
62 IAPGOŚ 4/2017 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 4/2017, 62–65

DOI: 10.5604/01.3001.0010.7507

MAXIMUM SUBARRAY PROBLEM OPTIMIZATION FOR SPECIFIC DATA

Tomasz Rojek

Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Applied Informatics

Abstract. The maximum subarray problem (MSP) is to the find maximum contiguous sum in an array. This paper describes a method of Kadanes algorithm

(the state of the art) optimization for specific data (continuous sequences of zeros or negative real numbers). When the data are unfavourable, the
modification of the algorithm causes a non significant performance loss (1% > decrease in performance). The modification does not improve time

complexity but reduces the number of elementary operations. Various experimental data sets have been used to evaluate possible time efficiency

improvement. For the most favourable data sets an increase in efficiency of 25% can be achieved.

Keywords: Algorithm design and analysis, maximum subarray problem, Kadane’s algorithm, optimization

 OPTYMALIZACJA PROBLEMU NAJWIĘKSZEJ PODTABLICY DLA SPECYFICZNYCH DANYCH

Streszczenie. Problem najwiekszej podtablicy to inaczej znalezienie podciągu, którego suma na największą wartość. Artykuł opisuje optymalizację

algorytmu Kadane dla specyficznych danych (z powtarzającymi się ciągami zer lub liczb negatywnych). W przypadku niekorzystnych danych wejściowych

zaproponowa modyfikacja nieznacznie spowalnia działanie algorytmu (mniej niż 1% szybkości działania). Ulepszenie algorytmu nie zmienia rzędu
asymptotycznego tempa wzrostu, lecz zmniejsza ilość elementarnych operacji. Eksperymenty wykazały, że dla sprzyjających danych możemy zmniejszyć

efektywny czas działania algorytmu o 25%.

Słowa kluczowe: analiza i projektowanie algorytmów, problem maksymalnej podtablicy, algorytm Kadane, optymalizacja

Introduction

The maximum subarray problem was described by U.

Grenander at Brown Univer sity in 1977 during his study on the

pattern recognition field. There are numerous algorithms which

solves the problem in range from brute force method with time

complexity O(n2) to Kadane’s algorithm with time complexity

O(n). Maximum subarray problem solutions are used in data

mining [10], pattern recognition [5, 9], biological sequence

analysis [6, 1, 11], computer vision [2] etc.

The maximum subsequence problem for a one-dimensional

array is to find a contiguous subarray which has the largest sum of

elements. At least one element of the array should be a positive

real number. If the array elements are all non-negative, the

solution is the whole array. When all the numbers are negative

then the maximum subarray is the empty array.

Example. We are given a zero-indexed array X, such that:

 655136145 ,,,,,,,,=X .

Maximum subarray sum is 10, the beginning of this subarray

is on index 4, and the end is on index 8.

Kadane’s algorithm [3] finds maximum contiguous

subsequence in one-dimensional array. The input is an array X

consisting of N real numbers. The output is the maximum sum

found in any contiguous subarray of the input array. Its running

time is linear (O(n)) The algorithm uses the dynamic

programming approach. Kadane’s algorithm scans the whole array

from left (X[0]) to right (X[N-1]) and keeps track of the maximum

sum subarray seen so far. Its pseudocode is given below.

On the right side of pseudocode are numbers (after //)

represent the number of elementary operations which are done to

execute certain line of code.

Below we describe in detail Kadane’s algorithm analysis. The

runtime complexity of Kadane’s algorithm is O(n). This

description focuses on number of elementary operations not

asymptotic notation. Elementary operation is defined as one of the

arithmetic operations (addition, subtraction, multiplication,

division), comparisons (between two real numbers), assignments

[7]. Let T (n) be the number of units of time taken for any input

array size of n, required to solve the maximum subarray problem.

For simplicity’s sake, one can assume that all elementary

operations take the same time. The analysis is given for the worst-

case running time. Second line (for i ← 1 to n) takes 1 + n +

(n − 1) due to: 1 for assignment operations (i = 1), n for checking

condition (i < n) and (n – 1) for incrementing i. According to the

above pseudocode one has:

26)(

)1()1(

)
2

1
()

2

1
()1()1(12)(

nnT

nn

nn
nnnnT

1. Materials and methods

In this section we describe improvement of Kadane’s

algorithm and explain for what kind of data is can be effectively

used. Then we present test results for random generated data.

Finally we demonstrate how much faster can be modified

algorithm during searching specific regions on images.

1.1. Algorithm optimizing

Idea of optimizing Kadane's algorithm for specific data is

based on the observation that the searched interval (containing

solution) always starts and ends with a positive real number. All

numbers before(after) first(last) positive should be negative or

equal to zero.

For example, for a given zero-indexed array B consisting of

N=11 real numbers:

 01871251032 ,,,,,,,,,,=B .

It can be noticed that the array containing the solution is

between 4 (index) and 9 because all real numbers with an index

less than 4 and greater than 8 are negative or equal to 0.

We can exclude part of the array which we know that there is

no solution. In order to eliminate further calculations, we can

searching for the first positive real number from left/right side.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lublin University of Technology Journals

https://core.ac.uk/display/279739791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2017 63

To find the interval with the solution, the algorithm scans the

whole array from the left until it finds real number x, where x > 0

and returns its index. This operation works analogously for the

other side of the input array. The returned indices determine the

range in which the array will be analyzed by the classic Kadane’s

algorithm. The pseudocode of improved version of the algorithm

is shown below.

In order to explain how improvement version works, we

should analyze number of elementary operations. Every negative

number in series from left/right side decrease number of

elementary operations which should be performed by 1. Using the

improved version of Kadane’s algorithm one can assume that

additional code (searching interval which contains solution) takes:

 33)1
2

1

2

)1(1
(*22)(

 n

nnn
nT

Productivity growth relative to the classical algorithm. From

line (2) one can conclude that a loop-cycle costs 4 elementary

operations, line (3) shows that a reduction in the range of one real

number takes 3 elementary operations. Constants are not taken

into account because they are negligible for a large n. From this

one can conclude that finding a real number, which is not in the

solution interval, allows to reduce the number of operations (by

25%) required to solve the MPS problem.

In the worst case (the first and the last real number in the array

are positive) the improved version of Kadane’s algorithms will

perform 10 more elementary operations (for checking the first and

last real number and for two assignments) than the classical

algorithm. In the most favourable situation (all real numbers in the

array are negative) the improved version of Kadane’s algorithm

will perform 4/3 elementary operations of the classical algorithm.

Correctness of the results over the classical algorithm. The

improvement of the classical algorithm does not change the result

which can be achieved by running it. Even in the case of

ambiguous solutions, for example in a zero indexed array, such

that:

 1213121 , - , , , -, , -=C

where there is one result in the situation of the maximum sum

which is 3 and there are 3 possible results in the context of

intervals ([1, 2], [1, 5], [4, 5]). The result interval is [1, 5] in both

versions of the algorithms.

1.2. Performance tests

Tests were performed on isolated virtual machine. The

hardware used for testing was: Intel(R) Core(TM) i5-3320M, 8GB

RAM with Debian 64-bit system. There were two environments

used to further confirm the results: compiled and interpreted. The

following platforms, on which performance was tested, had

identical code in terms of semantics:

 C++ (compiler g++ version 4.8.2),

 Ruby (interpreter version 2.1.1p76).

Data for tests were created using standard Ruby “Random”

class. Generated integers were saved to text file. One file consists

of one data set as follow:

 positive integers: range from 0 to 10,

 negative integers: from -10 to 0,

 mixed integers: from -10 to 10.

The number of integers in sets for C++ and Ruby are different

due to how fast the programs written in certain programming

languages are. They are as follows:

 C++:

o 50 000 000 mixed,

o 12 500 000 negative and 37 500 000 positive,

o 25 000 000 negative and 25 000 000 positive,

o 37 500 000 negative and 12 500 000 positive;

 Ruby:

o 1 000 000 000 mixed,

o 250 000 000 negative and 750 000 000 positive,

o 500 000 000 negative and 500 000 000 positive,

o 750 000 000 negative and 250 000 000 positive.

It is important to notice that in case of negative data we mean

negative in series at the begin or/and end of series. For example

set of 4 negative and 8 positive can be [-4, -1, -5, -3, 3, 2, 1, 1, 4,

9, 3, 9] or [-2, -9, 3, 1, 6, 7, 4, 3, 2, 9, -1, -3] and can’t be [-1, -3,

3, 9, 1, -9, 1, 1, 2, 3, 6, -1].

In this section test results for C++ implementation are

presented. Running times of two versions of the algorithm on the

same data sets are shown on the graph below (Fig. 1):

 mixed data – decrease in performance by 0,37% ,

 25% of negative and 75% of positive integers – increase in

performance by 8.29%,

 50% of negative and 50% of positive integers – increase in

performance by 23.37%,

 75% of negative and 25% of positive integers – increase in

performance by 28.06%.

Fig. 1. Classical and improved algorithm run time (C++ implementation)

for different data set

64 IAPGOŚ 4/2017 p-ISSN 2083-0157, e-ISSN 2391-6761

Ruby test results were performed in the same manner. They

are presented on Fig 2:

 mixed data – decrease in performance by 0,53%,

 25% of negative and 75% of positive integers – increase in

performance by 6.97%,

 50% of negative and 50% of positive integers – increase in

performance by 11.98%,

 75% of negative and 25% of positive integers – increase in

performance by 20.6%.

Fig. 2. Classical and improved algorithm run time (Ruby implementation)

for different data set

In relation to the results of the performance tests above, the

increase can be estimated as shown on Fig. 3. It also converges

with the algorithm analysis.

Fig. 3. Estimated improvment

2. Result

In previous section we showed that modified version of

Kadane’s algorithm increase its performance. Data for test were

generated to analyze theoretical improvement. In this section we

present that there are some applications of proposed improvement.

Among others Kadane’s algorithm in two dimensional version is

used to find brightest region or region with specific features

(dominant color – red, green or blue maximum likelihood

estimator of a certain kind of pattern in digital image) is time

consume problem. Example of that kind of task is finding

brightest (stars) regions on the sky or warmest/coolest place on

thermo-graphic image.

To find brightest region on an image, it should be represented

as a two dimensional array, where each pixel is luminance values.

As a luminance one can assume that this is (for 24-bit images)

according to formula [4]:

 B.G + .R + .Y = 072207152021260

Then we should find the area (rectangle) where sum of all

pixels is the highest. We can reduce this problem to the maximum

subarray problem (MSP) for two dimensional space. For examples

if we are given a two-dimensional array a[0..m][0..n], where

upper-left corner has coordinates (0,0). The maximum subarray in

the following examples is the part of the array with coordinates

a[0..1][1..2], which sum is 15.

71220

5110

1478

4123

,

nmA

The area with maximum sum is row (0,1) and column (1,2).

The best known algorithms which solves MSP is Kadane’s

algorithm do it in O(n^2) time. In digital images values of pixels

are all non negative. The solution of 2D MPS will be the whole

array. Before computing the maximum subarray, we should

normalize each pixel value by substracting an anchor value.

Selection of certain anchor value determinate sensitiveness (size)

of region which we want to find.

The whole operation is time consuming, for example for an

image 3MP (2,048 pixels 1536 pixels), which is exactly

3145728 pixels, one can assume that is input data n for our

algorithm, time of running is O(nm2) (qubic time when m = n), the

number of operations which algorithm have to do in

approximation is 9.895604651012.

Today personal computer, which has a two-core processor

2 GHz possesses a theoretical power of about 16GFLOPS, which

stems from the formula:

 ,
cycle

FLOPs
 clockres FLOPS = co

Where
cycle

FLOPs
 in equal to 4 in most present

microprocessors. If we have such power at our disposal we may

solve the above problem in s
 .

619
1016

10895604659

9

12

 what is

more than 10 minutes. This calculations are approximate, we

assume one operation per pixel which is not precise. They do not

count real number of operations, but show the scale size of the

problem.

2.1. Performance tests for 2D application

We take 3 images from different categories for tests:

 astronomy,

 thermography,

 computed tomography.

All images were 24-bit. In order to find specific (brightest)

region on an image, we convert it into gray scale (8 bit) and

subtract anchor (about 128) value from each pixel’s value. We get

two dimensional array with pixels in range (-x to 256 - x, where x

is chosen anchor value) as a result of this operation. We can adjust

sensitive of searched region by changing parameters: anchor value

and luminance formula.

Both versions of Kadane’s algorithm were implemeneted in

C++ Below we present taken images with selected area which was

found and percent of improvement over classical algorithm.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 4/2017 65

Fig. 4. Astronomy image: 21% faster then classical

Fig. 5. Thermographic image: 18% faster then classical algorithms

Fig .6. PET image: 5.52% faster than classical algorithms

3. Conclusion

Kadane’s algorithm is the state of the art algorithm for solving

the maximum subarray problem. One can conclude that the

presented improvement can limit the number of elementary

operations. The algorithm analysis showed that finding one

element of a sequence which does not contain a solution costs

3 units of time and the analysis of the faulty component costs

4 units. The tests prove that with the falling number of elementary

operations the performance of the algorithm increases. For the

most unfavourable data, the performance is slightly worse in

comparison to Kadane’s algorithm. In all other situations

presented algorithm’s runtime is lower. Regardless of the

implementation platform (C++, Ruby), a proportional gain in the

runtime is achieved. Analogously improvement version of

Kadane’s algorithm for 2 dimmensional space show that finding

the brightest regions can be faster up to 22% then classical

Kadane’s algorithm.There are applied applications like analysis of

DNA sequence or protein sequence, where a significant increase

in efficiency is possible. This improvement could be the state of

the art for Kadane’s algorithm.

Bibliography

[1] Lloyd A.: Longest biased interval and longest non-negative sum interval.

Bioinformatics 19, 2003, 1294–1295.

[2] Bae Sung Eun: Sequential and Parallel Algorithms for the Generalized

Maximum Subarray Problem. Ph.D. Thesis, University of Canterbury, 2007.

[3] Bentley J.: Programming pearls: algorithm design techniques. Communications

of the ACM, 27(9), 1984, 865–873.

[4] BT Series Broadcasting. Parameter values for the HDTV standards for

production and international programme exchange BT Series Broadcasting

service – volume 5, 2002.

[5] Grenander U.: Pattern analysis. Springer, 1978.

[6] Huang X.: An algorithm for identifying regions of a DNA sequence that satisfy

a content requirement. Computer applications in the biosciences: CABIOS 10,

1994, 219–225.

[7] Larson R. C., Odoni A. R.: Urban operations research. Prentice-Hall, New

Jersey 1981.

[8] Lin Yaw Ling, Jiang Tao, Chao Kun Mao: Efficient algorithms for locating the

length-constrained heaviest segments with applications to biomolecular

sequence analysis. Journal of Computer and System Sciences 65, 2003,

570–586.

[9] Perumalla K., Deo N.: Parallel algorithms for maximum subsequence and

maximum subarray. Parallel Processing Letters 5(03), 1995, 367–373.

[10] Tokyo IBM: Data Association Mining Rules: Using Algorithms, Optimized and

Scheme, Visualization, 1996.

[11] Wang L., Xu Ying: SEGID: Identifying interesting segments in (multiple)

sequence alignments. Bioinformatics 19, 297–298, 2003.

M.Sc. Tomasz Rojek

e-mail: trojek@pk.edu.pl

Scientific and didactic assistant at the Institute of

Applied Informatics, Faculty of Mechanical

Engineering, Cracow University of Technology.

Research interests are focused on theoretical computer

science, algorithms, computational complexity and

image analysis.

otrzymano/received: 15.06.2016 przyjęto do druku/accepted: 22.11.2017

