most diffusion (25 cells) will feel the pressure inlet decrease earlier 

when the pulse has travelled back. The pressure change that the pulse represents has been 

diffused in the spatial domain. 

 

 

Figure 4.7: Inlet pressure vs. time comparing first-order extrapolation technique and compatibility relations method. 

In Fig. 4.7, a longer simulation run of the two different boundary condition treatment methods 

for 25 cells is presented. As seen, the oscillation issue can be seen clearly after pump ramp up 

but diminishes quite quickly. From this analysis of case 1, it does appear that compatibility 

relations method has an advantage over the first-order extrapolation technique if a less refined 

grid is required. Hence, if we are to study severe impacts at sonic wave propagation (e.g. with 

water hammer effects etc), compatibility relations might give better results than extrapolation 

techniques. 
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4.2 Case 2 – Kick in Closed Vertical Well 

Case 2 setup was similar to [6] in order to get a rigorous case to compare the results against. For 

the next cases the time between saving time data will be set at 1 seconds, and therefore plotted 

data will only have points every 1 seconds compared to 0,1 seconds in case 1. This will result in 

the graphs showing less of the extremely fine detail of the data but will work just fine as the 

next cases span over a much longer time interval compared to case 1. 

For case 2, the well has a depth of 4000 meter and a geometry of 12.25” x 5” annulus. This gives 

an outer diameter of 0,331 m and inner diameter of 0,127 m which results in a cross-sectional 

area of 0,0634 m2. The compressibility is such that the related sonic velocity 𝑎𝑙 = 1500 𝑚/𝑠 

(water) and the kick influx is assumed to be an ideal gas with a sonic velocity of 𝑎𝑔 = 316 𝑚/𝑠. 

The kick volume is half of what it is in [6] for the purpose of having case 2, 3 and 4 setup similar. 

With a too large kick volume, the gas and liquid velocity at the outlet in an open well status may 

exceed the sound barrier and could make the simulation unstable. 

The initial kick volume used here is 2,05 m3 and it is introduced using a gas mass rate of 8 kg/s. 

The well is first kept static for the first 10 seconds then the gas mass rate is ramped up linearly 

over a 10 second period. The gas mass rate is then kept static for the next 90 seconds until it is 

ramped down linearly over a 10 second period and the well is closed at 130 seconds. The gas 

will then start migrating upwards and lead to pressure buildup in the well until it reaches the 

top of the well. We start off the comparison in case 2 with a close look at the first 150 seconds 

of the simulation run with both first-order extrapolation order and compatibility relations 

method with grid refinement. With first-order extrapolation, we mean that Eq. (2.38) and (2.39) 

are used. 
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Figure 4.8: Bottomhole pressure vs. time of both first-order extrapolation technique and compatibility relation method and 
refinement. 

As seen in Fig. 4.8, all the simulation runs using the first- order extrapolation techniques have 

precisely the same values for the 100 first seconds of simulation time. The compatibility relation 

method runs start approaching the values of first-order extrapolation runs when the grid is 

refined. This indicates that first-order extrapolation method does a better job at calculating the 

bottomhole (inlet) pressure in the early phase of this simulation run. Running this simulation 

over a longer time period, it does appear that the compatibility relations method using 100 cells 

has stability issues when the kick reaches the top of well as seen in figure below. 
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Figure 4.9: Bottomhole pressure vs. time for compatibility relations method boundary condition treatment. 

In Fig. 4.9, we can see the bottomhole pressure of the simulation run to 8000 seconds using 

compatibility relations boundary condition treatment. The simulation behaves normal apart 

from the fact that the more refined grid of 100 cells started having stability issues once the kick 

reaches the top of the well. The cause of this is a little uncertain, but it may be possible the two-

phase calculations cannot handle the high gas fraction that the 100 cells grid reaches toward the 

end of the simulation. A possible fix could be to introduce single gas phase compatibility 

relations and try to ensure a smooth transition between the two-phase and one-phase gas 

compatibility relations. 
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Figure 4.10: Bottomhole pressure vs. time comparing first-order extrapolation technique and compatibility relations method. 

Fig. 4.10 shows the bottomhole pressure for both boundary condition treatment methods, and 

it shows that both methods simulate practically the same values for the bottomhole pressure. 

The instability issues seen in the Fig. 4.9 and 4.10 only happened for compatibility relation 

method boundary condition treatment and there were no issues with any of the first-order 

extrapolation technique runs. In addition to the instability issue, there has also been an issue 

with extra gas being added to all cases involving two-phase even though the well is closed and 

no gas is pumped into the system. 

 

Figure 4.11: Gas mass vs. time for first-order extrapolation technique. 
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As seen in Fig. 4.11, there is extra gas being added for the simulation. For a 25 cells grid, the 

extra ~50 kg of gas is added at around 1000 seconds, but with grid refinement, it starts 

occurring earlier on in the simulation run. The cause of this is uncertain, but all cases with two-

phase flow the same issue happens quite early in the simulation. This does show up in both the 

bottomhole pressure and gas volume graphs, but it has no real impact on the end of the 

simulation apart from being a slightly larger kick than initially introduced in the well. The issue 

will for the time being be overlooked and will be discussed in more detail in the next chapter. 

 

Figure 4.12: Gas volume vs. time grid refinement for first-order extrapolation technique and compatibility relation method. 

Fig. 4.12, the kick volume vs time for the different simulations using both compatibility relations 

method and first-order extrapolation technique for different grid refinement can be seen. All 

simulations show that the kick volume is allowed to increase slightly since the liquid volume is 

compressed due to increased pressure. Both methods have very similar values for the gas 

volume throughout the well and cannot even be differentiated on the graph. For this case it 

seems hard to justify implementing compatibility relations method since the first-order 

extrapolation technique seems to provide a more correct result since it converges faster to a 

solution, especially in the early phase for the simulation. In addition, the first-order 

extrapolation technique is also much easier to implement. 
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4.3 Case 3 – Kick in Open Vertical Well 

Case 3 has the same setup as case 2 with the exception that the well will remain open. This 

should be a rigorous numerical case for the different boundary condition treatments method to 

be tested for. In addition to first-order extrapolation technique and compatibility relations 

method, zero-order extrapolation will also be tested for the open hole well status to see how it 

compares. 

The well has a depth of 4000 meter and a geometry of 12.25” x 5” annulus. This gives an outer 

diameter of 0,331 m and inner diameter of 0,127 m which results in a cross-sectional area of 

0,0634 m2. The compressibility is such that the related sonic velocity 𝑎𝑙 = 1500 𝑚/𝑠 (water) 

and the kick influx is assumed to be an ideal gas with a sonic velocity of 𝑎𝑔 = 316 𝑚/𝑠. The kick 

volume is half of what it is in [6] for the purpose of having case 2, 3 and 4 setup similar. If the 

kick volume is too large, the gas and liquid velocity at the outlet in an open well status may 

exceed the sound barrier and could make the simulation unstable. 

The initial kick volume used here is 2,05 m3 and is introduced using a gas mass rate of 8 kg/s. 

The well is first kept static for the first 10 seconds then the gas mass rate is ramped up linearly 

over a 10 second period. The gas mass rate is then kept static for the next 90 seconds until it is 

ramped down linearly over a 10 second period. The gas will then start migrating upwards and 

lead to gas expansion and eventually liquid expulsion from the well. This will result in a large 

bottomhole pressure drop.  
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Figure 4.13: Bottomhole pressure vs time for zero-order and first-order extrapolation techniques with grid refinement. 

As seen in Fig. 4.13, the bottomhole pressure can be seen plotted against time for zero-order 

and first-order extrapolation techniques. From these results, it shows that the zero-order 

extrapolation technique cannot handle this simulation with a non-refined grid (25 cells). The 

simulation was supposed to run until 7000 seconds, but the zero-order 25 cells grid became 

unreliable before 6000 seconds and at 6600 seconds the bottomhole pressure became 

undefined. For the less refined first-order extrapolation technique can predict the bottomhole 

pressure with a less refined grid, but it is about 25 bars off the results obtained with the more 

refined grid (100 cells). In addition, there is an inflection point before the liquid expulsion from 

the well has finished which can be hard to explain and may be related to the transition between 

one-phase and two-phase. Both the 50 and 100 cells zero- and first-order extrapolation 

techniques, do about equally well for predicting the bottomhole pressure. 
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Figure 4.14: Kick volume vs. time for zero-order and first-order extrapolation techniques with grid refinement. 

In Fig 4.14, the volume of gas in the well plotted against time, and the same issue as discussed 

for the bottomhole pressure can be seen here. The zero-order extrapolation technique becomes 

unstable and the kick volume goes to infinity. For the 50 and 100 cell grids, the zero- and first-

order extrapolation technique predict kick volume about equally well. Similar to the bottomhole 

pressure figure, there is a big gap in results when comparing 25 cells and 100 cells grids in 

predicted final kick volume. The difference is 17m3. Also, here the inflection point can be seen 

on the less refined grid but disappears entirely with grid refinement. 
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Figure 4.15: Bottomhole pressure vs. time for first-order extrapolation technique and compatibility relations method with 
grid refinement. 

 

 

Figure 4.16: Kick volume vs. time for first-order extrapolation technique and compatibility relations method with grid 
refinement. 
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In Fig 4.15 and 4.16, the same simulation runs have been performed except by comparing the 

first-order extrapolation with compatibility relations method. For bottomhole pressure, even 

with a less refined grid, the compatibility relations method does do a slightly better job than 

first-order extrapolation method since the final pressure is slightly lower. The inflection point is 

still present when using the compatibility relations method but is less evident. The trends as 

seen in bottomhole pressure can also be seen in the gas volume figure. The compatibility 

relations method does a slightly better job at predicting the gas volume in the well, but it proves 

that grid refinement is still much more important than which boundary condition treatment 

that is used. 
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Figure 4.17: Depth vs. gas fraction for 25 cells (top row) and 100 cells (bottom row). 

In Fig. 4.17, the depth is plotted against gas fraction for the least refined grid and the most 

refined grid. From this figure, the improvement in numerical diffusion in the simulation can be 

spotted quite easily. For the 25 cells grid, the gas volume fraction at outlet start reaching high 

gas fraction volume at both 5500 and 6000 seconds while for the 100 cells grid, the gas fraction 

at outlet is first reaching a high volume at 6000 seconds. For 25 cells grid, it is seen that first-
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order extrapolation technique and compatibility relations method lead to large gas expansion at 

surface compared to the use of zero-order extrapolation technique. Remember, that for zero-

order extrapolation technique, there will be no gas expansion in the last half of the last cell. This 

can also be seen in the first row of the figure since it is the mid-point values that are plotted. 

   

Figure 4.18: Liquid mass rate out vs. time for all methods over grid refinement. 
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In Fig. 4.18, the liquid mass rate out has been plotted against time with the different boundary 

condition treatment using different grid refinements. The 25 cells zero-extrapolation technique 

has been omitted due to its instability. The graph shows that grid refinement is much more 

dominant than boundary condition treatment. The zero-order extrapolation technique has the 

highest liquid mass rate out while the compatibility relations method has the lowest peak of the 

three. The figure also displays the improvements in regarding reduction of numerical diffusion 

when refining the grid. For the simulation using 25 cells grid, almost all the liquid has been 

expelled compared to the situation when using 100 cells grid, where the liquid expulsion has 

just started. 

  

Figure 4.19: Depth vs. liquid velocity for 25 cells (top row) and 100 cells (bottom row) with grid refinement. 
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In Fig. 4.19, the depth is plotted against the liquid velocity for the least refined grid and the 

most refined grid. From the lower count cell grid, the compatibility relation predicts a higher 

liquid velocity at the outlet. However, with grid refinement, the method used for boundary 

condition treatment does not have that much of an impact. The grid refinement reduces the 

numerical diffusion significantly. This allows for the gas to be less spread throughout the well 

and gain a much higher blowout velocity. As seen from the bottom row, the velocity at outlet 

does spike very high, and the liquid has most likely broken the sound barrier in two-phase flow. 

For open well status, if a fast, low cell grid is required, compatibility relations method would 

probably give better simulation results than zero-order and first-order extrapolation techniques. 

4.4 Case 4 – Circulate Kick Out in Vertical Well 

Case 4 is similar setup to the previous case, but instead of the letting the kick migrate up to the 

surface by itself, here the kick will be circulated out. Like in case 3, zero-order extrapolation will 

also be compared to the other boundary condition treatment methods. 

The well has a depth of 4000 meter and a geometry of 12.25” x 5” annulus. This gives an outer 

diameter of 0,331 m and inner diameter of 0,127 m which results in a cross-sectional area of 

0,0634 m2. The compressibility is such that the related sonic velocity 𝑎𝑙 = 1500 𝑚/𝑠 (water) 

and the kick influx is assumed to be an ideal gas with a sonic velocity of 𝑎𝑔 = 316 𝑚/𝑠. The kick 

volume is half of what it is in [6] for the purpose of having case 2, 3 and 4 setup similar. If the 

kick volume is too large, the gas and liquid velocity at the outlet in an open well status may 

exceed the sound barrier and could make the simulation unstable. 

The initial kick volume used here is 2,05 m3 and is introduced using a gas mass rate of 8 kg/s. 

The well is first kept static for the first 10 seconds then the gas mass rate is ramped up linearly 

over a 10 second period. The gas mass rate is then kept static for the next 90 seconds until it is 

ramped down linearly over a 10 second period. At the same time gas mass rate is ramped down, 

the liquid mass rate will be linearly ramped up over a 10 second period, up to a maximum of 40 

kg/s (2400 lpm). The liquid mass rate injected will continue to the end of the simulation to 

circulate the gas out of the well. This will force the gas up the well faster and will lead to gas 

expansion and eventually expulsion from the well. Right before gas reaches surfaces and a little 
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after, there will be an increasing amount of liquid expelled from the well and then the liquid 

rate will drop to zero with only gas flowing out.  

 

Figure 4.20: Bottomhole pressure vs. time for zero-order and first-order extrapolation technique with grid refinement. 

In Fig. 4.20, the bottomhole pressure has been plotted against time for zero-order and first-

order extrapolation techniques. There are a few interesting things going on with this setup. The 

simulation based on 25 cells zero-order extrapolation technique does predict a lower 

bottomhole pressure than the first-order extrapolation technique between 2600 and 3600 

seconds. The lower cell count grids seem to have issues performing the single-phase gas to 

single-phase liquid transition. The first-order extrapolation technique using 25 cells seems to fail 

to properly circulate out the gas and refill the well with fluid as it is supposed to. Both zero-

order and first-order extrapolation techniques do a decent job for a 50 cells grid, and they do a 

fairly similar job at predicting the bottomhole pressure. For 100 cells grid, the first-order 

extrapolation technique does perform better than zero-order as the zero-order runs into some 

stability issues at around 3700 seconds when the gas has almost left the well. Apart from the 
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slight instability for zero-order extrapolation technique for 100 cells grid, it does a similar job as 

the first-order extrapolation technique. 

 

Figure 4.21: Gas volume vs. time for zero-order and first-order extrapolation techniques. 

In Fig. 4.21, the kick volume has been plotted against the time for zero-order and first-order 

extrapolation techniques. For the first-order extrapolation technique using 25 cells, there is still 

gas left in the well when the simulation has ended.  This should have been removed at this stage 

since we are circulating liquid from below. However, the simulation seems to work well until 

about 3500 seconds, but it is not able to handle the transition to pure liquid in the well. The gas 

takes a very long time to be removed from the well. For the zero-order extrapolation technique 

for 25 cells, we can see the inflection point like in the bottomhole pressure figure. In the 

simulations using zero-order and first-order extrapolation techniques with 50 cells grid, the 

maximum gas volume is only 4-5 m3 below the maximum obtained with both methods using a 

100 cells grid. The simulation using 50 or 100 cells do a pretty good job in predicting the kick 

volume in the well vs. time. However, the transition from two-phase flow to one-phase liquid 

flow seen at around 3800 seconds is much sharper for the 100 cells grid. 
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Figure 4.22: Bottomhole pressure vs time for first-order extrapolation technique and compatibility relations method. 

In Fig. 4.22, the bottomhole pressure has been plotted against time comparing first-order 

extrapolation technique and compatibility relations method. For the rougher grids (25 cells), the 

compatibility relations method does to give lower bottomhole pressure predictions than the 

extrapolation technique. However, there seems to be an inflection point at around 2600 

seconds that may be a bit hard to explain. The more refined grid using 50 and 100 cells in 

combination with compatibility relations seems to predict the bottomhole pressure very well 

without any stability issues. The exact same conclusion as drawn earlier may not apply as well to 

this case, where increasing the cell count in the grid is better no matter what. The reason is that 

for some of the simulation cases using extrapolation techniques some stability issues occurred. 

In one case, the gas was also not properly removed. The problems typically occurred when the 

gas almost had left the well.  
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Figure 4.23: Gas volume vs time for first-order extrapolation technique and compatibility relations method. 

In Fig. 4.23, the gas volume has been plotted against time comparing the first-order 

extrapolation technique and compatibility relations method. This is also a good representation 

of how the compatibility relations method does a better job with this case than the two 

different extrapolation techniques. The 25 cells grid compatibility relations method predicts a 

higher gas volume for the peak than the first-order extrapolation technique and here the gas is 

also completely removed from the well. For the 50 and 100 cell count grids, the two methods do 

a similar job with a slight advantage for compatibility relations method as it seems to have a 

sharper transition between the two-phase region and the one-phase liquid region when the 

final gas leaves the well. However, in this scenario, a higher cell count is more important than 

which boundary condition treatment method is chosen for the simulation. 
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Figure 4.24: Depth vs. gas fraction for 25 cells (top row) and 100 cells (bottom row). 

In Fig. 4.24, the depth has been plotted against the gas fraction for the low- and high-resolution 

grids for all the boundary condition treatment methods. The 2733 seconds point in the 

simulation has been picked because this is exactly where the bottomhole pressure is the lowest 

and consequently will be where the gas velocity out of the well will be at its highest. As seen 

from the lower resolution grids, the numerical diffusion has a significant impact on the results 

and there will still be gas present in the upper part of the well at both 4000 and 4300 seconds. 

However, for the simulation using 100 cells, all the gas has left the well. As for the higher 

resolution grids, one can see that the gas fraction during the peak approaches a gas fraction of 

1, which is quite similar for all the different boundary condition treatments. The zero-order 
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extrapolation method does seem to be predict a more smooth gas fraction profile compared to 

the two other methods. For simulations using 25 cells grid, there will be some variation in gas 

volume profile for the different methods. The compatibility relations method predicts a lower 

gas fraction at the outlet for 4000 and 4300 seconds for the lower resolution grid.  

 

Figure 4.25: Liquid mass rate out vs. time for all boundary condition treatment methods for different grid refinement. 

In Fig. 4.25, the liquid mass rate out of the well has been plotted against time for all the 

different boundary condition treatments with grid refinement. As we can see from the figure, 

the liquid mass rate out is at a steady 40 kg/s as is expected due to the continuous flow of 

injected fluid from 120 seconds. After 2000 seconds, a large quantity of liquid will be pushed out 

in front of the gas and then drop to zero as only gas is exiting the well. Once all the gas has left 

the well, the liquid rate will increase again to the steady state condition with 40 kg/s with liquid 
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flow. From this figure, it’s certainly possible to confirm that 25 cells grid for this type of 

simulation is not nearly enough. The reason for that is because the simulation results for 25 cells 

grids severely underestimate the max mass flowrate at outlet. All of the boundary condition 

treatments for 50 cells and 100 cells grid are able to achieve single-phase of gas at the outlet 

when the gas is exiting the well. Maximum liquid rate is higher for a more refined grid but there 

is a tendency that the compatibility relations method leads to a slightly lower prediction 

compared to the extrapolation techniques. For zero-order extrapolation technique for 25 cells 

grid, there seems to be stability issues right after the peak in liquid rate and the liquid rate 

continues to behave slightly odd. The zero-order extrapolation technique for 100 cells grid 

predicts the largest maximum flowrate at outlet with first-order extrapolation technique and 

compatibility relations method following slightly behind. The zero-order extrapolation 

technique for 100 cells grid also has an issue at around 3600 seconds with a spike in the liquid 

rate. 
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Figure 4.26: Gas mass rate out vs. time for all boundary condition treatment methods over grid refinement. 

In Fig. 4.26, the gas mass rate out has been plotted against time comparing all the boundary 

condition treatment methods against each other. In this figure, the issue with numerical 

diffusion is shown very well. For a more refined grid, the maximum gas rate occurring increase 

and the period the gas is flowing out of the well is reduced. For the zero-order extrapolation 

technique for 25 cells grid, the stability issue is much more pronounced. For 100 cells grid, one 

can see that the compatibility relation does predict the outlet gas mass rate to be much higher 

than zero-order and first-order extrapolation techniques. Compatibility relations predict almost 

a 60% higher gas mass rate out than zero-order extrapolation technique and 45% higher than 

the first-order extrapolation technique. For the lower resolution grids, the percentages are not 

as high, but still the gas rate predictions by using the compatibility relations method are higher 

than the ones obtained with the extrapolation techniques. 
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still predicts quite a bit over than the extrapolation techniques.  

 

Figure 4.27: Depth vs. liquid velocity for 25 cells (top row) and 100 cells (bottom row) with grid refinement. 

In Fig. 4.27, the liquid velocities have been plotted for the three different boundary condition 

treatment methods for 25 cells and 100 cells grids. The liquid velocity is peaking at 2700 

seconds as this is when the gas and liquids are leaving the well. As seen from this figure as well, 

the compatibility relations method is predicting a higher liquid velocity for a lower resolution 

grid. The three different boundary condition treatments provide the same velocity profile for a 

higher resolution grid.  

  



61 
 

5. Conclusion and Future Work 

The cases for this thesis have had generally similar setup but a major key difference between 

them. The reason for that is because the cases have been built in order to be very rigorous to 

test the boundary condition treatment methods against one another. One of the goals in this 

work has been to create a set of benchmark cases for the boundary condition treatment 

methods to be tested against. The cases consider both pressure pulse propagation as well as 

mass transport. For two-phase flow, the cases test pure transition zones between phases. In 

both case 2 and case 3, a pure transition zone between gas and liquid is obtained in the end. In 

case 2, a closed well is considered and kick migration will lead to redistribution of fluids in the 

well. In case 3 and case 4, the effect of gas expansion is considered where case 3 is the most 

extreme situation. So, we have also tested both open and closed end conditions at the outlet for 

a two-phase flow situation. 

Previous work prior to this thesis has generally used zero-order extrapolation technique for 

boundary condition treatment – especially for open hole wells. As shown in this work, zero-

order extrapolation technique may not give the optimal simulation results. 

Conclusions: 

Case 1: 

• Both the compatibility relations method and first-order extrapolation technique are able 

to handle pressure pulse propagating back and forth in the pipeline. 

• For a rough grid, the compatibility relations method seemed to behave better than the 

first-order extrapolation technique avoiding some spikes in the predicted pressure. 

Hence, it may be a better approach for modelling water hammer effect. 

Case 2: 

• Compatibility relations method for 100 cells grid had stability issues for case 2, most 

likely due to lacking specific single-phase gas compatibility relations method equations in 

the code. 
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• Compatibility relations method provided no specific benefit over first-order 

extrapolation technique for a closed well. 

Case 3: 

• Zero-order extrapolation technique may run into major stability issues if grid resolution 

is too low but will generally perform well if the grid resolution is high enough as seen in 

case 3. 

• For 25 cells grid, all boundary condition treatment methods have an inflection point in 

the bottomhole pressure when the gas starts to leave the well. This is hard to explain 

and does not seem physical. The compatibility relations method seems to reduce the 

effect. 

• For 50- and 100-cells grids, the first-order extrapolation technique and compatibility 

relations did perform quite similar. The grid count has a much greater impact than which 

boundary condition treatment method is used.  

• Zero-order and first-order extrapolation technique predicts a higher liquid mass rate out 

than the compatibility relations method. This difference is also present for a fine grid. 

Case 4: 

• When using a rough grid of 25 cells, all extrapolation techniques have some problems 

when the final gas is about to leave the well. The gas will not leave the well as expected. 

• Zero-order extrapolation technique encountered stability issues for a finer grid in the 

two-phase to one-phase liquid transition taking place when the final gas is leaving the 

well. 

• Compatibility relations method seems to perform better than zero-order and first-order 

extrapolation techniques for a lower resolution grid for predicting bottomhole pressure. 

• However, as seen from liquid mass rate out, a 25-cell grid is too rough for this type of 

simulation. The maximum liquid and gas rates will be highly under predicted in this case. 

• Similar to case 3, the zero-order and first-order extrapolation techniques predicts a 

higher liquid mass rate out than compatibility relations method even for a refined grid. 
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• However, compatibility relations method predicts a much higher gas mass rate out of 

the well – achieving up to 60% and 45% more gas mass rate out than zero-order and 

first-order extrapolation techniques, respectively for a refined grid.  

General: 

• Generally, increasing the grid resolution has a greater impact than which boundary 

condition treatment is chosen. The most important is to use a sufficient number of cells 

in the simulation. This reduces numerical diffusion and there is a tendency of also having 

more stable simulations. When using a refined grid, the numerical error introduced by 

using zero-order extrapolation technique is reduced. 

• Zero-order extrapolation generally caused more problems numerically when considering 

two-phase flow and rough grids. 

• There is a difference in outlet maximum liquid and gas rates during unloading scenarios 

when comparing the compatibility relations method with the results from the 

extrapolation techniques. The tendency was a reduced maximum liquid rate and an 

increased maximum gas rate. It may be that the compatibility relations method provided 

the most correct results as the gas slip relation is used directly in the boundary 

treatment.  

• To implement the compatibility relations method is quite complex compared to using 

the much simpler extrapolation technique. 

Future Work 

There was an issue with this particular AUSMV scheme that we were not able to solve. For some 

reason throughout case 2, 3 and 4 there was gas just added to the system where it was not 

supposed to. This issue has nothing to do with the implementation of compatibility relations 

method as this issue was present prior to its implementation. 
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Figure 5.1: Gas mass vs. time showing gas being added to the system unintentional. 

In Fig. 5.1, the gas mass has been plotted against time for three different grid resolutions. This 

type of behavior was similar for all the cases that have been run for this work. One can see that 

after certain amount of time depending on which grid resolution is chosen, about 45 kg of gas is 

added in the system. The finer the grid the earlier the gas is added to the system. For a lower 

grid resolution, the extra gas is added right after 1000 second mark, and for 50 and 100 cells 

grid the extra gas is added at 500 and 300 seconds, respectively. The actual cause of this is 

unknow but may have something to do with an if statement in the code that makes sure there 

cannot be negative amount of gas in a cell. However, when trying to correct this, the code 

execution time went up significantly and the simulation results were completely off.  

The work for this thesis has only used water and ideal gas to base the simulation on. For a 

better representation for the oil & gas industry, it is vital to adapt other models that capture 

different flow conditions and behaviors of different fluids. 
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7. Appendices  

Appendix 1 

The AUSMV code for case 1 

First-order extrapolation technique and compatibility relations method 

% Transient two-phase code based on AUSMV scheme: Gas and Water 
% The code assumes uniform geometry  

  
% time - Seconds 

  
% p - pressure at new time level (Pa) 
% dl - density of liquid at new time level (kg/m3) 
% dg - density of gas at new time level (kg/m3) 
% eg - phase volume fraction of liquid at new time level (0-1) 
% ev - phase volume fraction og gas at new time level (0-1) 
% vg - phase velocity of gas at new time level (m/s) 
% vl - phase velocity of liquid at new time level (m/s) 
% qv - conservative variables at new time level  ( 3 in each cell) 
% temp - temperature in well (K) 

  
% po - pressure at old time level (Pa) 
% dlo - density of liquid at old time level (kg/m3) 
% dgo - density of gas at new old level (kg/m3) 
% ego - phase volume fraction of liquid at old time level (0-1) 
% evo - phase volume fraction og gas at old time level (0-1) 
% vgo - phase velocity of gas at old time level (m/s) 
% vlo - phase velocity of liquid at old time level (m/s) 
% qvo - conservative variables at old  time level  ( 3 in each cell) 
% temp - temperature in well (K) 

  
clear; 
t = cputime 
tic, 

  
% Geometry data/ Must be specified 
welldepth = 10000; 
nobox = 25; %Number of boxes in the well 

  
% Note that one can use more refined grid, 50, 100 boxes. 
% When doing this, remember to reduce time step to keep the CFL number 
% fixed below 0.25.. dt < cfl x dx/ speed of sound in water. If boxes are 
% doubled, then half the time step. 

  
nofluxes = nobox+1;  % Number of cell boundaries 
dx = welldepth/nobox; % Boxlength 
%dt = 0.005; 

  
% Welldepth. Cell 1 start at bottom 
x(1)= -1.0*welldepth+0.5*dx; 
for i=1:nobox-1 
 x(i+1)=x(i)+ dx; 



68 
 

end  

  
dt= 0.01*4;  % Timestep (seconds) 
dtdx = dt/dx; 
time = 0.0; % initial time. 
endtime = 3; % Time for ending simulation  (seconds) 
nosteps = endtime/dt;  %Number of total timesteps. Used in for loop. 
timebetweensavingtimedata = 0.1;  % How often in s we save data vs time for 

plotting. 
nostepsbeforesavingtimedata = timebetweensavingtimedata/dt; 

  
% Slip parameters used in the gas slip relation. vg =Kvmix+S 
k = 1.2; 
s = 0.55; 

  
% Boundary condition at outlet 
pbondout=1000000; % Pascal  (10 bar)            ATMOSPHERIC PRESSURE MODIFIED 

  

  
% Initial temperature distribution. (Kelvin) 

  
tempbot = 110+273;   
temptop = 50+273; 
tempgrad= (tempbot-temptop)/welldepth; 
tempo(1)=tempbot-dx/2*tempgrad; 
for i = 1:nobox-2 
  tempo(i+1)=tempo(i)-dx*tempgrad; 
end 
tempo(nobox)=tempo(nobox-1)-dx*tempgrad; 

  
temp = tempo; 

  
% Different fluid density parameters 
% Note how we switch between different models later. 
% These parameters are used when finding the  
% primitive variables pressure, densities in an analytical manner. 
% Changing parameters here, you must also change parameters inside the  
% density routines roliq and rogas. 

  
% Simple Water density model & Ideal Gas. See worknote Extension of AUSMV 
% scheme. 

  
rho0=1000;  % Water density at STC (Standard Condition) kg/m3 
Bheta=2.2*10^9; % Parameter that depend on the compressibility of water 
Alpha=0.000207; % Parameter related to thermal expansion/compression 
R = 286.9; % Ideal gas parameter 
P0=100000; % Pressure at STC (Pa) 
T0=20+273.15; % Temperature at STC (K) 

  

  
% Very simple models (PET510 compendium) 

  
al = 1500; % Speed of sound in water.  
rt= 100000; % Ideal gas parameter in model rhog = p/rt 
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rho0=1000; % Water density at STC (Standard Condition) kg/m3 
P0=100000; % Pressure at STC (Pa) 
T0=20+273.15; % Temperature at STC (K) 

  

  
% Viscosities (Pa*s)/Used in the frictional pressure loss model (dpfric).  
viscl = 0.001; % Liquid phase 
viscg = 0.0000182; % Gas phase 

  

  

  

   

  
% Gravity constant  

   
  g = 0; % Gravitational constant m/s2 (g = 0 makes the well horizontal) 

  
% Well opening. opening = 1, fully open well, opening = 0 (<0.01), the well 
% is fully closed. This variable will control what boundary conditions that 
% will apply at the outlet (both physical and numerical): We must change 
% this further below in the code if we want to change status on this. 

  
  wellopening = 1.0;  % This variable determines if  
%the well is closed or not, wellopening = 1.0 -> open. welllopening = 0 
%-> Well is closed. This variable affects the boundary treatment. 

   
  bullheading = 0.0; % This variable can be set to 1.0 if we want to simulate 
% a bullheading operation. But the normal is to set this to zero.   

  

   
% Specify if the primitive variables shall be found either by 
% a numerical or analytical approach. If analytical = 1, analytical  
% solution is used. If analytical = 0. The numerical approach is used. 
% using the itsolver subroutine where the bisection numerical method 
% is used. We use analytical. 

  
  analytical = 1;  

  

   

  

  

  

  

  
% Initialization of rest of geometry. 
% Here we specify the outer and inner diameter and the flow area 
% We assume 8.5 x 5 inch annulus. 

  
   for i = 1:nobox 

  
    do(i)=0.2; 
    di(i) = 0;      % pipe 
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    area(i) = 3.14/4*(do(i)*do(i)- di(i)*di(i));      
%   ang(i)=3.14/2; 
   end 

    

   

     

  

    

    
% Initialization of slope limiters. These are used for  
% reducing numerical diffusion and will be calculated for each timestep. 
% They make the numerical scheme second order. 
  for i = 1:nobox 
    sl1(i)=0; 
    sl2(i)=0; 
    sl3(i)=0; 
    sl4(i)=0; 
    sl5(i)=0; 
    sl6(i)=0; 
  end 

   

     

  
% Now comes the intialization of the physical variables in the well. 
% First primitive variables, then the conservative ones. 

    

  

  

  

  
% Below we intialize pressure and fluid densities. We start from top of 
% the well and calculated downwards. The calculation is done twice with 
% updated values to get better approximation. Only hydrostatic 
% considerations since we start with a static well. 

  
for i = 1:nobox 
  eg(i)=0.0;  % Gas volume fraction 
  ev(i)=1-eg(i); % Liquid volume fraction 
end 

  
p(nobox)= pbondout+0.5*g*dx*(ev(nobox)*rho0+eg(nobox)*1);   % Pressure 
dl(nobox)=rholiq(p(nobox),tempo(nobox));  % Liquid density 
dg(nobox)=rogas(p(nobox),tempo(nobox));   % Gas density  

  

  

  

  
for i=nobox-1:-1:1 
p(i)=p(i+1)+dx*g*(ev(i+1)*dl(i+1)+eg(i+1)*dg(i+1)); 
dl(i)=rholiq(p(i),tempo(i)); 
dg(i)=rogas(p(i),tempo(i));     
end  
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 for i=nobox-1:-1:1 
  rhoavg1= (ev(i+1)*dl(i+1)+eg(i+1)*dg(i+1)); 
  rhoavg2= (ev(i)*dl(i)+eg(i)*dg(i));  
  p(i)=p(i+1)+dx*g*(rhoavg1+rhoavg2)*0.5; 
  dl(i)=rholiq(p(i),tempo(i)); 
  dg(i)=rogas(p(i),tempo(i)); 

  
 end  

  
% Intitialize phase velocities, volume fractions, conservative variables 
% and friction and hydrostatic gradients. 
% The basic assumption is static fluid, one phase liquid. 

  
for i = 1:nobox 
  vl(i)=0; % Liquid velocity new time level. 
  vg(i)=0; % Gas velocity at new time level 
  eg(i)=0.0;  % Gas volume fraction 
  ev(i)=1-eg(i); % Liquid volume fraction 
  qv(i,1)=dl(i)*ev(i)*area(i); 
  qv(i,2)=dg(i)*eg(i)*area(i); 
  qv(i,3)=(dl(i)*ev(i)*vl(i)+dg(i)*eg(i)*vg(i))*area(i); 
  fricgrad(i)=0; 
  hydgrad(i)=g*(dl(i)*ev(i)+eg(i)*dg(i)); 
end 

  

  
% Section where we also initialize values at old time level 

  

  
for i=1:nobox 
  dlo(i)=dl(i); 
  dgo(i)=dg(i); 
  po(i)=p(i); 
  ego(i)=eg(i); 
  evo(i)=ev(i); 
  vlo(i)=vl(i); 
  vgo(i)=vg(i); 
  qvo(i,1)=qv(i,1); 
  qvo(i,2)=qv(i,2); 
  qvo(i,3)=qv(i,3); 
end   

  

  
dlrandinold = dlo(1);    %Initializing for compatibility relation,  
prandinold = po(1);         %For inlet 
vlrandinold = vlo(1); 
dlrandinnew = dlrandinold; 
prandinnew = prandinold; 
vlrandinnew = vlrandinold; 

  
dgrandinold = dgo(1); 
vgrandinold = vgo(1); 
egrandinold = ego(1); 
dgrandinnew = dgrandinold; 
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vgrandinnew = vgrandinold; 
egrandinnew = egrandinold; 

  
dlrandoutold = dlo(nobox);      %For outlet 
prandoutold = po(nobox); 
vlrandoutold = vlo(nobox); 
egrandoutold = ego(nobox); 
dgrandoutold = dgo(nobox); 
vgrandoutold = vgo(nobox); 

  
dlrandoutnew = dlrandoutold; 
prandoutnew = prandoutold; 
vlrandoutnew = vlrandoutold; 
egrandoutnew = egrandoutold; 
dgrandoutnew = dgrandoutold; 
vgrandoutnew = vgrandoutold; 

  

  
% Intialize fluxes between the cells/boxes 

  
for i = 1:nofluxes 
  for j =1:3    
   flc(i,j)=0.0; % Flux of liquid over box boundary 
   fgc(i,j)=0.0; % Flux of gas over box boundary 
   fp(i,j)= 0.0; % Pressure flux over box boundary 
  end     
end     

  

  
%  Main program. Here we will progress in time. First som intializations 
% and definitions to take out results. The for loop below runs until the 
% simulation is finished. 

  
countsteps = 0; 
counter=0; 
printcounter = 1; 
pin(printcounter) = (p(1)+dx*0.5*hydgrad(1))/100000; % Pressure at bottom for 

time storage 
pout(printcounter)= pbondout/100000; 
pnobox(printcounter)= p(nobox)/100000; 
liquidmassrateout(printcounter) = 0; 
gasmassrateout(printcounter)=0; 
tempbott(printcounter)=tempo(1)-273; 
timeplot(printcounter)=time;  % Array for time and plotting of variables vs 

time 
pitvolume=0; 
pitrate =0; 
pitgain(printcounter)=0; 

  
kickvolume=0; 
bullvolume=0; 

  

  
% The temperature is not updated but kept fixed according to the 
% initialization. 
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for i = 1:nosteps 
   countsteps=countsteps+1; 
   counter=counter+1; 
   time = time+dt;  % Step one timestep and update time. 

   

    

  

        
% Then a section where specify the boundary conditions.  
% Here we specify the inlet rates of the different phases at the  
% bottom of the pipe in kg/s. We interpolate to make things smooth. 
% It is also possible to change the outlet boundary status of the well 
% here. First we specify rates at the bottom and the pressure at the outlet 
% in case we have an open well. This is a place where we can change the 
% code to control simulations. If the well shall be close, wellopening must 
% be set to 0. 

  
% In the example below, we take a gas kick and then circulate this 
% out of the well without closing the well. (how you not should perform 
% well control) 

  
XX = 0; % Gasrate in kg/s 

  
YY= 16.7; % Liquidrate in kg/s 

  
if (time < 1) 

   
  inletligmassrate=0.0; 
  inletgasmassrate=0.0;  

  
% elseif ((time>=1) & (time < 5)) 
%   inletligmassrate = YY*(time-10)/10;  % Interpolate the rate from 0 to 

value wanted. 
%   inletgasmassrate = XX*(time-10)/10; 
%      
% elseif ((time >=5) && (time<10))     
%   inletligmassrate = YY; 
%   inletgasmassrate = XX; 
elseif ((time >=1) & (time<1.5))  
%  inletligmassrate = YY-YY*(time-200)/10; 
%   inletligmassrate = YY; 
  inletligmassrate = YY*(time-1)/0.5;   
elseif (time > 1.5) 
  inletligmassrate=YY;   
  inletgasmassrate=0;   
end   

   
kickvolume = kickvolume+inletgasmassrate/dgo(1)*dt; 
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% specify the outlet pressure /Physical. Here we have given the pressure as 
% constant. It would be possible to adjust it during openwell conditions 
% either by giving the wanted pressure directly (in the command lines 
% above) or by finding it indirectly through a chokemodel where the 

wellopening 
% would be an input parameter. The wellopening variable would equally had  
% to be adjusted inside the command line structure given right above. 

  
 pressureoutlet = pbondout;  

  

% Based on these boundary values combined with use of extrapolations 

techniques 
% for the remaining unknowns at the boundaries, we will define the mass and  
% momentum fluxes at the boundaries (inlet and outlet of pipe). 

  
% inlet/bottom fluxes first. 
   if (bullheading<=0) 
 % Here we pump from bottom      

  
     flc(1,1)= inletligmassrate/area(1); 
     flc(1,2)= 0.0; 
     flc(1,3)= flc(1,1)*vlo(1); 

  

     fgc(1,1)= 0.0; 
     fgc(1,2)= inletgasmassrate/area(1); 
     fgc(1,3)= fgc(1,2)*vgo(1); 

  
     fp(1,1)= 0.0; 
     fp(1,2)= 0.0;   

  

      
     vlrandinnew = inletligmassrate / (dlrandinnew * area(1));    

      
     a = (vlo(1) - al) * (po(1) - prandinold) / ( dx / 2 ); 
     b = dlo(1) * al; 
     c = (vlrandinnew - vlrandinold) / ( dt ); 
     d = (vlo(1) - al) * (vlo(1) - vlrandinold) / ( dx / 2 ); 
%      e = g * dlo(1) * al; 
     e = al * (hydgrad(1) + fricgrad(1)); 

      
     prandinnew = prandinold + dt * ( e - a + b * ( c + d )); 

      

      
     dlrandinnew = rholiq(prandinnew); 

      

      
% Old way of treating the boundary      
%     fp(1,3)= po(1)+0.5*(po(1)-po(2)); %Interpolation used to find the  
% pressure at the inlet/bottom of the well. 
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% New way of treating the boundary 
      fp(1,3)= po(1)... 
            +0.5*dx*(dlo(1)*evo(1)+dgo(1)*ego(1))*g... 
            +0.5*dx*fricgrad(1);  

  

  

  
%compability relation 
%    fp(1,3) = prandinnew; 

  

  

  

   else 
     % Here we pump from the top. All masses are assumed to flow out of the 
     % well into the formation. We use first order extrapolation. 
     flc(1,1)=dlo(1)*evo(1)*vlo(1); 
     flc(1,2)=0.0; 
     flc(1,3)=flc(1,1)*vlo(1); 

      
     fgc(1,1)=0.0; 
     fgc(1,2)=dgo(1)*ego(1)*vgo(1); 
     fgc(1,3)=fgc(1,2)*vgo(1); 

      
     fp(1,1)=0.0; 
     fp(1,2)=0.0; 
     fp(1,3)=20000000; % This was a fixed pressure set at bottom when 

bullheading 
   end 

    

  

      

          
% Outlet fluxes (open & closed conditions) 

  
    if (wellopening>0.01) 

  
% Here open end condtions are given. We distinguish between bullheading 
% & normal circulation. 

         
        if (bullheading<=0) 

             
          % Here the is normal ciruclation and open well) 

           

                           
                aa = (prandoutnew - prandoutold) / dt; 
                bb = vlo(nobox) + al; 
                cc = (prandoutold - po(nobox)) / (dx/2); 
                dd = dlo(nobox) * al; 
                ff = (vlrandoutold - vlo(nobox)) / (dx/2); 
%                 gg = g*dlo(nobox)*al; 
                gg = al * (hydgrad(nobox) + fricgrad(nobox)); 
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                vlrandoutnew = vlrandoutold - dt/dd * (gg+aa+bb*cc+dd*bb*ff); 

%equation 6.12 

                 
                egrandoutnew = 0; 
                egrandoutnew = ego(nobox); 

  
                vgrandoutnew = (k*(1-egrandoutnew)*vlrandoutnew+s)/(1-

k*egrandoutnew); %equation 6.17 
                dlrandoutnew = rholiq(prandoutnew); 
                dgrandoutnew = rogas(prandoutnew); 

           

           

%             Extrapolation 
%             flc(nofluxes,1)= dlo(nobox)*evo(nobox)*vlo(nobox); 
%             flc(nofluxes,2)= 0.0; 
%             flc(nofluxes,3)= flc(nofluxes,1)*vlo(nobox); 
%  
%             fgc(nofluxes,1)= 0.0; 
%             fgc(nofluxes,2)= dgo(nobox)*ego(nobox)*vgo(nobox); 
%    %         fgc(nofluxes,2)=0; Activate if gas is sucked in!? 
%             fgc(nofluxes,3)= fgc(nofluxes,2)*vgo(nobox); 
%  
%             fp(nofluxes,1)= 0.0; 
%             fp(nofluxes,2)= 0.0; 
%             fp(nofluxes,3)= pressureoutlet; 

  

             
            evvv = evo(nobox)+0.5*(evo(nobox)-evo(nobox-1));          
            vvvv = vlo(nobox)+0.5*(vlo(nobox)-vlo(nobox-1));         
            dlll = dlo(nobox)+0.5*(dlo(nobox)-dlo(nobox-1));         

             

 
%            flc(nofluxes,1)= rholiq(100000,293.15)*evvv*vvvv; 
            flc(nofluxes,1)= dlll*evvv*vvvv; 
            flc(nofluxes,2)= 0.0; 
            flc(nofluxes,3)= flc(nofluxes,1)*vvvv; 

             
            gvvv = 1-evvv;                                 
            dggg = dgo(nobox)+0.5*(dgo(nobox)-dgo(nobox-1)); 
            vgvv = vgo(nobox)+0.5*(vgo(nobox)-vgo(nobox-1)); 

             
 

            fgc(nofluxes,1)= 0.0; 
%            fgc(nofluxes,2)= rogas(100000,293.15)*gvvv*vgvv; 
            fgc(nofluxes,2)= dggg*gvvv*vgvv; 
            fgc(nofluxes,3)= fgc(nofluxes,2)*vgvv; 

             
            fp(nofluxes,1)= 0.0; 
            fp(nofluxes,2)= 0.0; 
            fp(nofluxes,3)= pressureoutlet; 

             

  
%             Compatibility Relations 
%             flc(nofluxes,1) = dlrandoutnew*(1-egrandoutnew)*vlrandoutnew; 
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%             flc(nofluxes,2) = 0.0; 
%             flc(nofluxes,3) = flc(nofluxes,1)*vlrandoutold;             
%  
%             fgc(nofluxes, 1) = 0.0; 
%             fgc(nofluxes, 2) = dgrandoutnew*egrandoutnew*vgrandoutnew; 
%             fgc(nofluxes, 3) = fgc(nofluxes, 2)*vgrandoutnew; 
%  
%             fp(nofluxes,1)= 0.0; 
%             fp(nofluxes,2)= 0.0; 
%             fp(nofluxes,3)= pressureoutlet; 
        else 
            % Here we are bullheading. 
            flc(nofluxes,1)= inletligmassrate/area(nobox); 
            flc(nofluxes,2)= 0.0; 
            flc(nofluxes,3)= flc(nofluxes,1)*vlo(nobox); 

             
            fgc(nofluxes,1)=0.0; 
            fgc(nofluxes,2)=0.0; 
            fgc(nofluxes,3)=0.0; 

             
            fp(nofluxes,1)=0.0; 
            fp(nofluxes,2)=0.0; 
            fp(nofluxes,3)= po(nobox)... 
            -0.5*dx*(dlo(nobox)*evo(nobox)+dgo(nobox)*ego(nobox))*g... 
            +0.5*dx*fricgrad(nobox); %check sign here on friction 
        end     
    else 

         
% Here closed end conditions are given 

  
         flc(nofluxes,1)= 0.0; 
         flc(nofluxes,2)= 0.0; 
         flc(nofluxes,3)= 0.0; 

         
         fgc(nofluxes,1)= 0.0; 
         fgc(nofluxes,2)= 0.0; 
         fgc(nofluxes,3)= 0.0; 

         
         fp(nofluxes,1)=0.0; 
         fp(nofluxes,2)=0.0; 

          

          

          
    %    Old way of treating the boundary      
    %     fp(nofluxes,3)= po(nobox)-0.5*(po(nobox-1)-po(nobox));        

     
    %    New way of treating the boundary 
         fp(nofluxes,3)= po(nobox)... 
         -0.5*dx*(dlo(nobox)*evo(nobox)+dgo(nobox)*ego(nobox))*g; 
    %     -0.5*dx*fricgrad(nobox); % Neglect friction since well is closed.     
        end     

   

     
 % Implementation of slopelimiters. They are applied on the physical  
 % variables like phase densities, phase velocities and pressure. 
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% It was found that if the slopelimiters were set to zero in 
% the boundary cells, the pressure in these became wrong. E.g. the upper 
% cell get an interior pressure that is higher than it should be e.g. when 
% being static (hydrostatic pressure was too high). The problem was reduced 
% by copying the slopelimiters from the interior cells. However, both 
% approaches seems to give the same BHP pressure vs time but the latter 
% approach give a more correct pressure vs depth profile. It is also better 
% to use when simulating pressure build up where the upper cell pressure 
% must be monitored. It should be checked more in detail before concluding. 

      
     for i=2:nobox-1 
      sl1(i)=minmod(dlo(i-1),dlo(i),dlo(i+1),dx); 
      sl2(i)=minmod(po(i-1),po(i),po(i+1),dx); 
      sl3(i)=minmod(vlo(i-1),vlo(i),vlo(i+1),dx); 
      sl4(i)=minmod(vgo(i-1),vgo(i),vgo(i+1),dx); 
      sl5(i)=minmod(ego(i-1),ego(i),ego(i+1),dx); 
      sl6(i)=minmod(dgo(i-1),dgo(i),dgo(i+1),dx); 
     end 

  
 % Slopelimiters in outlet boundary cell are set to zero!    
% %      sl1(nobox)=0; 
% %      sl2(nobox)=0; 
% %      sl3(nobox)=0; 
% %      sl4(nobox)=0; 
% %      sl5(nobox)=0; 
% %      sl6(nobox)=0; 

      
 % Slopelimiters in outlet boundary cell are copied from neighbour cell!  
     sl1(nobox)=sl1(nobox-1); 
     sl2(nobox)=sl2(nobox-1); 
     sl3(nobox)=sl3(nobox-1); 
     sl4(nobox)=sl4(nobox-1); 
     sl5(nobox)=sl5(nobox-1); 
     sl6(nobox)=sl6(nobox-1); 

       
% Slopelimiters in inlet boundary cell are set to zero!   
% %      sl1(1)=0; 
% %      sl2(1)=0; 
% %      sl3(1)=0; 
% %      sl4(1)=0; 
% %      sl5(1)=0; 
% %      sl6(1)=0; 

  
% Slopelimiters in inlet boundary cell are copied from neighbour cell!   
     sl1(1)=sl1(2); 
     sl2(1)=sl2(2); 
     sl3(1)=sl3(2); 
     sl4(1)=sl4(2); 
     sl5(1)=sl5(2); 
     sl6(1)=sl6(2); 

      

         
% Now we will find the fluxes between the different cells. 
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% NB - IMPORTANE -  Note that if we change the compressibilities/sound 

velocities of  
% the fluids involved, we may need to do changes inside the csound function. 
% But the effect of this is unclear. 

  
     for j = 2:nofluxes-1       

   
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % First order method is from here: If you want to test this, activate this 
 % and comment the second order code below. 
%        cl = csound(ego(j-1),po(j-1),dlo(j-1),k); 
%        cr = csound(ego(j),po(j),dlo(j),k); 
%        c = max(cl,cr);    
%        pll = psip(vlo(j-1),c,evo(j)); 
%        plr = psim(vlo(j),c,evo(j-1)); 
%        pgl = psip(vgo(j-1),c,ego(j)); 
%        pgr = psim(vgo(j),c,ego(j-1)); 
%        vmixr = vlo(j)*evo(j)+vgo(j)*ego(j); 
%        vmixl = vlo(j-1)*evo(j-1)+vgo(j-1)*ego(j-1); 
%         
%        pl = pp(vmixl,c); 
%        pr = pm(vmixr,c); 
%        mll= evo(j-1)*dlo(j-1); 
%        mlr= evo(j)*dlo(j); 
%        mgl= ego(j-1)*dgo(j-1); 
%        mgr= ego(j)*dgo(j); 
%         
%        flc(j,1)= mll*pll+mlr*plr; 
%        flc(j,2)= 0.0; 
%        flc(j,3)= mll*pll*vlo(j-1)+mlr*plr*vlo(j); 
%         
%        fgc(j,1)=0.0; 
%        fgc(j,2)= mgl*pgl+mgr*pgr; 
%        fgc(j,3)= mgl*pgl*vgo(j-1)+mgr*pgr*vgo(j); 
%         
%        fp(j,1)= 0.0; 
%        fp(j,2)= 0.0; 
%        fp(j,3)= pl*po(j-1)+pr*po(j); 

  
 %  First order methods ends here 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        

        

  

       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Second order method starts here: 
% Here slopelimiter is used on all variables except phase velocoties 

  
       psll = po(j-1)+dx/2*sl2(j-1); 
       pslr = po(j)-dx/2*sl2(j); 
       dsll = dlo(j-1)+dx/2*sl1(j-1); 
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       dslr = dlo(j)-dx/2*sl1(j); 
       dgll = dgo(j-1)+dx/2*sl6(j-1); 
       dglr = dgo(j)-dx/2*sl6(j); 

        
       vlv = vlo(j-1)+dx/2*sl3(j-1); 
       vlh = vlo(j)-dx/2*sl3(j); 
       vgv = vgo(j-1)+dx/2*sl4(j-1); 
       vgh = vgo(j)-dx/2*sl4(j); 

        
       gvv = ego(j-1)+dx/2*sl5(j-1); 
       gvh = ego(j)-dx/2*sl5(j); 
       lvv = 1-gvv; 
       lvh = 1-gvh; 

        
       cl = csound(gvv,psll,dsll,k); 
       cr = csound(gvh,pslr,dslr,k); 
       c = max(cl,cr);  

       
       pll = psip(vlo(j-1),c,lvh); 
       plr = psim(vlo(j),c,lvv); 
       pgl = psip(vgo(j-1),c,gvh); 
       pgr = psim(vgo(j),c,gvv); 
       vmixr = vlo(j)*lvh+vgo(j)*gvh; 
       vmixl = vlo(j-1)*lvv+vgo(j-1)*gvv; 

        
       pl = pp(vmixl,c); 
       pr = pm(vmixr,c); 

  

  
      mll= lvv*dsll; 
      mlr= lvh*dslr; 
      mgl= gvv*dgll; 
      mgr= gvh*dglr; 

       
      flc(j,1)= mll*pll+mlr*plr; 
      flc(j,2)= 0.0; 
      flc(j,3)= mll*pll*vlo(j-1)+mlr*plr*vlo(j); 

   

       
      fgc(j,1)=0.0; 
      fgc(j,2)= mgl*pgl+mgr*pgr; 
      fgc(j,3)= mgl*pgl*vgo(j-1)+mgr*pgr*vgo(j); 

       
      fp(j,1)= 0.0; 
      fp(j,2)= 0.0; 
      fp(j,3)= pl*psll+pr*pslr;     

       

  

       

  

%%% Second order method ends here 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  



81 
 

% Here sloplimiters is used on all variables. This 
% has not worked so well yet. Therefore it is commented away. 

  
%       psll = po(j-1)+dx/2*sl2(j-1); 
%       pslr = po(j)-dx/2*sl2(j); 
%       dsll = dlo(j-1)+dx/2*sl1(j-1); 
%       dslr = dlo(j)-dx/2*sl1(j); 
%       dgll = dgo(j-1)+dx/2*sl6(j-1); 
%       dglr = dgo(j)-dx/2*sl6(j); 
%        
%       vlv = vlo(j-1)+dx/2*sl3(j-1); 
%       vlh = vlo(j)-dx/2*sl3(j); 
%       vgv = vgo(j-1)+dx/2*sl4(j-1); 
%       vgh = vgo(j)-dx/2*sl4(j); 
%        
%       gvv = ego(j-1)+dx/2*sl5(j-1); 
%       gvh = ego(j)-dx/2*sl5(j); 
%       lvv = 1-gvv; 
%       lvh = 1-gvh; 
%        
%       cl = csound(gvv,psll,dsll,k); 
%       cr = csound(gvh,pslr,dslr,k); 
%       c = max(cl,cr);  
%        
%       pll = psip(vlv,c,lvh); 
%       plr = psim(vlh,c,lvv); 
%       pgl = psip(vgv,c,gvh); 
%       pgr = psim(vgh,c,gvv); 
%       vmixr = vlh*lvh+vgh*gvh; 
%       vmixl = vlv*lvv+vgv*gvv; 
%        
%       pl = pp(vmixl,c); 
%       pr = pm(vmixr,c); 
%       mll= lvv*dsll; 
%       mlr= lvh*dslr; 
%       mgl= gvv*dgll; 
%       mgr= gvh*dglr; 
%        
%       flc(j,1)= mll*pll+mlr*plr; 
%       flc(j,2)= 0.0; 
%       flc(j,3)= mll*pll*vlv+mlr*plr*vlh; 
%    
%        
%       fgc(j,1)=0.0; 
%       fgc(j,2)= mgl*pgl+mgr*pgr; 
%       fgc(j,3)= mgl*pgl*vgv+mgr*pgr*vgh; 
%        
%       fp(j,1)= 0.0; 
%       fp(j,2)= 0.0; 
%       fp(j,3)= pl*psll+pr*pslr;     

  

  
     end 

  
% Fluxes have now been calculated. We will now update the conservative  
% variables in each of the numerical cells.  
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% The source terms can be calculated by using a  
% for loop. 
% Note that the model is sensitive to how we treat the model 
% for low Reynolds numbers (possible discontinuity in the model) 
       for j=1:nobox 
        fricgrad(j)=dpfric(vlo(j),vgo(j),evo(j),ego(j),dlo(j),dgo(j), ... 
          po(j),do(j),di(j),viscl,viscg);  
        hydgrad(j)=g*(dlo(j)*evo(j)+dgo(j)*ego(j)); 
       end   

    
      sumfric = 0; 
      sumhyd= 0; 

    
      for j=1:nobox  

   
     % Here we solve the three conservation laws for each cell and update 
     % the conservative variables qv 

        
       ar = area(j);        

  

                                 
      % Liquid mass conservation 
      qv(j,1)=qvo(j,1)-dtdx*((ar*flc(j+1,1)-ar*flc(j,1))... 
                            +(ar*fgc(j+1,1)-ar*fgc(j,1))... 
                            +(ar*fp(j+1,1)-ar*fp(j,1))); 

       
      % Gas mass conservation: 

       
      qv(j,2)=qvo(j,2)-dtdx*((ar*flc(j+1,2)-ar*flc(j,2))... 
                            +(ar*fgc(j+1,2)-ar*fgc(j,2))... 
                            +(ar*fp(j+1,2)-ar*fp(j,2))); 
      % Mixture momentum conservation: 

       
      qv(j,3)=qvo(j,3)-dtdx*((ar*flc(j+1,3)-ar*flc(j,3))... 
                            +(ar*fgc(j+1,3)-ar*fgc(j,3))... 
                            +(ar*fp(j+1,3)-ar*fp(j,3)))... 
                   -dt*ar*(fricgrad(j)+hydgrad(j)); 

                
%  Add up the hydrostatic pressure  and friction  in the whole well.    
      sumfric=sumfric+fricgrad(j)*dx; 
      sumhyd=sumhyd+hydgrad(j)*dx; 

                
      end 

      

  

    

  
% Section where we find the physical variables (pressures, densities etc) 
% from the conservative variables. Some trickes to ensure stability. These 
% are induced to avoid negative masses. 



83 
 

  

      

  
     gasmass=0; 
     liqmass=0; 

      
     for j=1:nobox  

  

          
% Remove the area from the conservative variables to find the 
% the primitive variables from the conservative ones. 

  
      qv(j,1)= qv(j,1)/area(j);    
      qv(j,2)= qv(j,2)/area(j);    

          
      if (qv(j,1)<0.00000001) 
        qv(j,1)=0.00000001; 
      end 

      
      if (qv(j,2)< 0.00000001) 
        qv(j,2)=0.00000001;  
      end 

      
 % Here we summarize the mass of gas and liquid in the well respectively.      
      gasmass = gasmass+qv(j,2)*area(j)*dx; 
      liqmass = liqmass+qv(j,1)*area(j)*dx; 

  
% Below, we find the primitive variables pressure and densities based on 
% the conservative variables q1,q2. One can choose between getting them by  
% analytical or numerical solution approach specified in the beginning of 
% the program. Ps. For more advanced density models, this must be changed. 

  

   
      if (analytical == 1)  
%       % Analytical solution:  

           
       t1=rho0-P0/al^2; 

     
%  Coefficients: 
       a = 1/(al*al); 
       b = t1-qv(j,1)-rt*qv(j,2)/(al*al); 
       c = -1.0*t1*rt*qv(j,2); 
%        

  
%       Note here we use the very simple models from the PET510 course 
        p(j)=(-b+sqrt(b*b-4*a*c))/(2*a);  % Pressure  
        dl(j)=rholiq(p(j),temp(j)); % Density of liquid 
        dg(j)=rogas(p(j),temp(j)); % Density of gas 

  
%     The code below can be activated if we want to switch to the other set 
%     of density models. Also then remember to do the changes inside 
%     functions rogas og rholiq. 
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%           x1=rho0-P0*rho0/Bheta-rho0*Alpha*(temp(j)-T0); 
%           x2=rho0/Bheta; 
%           x3=-qv(j,2)*R*temp(j); 

  
%           a = x2; 
%           b = x1+x2*x3-qv(j,1); 
%           c = x1*x3; 

           
%           p(j)=(-b+sqrt(b*b-4*a*c))/(2*a);  % Pressure  
%           dl(j)=rholiq(p(j),temp(j)); 
%           dg(j)=rogas(p(j),temp(j)); 
      else    

           

           
      %Numerical Solution: This might be used if we use more complex 
      %density models 

       
       [p(j),error]=itsolver(po(j),qv(j,1),qv(j,2)); % Pressure 
       dl(j)=rholiq(p(j),temp(j)); % Density of liquid 
       dg(j)=rogas(p(j)); % Density of gas 

       
      % Incase a numerical solution is not found, the program will write out 

"error": 
       if error > 0 
          error 
       end 
      end   

  
%   Find phase volume fractions       
      eg(j)= qv(j,2)/dg(j); 
      ev(j)=1-eg(j); 

  
 %    Reset average conservative varibles in cells with area included in the 

variables.  

  
     qv(j,1)=qv(j,1)*area(j); 
     qv(j,2)=qv(j,2)*area(j);  

       
     end  % end of loop   

   

   

  

  

  

        
 %    Below we find the phase velocities by combining the  
 %    conservative variable defined by the mixture momentum equation 
 %    with the gas slip relation.  
 %    At the same time we try to summarize the gas volume in the well. This 
 %    also measure the size of the kick. 

  

  
   gasvol=0; 
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   for j=1:nobox 

   

        
   % The  interpolations introduced below are included  
   % to omit a singularity in the slip relation when the gas volume 
   % fraction becomes equal to 1/K. In additon, S is interpolated to  
   % zero when approaching one phase gas flow. In the transition to  
   % one phase gas flow, we have no slip condtions (K=1, S=0) 

       
      ktemp=k; 
      stemp=s;       

    
      k0(j) = ktemp; 
      s0(j) = stemp; 

       
    % Interpolation to handle that (1-Kxgasvolumefraction) does not become 

zero   
      if ((eg(j)>=0.7) & (eg(j)<=0.8)) 
        xint = (eg(j)-0.7)/0.1;   
        k0(j) =1.0*xint+k*(1-xint); 
      elseif(eg(j)>0.8) 
        k0(j)=1.0;   
      end 

   

       
    % Interpolate S to zero in transition to pure gas phase   
       if ((eg(j)>=0.9) & (eg(j)<=1.0)) 
         xint = (eg(j)-0.9)/0.1;           
         s0(j) = 0.0*xint+s*(1-xint); 
       end 

  

  
  %       
      if (eg(j)>=0.999999)   
       % Pure gas    
        k1(j) = 1.0; 
        s1(j) = 0.0; 
      else   
        %Two phase flow   
        k1(j) = (1-k0(j)*eg(j))/(1-eg(j)); 
        s1(j) = -1.0*s0(j)*eg(j)/(1-eg(j));  
      end 

  
      help1 = dl(j)*ev(j)*k1+dg(j)*eg(j)*k0; 
      help2 = dl(j)*ev(j)*s1+dg(j)*eg(j)*s0; 

  

  
      vmixhelpl = (qv(j,3)/area(j)-help2)/help1; 
      vg(j)=k0(j)*vmixhelpl+s0(j); 
      vl(j)=k1(j)*vmixhelpl+s1(j); 
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      % Variable for summarizing the gas volume content in the well. 
      gasvol=gasvol+eg(j)*area(j)*dx; 

       

       
   end     

       

  
% Old values are now set equal to new values in order to prepare 
% computation of next time level. 

  

      
   po=p; 
   dlo=dl; 
   dgo=dg; 
   vlo=vl; 
   vgo=vg; 
   ego=eg; 
   evo=ev; 
   qvo=qv; 

    
   dlrandinold = dlrandinnew;          %for inlet 
   prandinold = prandinnew;             
   vlrandinold = vlrandinnew;           

    
   dgrandinold = dgrandinnew; 
   vgrandinold = vgrandinnew; 
   egrandinold = egrandinnew; 

    
   dlrandoutold = dlrandoutnew;        %for outlet 
   prandoutold = prandoutnew; 
   vlrandoutold = vlrandoutnew; 
   egrandoutold = egrandoutnew; 
   dgrandoutold = dgrandoutnew; 
   vgrandoutold = vgrandoutnew; 

    
% % Here we calculate the increase in pitgain. This has been deactivated 
%  since it is sufficient to use the volgas variable. 
%   pitrate = (dl(nobox)*ev(nobox)*vl(nobox)*area(nobox))/rho0-... 
%              inletligmassrate/rho0; %m3/s %NNNNNNNNNBBBBBBBBBBBBBB 
%   pitvolume=pitvolume+pitrate*dt; %m3 

     

     
% Section where we save some timedependent variables in arrays.  
% e.g. the bottomhole pressure. They will be saved for certain 
% timeintervalls defined in the start of the program in order to ensure 
% that the arrays do not get to long! 

    
  if (counter>=nostepsbeforesavingtimedata) 
    printcounter=printcounter+1; 
    time  % Write time to screen. 

   
    % Outlet massrates (kg/s) vs time 
    liquidmassrateout(printcounter)=dl(nobox)*ev(nobox)*vl(nobox)*area(nobox); 
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    gasmassrateout(printcounter)=dg(nobox)*eg(nobox)*vg(nobox)*area(nobox); 

     
    % Outlet flowrates (lpm) vs time 
    liquidflowrateout(printcounter)=liquidmassrateout(printcounter)/... 
        rholiq(P0,T0)*1000*60; 
    gasflowrateout(printcounter)=gasmassrateout(printcounter)/... 
        rogas(P0,T0)*1000*60;  

     
    % Hydrostatic and friction pressure (bar) in well vs time 
    hyd(printcounter)=sumhyd/100000; 
    fric(printcounter)=sumfric/100000; 

     
    % Volume of gas in well vs time (m3). Also used for indicating kick 
    % size 

     
    volgas(printcounter)=gasvol; 

     
    % Total phase masses (kg) in the well vs time 
     massgas(printcounter)=gasmass; 
     massliq(printcounter)=liqmass; 

    

     
    % pout defines the exact pressure at the outletboundary! 
    pout(printcounter)=(p(nobox)-0.5*dx*... 
    (dlo(nobox)*evo(nobox)+dgo(nobox)*ego(nobox))*g-

dx*0.5*fricgrad(nobox))/100000; 

  

  
    % pin (bar) defines the exact pressure at the bottom boundary 
    pin(printcounter)= 

(p(1)+0.5*dx*(dlo(1)*evo(1)+dgo(1)*ego(1))*g+0.5*dx*fricgrad(1))/100000; 

     
    % Pressure in the middle of top box (bar).  
    pnobox(printcounter)=p(nobox)/100000;  %  
    tempbott(printcounter)=temp(1)-273; % temperature at bottom - fixed 
  %  pitgain(printcounter)=pitvolume; Use volgas for kick size. 

     
    % Time variable 
    timeplot(printcounter)=time; 

     
    counter = 0; 

     

     
  end   
end     

  
% end of stepping forward in time. 

  

  

  

  
% Printing of resultssection 
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countsteps % Marks number of simulation steps. 

  

  
% Plot commands for variables vs time. The commands can also 
% be copied to command screen where program is run for plotting other 
% variables. 

  
toc, 
e = cputime-t 

  
% Plot bottomhole pressure 
plot(timeplot,pin) 

  
% Show cfl number used. 
disp('cfl') 
cfl = al*dt/dx 

  
set(gcf,'color','w') 
figure(1) 
plot(timeplot,pin) 
title('Pressure at inlet') 
ylabel('Pressure, bar') 
xlabel('Time, seconds') 
grid on 
axis([0 20 6 22]) 
%plot(timeplot,hyd) 
%plot(timeplot,fric) 
%plot(timeplot,liquidmassrateout) 
%plot(timeplot,gasmassrateout) 
%plot(timeplot,volgas) 
% figure(2) 
% plot(timeplot,liquidflowrateout) 
% title('liquidflowrateout') 
%plot(timeplot,gasflowrateout) 
%plot(timeplot,massgas) 
% figure(3) 
% plot(timeplot,massliq) 
% title('massliq') 
%plot(timeplot,pout) 
%plot(timeplot,pnobox) 

  
%Plot commands for variables vs depth/Only the last simulated 
%values at endtime is visualised 

  
% plot(x,vl); 
%plot(vg,x); 
%plot(eg,x); 
% plot(x,p/100000); 
%plot(dl,x); 
%plot(dg,x); 
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Appendix 2 

The AUSMV code for case 2, 3 and 4 

Zero-order extrapolation technique, first-order extrapolation technique and compatibility relations 

method 

% Transient two-phase code based on AUSMV scheme: Gas and Water 
% The code assumes uniform geometry  

  
% time - Seconds 

  
% p - pressure at new time level (Pa) 
% dl - density of liquid at new time level (kg/m3) 
% dg - density of gas at new time level (kg/m3) 
% eg - phase volume fraction of liquid at new time level (0-1) 
% ev - phase volume fraction og gas at new time level (0-1) 
% vg - phase velocity of gas at new time level (m/s) 
% vl - phase velocity of liquid at new time level (m/s) 
% qv - conservative variables at new time level  ( 3 in each cell) 
% temp - temperature in well (K) 

  
% po - pressure at old time level (Pa) 
% dlo - density of liquid at old time level (kg/m3) 
% dgo - density of gas at new old level (kg/m3) 
% ego - phase volume fraction of liquid at old time level (0-1) 
% evo - phase volume fraction og gas at old time level (0-1) 
% vgo - phase velocity of gas at old time level (m/s) 
% vlo - phase velocity of liquid at old time level (m/s) 
% qvo - conservative variables at old  time level  ( 3 in each cell) 
% temp - temperature in well (K) 

  
clear; 
clf 
close all 

  
t = cputime 
tic, 

  
% Geometry data/ Must be specified 
welldepth = 4000; 
nobox = 100; %Number of boxes in the well 

  
% Note that one can use more refined grid, 50, 100 boxes. 
% When doing this, remember to reduce time step to keep the CFL number 
% fixed below 0.25.. dt < cfl x dx/ speed of sound in water. If boxes are 
% doubled, then half the time step. 

  
nofluxes = nobox+1;  % Number of cell boundaries 
dx = welldepth/nobox; % Boxlength 
%dt = 0.005; 

  
% Welldepth. Cell 1 start at bottom 
x(1)= -1.0*welldepth+0.5*dx; 
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for i=1:nobox-1 
 x(i+1)=x(i)+ dx; 
end  

  
dt= 0.005;  % Timestep (seconds) 

  
dtdx = dt/dx; 
time = 0.0; % initial time. 
endtime = 6000; % Time for ending simulation  (seconds) 
nosteps = endtime/dt;  %Number of total timesteps. Used in for loop. 
timebetweensavingtimedata = 1;  % How often in s we save data vs time for 

plotting. 
nostepsbeforesavingtimedata = timebetweensavingtimedata/dt; 

  
% Slip parameters used in the gas slip relation. vg =Kvmix+S 
k = 1.2; 
s = 0.55; 

  
% Boundary condition at outlet 
pbondout=100000; % Pascal  (1 bar) 

  

  
% Initial temperature distribution. (Kelvin) 

  
tempbot = 110+273;   
temptop = 50+273; 
tempgrad= (tempbot-temptop)/welldepth; 
tempo(1)=tempbot-dx/2*tempgrad; 
for i = 1:nobox-2 
  tempo(i+1)=tempo(i)-dx*tempgrad; 
end 
tempo(nobox)=tempo(nobox-1)-dx*tempgrad; 

  
temp = tempo; 

  
% Different fluid density parameters 
% Note how we switch between different models later. 
% These parameters are used when finding the  
% primitive variables pressure, densities in an analytical manner. 
% Changing parameters here, you must also change parameters inside the  
% density routines roliq and rogas. 

  
% Simple Water density model & Ideal Gas. See worknote Extension of AUSMV 
% scheme. 

  
rho0=1000;  % Water density at STC (Standard Condition) kg/m3 
Bheta=2.2*10^9; % Parameter that depend on the compressibility of water 
Alpha=0.000207; % Parameter related to thermal expansion/compression 
R = 286.9; % Ideal gas parameter 
P0=100000; % Pressure at STC (Pa) 
T0=20+273.15; % Temperature at STC (K) 

  

  
% Very simple models (PET510 compendium) 
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al = 1500; % Speed of sound in water.  
rt= 100000; % Ideal gas parameter in model rhog = p/rt 
rho0=1000; % Water density at STC (Standard Condition) kg/m3 
P0=100000; % Pressure at STC (Pa) 
T0=20+273.15; % Temperature at STC (K) 

  

  
% Viscosities (Pa*s)/Used in the frictional pressure loss model (dpfric).  
viscl = 0.001; % Liquid phase 
viscg = 0.0000182; % Gas phase 

  

  

  

   

  
% Gravity constant  

   
  g = 9.81; % Gravitational constant m/s2 

  
% Well opening. opening = 1, fully open well, opening = 0 (<0.01), the well 
% is fully closed. This variable will control what boundary conditions that 
% will apply at the outlet (both physical and numerical): We must change 
% this further below in the code if we want to change status on this. 

  
  wellopening = 1.0;  % This variable determines if  
%the well is closed or not, wellopening = 1.0 -> open. welllopening = 0 
%-> Well is closed. This variable affects the boundary treatment. 

   
  bullheading = 0.0; % This variable can be set to 1.0 if we want to simulate 
% a bullheading operation. But the normal is to set this to zero.   

  

   
% Specify if the primitive variables shall be found either by 
% a numerical or analytical approach. If analytical = 1, analytical  
% solution is used. If analytical = 0. The numerical approach is used. 
% using the itsolver subroutine where the bisection numerical method 
% is used. We use analytical. 

  
  analytical = 1;  

  

   

  

  

  

  

  
% Initialization of rest of geometry. 
% Here we specify the outer and inner diameter and the flow area 
% We assume 8.5 x 5 inch annulus. 

  
   for i = 1:nobox 
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    do(i)=12.25*2.54/100; 
    di(i) = 5*2.54/100;      % pipe 

   
    area(i) = 3.14/4*(do(i)*do(i)- di(i)*di(i));      
%   ang(i)=3.14/2; 
   end 

    

   

     

  

    

    
% Initialization of slope limiters. These are used for  
% reducing numerical diffusion and will be calculated for each timestep. 
% They make the numerical scheme second order. 
  for i = 1:nobox 
    sl1(i)=0; 
    sl2(i)=0; 
    sl3(i)=0; 
    sl4(i)=0; 
    sl5(i)=0; 
    sl6(i)=0; 
  end 

   

  
% Now comes the intialization of the physical variables in the well. 
% First primitive variables, then the conservative ones. 

    

  
% Below we intialize pressure and fluid densities. We start from top of 
% the well and calculated downwards. The calculation is done twice with 
% updated values to get better approximation. Only hydrostatic 
% considerations since we start with a static well. 

  
for i = 1:nobox 
  eg(i)=0.0;  % Gas volume fraction 
  ev(i)=1-eg(i); % Liquid volume fraction 
end 

  
p(nobox)= pbondout+0.5*g*dx*(ev(nobox)*rho0+eg(nobox)*1);   % Pressure 
dl(nobox)=rholiq(p(nobox),tempo(nobox));  % Liquid density 
dg(nobox)=rogas(p(nobox),tempo(nobox));   % Gas density  
 

 
for i=nobox-1:-1:1 
p(i)=p(i+1)+dx*g*(ev(i+1)*dl(i+1)+eg(i+1)*dg(i+1)); 
dl(i)=rholiq(p(i),tempo(i)); 
dg(i)=rogas(p(i),tempo(i));     
end  

  
 for i=nobox-1:-1:1 
  rhoavg1= (ev(i+1)*dl(i+1)+eg(i+1)*dg(i+1)); 
  rhoavg2= (ev(i)*dl(i)+eg(i)*dg(i));  
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  p(i)=p(i+1)+dx*g*(rhoavg1+rhoavg2)*0.5; 
  dl(i)=rholiq(p(i),tempo(i)); 
  dg(i)=rogas(p(i),tempo(i)); 

  
 end  

  
% Intitialize phase velocities, volume fractions, conservative variables 
% and friction and hydrostatic gradients. 
% The basic assumption is static fluid, one phase liquid. 

  
for i = 1:nobox 
  vl(i)=0; % Liquid velocity new time level. 
  vg(i)=0; % Gas velocity at new time level 
  eg(i)=0.0;  % Gas volume fraction 
  ev(i)=1-eg(i); % Liquid volume fraction 
  qv(i,1)=dl(i)*ev(i)*area(i); 
  qv(i,2)=dg(i)*eg(i)*area(i); 
  qv(i,3)=(dl(i)*ev(i)*vl(i)+dg(i)*eg(i)*vg(i))*area(i); 
  fricgrad(i)=0; 
  hydgrad(i)=g*(dl(i)*ev(i)+eg(i)*dg(i)); 
end 

  

  
% Section where we also initialize values at old time level 

  

  
for i=1:nobox 
  dlo(i)=dl(i); 
  dgo(i)=dg(i); 
  po(i)=p(i); 
  ego(i)=eg(i); 
  evo(i)=ev(i); 
  vlo(i)=vl(i); 
  vgo(i)=vg(i); 
  qvo(i,1)=qv(i,1); 
  qvo(i,2)=qv(i,2); 
  qvo(i,3)=qv(i,3); 
end   

  

  
dlrandinold = dlo(1);    %Initializing for compatibility relation,  
prandinold = po(1);         %For inlet 
vlrandinold = vlo(1); 
dlrandinnew = dlrandinold; 
prandinnew = prandinold; 
vlrandinnew = vlrandinold; 

  
dgrandinold = dgo(1); 
vgrandinold = vgo(1); 
egrandinold = ego(1); 
dgrandinnew = dgrandinold; 
vgrandinnew = vgrandinold; 
egrandinnew = egrandinold; 

  
dlrandoutold = dlo(nobox);      %For outlet 
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prandoutold = po(nobox); 
vlrandoutold = vlo(nobox); 
egrandoutold = ego(nobox); 
dgrandoutold = dgo(nobox); 
vgrandoutold = vgo(nobox); 

  
dlrandoutnew = dlrandoutold; 
prandoutnew = prandoutold; 
vlrandoutnew = vlrandoutold; 
egrandoutnew = egrandoutold; 
dgrandoutnew = dgrandoutold; 
vgrandoutnew = vgrandoutold; 

  
% Intialize fluxes between the cells/boxes 

  
for i = 1:nofluxes 
  for j =1:3    
   flc(i,j)=0.0; % Flux of liquid over box boundary 
   fgc(i,j)=0.0; % Flux of gas over box boundary 
   fp(i,j)= 0.0; % Pressure flux over box boundary 
  end     
end     

  

  
%  Main program. Here we will progress in time. First som intializations 
% and definitions to take out results. The for loop below runs until the 
% simulation is finished. 

  
countsteps = 0; 
counter=0; 
printcounter = 1; 
pin(printcounter) = (p(1)+dx*0.5*hydgrad(1))/100000; % Pressure at bottom for 

time storage 
pout(printcounter)= pbondout/100000; 
pnobox(printcounter)= p(nobox)/100000; 
liquidmassrateout(printcounter) = 0; 
gasmassrateout(printcounter)=0; 
tempbott(printcounter)=tempo(1)-273; 
timeplot(printcounter)=time;  % Array for time and plotting of variables vs 

time 
pitvolume=0; 
pitrate =0; 
pitgain(printcounter)=0; 

  
kickvolume=0; 
bullvolume=0; 

  

  
% The temperature is not updated but kept fixed according to the 
% initialization. 

  

  

  
for i = 1:nosteps 
   countsteps=countsteps+1; 
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   counter=counter+1; 
   time = time+dt;  % Step one timestep and update time. 

   

   

        
% Then a section where specify the boundary conditions.  
% Here we specify the inlet rates of the different phases at the  
% bottom of the pipe in kg/s. We interpolate to make things smooth. 
% It is also possible to change the outlet boundary status of the well 
% here. First we specify rates at the bottom and the pressure at the outlet 
% in case we have an open well. This is a place where we can change the 
% code to control simulations. If the well shall be close, wellopening must 
% be set to 0. 

  
% In the example below, we take a gas kick and then circulate this 
% out of the well without closing the well. (how you not should perform 
% well control) 

  
XX = 8; % Gasrate in kg/s 

 
YY= 40; % Liquidrate in kg/s (for case 4) 

  
if (time < 10) 

   
  inletligmassrate=0.0; 
  inletgasmassrate=0.0;  

  
elseif ((time >=10) && (time<20))  
%  inletligmassrate = YY-YY*(time-200)/10; 
%   inletligmassrate = YY; 
  inletgasmassrate = XX*(time-10)/10;  
elseif ((time >=20) && (time<110))  
    inletgasmassrate=XX; 
elseif ((time >=110) && (time<120)) 
%   inletligmassrate=YY;   
  inletgasmassrate = XX-XX*(time-110)/10;   
  inletligmassrate = YY*(time-110)/10; 
  elseif(time>=120) 
  inletligmassrate=0; 
  inletgasmassrate=0; 
  inletligmassrate=YY; 
% elseif(time>=120 && time <130) 
%   inletligmassrate=0; 
%   inletgasmassrate=0; 
%   inletligmassrate=YY; 
%   wellopening=0.0; 
% elseif(time>=130) 
%     wellopening =0; 
end 

   
kickvolume = kickvolume+inletgasmassrate/dgo(1)*dt; 
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% specify the outlet pressure /Physical. Here we have given the pressure as 
% constant. It would be possible to adjust it during openwell conditions 
% either by giving the wanted pressure directly (in the command lines 
% above) or by finding it indirectly through a chokemodel where the 

wellopening 
% would be an input parameter. The wellopening variable would equally had  
% to be adjusted inside the command line structure given right above. 

  
 pressureoutlet = pbondout;  

  
% Based on these boundary values combined with use of extrapolations 

techniques 
% for the remaining unknowns at the boundaries, we will define the mass and  
% momentum fluxes at the boundaries (inlet and outlet of pipe). 

  
% inlet/bottom fluxes first. 
   if (bullheading<=0) 
 % Here we pump from bottom      

  
     flc(1,1)= inletligmassrate/area(1); 
     flc(1,2)= 0.0; 
     flc(1,3)= flc(1,1)*vlo(1); 

  
     fgc(1,1)= 0.0; 
     fgc(1,2)= inletgasmassrate/area(1); 
     fgc(1,3)= fgc(1,2)*vgo(1); 

  
     fp(1,1)= 0.0; 
     fp(1,2)= 0.0;   

  

      
     if (eg(1) < 0.001) 
         w = 1500; 
     elseif ((eg(1) >= 0.001) && (eg(1) < 0.999)) 
         if (eg(1) <= 0.7) 
             ktemp = k; 
         elseif ((eg(1) > 0.7) && (eg(1) < 0.8)) 
             xint = (eg(1) - 0.7)/0.1; 
             ktemp = (1-xint)*k + 1.0*xint; 
         else 
             ktemp = 1.0; 
         end 

          
         w = sqrt(po(1)/(eg(1)*dlo(1)*(1-ktemp*eg(1)))); 

          
         if (eg(1) < 0.5) 
             w = min(1500, w); 
         else 
             w = min(316, w); 
         end 

              

          
     else  
         w = 316; 
     end 



97 
 

      

      

  
    % vlrandinnew = inletligmassrate / (dlrandinnew * area(1)); 

      

      
     if (eg(1) < 0.001) 
         vlrandinnew = inletligmassrate / (dlrandinnew * area(1)); 
         aaa = (vlo(1) - al); 
         bbb= (po(1) - prandinold) / ( dx / 2 ); 
         ccc = dlo(1) * al; 
         ddd = (vlrandinnew - vlrandinold) / ( dt ); 
         fff = (vlo(1) - vlrandinold) / ( dx / 2 ); 
    %      e = g * dlo(1) * al;         %no friction included 
         ggg = al * (hydgrad(1) + fricgrad(1)); 

  
         prandinnew = prandinold + dt * ( ggg - aaa * bbb + ccc *(ddd + aaa * 

fff)); 

  

  
         dlrandinnew = rholiq(prandinnew); 
         egrandinnew = eg(1); 

          
     else %((eg(1) >= 0.001) && (eg(1) < 0.999)) 

          
       % MERK DETTE ER SUPERFICIALE HASTIGHETER   
         vlrandinnew = inletligmassrate / (dlrandinnew * area(1)); 
         vgrandinnew = inletgasmassrate / (dgrandinnew * area(1)); 
        % egrandinnew = vgrandinnew/ (vgrandinnew + vlrandinnew + s); 
        % egrandinnew = vgrandinnew/ (vgrandinnew + vlrandinnew); 

       
%         % VLRANDINNEW BLIR HER KORRIGERT SLIK AT DET BLIR FASEHASTIGHET. 
%         % MERK DENNE BRYTER SAMMEN HVIS GASFRAKSJONEN BLIR 1 MEN DET VIL  
%         % DEN BARE BLI HVIS K = 1.0. S=0 I KOMB MED NULL VÆSKERATE 
         vgtemp = ktemp*(vlrandinnew+vgrandinnew)+s; 
         egrandinnew = vgrandinnew/vgtemp; 
         vlrandinnew = vlrandinnew/(1-egrandinnew);   

          

          

          
         aa = (vlo(1) - w) * (po(1) - prandinold) / ( dx / 2 ); 
         bb = (dlo(1) * w * (vgo(1) - vlo(1))); 
         %bb = 0; 
         cc = (egrandinnew - egrandinold) / (dt); 
    %     cc = 0.0; 
         dd = (vlo(1) - w)* (ego(1) - egrandinold) / (dx / 2); 
    %     dd = 0.0; 
         ee = dlo(1) * (vgo(1) - vlo(1) + w) * (1 - ego(1)); 
         ff = (vlrandinnew - vlrandinold) / dt; 
         gg = (vlo(1) - w) * (vlo(1) - vlrandinold) / (dx/2); 
         hh = g * ((dlo(1) * (1-ego(1)) + dgo(1)*ego(1)) * (vgo(1)-vlo(1)+w)); 
    % LEGGER TIL FRIKSJONEN      
         hh = hh + fricgrad(1)*(vgo(1)-vlo(1)+w);  
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         prandinnew = prandinold + dt * (hh - aa + bb * ( cc + dd ) + ee * (ff 

+ gg)); 

          
         dlrandinnew = rholiq(prandinnew); 
         dgrandinnew = rogas(prandinnew); 

          

          
%              
     end 
% Old way of treating the boundary      
%     fp(1,3)= po(1)+0.5*(po(1)-po(2)); %Interpolation used to find the  
% pressure at the inlet/bottom of the well. 
%  
% New way of treating the boundary 
%       fp(1,3)= po(1)... 
%             +0.5*dx*(dlo(1)*evo(1)+dgo(1)*ego(1))*g... 
%             +0.5*dx*fricgrad(1);  

  
%compatibility relation 

  
    fp(1,3) = prandinnew; 

  

  
   else 
     % Here we pump from the top. All masses are assumed to flow out of the 
     % well into the formation. We use first order extrapolation. 
     flc(1,1)=dlo(1)*evo(1)*vlo(1); 
     flc(1,2)=0.0; 
     flc(1,3)=flc(1,1)*vlo(1); 

      
     fgc(1,1)=0.0; 
     fgc(1,2)=dgo(1)*ego(1)*vgo(1); 
     fgc(1,3)=fgc(1,2)*vgo(1); 

      
     fp(1,1)=0.0; 
     fp(1,2)=0.0; 
     fp(1,3)=20000000; % This was a fixed pressure set at bottom when 

bullheading 
   end 

    

  

      

          
% Outlet fluxes (open & closed conditions) 

  
    if (wellopening>0.01) 

  
% Here open end condtions are given. We distinguish between bullheading 
% & normal circulation. 

         
        if (bullheading<=0) 

             
          % Here the is normal ciruclation and open well) 
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    if (eg(nobox) < 0.001) 
         w = 1500; 
     elseif ((eg(nobox) >= 0.001) && (eg(nobox) < 0.999)) 
         if (eg(nobox) <= 0.6) 
             ktemp = k; 
         elseif ((eg(nobox) > 0.6) && (eg(nobox) < 0.8)) 
             xint = (eg(nobox) - 0.6)/0.2; 
             ktemp = (1-xint)*k + 1.0*xint; 
         else 
             ktemp = 1.0; 
         end 

          
         w = sqrt(po(nobox)/(eg(nobox)*dlo(nobox)*(1-ktemp*eg(nobox)))); 

          
         if (eg(nobox) < 0.5) 
             w = min(1500, w); 
         else 
             w = min(316, w); 
         end 

              

          
     else  
         w = 316; 
    end 

      

     

     

     
            prandoutnew = 100000;   %1 bar at top of well - open 
%             prandoutold = prandoutnew; 

             
            if eg(nobox) < 0.001 

                 
                aa = (prandoutnew - prandoutold) / dt; 
                bb = vlo(nobox) + al; 
                cc = (prandoutold - po(nobox)) / (dx/2); 
                dd = dlo(nobox) * al; 
                ff = (vlrandoutold - vlo(nobox)) / (dx/2); 
%                 gg = g*dlo(nobox)*al; 
                gg = al * (hydgrad(nobox) + fricgrad(nobox)); 

                 
                vlrandoutnew = vlrandoutold - dt/dd * (gg+aa+bb*cc+dd*bb*ff); 

%6.12 

                 
%                egrandoutnew = 0; 
                 egrandoutnew = ego(nobox); 

  
                vgrandoutnew = (k*(1-egrandoutnew)*vlrandoutnew+s)/(1-

k*egrandoutnew); %6.17 
%                 dlrandoutnew = rholiq(prandoutnew); 
%                 dgrandoutnew = rogas(prandoutnew); 
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            elseif ((eg(nobox) > 0.001)&&(eg(nobox)<0.99)) 

                 
                aa = (prandoutnew - prandoutold) / dt; 
                bb = (vgo(nobox)); 
                cc = (prandoutold - po(nobox)) / (dx/2); 
                dd = dlo(nobox) * w*w; 
                ee = (egrandoutold - ego(nobox)) / (dx/2); 

                 
                egrandoutnew = egrandoutold - dt/dd * (aa+bb*cc+dd*bb*ee); 

%6.15 

   

                 

                aa = (prandoutnew -prandoutold) / dt; 
                bb = vlo(nobox) + w; 
                cc = (prandoutold - po(nobox)) / (dx/2); 
                dd = (dlo(nobox)*w*(vgo(nobox)-vlo(nobox))); 
                ii = (egrandoutnew - egrandoutold) / dt; 
                ee = (egrandoutold - ego(nobox)) / (dx/2); 
                ff = dlo(nobox)*(vgo(nobox)-vlo(nobox)-w)*(1-ego(nobox)); 
                gg = (vlrandoutold - vlo(nobox)) / (dx/2); 
                hh = g * ((dlo(nobox)*(1-ego(nobox)))*(vgo(nobox)-vlo(nobox)-

w)); 
                hh = hh + fricgrad(nobox)*(vgo(nobox)-vlo(nobox)-w); 

                 
                vlrandoutnew = vlrandoutold + dt/ff * (aa+bb*cc+dd*(ii+bb*ee)-

hh-ff*bb*gg); %6.16 

                 
                if eg(nobox) > 0.8 
                    vgrandoutnew = vlrandoutnew; 
                else 
                    vgrandoutnew = (ktemp*(1-egrandoutnew)*vlrandoutnew + s) / 

(1-ktemp*egrandoutnew);  %6.17 
                end 

                 
            else 
% enfase gass:   
% Her er det brukt både 1st og 2 ordens komprelasjoner. 
                egrandoutnew=eg(nobox); 
                egrandoutnew=ego(nobox)+0.5*(ego(nobox)-ego(nobox-1)); 
                vlrandoutnew=vlo(nobox); 
                vlrandoutnew=vlo(nobox)+0.5*(vlo(nobox)-vlo(nobox-1)); 
                vgrandoutnew= vlrandoutnew; 

                 
            end 

  
                dlrandoutnew = rholiq(prandoutnew); 
                dgrandoutnew = rogas(prandoutnew); 

             
%  

  
            evvv = evo(nobox)+0.5*(evo(nobox)-evo(nobox-1));           
            vvvv = vlo(nobox)+0.5*(vlo(nobox)-vlo(nobox-1));         
            dlll = dlo(nobox)+0.5*(dlo(nobox)-dlo(nobox-1));         
% %             
%             evvv = evo(nobox); 
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%             vvvv = vlo(nobox);         
%             dlll = dlo(nobox);           

             
%            flc(nofluxes,1)= rholiq(100000,293.15)*evvv*vvvv; 
            flc(nofluxes,1)= dlll*evvv*vvvv; 
            flc(nofluxes,2)= 0.0; 
            flc(nofluxes,3)= flc(nofluxes,1)*vvvv; 

             

             
            gvvv = 1-evvv;                                 
            dggg = dgo(nobox)+0.5*(dgo(nobox)-dgo(nobox-1)); 
            vgvv = vgo(nobox)+0.5*(vgo(nobox)-vgo(nobox-1)); 

             
%             gvvv = 1-evvv;                               
%             dggg = dgo(nobox); 
%             vgvv = vgo(nobox); 

  
            fgc(nofluxes,1)= 0.0; 
%            fgc(nofluxes,2)= rogas(100000,293.15)*gvvv*vgvv; 
            fgc(nofluxes,2)= dggg*gvvv*vgvv; 
            fgc(nofluxes,3)= fgc(nofluxes,2)*vgvv; 

   

  
            fp(nofluxes,1)= 0.0; 
            fp(nofluxes,2)= 0.0; 
            fp(nofluxes,3)= pressureoutlet; 

  

  

  
 %Comp relation 
            flc(nofluxes,1) = dlrandoutnew*(1-egrandoutnew)*vlrandoutnew;        
            flc(nofluxes,2) = 0.0; 
            flc(nofluxes,3) = flc(nofluxes,1)*vlrandoutold; 

             
            fgc(nofluxes, 1) = 0.0; 
            fgc(nofluxes, 2) = dgrandoutnew*egrandoutnew*vgrandoutnew; 
            fgc(nofluxes, 3) = fgc(nofluxes, 2)*vgrandoutnew; 

             
            fp(nofluxes,1)= 0.0; 
            fp(nofluxes,2)= 0.0; 
            fp(nofluxes,3)= pressureoutlet; 
%              

  
        else 
            % Here we are bullheading. 
            flc(nofluxes,1)= inletligmassrate/area(nobox); 
            flc(nofluxes,2)= 0.0; 
            flc(nofluxes,3)= flc(nofluxes,1)*vlo(nobox); 

             
            fgc(nofluxes,1)=0.0; 
            fgc(nofluxes,2)=0.0; 
            fgc(nofluxes,3)=0.0; 

             
            fp(nofluxes,1)=0.0; 



102 
 

            fp(nofluxes,2)=0.0; 
            fp(nofluxes,3)= po(nobox)... 
            -0.5*dx*(dlo(nobox)*evo(nobox)+dgo(nobox)*ego(nobox))*g... 
            +0.5*dx*fricgrad(nobox); %check sign here on friction 
        end     
    else 

         
% Here closed end conditions are given 

  
         flc(nofluxes,1)= 0.0;               
         flc(nofluxes,2)= 0.0; 
         flc(nofluxes,3)= 0.0; 

         
         fgc(nofluxes,1)= 0.0; 
         fgc(nofluxes,2)= 0.0; 
         fgc(nofluxes,3)= 0.0; 

         
         fp(nofluxes,1)=0.0; 
         fp(nofluxes,2)=0.0; 

          

          

               
     if (eg(nobox) < 0.001) 
         w = 1500; 
     elseif ((eg(nobox) >= 0.001) && (eg(nobox) < 0.999)) 
         if (eg(nobox) <= 0.7) 
             ktemp = k; 
         elseif ((eg(nobox) > 0.7) && (eg(nobox) < 0.8)) 
             xint = (eg(nobox) - 0.7)/0.1; 
             ktemp = (1-xint)*k + 1.0*xint; 
         else 
             ktemp = 1.0; 
         end 

          
         w = sqrt(po(nobox)/(eg(nobox)*dlo(nobox)*(1-ktemp*eg(nobox)))); 

          
         if (eg(nobox) < 0.5) 
             w = min(1500, w); 
         else 
             w = min(316, w); 
         end 

              

          
     else  
         w = 316; 
     end 

      

  
        if eg(nobox) < 0.001 

             
         aaa = vlo(nobox) + al; 
         bbb = (prandoutold - po(nobox))/(dx/2); 
         ccc = dlo(nobox)*al; 
         ddd = aaa; 
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         eee = (0 - vlo(nobox))/(dx/2); 
         fff = -(g * dlo(nobox) * al); 
         vlrandoutnew = 0; 
         vlrandoutold = 0; 

         
         prandoutnew = prandoutold + dt*(fff-aaa*bbb-ccc*(aaa*eee)); 

          
         dlrandoutnew =rholiq(prandoutnew); 
         dgrandinnew =rogas(prandoutnew); 
         eqrandoutnew = eg(nobox); 

          
        else 

          
            egrandoutnew = ego(nobox); 
            vlrandoutnew = 0; 
            vlrandoutold = 0; 

             

             
            aaa = vlo(nobox) + w; 
            bbb = (prandoutold - po(nobox))/(dx/2); 
            ccc = dlo(nobox) * w * (vgo(nobox) - vlo(nobox)); 
            ddd = (egrandoutnew - egrandoutold)/ dt; 
            eee = (egrandoutold - ego(nobox))/(dx/2); 
            fff = dlo(nobox)*(vgo(nobox)-vlo(nobox)-w)*(1-ego(nobox)); 
            ggg = (vlrandoutnew - vlrandoutold)/dt; 
            hhh = (vlrandoutold - vlo(nobox))/(dx/2); 
            iii = g * ((dlo(nobox)*(1-

ego(nobox))+dgo(nobox)*ego(nobox))*(vgo(nobox)-vlo(nobox)-w)); 

  

             

             
            prandoutnew = prandoutold + dt*(iii - aaa*bbb - ccc*(ddd+aaa*eee)+ 

fff*(ggg+aaa*hhh)); 

             

             
        end 
%        Old way of treating the boundary      
%         fp(nofluxes,3)= po(nobox)-0.5*(po(nobox-1)-po(nobox));        

     
%        New way of treating the boundary 
         fp(nofluxes,3)= po(nobox)... 
         -0.5*dx*(dlo(nobox)*evo(nobox)+dgo(nobox)*ego(nobox))*g; 
%          -0.5*dx*fricgrad(nobox); % Neglect friction since well is closed.     

     
%         fp(nofluxes,3) = prandoutnew; 
        end     

   

     
 % Implementation of slopelimiters. They are applied on the physical  
 % variables like phase densities, phase velocities and pressure. 

  
% It was found that if the slopelimiters were set to zero in 
% the boundary cells, the pressure in these became wrong. E.g. the upper 
% cell get an interior pressure that is higher than it should be e.g. when 
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% being static (hydrostatic pressure was too high). The problem was reduced 
% by copying the slopelimiters from the interior cells. However, both 
% approaches seems to give the same BHP pressure vs time but the latter 
% approach give a more correct pressure vs depth profile. It is also better 
% to use when simulating pressure build up where the upper cell pressure 
% must be monitored. It should be checked more in detail before concluding. 

      
     for i=2:nobox-1 
      sl1(i)=minmod(dlo(i-1),dlo(i),dlo(i+1),dx); 
      sl2(i)=minmod(po(i-1),po(i),po(i+1),dx); 
      sl3(i)=minmod(vlo(i-1),vlo(i),vlo(i+1),dx); 
      sl4(i)=minmod(vgo(i-1),vgo(i),vgo(i+1),dx); 
      sl5(i)=minmod(ego(i-1),ego(i),ego(i+1),dx); 
      sl6(i)=minmod(dgo(i-1),dgo(i),dgo(i+1),dx); 
     end 

  
 % Slopelimiters in outlet boundary cell are set to zero!    
% %      sl1(nobox)=0; 
% %      sl2(nobox)=0; 
% %      sl3(nobox)=0; 
% %      sl4(nobox)=0; 
% %      sl5(nobox)=0; 
% %      sl6(nobox)=0; 

      
 % Slopelimiters in outlet boundary cell are copied from neighbour cell!  
     sl1(nobox)=sl1(nobox-1); 
     sl2(nobox)=sl2(nobox-1); 
     sl3(nobox)=sl3(nobox-1); 
     sl4(nobox)=sl4(nobox-1); 
     sl5(nobox)=sl5(nobox-1); 
     sl6(nobox)=sl6(nobox-1); 

       
% Slopelimiters in inlet boundary cell are set to zero!   
% %      sl1(1)=0; 
% %      sl2(1)=0; 
% %      sl3(1)=0; 
% %      sl4(1)=0; 
% %      sl5(1)=0; 
% %      sl6(1)=0; 

  
% Slopelimiters in inlet boundary cell are copied from neighbour cell!   
     sl1(1)=sl1(2); 
     sl2(1)=sl2(2); 
     sl3(1)=sl3(2); 
     sl4(1)=sl4(2); 
     sl5(1)=sl5(2); 
     sl6(1)=sl6(2); 

      

         
% Now we will find the fluxes between the different cells. 
% NB - IMPORTANE -  Note that if we change the compressibilities/sound 

velocities of  
% the fluids involved, we may need to do changes inside the csound function. 
% But the effect of this is unclear. 
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     for j = 2:nofluxes-1       

   
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % First order method is from here: If you want to test this, activate this 
 % and comment the second order code below. 
%        cl = csound(ego(j-1),po(j-1),dlo(j-1),k); 
%        cr = csound(ego(j),po(j),dlo(j),k); 
%        c = max(cl,cr);    
%        pll = psip(vlo(j-1),c,evo(j)); 
%        plr = psim(vlo(j),c,evo(j-1)); 
%        pgl = psip(vgo(j-1),c,ego(j)); 
%        pgr = psim(vgo(j),c,ego(j-1)); 
%        vmixr = vlo(j)*evo(j)+vgo(j)*ego(j); 
%        vmixl = vlo(j-1)*evo(j-1)+vgo(j-1)*ego(j-1); 
%         
%        pl = pp(vmixl,c); 
%        pr = pm(vmixr,c); 
%        mll= evo(j-1)*dlo(j-1); 
%        mlr= evo(j)*dlo(j); 
%        mgl= ego(j-1)*dgo(j-1); 
%        mgr= ego(j)*dgo(j); 
%         
%        flc(j,1)= mll*pll+mlr*plr; 
%        flc(j,2)= 0.0; 
%        flc(j,3)= mll*pll*vlo(j-1)+mlr*plr*vlo(j); 
%         
%        fgc(j,1)=0.0; 
%        fgc(j,2)= mgl*pgl+mgr*pgr; 
%        fgc(j,3)= mgl*pgl*vgo(j-1)+mgr*pgr*vgo(j); 
%         
%        fp(j,1)= 0.0; 
%        fp(j,2)= 0.0; 
%        fp(j,3)= pl*po(j-1)+pr*po(j); 

  
 %  First order methods ends here 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        

        

  

       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Second order method starts here: 
% Here slopelimiter is used on all variables except phase velocoties 

  
       psll = po(j-1)+dx/2*sl2(j-1); 
       pslr = po(j)-dx/2*sl2(j); 
       dsll = dlo(j-1)+dx/2*sl1(j-1); 
       dslr = dlo(j)-dx/2*sl1(j); 
       dgll = dgo(j-1)+dx/2*sl6(j-1); 
       dglr = dgo(j)-dx/2*sl6(j); 

        
       vlv = vlo(j-1)+dx/2*sl3(j-1); 
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       vlh = vlo(j)-dx/2*sl3(j); 
       vgv = vgo(j-1)+dx/2*sl4(j-1); 
       vgh = vgo(j)-dx/2*sl4(j); 

        
       gvv = ego(j-1)+dx/2*sl5(j-1); 
       gvh = ego(j)-dx/2*sl5(j); 
       lvv = 1-gvv; 
       lvh = 1-gvh; 

        
       cl = csound(gvv,psll,dsll,k); 
       cr = csound(gvh,pslr,dslr,k); 
       c = max(cl,cr);  

       
       pll = psip(vlo(j-1),c,lvh); 
       plr = psim(vlo(j),c,lvv); 
       pgl = psip(vgo(j-1),c,gvh); 
       pgr = psim(vgo(j),c,gvv); 
       vmixr = vlo(j)*lvh+vgo(j)*gvh; 
       vmixl = vlo(j-1)*lvv+vgo(j-1)*gvv; 

        
       pl = pp(vmixl,c); 
       pr = pm(vmixr,c); 

  

  
      mll= lvv*dsll; 
      mlr= lvh*dslr; 
      mgl= gvv*dgll; 
      mgr= gvh*dglr; 

       
      flc(j,1)= mll*pll+mlr*plr; 
      flc(j,2)= 0.0; 
      flc(j,3)= mll*pll*vlo(j-1)+mlr*plr*vlo(j); 

   

       
      fgc(j,1)=0.0; 
      fgc(j,2)= mgl*pgl+mgr*pgr; 
      fgc(j,3)= mgl*pgl*vgo(j-1)+mgr*pgr*vgo(j); 

       
      fp(j,1)= 0.0; 
      fp(j,2)= 0.0; 
      fp(j,3)= pl*psll+pr*pslr;     

       

  

       

  
%%% Second order method ends here 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Here sloplimiters is used on all variables. This 
% has not worked so well yet. Therefore it is commented away. 

  
%       psll = po(j-1)+dx/2*sl2(j-1); 
%       pslr = po(j)-dx/2*sl2(j); 
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%       dsll = dlo(j-1)+dx/2*sl1(j-1); 
%       dslr = dlo(j)-dx/2*sl1(j); 
%       dgll = dgo(j-1)+dx/2*sl6(j-1); 
%       dglr = dgo(j)-dx/2*sl6(j); 
%        
%       vlv = vlo(j-1)+dx/2*sl3(j-1); 
%       vlh = vlo(j)-dx/2*sl3(j); 
%       vgv = vgo(j-1)+dx/2*sl4(j-1); 
%       vgh = vgo(j)-dx/2*sl4(j); 
%        
%       gvv = ego(j-1)+dx/2*sl5(j-1); 
%       gvh = ego(j)-dx/2*sl5(j); 
%       lvv = 1-gvv; 
%       lvh = 1-gvh; 
%        
%       cl = csound(gvv,psll,dsll,k); 
%       cr = csound(gvh,pslr,dslr,k); 
%       c = max(cl,cr);  
%        
%       pll = psip(vlv,c,lvh); 
%       plr = psim(vlh,c,lvv); 
%       pgl = psip(vgv,c,gvh); 
%       pgr = psim(vgh,c,gvv); 
%       vmixr = vlh*lvh+vgh*gvh; 
%       vmixl = vlv*lvv+vgv*gvv; 
%        
%       pl = pp(vmixl,c); 
%       pr = pm(vmixr,c); 
%       mll= lvv*dsll; 
%       mlr= lvh*dslr; 
%       mgl= gvv*dgll; 
%       mgr= gvh*dglr; 
%        
%       flc(j,1)= mll*pll+mlr*plr; 
%       flc(j,2)= 0.0; 
%       flc(j,3)= mll*pll*vlv+mlr*plr*vlh; 
%    
%        
%       fgc(j,1)=0.0; 
%       fgc(j,2)= mgl*pgl+mgr*pgr; 
%       fgc(j,3)= mgl*pgl*vgv+mgr*pgr*vgh; 
%        
%       fp(j,1)= 0.0; 
%       fp(j,2)= 0.0; 
%       fp(j,3)= pl*psll+pr*pslr;     

  

  
     end 

  
% Fluxes have now been calculated. We will now update the conservative  
% variables in each of the numerical cells.  

  

  

  
% The source terms can be calculated by using a  
% for loop. 
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% Note that the model is sensitive to how we treat the model 
% for low Reynolds numbers (possible discontinuity in the model) 
       for j=1:nobox 
        fricgrad(j)=dpfric(vlo(j),vgo(j),evo(j),ego(j),dlo(j),dgo(j), ... 
          po(j),do(j),di(j),viscl,viscg);  
        hydgrad(j)=g*(dlo(j)*evo(j)+dgo(j)*ego(j)); 
       end   

    
      sumfric = 0; 
      sumhyd= 0; 

    
      for j=1:nobox  

   
     % Here we solve the three conservation laws for each cell and update 
     % the conservative variables qv 

        
       ar = area(j);        

  

                                 
      % Liquid mass conservation 
      qv(j,1)=qvo(j,1)-dtdx*((ar*flc(j+1,1)-ar*flc(j,1))... 
                            +(ar*fgc(j+1,1)-ar*fgc(j,1))... 
                            +(ar*fp(j+1,1)-ar*fp(j,1))); 

       
      % Gas mass conservation: 

       
      qv(j,2)=qvo(j,2)-dtdx*((ar*flc(j+1,2)-ar*flc(j,2))... 
                            +(ar*fgc(j+1,2)-ar*fgc(j,2))... 
                            +(ar*fp(j+1,2)-ar*fp(j,2))); 
      % Mixture momentum conservation: 

       
      qv(j,3)=qvo(j,3)-dtdx*((ar*flc(j+1,3)-ar*flc(j,3))... 
                            +(ar*fgc(j+1,3)-ar*fgc(j,3))... 
                            +(ar*fp(j+1,3)-ar*fp(j,3)))... 
                   -dt*ar*(fricgrad(j)+hydgrad(j)); 

                
%  Add up the hydrostatic pressure  and friction  in the whole well.    
      sumfric=sumfric+fricgrad(j)*dx; 
      sumhyd=sumhyd+hydgrad(j)*dx; 

                
      end 

      

  

    

  
% Section where we find the physical variables (pressures, densities etc) 
% from the conservative variables. Some trickes to ensure stability. These 
% are induced to avoid negative masses. 

  

      

  
     gasmass=0; 
     liqmass=0; 
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     for j=1:nobox  

  

          
% Remove the area from the conservative variables to find the 
% the primitive variables from the conservative ones. 

  
      qv(j,1)= qv(j,1)/area(j);    
      qv(j,2)= qv(j,2)/area(j);    

          
%       if (qv(j,1)<0.00000001) 
%         qv(j,1)=0.00000001; 
%       end 

                               
      if (qv(j,2)< 0.000000000001)  
        qv(j,2)=0.000000000001;   
      end 

  
%       
 % Here we summarize the mass of gas and liquid in the well respectively.      
      gasmass = gasmass+qv(j,2)*area(j)*dx; 
      liqmass = liqmass+qv(j,1)*area(j)*dx; 

  
% Below, we find the primitive variables pressure and densities based on 
% the conservative variables q1,q2. One can choose between getting them by  
% analytical or numerical solution approach specified in the beginning of 
% the program. Ps. For more advanced density models, this must be changed. 

  

   
      if (analytical == 1)  
%       % Analytical solution:  

           
       t1=rho0-P0/al^2; 

     
%  Coefficients: 
       a = 1/(al*al); 
       b = t1-qv(j,1)-rt*qv(j,2)/(al*al); 
       c = -1.0*t1*rt*qv(j,2); 
%        

  
%       Note here we use the very simple models from the PET510 course 
        p(j)=(-b+sqrt(b*b-4*a*c))/(2*a);  % Pressure  
        dl(j)=rholiq(p(j),temp(j)); % Density of liquid 
        dg(j)=rogas(p(j),temp(j)); % Density of gas 

  
%     The code below can be activated if we want to switch to the other set 
%     of density models. Also then remember to do the changes inside 
%     functions rogas og rholiq. 

         
%           x1=rho0-P0*rho0/Bheta-rho0*Alpha*(temp(j)-T0); 
%           x2=rho0/Bheta; 
%           x3=-qv(j,2)*R*temp(j); 

  
%           a = x2; 
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%           b = x1+x2*x3-qv(j,1); 
%           c = x1*x3; 

           
%           p(j)=(-b+sqrt(b*b-4*a*c))/(2*a);  % Pressure  
%           dl(j)=rholiq(p(j),temp(j)); 
%           dg(j)=rogas(p(j),temp(j)); 
      else    

           

           
      %Numerical Solution: This might be used if we use more complex 
      %density models 

       

       [p(j),error]=itsolver(po(j),qv(j,1),qv(j,2)); % Pressure 
       dl(j)=rholiq(p(j),temp(j)); % Density of liquid 
       dg(j)=rogas(p(j)); % Density of gas 

       
      % Incase a numerical solution is not found, the program will write out 

"error": 
       if error > 0 
          error 
       end 
      end   

  
%   Find phase volume fractions       
      eg(j)= qv(j,2)/dg(j); 
      ev(j)=1-eg(j); 

  
 %    Reset average conservative varibles in cells with area included in the 

variables.  

  
     qv(j,1)=qv(j,1)*area(j); 
     qv(j,2)=qv(j,2)*area(j);  

       
     end  % end of loop   

   

   

  

  

  

        
 %    Below we find the phase velocities by combining the  
 %    conservative variable defined by the mixture momentum equation 
 %    with the gas slip relation.  
 %    At the same time we try to summarize the gas volume in the well. This 
 %    also measure the size of the kick. 

  

  
   gasvol=0; 

    
   for j=1:nobox 

   

        
   % The  interpolations introduced below are included  
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   % to omit a singularity in the slip relation when the gas volume 
   % fraction becomes equal to 1/K. In additon, S is interpolated to  
   % zero when approaching one phase gas flow. In the transition to  
   % one phase gas flow, we have no slip condtions (K=1, S=0) 

       
      ktemp=k; 
      stemp=s;       

    
      k0(j) = ktemp; 
      s0(j) = stemp; 

       

   

  

       

     
    % Interpolation to handle that (1-Kxgasvolumefraction) does not become 

zero   
      if ((eg(j)>=0.6) & (eg(j)<=0.8)) 
        xint = (eg(j)-0.6)/0.2;   
        k0(j) =1.0*xint+k*(1-xint); 
      elseif(eg(j)>0.8) 
        k0(j)=1.0;   
      end 

   

       
    % Interpolate S to zero in transition to pure gas phase   
       if ((eg(j)>=0.6) & (eg(j)<=1.0)) 
         xint = (eg(j)-0.6)/0.4;           
         s0(j) = 0.0*xint+s*(1-xint); 
       end 

  

  
  %       
      if (eg(j)>=0.9)   
       % Pure gas    
        k1(j) = 1.0; 
        s1(j) = 0.0; 
      else   
        %Two phase flow   
        k1(j) = (1-k0(j)*eg(j))/(1-eg(j)); 
        s1(j) = -1.0*s0(j)*eg(j)/(1-eg(j));  
      end 

  

  

       
      help1 = dl(j)*ev(j)*k1+dg(j)*eg(j)*k0; 
      help2 = dl(j)*ev(j)*s1+dg(j)*eg(j)*s0; 

  

  
      vmixhelpl = (qv(j,3)/area(j)-help2)/help1; 
      vg(j)=k0(j)*vmixhelpl+s0(j); 
      vl(j)=k1(j)*vmixhelpl+s1(j); 
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      % Variable for summarizing the gas volume content in the well. 
      gasvol=gasvol+eg(j)*area(j)*dx; 

       

       
   end     

       

  
% Old values are now set equal to new values in order to prepare 
% computation of next time level. 

  

      
   po=p; 
   dlo=dl; 
   dgo=dg; 
   vlo=vl; 
   vgo=vg; 
   ego=eg; 
   evo=ev; 
   qvo=qv; 
   dlrandinold = dlrandinnew;          %for inlet 
   prandinold = prandinnew;             
   vlrandinold = vlrandinnew;           

    
   dgrandinold = dgrandinnew; 
   vgrandinold = vgrandinnew; 
   egrandinold = egrandinnew; 

    
   dlrandoutold = dlrandoutnew;        %for outlet 
   prandoutold = prandoutnew; 
   vlrandoutold = vlrandoutnew; 
   egrandoutold = egrandoutnew; 
   dgrandoutold = dgrandoutnew; 
   vgrandoutold = vgrandoutnew; 

    

    
% % Here we calculate the increase in pitgain. This has been deactivated 
%  since it is sufficient to use the volgas variable. 
%   pitrate = (dl(nobox)*ev(nobox)*vl(nobox)*area(nobox))/rho0-... 
%              inletligmassrate/rho0; %m3/s %NNNNNNNNNBBBBBBBBBBBBBB 
%   pitvolume=pitvolume+pitrate*dt; %m3 

     

     
% Section where we save some timedependent variables in arrays.  
% e.g. the bottomhole pressure. They will be saved for certain 
% timeintervalls defined in the start of the program in order to ensure 
% that the arrays do not get to long! 

    
  if (counter>=nostepsbeforesavingtimedata) 
    printcounter=printcounter+1; 
    time  % Write time to screen. 
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    % Outlet massrates (kg/s) vs time 
    liquidmassrateout(printcounter)=dl(nobox)*ev(nobox)*vl(nobox)*area(nobox); 
    gasmassrateout(printcounter)=dg(nobox)*eg(nobox)*vg(nobox)*area(nobox); 

     
    % Outlet flowrates (lpm) vs time 
    liquidflowrateout(printcounter)=liquidmassrateout(printcounter)/... 
        rholiq(P0,T0)*1000*60; 
    gasflowrateout(printcounter)=gasmassrateout(printcounter)/... 
        rogas(P0,T0)*1000*60;  

     
    % Hydrostatic and friction pressure (bar) in well vs time 
    hyd(printcounter)=sumhyd/100000; 
    fric(printcounter)=sumfric/100000; 

     
    % Volume of gas in well vs time (m3). Also used for indicating kick 
    % size 

     
    volgas(printcounter)=gasvol; 

     
    % Total phase masses (kg) in the well vs time 
     massgas(printcounter)=gasmass; 
     massliq(printcounter)=liqmass; 

    

     
    % pout defines the exact pressure at the outletboundary! 
    pout(printcounter)=(p(nobox)-0.5*dx*... 
    (dlo(nobox)*evo(nobox)+dgo(nobox)*ego(nobox))*g-

dx*0.5*fricgrad(nobox))/100000; 

  

  
    % pin (bar) defines the exact pressure at the bottom boundary 
    pin(printcounter)= 

(p(1)+0.5*dx*(dlo(1)*evo(1)+dgo(1)*ego(1))*g+0.5*dx*fricgrad(1))/100000; 

     
    % Pressure in the middle of top box (bar).  
    pnobox(printcounter)=p(nobox)/100000;  %  
    tempbott(printcounter)=temp(1)-273; % temperature at bottom - fixed 
  %  pitgain(printcounter)=pitvolume; Use volgas for kick size. 

     
    % Time variable 
    timeplot(printcounter)=time; 

     
    counter = 0; 

     
  end   
end     

  
% end of stepping forward in time. 
% Printing of resultssection 

  

  
countsteps % Marks number of simulation steps. 
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% Plot commands for variables vs time. The commands can also 
% be copied to command screen where program is run for plotting other 
% variables. 

  
toc, 
e = cputime-t 

  
% Plot bottomhole pressure 
plot(timeplot,pin) 

  
% Show cfl number used. 
disp('cfl') 
cfl = al*dt/dx 

  
figure(1) 
plot(timeplot,pin); 
grid on 
title('pin') 
%plot(timeplot,hyd) 
%plot(timeplot,fric) 
%plot(timeplot,liquidmassrateout) 
%plot(timeplot,gasmassrateout) 
figure(2) 
plot(timeplot,volgas); 
grid on 
title('kick volume') 
% plot(timeplot,liquidflowrateout) 
%plot(timeplot,gasflowrateout) 
figure(3) 
plot(timeplot,massgas) 
grid on 
title('Mass gas') 
% axis([0 1000 750 900]) 
% plot(timeplot,massliq) 
%plot(timeplot,pout) 
%plot(timeplot,pnobox) 

  
%Plot commands for variables vs depth/Only the last simulated 
%values at endtime is visualised 

  
figure(4) 
plot(vl,x); 
title('Liquid velocity') 
figure(5) 
plot(vg,x);, 
title('Gas velocity') 
figure(6) 
plot(eg,x); 
grid on 
title('Lambda') 
% plot(x,p/100000); 
%plot(dl,x); 
%plot(dg,x); 


