
66 IAPGOŚ 1/2016 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 1/2016, 66–68

DOI: 10.5604/20830157.1194288

INTERACTIVE, MULTIFUNCTIONAL MIRROR
– PART OF A SMART HOME

Szczepan Paszkiel, Robert Kania
Opole University of Technology, Institute of Control & Computer Engineering

Abstract. This paper presents a possible implementation of a personal assistant and control interface for a smart home. A prototype is presented, featuring
functions such as appliance and light control, a map system based on Google Maps and various informational data such as calendar entries and news.
The device takes the form of a voice controlled mirror, allowing for integration in existing systems as a replacement for a common household item, without
the need for additional space.

Keywords: control interface, smart home, mirror, Google Maps

INTERAKTYWNE, WIELOFUNKCYJNE LUSTRO
JAKO ELEMENT INTELIGENTNEGO BUDYNKU

Streszczenie. W artykule przedstawiono możliwą implementację osobistego asystenta w postaci interaktywnego lustra wchodzącego w skład instalacji
inteligentnego domu. Opracowany autorski prototyp urządzenia wyposażono w funkcje, takie jak: kontrolę światła w pomieszczeniu, system wizualizacji
map opartych o Google Maps oraz możliwość prezentacji wielu danych informacyjnych, takich jak: kalendarz, bieżące wiadomości etc. Urządzenie ma
postać głosowo sterowanego lustra opracowanego według autorskiego pomysłu z możliwością integracji z istniejącymi na rynku systemami operacyjnymi
urządzeń mobilnych, jako zamiennik dla wspólnego elementu gospodarstwa domowego jakim jest standardowe lustro, bez konieczności wykorzystywania
dodatkowej przestrzeni w budynku.

Słowa kluczowe: interfejs, dom inteligentny, interaktywne lustro, mapy Google

Introduction

In an age where one can share what he just ate using his
fridge, or accept calls using one's watch, it has become a challenge
to find ordinary items which may yet be modernized [1].
The current approach to smart home solutions is the addition
of a central control panel, commonly a touch device, accompanied
by a commercial handheld device with an appropriate app
installed [2].

This paper presents an alternative approach, where a common
household item – the mirror – is equipped with a control panel's
functionalities without impeding its inherent use.

This is done by creating a voice controlled interface, thus
making the interaction appear more natural and eliminating
the need for physical interaction and cleaning. Additionally fea-
tures of a personal assistant are added, allowing the user to instant-
ly get any required information by quickly glancing at a part of
the mirror while getting ready, or specifically asking for it [3, 5].

1. Setup

1.1. Hardware

The mirror is composed of a NTT Corrino 617 SU laptop run-
ning Ubuntu 14.04, with a IIyama LED 22" E2283 as external
screen and an external microphone. Additionally, a 4 millimeter
one-way mirror is put in front of the screen for the desired effect
as seen in figure 1. The IIyama E2283 was chosen as screen due to
its built-in speakers and connector layout – they are on the side,
allowing for more compact cable management when connecting to
the laptop, or any future processing unit.

Fig. 1. Reference drawing of the screen

Several ESP8266 microcontrollers have been added, connect-
ed to, depending on the intended use: DS18B20 digital thermome-
ter for temperature sensors or a 230 V AC relay for controlling
lights and other AC appliances.

The ESP8266 has been chosen due to its low price, power us-
age, processing power and most importantly Wi-Fi capabilities.
For coordination of the above mentioned devices, a TP-Link
1043ND router running OpenWRT is used.

1.2. Software

The interface consists of a web page displayed by Google
Chrome. This approach allows rapid development and sets a foun-
dation for easy extensibility of functionalities. For voice recogni-
tion and speech synthesis capabilities, the Web Speech API
is used. With its' specification published on 19 October 2012,
it is one of the newer additions to web technologies [8]. Although
not a W3C standard, parts of the API are being incorporated into
popular browsers. Interfacing with additional devices driven
by the ESP8266 is done with the MQTT protocol – a machine-to-
machine (M2M)/"Internet of Things" connectivity protocol [7].
Due to its minimalistic nature it is well suited for use in microcon-
trollers. Information in the MQTT protocol is divided into topics,
which any device can either subscribe or post to. For example, the
topic /lights/kitchen/currentStatus could be subscribed to, in order
to always be aware of the light's status, whereas the microcontrol-
ler responsible can post messages whenever the state is switched.

In order to provide personal assistant functionalities, a popular
calendar application is used – Google Calendar API, which has
been chosen mainly due to its free of cost nature. Nevertheless,
interfacing with other, paid alternatives such as Apple iCloud
is also possible.

Additionally, a Node.JS HTTP server is introduced to over-
come the browser's sandboxed nature. Normally, HTML websites
can be served locally using the file:// protocol. This approach
could not be used for the following reasons: file:// is not seen
as a secure connection by Chrome, and therefore, in accordance
with the Web Speech API, prompts for user input every time
a web page requests access to the microphone; the requests
to the Calendar and Translate APIs could not be made due
to Cross-site request forgery prevention measures; communication
with MQTT is not possible using a Web browser alone.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lublin University of Technology Journals

https://core.ac.uk/display/279739652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 1/2016 67
2. Interface and implementation

The mirror provides some features by default, without
the need for widgets or modifications. These include displaying
the date and time, upcoming calendar events, local weather, post
it functionality and maps. The interface itself is designed
in an elegant, minimalistic manner, featuring soft fonts such
as Helvetica Neue and light colors. Additionally, any of the base
elements can be hidden by issuing the command hide
(pl. schowaj) <component name>. A combination of these
elements can be seen in figure 2.

Fig. 2. Upper part of mirror, depicts date, time, weather and calendar

The weather is provided using the simpleWeather jQuery
plugin, and shown using the weathericons font. Any interaction
with the Web Speech API is handled by the annyang! library.
Any commands are easily added by issuing a command with
a dict as argument, such as annyang.addCommands({'schowaj
*term':voice.hide});, where the desired term is the key, and the
function to be called is the value of the argument given, making
maintenance and easy addition of commands possible.

The map functionality is provided using Geolocation and
a custom styled map provided by the Google Maps. The user may
ask the mirror for any location – the map in figure 3 was produced
by asking: how to find to Mikolajczyka street in Opole (pl. jak
dojadę do Mikołajczyka Opole) – with a correct result. Alterna-
tively, the from location can be set in the settings, and the style
of the map can be changed to the default one provided by Google
Maps. The map can be dismissed by issuing the command: delete
map (pl. usuń mapę).

Fig. 3. The entire interface is overlaid with the requested map

3. Extensibility

Since not all possible hardware configurations and software
functionalities can be predicted, a simple Widget API has been
implemented to allow for custom extensions to be added [4].
In order to add a new widget, these steps must be followed:
The widget must be placed as its own directory inside the /js

directory; its own directory must contain a file called script.js;
it must be listed inside the config.js file as a plug-in to be loaded.

As an example, a widget for studying the Chinese language,
specifically its characters, has been implemented, with a file struc-
ture as seen below:

chinese/
 lists/
 HSK1.txt
 canvas.curve.min.js
 draw.js
 script.js
 style.css

The script.js file is loaded once the $(document).ready() event

fires. The file later runs the following snippets:

 var js = document.createElement("script");
 js.type = "text/javascript";
 js.src = "/js/chinese/draw.js";
 js.onload = chinese.init;
 document.body.appendChild(js);
 [...]

In order to ensure a proper loading order, so that no script

is ran before its dependencies are available, the onload attribute
is used. Later, the init function counts the amount of times it has
been called, and once a certain threshold is reached, the actual
initialization is ran.

document.body.innerHTML += canvasHtml;
annyang.addCommands({"nowy znak":chinese.newChar});

As seen in this example, widgets are able to easily do the

following things: inject its' own dependencies, add HTML to
the DOM and add new voice commands.

4. Interaction with hardware using ESP8266
and MQTT

The MQTT API has been designed to be as transparent
as possible, as to facilitate further additions both in hardware
and in software plug-ins. The MQTT Node.js library has been
used [9], and three methods have been made available:
/mqtt/subscribe?topic=name to subscribe to a topic,
/mqtt/publish?topic=name&message=value to publish a message
to a topic, and finally /mqtt/get?topic=name to receive the latest
publication, along with the date received. All ESP8266 are written
in Lua, under the NodeMCU environment. Additionally, the
scripts are designed around the state machine as seen in figure 4.

Fig. 4. ESP8266 finite state machine

As an example, a lighting module using WS2812 has been
implemented. The WS2812 is a RGB LED controlled by PWM,
for which NodeMCU has a built-in driver starting with the 0.9.6
version (as of 14th June 2015 still in development). Since the
WS2812 uses 5 V as its' native voltage, a logic level shifter has
been used in order to drive it from the 3.3 V rated ESP8266.

68 IAPGOŚ 1/2016 p-ISSN 2083-0157, e-ISSN 2391-6761
The following code snippets drive the LEDs inside the

ESP8266:

m:connect(broker , mqttport, 0,
 function(conn)
m:subscribe("diode/color" , 0, function(conn)
print("Subscribing topic: diode/color")
 end)
 mqtt_state = 20 -- Go to work state
 end)

m:on("message", function(conn, topic, data)
 print(topic .. ":")
 if (data ~= nil) then
 r,g,b = string.match(data, "(%d+),(%d+),(%d+)")
 if (r ~= nil and g ~= nil and b ~= nil) then
 print (r .. ":" .. g .. ":" .. b)
 diode(r,g,b)
 end
 end
end)
function diode(r,g,b)
 ws2812.writergb(6, string.char(g, r, b):rep(2))
end

The code subscribes to the diode/color topic. Later, when

a message is received, formatted like 128,128,128 it is split into
three separate integers, each containing the intensity of one light
channel on a scale from 0 to 255. Finally ws2812.writergb
is called.

The first argument is the GPIO port to which the diodes
are connected. As WS2812 may be chained (DO to DI connec-
tion), settings to several LEDs can be sent at once using
the :rep(n) operator, with no additional GPIO ports required.

Finally, a simple plug-in on the interface side is written:

ws2812.set = function(r,g,b){
 $.get(
"/mqtt/publish?topic=diode/color&message="+r+","+g+","+b,
function(data) {
 console.log("Light set
to:"+"/light?r="+r+"&g="+g+"&b="+b);
 })
};
ws2812.speech = function(word){
 switch(word){
 case "czerwone":
 ws2812.set(255,0,0);
 break;
 [...]
 }
};
$(document).ready(function(){
 annyang.addCommands({"ustaw *term
światło":ws2812.speech});
});

The code allows the WS2812 to be controlled using voice

commands. Stating set the light red (pl. ustaw czerwone światło)
sets all LEDs to red, for example. Various combinations can be
implemented, or entirely different use scenarios (for example,
a relay could be connected, and a WS2812 could be used as state
indicator).

5. Summary

The mirror in its current state is ready for usage by technology
enthusiasts. The next step in development would be creation
of a voice controlled setup, including initial configuration and
addition of plug-ins or hardware. Additionally, parts of the appli-
cation could be ported to lower level languages, specifically
the Web Speech API, as to allow usage of budget hardware
for the mirror, eg. the Raspberry Pi 2 (RPi2). Alternatively,
other parts of the mirror could be perfected until Windows 10
and Google Chrome is fully compatible with the RPi2.

References
[1] Alam M., Reaz M., Ali M.: A review of smart homes – past, present, and future.

IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, 42(6), 2012, 1190–1203.

[2] Brezovan M., Badica C.: A review on vision surveillance techniques in smart
home environments. Proceedings of the 19th International Conference
on Control Systems and Computer Science: (CSCS19), vol. 2, 2013, 471–478.

[3] Green W., Gyi D., Kalawsky R., Atkins D.: Capturing user requirements for an
integrated home environment. Proceedings of the Third Nordic Conference
on Human-Computer interaction, Tampere, Finland. ACM Press, New York,
NY, vol. 82, 2004, 255–258, [DOI: 10.1145/1028014.1028053].

[4] Kim S. W., Park S. H., Lee J., Jin Y. K., Park H., Chung A., Choi S.,
Choi W. S.: Sensible appliances: applying context-awareness to appliance
design. Personal Ubiquitous Comput. 8, 2004, 184–191, [DOI: 10.1007/s00779-
004-0276-9].

[5] Lê Q., Nguyen H. B., Barnett T.: Smart Homes for Older People: Positive Aging
in a Digital World, Future Internet, 4, 2012, 607–617, [DOI:10.3390/fi4020607].

[6] Morris M. E., et al.: Smart-Home Technologies to Assist Older People to Live
Well at Home, Journal of Aging Science, 2013, [DOI:10.4172/jasc.1000101].

[7] http://mqtt.org/ [13.06.2015].
[8] https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html [13.06.2015].
[9] https://www.npmjs.com/package/mqtt [15.06.2015].

Ph.D. Eng. Szczepan Paszkiel
e-mail: s.paszkiel@po.opole.pl

Szczepan Paszkiel currently working in the Institute
of Control and Computer Engineering on the Faculty
of Electrical Control and Computer Engineering
at Opole University of Technology. He is a graduate
of Informatics and Management and Production
Engineering at Opole University of Technology.
He is a grant holder and winner of many contests for
young scientists. He has been conducting research
on processing the EEG signal. He is an author
and co-author of many scientific publications.
Eng. Robert Kania
e-mail: art@robus.info

Robert Kania, graduated with a Engineer degree
of Computer Engineering from Opole University
of Technology, Opole, Poland. Currently applying
at the Opole University of Technology, for a Master
in Computer Engineering.

otrzymano/received: 03.09.2015 przyjęto do druku/accepted: 15.01.2016

