
62      IAPGOŚ 4/2017      p-ISSN 2083-0157, e-ISSN 2391-6761 

artykuł recenzowany/revised paper IAPGOS, 4/2017, 62–65 

DOI: 10.5604/01.3001.0010.7507 

MAXIMUM SUBARRAY PROBLEM OPTIMIZATION FOR SPECIFIC DATA 

Tomasz Rojek
 

Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Applied Informatics 

Abstract. The maximum subarray problem (MSP) is to the find maximum contiguous sum in an array. This paper describes a method of Kadanes algorithm 

(the state of the art) optimization for specific data (continuous sequences of zeros or negative real numbers). When the data are unfavourable, the 
modification of the algorithm causes a non significant performance loss (1% > decrease in performance). The modification does not improve time 

complexity but reduces the number of elementary operations. Various experimental data sets have been used to evaluate possible time efficiency 

improvement. For the most favourable data sets an increase in efficiency of 25% can be achieved. 
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 OPTYMALIZACJA PROBLEMU NAJWIĘKSZEJ PODTABLICY DLA SPECYFICZNYCH DANYCH 

Streszczenie. Problem najwiekszej podtablicy to inaczej znalezienie podciągu, którego suma na największą wartość. Artykuł opisuje optymalizację 

algorytmu Kadane dla specyficznych danych (z powtarzającymi się ciągami zer lub liczb negatywnych). W przypadku niekorzystnych danych wejściowych 

zaproponowa modyfikacja nieznacznie spowalnia działanie algorytmu (mniej niż 1% szybkości działania). Ulepszenie algorytmu nie zmienia rzędu 
asymptotycznego tempa wzrostu, lecz zmniejsza ilość elementarnych operacji. Eksperymenty wykazały, że dla sprzyjających danych możemy zmniejszyć 

efektywny czas działania algorytmu o 25%. 

Słowa kluczowe: analiza i projektowanie algorytmów, problem maksymalnej podtablicy, algorytm Kadane, optymalizacja

Introduction 

The maximum subarray problem was described by U. 

Grenander at Brown Univer sity in 1977 during his study on the 

pattern recognition field. There are numerous algorithms which 

solves the problem in range from brute force method with time 

complexity O(n2) to Kadane’s algorithm with time complexity 

O(n). Maximum subarray problem solutions are used in data 

mining [10], pattern recognition [5, 9], biological sequence 

analysis [6, 1, 11], computer vision [2] etc. 

The maximum subsequence problem for a one-dimensional 

array is to find a contiguous subarray which has the largest sum of 

elements. At least one element of the array should be a positive 

real number. If the array elements are all non-negative, the 

solution is the whole array. When all the numbers are negative 

then the maximum subarray is the empty array. 

Example. We are given a zero-indexed array X, such that: 

  655136145 ,,,,,,,,=X . 

Maximum subarray sum is 10, the beginning of this subarray 

is on index 4, and the end is on index 8. 

Kadane’s algorithm [3] finds maximum contiguous 

subsequence in one-dimensional array. The input is an array X 

consisting of N real numbers. The output is the maximum sum 

found in any contiguous subarray of the input array. Its running 

time is linear (O(n)) The algorithm uses the dynamic 

programming approach. Kadane’s algorithm scans the whole array 

from left (X[0]) to right (X[N-1]) and keeps track of the maximum 

sum subarray seen so far. Its pseudocode is given below. 

 

 

On the right side of pseudocode are numbers (after //) 

represent the number of elementary operations which are done to 

execute certain line of code.  

Below we describe in detail Kadane’s algorithm analysis. The 

runtime complexity of Kadane’s algorithm is O(n). This 

description focuses on number of elementary operations not 

asymptotic notation. Elementary operation is defined as one of the 

arithmetic operations (addition, subtraction, multiplication, 

division), comparisons (between two real numbers), assignments 

[7]. Let T (n) be the number of units of time taken for any input 

array size of n, required to solve the maximum subarray problem. 

For simplicity’s sake, one can assume that all elementary 

operations take the same time. The analysis is given for the worst-

case running time. Second line (for i ← 1 to n) takes 1 + n + 

(n − 1) due to: 1 for assignment operations (i = 1), n for checking 

condition (i < n) and (n – 1) for incrementing i. According to the 

above pseudocode one has: 
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1. Materials and methods 

In this section we describe improvement of Kadane’s 

algorithm and explain for what kind of data is can be effectively 

used. Then we present test results for random generated data. 

Finally we demonstrate how much faster can be modified 

algorithm during searching specific regions on images. 

1.1. Algorithm optimizing 

Idea of optimizing Kadane's algorithm for specific data is 

based on the observation that the searched interval (containing 

solution) always starts and ends with a positive real number. All 

numbers before(after) first(last) positive should be negative or 

equal to zero. 

For example, for a given zero-indexed array B consisting of 

N=11 real numbers: 

  01871251032 ,,,,,,,,,,=B  . 

It can be noticed that the array containing the solution is 

between 4 (index) and 9 because all real numbers with an index 

less than 4 and greater than 8 are negative or equal to 0. 

We can exclude part of the array which we know that there is 

no solution. In order to eliminate further calculations, we can 

searching for the first positive real number from left/right side. 
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To find the interval with the solution, the algorithm scans the 

whole array from the left until it finds real number x, where x > 0 

and returns its index. This operation works analogously for the 

other side of the input array. The returned indices determine the 

range in which the array will be analyzed by the classic Kadane’s 

algorithm. The pseudocode of improved version of the algorithm 

is shown below. 

 

In order to explain how improvement version works, we 

should analyze number of elementary operations. Every negative 

number in series from left/right side decrease number of 

elementary operations which should be performed by 1. Using the 

improved version of Kadane’s algorithm one can assume that 

additional code (searching interval which contains solution) takes: 
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Productivity growth relative to the classical algorithm. From 

line (2) one can conclude that a loop-cycle costs 4 elementary 

operations, line (3) shows that a reduction in the range of one real 

number takes 3 elementary operations. Constants are not taken 

into account because they are negligible for a large n. From this 

one can conclude that finding a real number, which is not in the 

solution interval, allows to reduce the number of operations (by 

25%) required to solve the MPS problem. 

In the worst case (the first and the last real number in the array 

are positive) the improved version of Kadane’s algorithms will 

perform 10 more elementary operations (for checking the first and 

last real number and for two assignments) than the classical 

algorithm. In the most favourable situation (all real numbers in the 

array are negative) the improved version of Kadane’s algorithm 

will perform 4/3 elementary operations of the classical algorithm. 

Correctness of the results over the classical algorithm. The 

improvement of the classical algorithm does not change the result 

which can be achieved by running it. Even in the case of 

ambiguous solutions, for example in a zero indexed array, such 

that: 

  1213121 , - , , , -, ,  -=C  

where there is one result in the situation of the maximum sum 

which is 3 and there are 3 possible results in the context of 

intervals ([1, 2], [1, 5], [4, 5]). The result interval is [1, 5] in both 

versions of the algorithms. 

 

1.2. Performance tests 

Tests were performed on isolated virtual machine. The 

hardware used for testing was: Intel(R) Core(TM) i5-3320M, 8GB 

RAM with Debian 64-bit system. There were two environments 

used to further confirm the results: compiled and interpreted. The 

following platforms, on which performance was tested, had 

identical code in terms of semantics: 

 C++ (compiler g++ version 4.8.2), 

 Ruby ( interpreter version 2.1.1p76). 

 

Data for tests were created using standard Ruby “Random” 

class. Generated integers were saved to text file. One file consists 

of one data set as follow: 

 positive integers: range from 0 to 10, 

 negative integers: from -10 to 0, 

 mixed integers: from -10 to 10.  

 

The number of integers in sets for C++ and Ruby are different 

due to how fast the programs written in certain programming 

languages are. They are as follows: 

 C++: 

o 50 000 000 mixed, 

o 12 500 000 negative and 37 500 000 positive, 

o 25 000 000 negative and 25 000 000 positive, 

o 37 500 000 negative and 12 500 000 positive; 

 Ruby: 

o 1 000 000 000 mixed, 

o 250 000 000 negative and 750 000 000 positive, 

o 500 000 000 negative and 500 000 000 positive, 

o 750 000 000 negative and 250 000 000 positive. 

 

It is important to notice that in case of negative data we mean 

negative in series at the begin or/and end of series. For example 

set of 4 negative and 8 positive can be [-4, -1, -5, -3, 3, 2, 1, 1, 4, 

9, 3, 9] or [-2, -9, 3, 1, 6, 7, 4, 3, 2, 9, -1, -3] and can’t be [-1, -3, 

3, 9, 1, -9, 1, 1, 2, 3, 6, -1].  

In this section test results for C++ implementation are 

presented. Running times of two versions of the algorithm on the 

same data sets are shown on the graph below (Fig. 1): 

 mixed data – decrease in performance by 0,37% , 

 25% of negative and 75% of positive integers – increase in 

performance by 8.29%, 

 50% of negative and 50% of positive integers – increase in 

performance by 23.37%, 

 75% of negative and 25% of positive integers – increase in 

performance by 28.06%. 

 

Fig. 1. Classical and improved algorithm run time (C++ implementation) 

for different data set 
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Ruby test results were performed in the same manner. They 

are presented on Fig 2: 

 mixed data – decrease in performance by 0,53%, 

 25% of negative and 75% of positive integers – increase in 

performance by 6.97%, 

 50% of negative and 50% of positive integers – increase in 

performance by 11.98%, 

 75% of negative and 25% of positive integers – increase in 

performance by 20.6%. 

 

Fig. 2. Classical and improved algorithm run time (Ruby implementation) 

for different data set 

In relation to the results of the performance tests above, the 

increase can be estimated as shown on Fig. 3. It also converges 

with the algorithm analysis. 

 

Fig. 3. Estimated improvment 

2.  Result 

In previous section we showed that modified version of 

Kadane’s algorithm increase its performance. Data for test were 

generated to analyze theoretical improvement. In this section we 

present that there are some applications of proposed improvement. 

Among others Kadane’s algorithm in two dimensional version is 

used to find brightest region or region with specific features 

(dominant color – red, green or blue maximum likelihood 

estimator of a certain kind of pattern in digital image) is time 

consume problem. Example of that kind of task is finding 

brightest (stars) regions on the sky or warmest/coolest place on 

thermo-graphic image. 

To find brightest region on an image, it should be represented 

as a two dimensional array, where each pixel is luminance values. 

As a luminance one can assume that this is (for 24-bit images) 

according to formula [4]: 

 B.G + .R + .Y = 072207152021260  

Then we should find the area (rectangle) where sum of all 

pixels is the highest. We can reduce this problem to the maximum 

subarray problem (MSP) for two dimensional space. For examples 

if we are given a two-dimensional array a[0..m][0..n], where 

upper-left corner has coordinates (0,0). The maximum subarray in 

the following examples is the part of the array with coordinates 

a[0..1][1..2], which sum is 15. 
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The area with maximum sum is row (0,1) and column (1,2). 

The best known algorithms which solves MSP is Kadane’s 

algorithm do it in O(n^2) time. In digital images values of pixels 

are all non negative. The solution of 2D MPS will be the whole 

array. Before computing the maximum subarray, we should 

normalize each pixel value by substracting an anchor value. 

Selection of certain anchor value determinate sensitiveness (size) 

of region which we want to find. 

The whole operation is time consuming, for example for an 

image 3MP (2,048 pixels  1536 pixels), which is exactly 

3145728 pixels, one can assume that is input data n for our 

algorithm, time of running is O(nm2) (qubic time when m = n), the 

number of operations which algorithm have to do in 

approximation is 9.895604651012. 

Today personal computer, which has a two-core processor 

2 GHz possesses a theoretical power of about 16GFLOPS, which 

stems from the formula: 

 ,
cycle

FLOPs
 clockres FLOPS = co     

Where 
cycle

FLOPs
 in equal to 4 in most present 

microprocessors. If we have such power at our disposal we may 

solve the above problem in  s
  .
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 what is 

more than 10 minutes. This calculations are approximate, we 

assume one operation per pixel which is not precise. They do not 

count real number of operations, but show the scale size of the 

problem. 

 

2.1. Performance tests for 2D application 

We take 3 images from different categories for tests:  

 astronomy, 

 thermography, 

 computed tomography.  

All images were 24-bit. In order to find specific (brightest) 

region on an image, we convert it into gray scale (8 bit) and 

subtract anchor (about 128) value from each pixel’s value. We get 

two dimensional array with pixels in range (-x to 256 - x, where x 

is chosen anchor value) as a result of this operation. We can adjust 

sensitive of searched region by changing parameters: anchor value 

and luminance formula. 

Both versions of Kadane’s algorithm were implemeneted in 

C++ Below we present taken images with selected area which was 

found and percent of improvement over classical algorithm.  
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Fig. 4. Astronomy image: 21% faster then classical 

 

Fig. 5. Thermographic image: 18% faster then classical algorithms 

 

Fig .6. PET image: 5.52% faster than classical algorithms 

3. Conclusion 

Kadane’s algorithm is the state of the art algorithm for solving 

the maximum subarray problem. One can conclude that the 

presented improvement can limit the number of elementary 

operations. The algorithm analysis showed that finding one 

element of a sequence which does not contain a solution costs 

3 units of time and the analysis of the faulty component costs 

4 units. The tests prove that with the falling number of elementary 

operations the performance of the algorithm increases. For the 

most unfavourable data, the performance is slightly worse in 

comparison to Kadane’s algorithm. In all other situations 

presented algorithm’s runtime is lower. Regardless of the 

implementation platform (C++, Ruby), a proportional gain in the 

runtime is achieved. Analogously improvement version of 

Kadane’s algorithm for 2 dimmensional space show that finding 

the brightest regions can be faster up to 22% then classical 

Kadane’s algorithm.There are applied applications like analysis of 

DNA sequence or protein sequence, where a significant increase 

in efficiency is possible. This improvement could be the state of 

the art for Kadane’s algorithm. 
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