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Abstract. System level self-diagnosis (SLSD) has been deeply investigated in literature. It aims at diagnosing systems composed by units, which 

are required to be able to test each other by exchanging information through available links. The article describes a simplified state-transition diagram 
model which gives a general impression of how checking, diagnosis and recovery can “conjointly” influence the system reliability and fault-tolerance. 

The model uses the integrated parameters and is very useful as a starting point and is a basis for further refinements. 
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PROBLEM ODPORNOŚCI SYSTEMU NA USZKODZENIA 

Streszczenie. Autodiagnostyka na poziomie systemu jest szeroko opisywana w literaturze. Celem jest diagnostyka systemy składającego się z jednostek 
od których wymaga się aby miały możliwość wzajemnego testowania  za pośrednictwem dostępnych połączeń. W artykule przedstawiono uproszczony 

model oparty na diagramie przejść który daje ogólny pogląd, jak sprawdzanie, diagnostyka i powrót do warunków normalnych mogą wspólnie wpływać 

na niezawodność systemu i odporności na uszkodzenia. Model wykorzystuje zintegrowane parametry i jest bardzo przydatne jako punkt wyjścia 

dla dalszych udoskonaleń. 

Słowa kluczowe: SLSD, niezawodność systemowa 

Introduction 

System level self-diagnosis (SLSD) was introduced by 

Preparata at al. [6] and has been deeply investigated in literature. 

It aims at diagnosing systems composed by units (optionally 

named processing elements), with the requirement that they are 

able to test each other by exchanging information through 

available links. At this level of diagnosis, each particular test 

is considered as atomic. It means that the details of a test 

are abstracted (not considered), and only the result of test is taken 

into consideration. Each test result is expressed via binary 

variable. It can take values either 0 or 1. The set of test results 

is called a syndrome. A syndrome contains information about 

the states of the system units in coded form. One of the tasks 

of SLSD is to decode a syndrome by using a diagnosis algorithm. 

1. System level self-diagnosis 

For providing system level self-diagnosis the tests among 

system units can be performed:  

 either in accordance with a pre-set schedule (i.e., defined 

a priori). 

 or in an adapted manner when, at the beginning, the tests 

are performed in accordance with defined a priori testing 

assignment. Once a unit is diagnosed as fault free, the tests 

it performs are considered reliable, and therefore, any other 

units should only be tested ones by this fault-free unit 

to correctly determine its status. Thus, the testing assignment 

is adapted such that units diagnosed as fault-free perform 

all the testing in the system [1]. 

 or entirely randomly (i.e., from the beginning to the end 

of testing). 

 or adaptively randomly. At the beginning, all units are 

engaged in tests performing. Tests are performed randomly. 

Once a test result takes the value of 1, the units participated 

in this test (so-called suspected pair) should only be tested 

by other system units (i.e., should not perform tests on other 

units). The choice of each pair of units for testing is performed 

randomly. 

In all cases, the intention is to minimize the time 

of performance of the set of tests. Random performing of tests 

is considered both in context of system self-checking and system 

self-diagnosis. 

Self-checking is the process which aims at discriminating 

between two states of a system: fault-free and faulty. The result 

of self-checking doesn’t indicate which of the system units has 

failed, and only testifies the presence of fault(s) in the system. 

Self-checking may require small number of tests. When PAT=1 

and PS =PF=1 (see Table 1), it is only needed to find out that each 

of the system units has been tested, at least, once. It may happen 

that N tests will be sufficient for system self-checking (see Fig. 1), 

where N is the number of system units. 

Table 1. Test results and their probabilities 

Test result and 

its probability 

Testing unit ui 

fault-free faulty 

Tested 

unit uj 

fault-

free 

rij = 0   (PC) rij = 0   (1 - PS) 

rij = 1   (1 - PC) rij = 1   (PS) 

faulty 
rij = 0   (1 - PAT) rij = 0   (1 - PF) 

rij = 1   (PAT) rij = 1   (PF) 

 

Fig. 1. Cases when each unit is tested 

For providing system self-checking it is not necessary to form 

the syndrome at all cost, and, consequently, to perform 

its analysis. Only message or signal informing about system fault-

free (resp. faulty) state is sufficient. This can be done, 

for example, by the unit which has produced the test result equal 

to 1. Further we are going to consider the case when tests 

are performed during the system operation. Hence, it is not 

possible to determine in advance which of the system units will be 

idle at the definite moment of time and,  thus, will be able to test 

(or be tested by) another system unit. From this it follows that not 

only pair of units that provides a test, but also instance of test 

performing is random. The random value is also the number 

of tests which will be performed in the system during a certain 

period of time. 

At the beginning, the self-checking procedure is performed 

to find out if the system possesses a faulty unit(s). The period 

of self-checking duration depends on the requirements 

to the credibility of self-checking result. If no test result equal 

to 1 is obtained during the self-checking (i.e., all test results 

are equal to 0), then the self-checking procedure ends, 

and the respective message or signal is delivered to the system 

environment. The self-checking procedure and subsequent 

delivering of information about the state of the system can be 

repeated at certain intervals as long as the system is operating. 

Otherwise. that is, when the test result indicating the presence 
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of a faulty unit in the system is obtained, the self-checking 

procedure is terminated immediately, and the procedure 

of self-diagnosis will be started. The aim of self-diagnosis 

procedure is to identify the faulty unit(s). As the research results 

show, one of the most difficult tasks is the task of determining 

the time duration of self-checking when all test results indicate 

that there are no faulty units in the system (i.e., all test results 

are equal to 0). In Fig. 2, the cycle of self-checking (SSC) 

and probable self-diagnosis are depicted. 

 

Fig. 2. Self-checking cycles and fault occurrence 

Fig. 2 can also help to elucidate the important features of self-

checking. From Fig. 2, it is seen that fault occurrence doesn’t lead 

immediately to termination of self-checking procedure. Self-

checking, as a rule, will continue until the fault is detected 

(captured) by one of the tests. After normal termination of each 

SSC, the result of self-checking is delivered to the system 

environment. This result indicates that the system is fault-free. 

Only in case of anomalous termination of SSC, no result of self-

checking is delivered to the system environment. Thus, normally, 

the same information is delivered to the system environment. 

Consequently, the idea springs to mind, that self-checking could 

be organized in such way that its result will not be delivered at all. 

In this case, absence of information about system state would 

mean that system is fault-free. However, this proposition has not 

been enough researched both from the theoretical and practical 

points of view. Nevertheless, it is worth noting that this situation 

can be considered in context of our consideration as a particular 

case when the time duration of self-checking cycle approaches 

the infinite. 

For organization of SSC (mainly, for defining the time 

duration of SSC) there were suggested several solutions [2, 3, 4]. 

Basically, SSC continues until one of the following conditions 

is met: 

1) pre-set time has expired. Time duration of SSC is a constant 

value and is fixed in advance, 

2) certain number of tests has been received. Time duration 

of SSC is defined by the certain number of performed tests, 

i.e., SSC continues until there is performed pre-set number 

of tests. Time duration of SSC is random, 

3) certain diagnosis graph (DG) has been formed. SSC continues 

until the tests form a certain diagnosis graph (resp. DG which 

belongs to the subset of diagnosis graphs defined a priory). 

Time duration of SSC is random. 

The cases when time duration of SSC is fixed or defined 

by a certain number of performed tests can be further described 

from the point of view of whether the analysis of the received 

diagnosis graph has to be performed or not. When such analysis 

doesn’t have to be performed, the task arises to compute 

the probability of the event that all system units have been tested

at least once. However, in practice there can be applied 

the opposite attitude when the time duration of SSC 

(resp., the required number of tests) is computed basing 

on the required probability of the event that all system units will 

be tested. Analysis of the obtained DG aims at checking whether 

all system units have been tested or whether the formed DG 

belongs to predefined subset of diagnosis graphs. It depends 

on the value of required credibility of self-checking result. 

When analysis shows that not all of the system units have been 

tested, it is possible to continue the SSC by the predefined period 

of time (so-called, extended period). After this extended period 

expires, the analysis is repeated. But this time, all of the tests both 

performed during the main and extended periods are accounted. 

Determining the optimal number of possible extended periods 

of SSC and the time of their duration is a separate problem. 

2. System fault-tolerance 

System tolerance to the failure of its units can be modeled 

by using different mathematic models. Mostly, for this purpose 

there is used the system state-transition diagram (Markov model). 

Markov model is analyzed in order to determine 

the probability of system being in a given state at a given point 

in time, the amount of time a system is expected to spend 

in a given state, as well as the expected number of transitions 

between states. On the basis of these probabilities it is possible 

to quantify and estimate the system reliability and system 

fault-tolerance. 

For the systems capable of graceful degradation the state-

transition diagram includes the following states: 

S0 –  all of the system units (i.e., N units) are actively engaged 

in performing system and diagnosis tasks. In other words, 

the system is fully operational, 

S1 –  one of the system units is isolated (i.e., it doesn’t perform 

system tasks). The system is minorly degraded, but still 

continues to deliver degraded (although acceptable) 

services, 

S2 –  two system units are isolated. In the system, there remain 

N-2 active units. System is majorly degraded, but is still able 

to deliver acceptable services, 

S3 –  total failure. 

For simplicity reason, here only systems which can tolerate 

the presence of not more than two faulty units are considered. 

Transitions of a system from one state to another are depicted 

in Fig. 3. 

 

Fig. 3. Model of system fault-tolerance 

By 0, 1, 2 are denoted rates of system transitions from one 

state to another, and by q0, q1 are denoted the probabilities 

of corresponding transitions. The values of i , i = 0, 1, 2  depend 

on the reliability of system units, and the values of qi , i = 0, 1 

depend on the efficiency of self-checking, self-diagnosis and 

recovery procedures. Transitions between particular states can be 

considered following the Poisson model. Poisson model has 

proven suitable to describe many of natural and technical 

processes. Palm in [5] pointed out that in many cases 

the superposition of a large number of independent stationary 

processes can be approximated by a Poison process. This gives 

us the reason to apply the Poison model to system state-transition 

diagram under consideration. Since in Poisson model the waiting 

time (until the next occurrence of the event) follows 

an exponential distribution, the period of time of system being 

in a given state also has exponential distribution. 
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Let Pi(t) be the probability of system being in state Si at point 

in time t. Then, 1)(
3
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When transitions from one state to another follow the Poisson 

model the sought probabilities Pi, i = 03, can be determined from 

the Kolmogorov equations: 
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Kolmogorov equations describe the dynamics of entering 

the particular state, resp. leaving the particular state. For example, 

for state S1 this dynamics is expressed by differential equation 
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It means that the system is leaving (sign minus) the state S1 

with intensity 1 and entering the state S1 (sign plus) with intensity 

0(1-q0). The state S0 is the initial state. That is, P0(t=0)=1, 

and Pi(t=0)=0 for i = 1,2,3. Taking Laplace transforms 

of Kolmogorov equations yields the following system of equations 
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After solving this system of equations for Pi(s), i=0, 1, 2, 

we receive 
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It can be easily noticed that single equations can be expressed 

as 
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For inverse Laplace transform the following expression can 

be used 
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Taking inverse Laplace transforms, these become 
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The probabilities of the system being in states S0, S1, S2 

and S3, i.e., P0(t), P1(t), P2(t) and P3(t) are functions of time 

and some other parameters ( and q). In its turn, probabilities q0 

and q1 depend considerably on the efficiency of the checking, 

diagnosis and recovery procedures. Fig. 4 shows the impact 

of values of q0 and q1 on the probability P3(t). 

Function P3(t) was calculated for the homogeneous system 

with five units which have =10-4 1/h. The case of q0=q1=0 

corresponds to “absolutely perfect” checking, diagnosis 

and recovery. This probability P3(t) allows also to estimate 

the amount of time the system is expected to spend in states other 

than S3 (i.e., time to failure). Mostly, the time while system 

is operating without maintenance is relatively short (relative to its 

mean time to failure). Hence, the impact of checking, diagnosis 

and recovery on the reliability of system is essential. 

For the systems with a great number of units it is difficult 

to provide detailed examination of their state-transition diagrams 

for determining all the above mentioned probabilities. Usually, 

only the main reliability and fault-tolerance parameters are 

determined. The most common reliability parameter is the mean 

time to failure (MTTF), which can also be specified as the failure 

rate or the number of failures during a given period. The MTTF 

is usually specified in hours, but can also be used  with other units 

of measurement (e.g., in cycles). 

 

Fig. 4. Function P3(t) 

MTTF, T0, can be calculated by using Tauberian theorem 

according to which 
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For the system under consideration T0 is equal to  
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In Fig. 5, the dependence of T0 on q0 and q1 is shown 

for the system with N=5 and =10-4 1/h. 

 

Fig. 5. Dependence of T0 on q0 = q1 = q. 

From Fig. 5 it can be seen to what extent the improving 

the checking, diagnosis and recovery can influence the value 

of MTTF. The next system reliability parameter is the probability 

of fault-free operation during the time t. This probability, PB(t), 
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can be expressed as the sum of probabilities of system being 

in all states except the state of total failure. That is, 
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For a system which is unable to tolerate the failures of single 

units, the event of system leaving the state S0 leads immediately 

to system failure (i.e., direct transmission into state S3). From this 

we can deduce that the period of time when the system is being 

in states S1 and S2 reflects the system ability to tolerate the failures 

of its units. The mean time of this period, T, can be calculated 

as follows 
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As an indicator of system fault-tolerance, it is normally used 

the total number of failed units which system can tolerate 

and continue in delivering acceptable services. As another 

indicator of system fault-tolerance, there can be used the following 

ratio: 
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For the model under consideration the indicator Q is equal to 
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Dependence of Q on q0=q1=q is depicted in Fig. 6. 

 

Fig. 6. Dependence of Q on q 

In order to elucidate how the indicator Q characterizes 

the system fault-tolerance, let us consider two systems. Assume 

that both systems have the equal value of MTTF, i.e., T0
1=T0

2. 

Assume also that the first system has Q=0.2 and the second 

one has Q=0.8. In this case, we can conclude that the first system 

has reliable units but not very effective means of checking, 

diagnosis and recovery. In contrast, the second system has not 

very reliable units but has very effective means of checking, 

diagnosis and recovery. In case of T0
1T0

2, the system fault-

tolerance can be evaluated by value of T. However, in this case 

we can make only rough estimate.  

3. Conclusions 

It should be noted, that the above considered model 

(state-transition diagram) is very much simplified and only gives 

general impression of how checking, diagnosis and recovery can 

“conjointly” influence the system reliability and fault-tolerance. 

The model uses the integrated parameters (e.g., probabilities qi).

It means that, by using this model, it is difficult to decide on what 

specific measures should be undertaken in order to increase these 

probabilities to a certain value. This model doesn’t allow 

to estimate to what extent increasing the efficiency of each 

procedure (checking, diagnosis, recovery) improves the system 

reliability and fault-tolerance. Nevertheless, this simplified model 

is very useful as a starting point and is a basis for further 

refinements. 
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