
24 IAPGOŚ 1/2018 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 1/2018, 24–27

DOI: 10.5604/01.3001.0010.8638

DEVELOPMENT AND RESEARCH OF CRYPTOGRAPHIC HASH

FUNCTIONS BASED ON TWO-DIMENSIONAL CELLULAR AUTOMATA

Yuliya Tanasyuk
1
, Sergey Ostapov

2

1Yuriy Fedkovych Chernivtsi National University, Department of Computer Systems and Networks, 2Yuriy Fedkovych Chernivtsi National University, Computer Systems

Software Department

Abstract. Software solution for cryptographic hash functions based on sponge construction with inner state implemented as two-dimensional cellular

automata (CA) has been developed. To perform pseudorandom permutation in round transformation function several combinations of CA rules 30, 54, 86,

150 and 158 have been proposed. The developed hashing mechanism provides effective parallel processing, ensures good statistical and scattering
properties, enables one to obtain hash of a varying length and reveals strong avalanche effect.

Keywords: cryptographic hash functions, cellular automata, cryptographic sponge, pseudo-random permutations

OPRACOWANIE I BADANIA KRYPTOGRAFICZNYCH FUNKCJI SKRÓTU (HASH)

NA PODSTAWIE DWUWYMIAROWYCH AUTOMATÓW KOMÓRKOWYCH

Streszczenie. Za pomocą oprogramowania zostały opracowane kryptograficzne funkcje skrótu (hash) na podstawie gąbki kryptograficznej, której stan

wewnętrzny został zrealizowany w postaci dwuwymiarowych automatów komórkowych (KA). W celu implementacji permutacji pseudolosowych

zaproponowano kombinację zasad obróbki CA 30, 54, 86, 150 i 158 w celu realizacji funkcji transformacji rundy. Opracowany mechanizm haszowania
pozwala na skuteczne przetwarzanie równoległe, zapewnia jakościowe charakterystyki statystyczne i rozproszenia, pozwala na otrzymanie skrótu

o zmiennej długości i ujawnia stabilny efekt lawinowy.

Słowa kluczowe: kryptograficzne funkcje skrótu, automaty komórkowe, gąbka kryptograficzna, przekształcenia pseudolosowe

Introduction

Hash functions have many applications in modern

cryptography, including Internet Security Protocol (IP Sec), digital

signature schemes, password storage and key derivation. Among

all, these cryptographic primitives are probably best known for the

important role they play in the practical use for data integrity and

message authentication. Hash functions are considered to be

efficient with respect to energy consumption and computations

needed to produce a concise fixed-size signature of the message of

arbitrary length. A computed fingerprint should be highly

sensitive to all input bits. Finally, the hash functions must be

secure, since they are normally used without keys and deal with a

plaintext. A robust hash function possesses one-wayness, i.e.

given a fingerprint it’s infeasible to derive a matching message.

Another security property of the hash functions, desirable for

digital signature, is their collision resistance. It’s essential that two

different messages do not hash to the same value and it should be

computationally infeasible to find such messages [6].

In order to evaluate the cryptographic level of security,

provided by a hash function, it’s a good practice to analyze

its statistical properties. A hash function that behaves like

a pseudorandom function and satisfies the avalanche effect

is generally considered to be secure and can be used safely for

cryptographic purposes. The avalanche effect reflects the

sensitivity of the hash function to elementary changes in the

hashed message: a little change in the input message (flipping one

single bit) produces a significant change of the output (the final

hash) [2].

A large number of hash functions have been proposed over the

last three decades. The most popular algorithms of MD5 and

SHA-1 are based on compression mechanism that is reported to

cause the collision occurrence. Moreover, they appear to be

incompatible with the algorithms of AES and 3DES, due to

insufficient level of security. This drawback was eliminated in

four existing versions of the SHA-2 algorithm, each providing the

message digest of the fixed length (224, 256, 384 and 512 bits),

yet falling under a threat of being compromised [7]. However, in

2012 through public competition, initiated by NIST, a new

hashing algorithm named Keccak was adopted as a novel standard

of SHA-3 to provide a backup for the existing hashing

mechanisms in case of any further vulnerabilities revealed. The

selected algorithm possesses many admirable properties. In

particular, it is praised for the ability to run well on different

platforms of computing devices, including embedded and smart

ones, and for higher performance in hardware, comparing

to SHA-2.

It should be stressed that Keccak has a quite different internal

structure than the hash functions that belong to the MD4 family,

including SHA-1 and SHA-2. It doesn’t rely on a compression

approach of its predecessors, but is based on a sponge

construction. The sponge is an interactive framework, which

utilizes pseudorandom permutation functions and provides the

output close to that of random oracle [1, 6].

In order to achieve such an effect in programmable way, the

use of cellular automata and their transformation rules seem to be

appealing.

Cellular automata (CA) have several properties that favor their

use as a basis for the design of hash functions. Their chaotic,

complex and unpredictable behavior for some types of the

applicable rules promotes their effective use to design safe and

reliable hash functions. In addition, CA are very appropriate to

design hash functions with low hardware and software complexity

because of the involved logical operations, parallelism and

extreme sensitivity to initial conditions alterations [2].

According to the results of investigations, reported in [5]

linear CA, evolving with the use of various transformation rules,

provide efficient means of creating high-performance key stream

generators, block ciphers and hash functions with reasonable

statistical properties. It is suggested, that deployment of multi-

dimensional structures may bring about some additional

opportunities for their parallel processing and performance

enhancement.

The purpose of the given paper is to create and study crypto-

graphic hash functions based on two-dimensional CA, with

elaborated combinations of the processing rules, underlying

permutation function of the sponge construction.

1. Cryptographic sponge: parameters and details

of operation

In terms of SHA-3 standard Keccak the hash function supports

the message digest lengths of 224, 256, 384 and 512 bits. Last

three hash values provide an attack complexity of approximately

2128, 2192 and 2256, respectively, corresponding to the

cryptographic strength that the three key lengths of AES provide

against brute-force attacks. Similarly, 224-bit output shows

the same collision resistance as 3DES with a cryptographic

strength of 2212 [6].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lublin University of Technology Journals

https://core.ac.uk/display/279739366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 1/2018 25

The construction of sponge, used in Keccak algorithm, has its

inner state − the binary array with a width of b = 1600 bits,

divided into two parts: r and c, b = r + c. A parameter of r

is called a bit rate. This very part is combined with the blocks

of input message, for which the hash value is to be calculated.

A second parameter of c, known as a capacity, doesn’t interact

directly with the portions of the input message, being involved

only in the permutation process. Capacity is said to be responsible

for the security level and with proven mathematical stability needs

to be twice as large as the desired hash value. The security level

denotes the number of computations an attacker has to perform to

break the hash function. Table 1 gives recommended values of the

sponge parameters for inners state of 1600 bits with respect to the

hash length.

Table 1. The parameters of Keccak hash function [6]

Sponge state

b, bits

Hash length,

Z, bits

Rate

r, bits

Capacity

c = b-r, bits

Security level,

Z/2, bits

1600 224 1152 448 112

1600 256 1088 512 128

1600 384 832 768 192

1600 512 576 1024 256

It’s noteworthy, that Keccak function is not confined to the

hash lengths, listed in Table 1. One may generate a message digest

of any arbitrary number of bits, holding corresponding correlation

of the parameters and security level [6].

In Keccak algorithm the sponge state is arranged as three-

dimensional array of 5×5 64-bit words. The operation of sponge

construction consists of two stages: absorbing and squeezing

(Fig. 1). Prior to the actual processing by the hash function an

input message undergoes preprocessing, which implies its padding

to the length of a multiple of r bits [1]. Further the complimented

string is divided into the equal portions of r length.

Fig. 1. Operating phases of the cryptographic sponge [1]

At each step of absorbing sponge intakes a message block,

combines it with the r portion of the sponge state through XOR

operation and further processes the whole state with round

permutation function.

The squeezing stage begins after loading of all message

blocks. It also includes permutation, followed by extracting a

predetermined number of bits from r portion and their appending

to the output hash string, until a message digest of the desired

length is obtained.

Fig. 2. The steps of the round function of Keccak-f permutation [9]

The Keccak-f permutation function is at the heart of the hash

algorithm and is used in both phases of the sponge construction.

The function includes n rounds. Each round has an input of

b = r+c bits. The number of rounds is defined as n = 12+2log2k,

where k = b/25, and for b = 1600 bits, n = 24. As shown in Fig. 2,

each round consists of a sequence of five steps denoted by Greek

letters: (theta), (rho), (pi), (chi) and (iota). The named

functions include various combinations of bitwise operations, and

are claimed to be relatively hardware friendly resulting in high

performance of the Keccak algorithm [1, 6].

2. Hash functions with the use of processing rules

of two-dimensional CA

Our experiments were aimed at creating a software model

of Keccak-like hash function based on two-dimensional CA.

Cellular automata can be viewed as a collection of cells organized

in a grid, when each cell has a corresponding current state.

The states of the cells evolve over time, depending on their current

states and the states of the neighboring cells, according to a local

and identical interaction rule in the case of uniform CA,

or different interaction rules in the case of non-uniform or hybrid

CA [3, 9].

The paper presents the results on the hash functions

implemented as a sponge construction with the two-dimensional

CA inner state, processed by the following transformation rules:

rule 30: C[i] = C[i-1] (C[i] C[i+1]) (1)

rule 54: C[i]=(C[i-1] C[i+1]) C[i] (2)

rule 86: C[i] = (C[i-1] C[i]) C[i+1] (3)

rule 150: C[i] = C[i-1] C[i] C[i+1] (4)

rule 158: C[i]=C[i-1] C[i] C[i+1] C[i] C[i+1] (5)

where C[i] is a current cell, C[i] is the value of the current cell

after the rule application, C[i-1], C[i+1] are previous and next

neighbor cells, and , , denote the bitwise XOR, AND, and

OR operations, respectively.

The permutation functions under investigation assumed

utilization of several CA processing rules, both linear and

nonlinear, to provide collision resistance and nonlinearity to the

hashing mechanism [4].

2.1. Interaction scheme of two-dimensional CA

In two-dimensional representation the sponge state is arranged

as an array of 25 vectors of 64 bits, making 1600 bits in total. The

cells are localized according to the Moore neighborhood [9], when

two cells are considered adjacent if they have either a common

edge or a vertex. Therefore, each cell interacts with its eight direct

neighbors, denoted as parts of the world (Fig. 3).

Fig. 3. The notation of the cells in two-dimensional 8-neighbor CA, used

in the permutation function, where 1, 2, 3 and 4 are index numbers

of possible interactions of cells

Cells, represented by N, W, NW, NE are considered as

previos, while S, E, SW and SE participate as the next neighbours.

Extreme cells are connected in tor with their counterparts on the

opposite edge (row/column) of the array. In order to enhance

performance, selected rules were applied to the entire rows

concurrently, rather than to single bits. In particular, to implement

transformation within one row two copies of it were created: one-

26 IAPGOŚ 1/2018 p-ISSN 2083-0157, e-ISSN 2391-6761

bit cyclically shifted to the right instance represented all previous

cells (W), while one-bit cyclically left-shifted one contained all

next cells (E). Similarly, cyclically shifted to the right previous

and next rows correspond to NW and SW vectors, respectively

while their one-step cyclic shift to the left produces NE and SE bit

strings, correspondingly.

Table 2. The developed permutation functions based on the CA processing rules,

corresponding to the index numbers of interactions, given in Fig. 3

id Notation of

the permutation

function

Interaction

number
CA rule Cell’s interaction

1.

Rule_30_150_86

1 rule 30 X’ = W(XE)

2 rule 150 X’ = NXS

3 rule 86 X’ = (NEX)SE

4 rule 86 X’ = (NWX)SW

2.

Rule_54_150_86

1 rule 54 X’ = (WE) X

2 rule 150 X’ = NXS

3 rule 86 X’ = (NEX)SE

4 rule 150 X’ = NWXSW

3.

Rule_54_158_150_86

1 rule 54 X’ = (WE)X

2 rule 158 X’ = NXSXS

3 rule 86 X’ = (NEX)SE

4 rule 150 X’ = NWXSW

To ensure effective permutation, combinations of adjacent

cells were processed with different CA transformation rules for a

number of times successively. In general, we’ll consider three

types of permutation functions, the notations and related CA rules

of which are given in Table 2.

2.2. Implementation of sponge construction

on two-dimensional CA

The software solution for the cryptographic sponge with the

use of processing rules of CA has been developed in C++

programming language. The sponge state is implemented as a two-

dimensional binary array of 25×64 bits, which consists of two

parts of r and c. The values of the parameters are aligned with

those proposed in the original Keccak algorithm. A number of

vectors that belong to r portion of the state can be defined as r/64.

E.g. for hash length of 512, r equals 576 (Table 1) and spans first

nine 64-bit rows of two-dimensional array. These vectors are

initialized with binary 1s. For better diffusion, a bit corresponding

to a vector’s index is inverted. The rows of capacity portion are set

to 0 s. The whole sponge state is preliminary processed

by application of one of the mentioned permutation function for

25 times.

At the absorbing phase r vectors of the sponge are loaded with

equally divided blocks of the padded input message. Then,

the whole state undergoes consecutive permutation for a number

of times according to the deterministic rule combination.

In course of squeezing, on completion of permutation rounds,

the content of the first vector is appended to the output message

digest. When the hash string of the initially defined length is

obtained, it is output to a user in hexadecimal representation.

3. Statistical properties and avalanche effect

Pseudorandom behavior and avalanche effect are generally

considered as good indicators of a secure hash function, the output

of which should resemble that of the random oracle. We’ve used

a technique of NIST STS statistical testing in order to check

randomness properties of the developed permutation functions.

In the performed experiment the implemented hash functions

with the parameters (bits): b = 1600, hash length Z = 512, r = 576,

c = 1024, have been utilized in the mode of a generator

of pseudorandom numbers to create a binary file of 100 MB. The

statistical suit of NIST STS v.2.1.2 divided generated binary

sequences into 100 equal parts of 106 bits each. The bit strings

were tested against 16 statistical tests with different parameters.

The randomness properties were assessed in terms of probability

of the tests being passed. As a result, a vector of 189 values of

probability was formed. Ideally, only one sequence of a hundred

can be rejected. This means that a coefficient of test passing

equals 99%. However, this requirement is rather strict. In most

cases the evaluation is carried out based on the confidence

interval, the lower limit of which is assumed to be at the level of

96%. Fig. 4 shows the results of the conducted statistical testing.

a)

b)

c)

d)

Fig. 4. Statistical portraits of the cryptographic hash functions, based on two-

dimensional CA processing rules (Table 2), applied for a number of permutation

rounds: a) RULE_30_150_86, 5 rounds; b) RULE_54_150_86, 5 rounds;

c) RULE_54_150_86, 10 rounds; d) RULE_54_158_150_86, 5 rounds,

where N is a number of a test, P is he portion of tests sequence that passed the test

According to the obtained statistical data, on average, up to

99% of all tested bit sequences have successfully passed the tests,

with only a few of them revealing values at the level of 95%. The

overall results of NIST STS testing for the proposed permutation

functions at different number of processing rounds are listed

in Table 3. The investigation revealed that with inclusion of rules

54 and 158 and at greater number of permutations the body

of sequences, which passed the tests is slightly increased.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 1/2018 27

Table 3. Results of NIST STS testing of the hash functions based on the proposed

permutation mechanisms of two-dimensional CA (see Table 2) at different number

of processing rounds

Permutatio

n function

ID

Number

of

rounds

NIST STS testing results

0.95 0.96 0.98-0.97 1-0.99 Average

1 5 0 2 66 121 0.9889

2 5 2 4 48 135 0.9897

2 10 1 5 34 149 0.9907

3 5 1 3 57 128 0.9893

3 10 1 4 52 132 0.9896

The application of the developed permutation functions for

obtaining a hash image revealed occurrence of strong avalanche

effect. Namely, for the same input message a distinct hash string

was obtained when changing hash length (224, 256, 384, 512

bits), applying permutation functions of various types, and

modifying the number of processing rounds. Moreover, very small

alterations of the input string produced significant changes in the

output. The hexadecimal hash strings of 512 bits, resulting from 5-

round application of RULE_30_150_86 permutation function, for

the test vectors, are given below.

1) Empty file

baf53bbea29e4bb458aac3df56c023c55bf8ac117cfdabbcbc2e1

e2a069363cd453cba9c2468dd0389aef8630ae3e14b9461236e8

430388f9435fb529c3a9dbf

2) The quick brown fox jumps over the lazy dog

116312e16c3e9cf29c58687ed40f18e06ca478b64ae4c52e7ce4

e3a5dfacdc111f8cc6d97cfb5f1cb24d1ccb30edb8dd9a9ec4f1e

6deb2acb4517aa93d52709c

3) The quick brown fox jumps over the lazy dog.

48a4f612dfae9c2583923f0c5a03528f86c50386fff5958021635

d5a678be53c9f0d9e552468cb99c49e820da3376295928f37ae5

5e9d22516447f5379681126

4) The quick brown fox jump over the lazy dog.

e87efd05456a290eacb516f2c17f8a24c32ca5920f3f866b213d3

2d4ae42e0f67ee931537a5a09d420ffc485aae41e4f9760bb3c1e

a70bc7c7b3b99c8c7751bc

It should be outlined that the use of the two-dimensional CA

and the designed combinations of the processing rules enabled us

to considerably reduce the number of processing rounds. As

reported in [8], for hash functions on the basis of one-dimensional

CA, processed with combination of rules 30, 86, 150 and cyclic

shift operations, the avalanche effect was achieved after 50 rounds

of permutation. While a full change of hash image occurs

for the designed two-dimensional hash functions starting from

5 processing rounds.

4. Conclusions

Thus, summarizing the investigations carried out the following

conclusions can be made:

1) For the first time two-dimensional cellular automata, which

evolve according to a series of processing rules, have been

studied with respect to their utilization as a permutation

function of the cryptographic sponge.

2) The developed permutation approach, which includes

concurrent processing of two-dimensional CA and application

of various interaction rules, provides good statistical

properties and can be considered as a promising candidate for

cryptographic purposes.

3) The designed hash functions on the basis of two-dimensional

CA reveal strong avalanche effect, pointing out non-linearity

and pseudorandom properties of the developed permutation

schemes.

References

[1] Bertoni G. et al.: The Keccak sponge function family.

http://keccak.noekeon.org/ [1.01.2018].

[2] Eddine A., Belfedhal K., Faraoun M.: Building secure and fast cryptographic

hash functions using programmable cellular automata. J. of Computer and

Information Technology CIT 4/2015, 317–328.

[3] Jamil N., Mahmood R., Z’aba R., Udzir N.I. Zukarnaen N.A.: A new

cryptographic hash function based on crllular automata rule 30, 134 and omega-

flip network. ICICN 27/2012, 163–169.

[4] Jeon J.Ch.: Analysis of hash functions and cellular automata based schemes.

International Journal of Security and Applications 7(3)/2013, 303–316.

[5] Ostapov S., Val O., Yanushevsky S., Chyzhevsky D.: Cryptography on the Base

of Cellular Automata. Internet in the Information Society – Chapter 6, Scientific

Publishing University of Dabrowa Gornicza 2015.

[6] Paar Ch., Peltz J.: Understanding cryptography. Springer-Verlag, Berlin

Heidelberg 2010.

[7] Robshaw M.J.B.: MD2, MD4, MD5, SHA, and Other Hash Functions.

Technical Report TR-101/1994.

[8] Tanasyuk Yu., Melnychuk Kh., Ostapov S.: Development and research of

cryptographic hash functions on the basis of cellular automata. Information

Processing Systems 4(150)/2017, 122–127.

[9] Wolfram S.: A New Kind of Science Wolfram Media Inc., 2002, 1197

http://www.wolframscience.com/ nksonline/toc.html [1.01.2018].

Ph.D. Yuliya Tanasyuk

e-mail: y.tanasyuk@chnu.edu.ua

Associate professor at Department of Computer

Systems and Networks, Physical, Technical and

Computer Sciences Institute, Yuriy Fedkovych

Chernivtsi National University, Chernivtsi, Ukraine.

Research interests and academic activities:

programming, network information technologies,

cryptography.

Prof. Sergey Ostapov

e-mail: s.ostapov@chnu.edu.ua

Head of Computer Systems Software Department,

Physical, Technical and Computer Sciences Institute,

Yuriy Fedkovych Chernivtsi National University,

Chernivtsi, Ukraine.

Research interests and academic activities:

cryptography, information security, big data analysis

The author of more than 150 publications in the given

research field.

otrzymano/received: 10.10.2017 przyjęto do druku/accepted: 15.02.2018

