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Abstract. The paper presents one-dimensional discrete-continuous model of power spectrum estimation of the acoustic emission signal, that allows 

filtering the oscillating components of the acoustic emission signals. The mathematical formalism describing the environment was discussed, initiating 
the signals of acoustic emission. The problem of spectral analysis and synthesis of acoustic emission signals was solved with the help of Fourier transform. 

The dependence of acoustic vibrations spectra on the size of the medium parameters and microstructure has been discussed, as well. 
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MODELE I METODY PRZETWARZANIA INFORMACJI DLA SYGNAŁÓW AKUSTYCZNYCH 

W SYSTEMACH DIAGNOSTYKI TECHNICZNEJ 

Streszczenie. W artykule przedstawiony jednowymiarowy, dyskretno-ciągły model wyznaczania energii widma sygnału akustycznego, który pozwala 

na filtrowanie jego składowych widmowych. Rozwiązano formalizm matematyczny opisujący środowisko, inicjujący emisję sygnałów akustycznych, 

w którym problem analizy widmowej i syntezy emisji sygnałów akustycznych został rozwiązany z pomocą transformaty Fouriera. Przedyskutowano także 

wpływ widma wibracji akustycznych na wielkość parametrów ośrodka i jego mikrostrukturę. 

Słowa kluczowe: modelowanie fali akustycznej, dyskretyzacja 

Introduction 

The method of acoustic emission (AE) allows to conduct 

researches of kinetics by volume structural alteration on the 

different stages of materials deformation in real time. Physical 

nature of acoustic origin emission in materials is related to the 

processes of deformation and destruction [4, 5, 13, 17]. Models of 

the data processing in the system of determining defects by AE 

methods are based on the concepts of continuum environment and 

the continuum theory of dislocations, where the acoustic emission 

signal is indicative for a number of processes of the defect 

structure [2, 3, 12]. These processes are related to the movement 

of the dislocation the transition from elastic to plastic 

deformations, the extension of the dislocation loops and the 

annihilation of the separate sections of the structure [11, 15, 16]. 

The relevance of studying the energy spectrum of acoustic 

emission (AE) signals of nanoscale objects is explained by 

the importance of solving questions concerning the characteristics 

of propagation of acoustic oscillations preceding the destruction 

of materials. To solve the problems of analysis and synthesis 

of materials with the given properties, a well-developed hierarchy 

of mathematical models is needed.  

The generalized continua of the mechanics of a deformed solid 

are based on the concepts of the representative volume of the 

medium and the inclusion of rotational degrees of freedom. 

Models are constructed as deductive, so that their results act 

as consequences of axioms or postulates of a single system 

of assumptions. This provides the possibility of a consistent 

classification of theories according to the selected characteristics. 

Mathematical models of data processing in system of 

definition of imperfections by AE methodare based on the discrete 

representations and the models of a continuous medium and the 

continual theory of the acoustic wave distribution where AE signal 

characterizes the variety of processes of defective structure of 

materials development.  

Violation of the internal structure of materials initiates the 

occurrence of AE signals and their further propagation in an 

elastic medium. Dislocations are transformed into a far field, 

which propagates in the form of a wave packet independently at 

the speed of elastic waves in the absence of a stress source. 

The main tasks of the paper are: development of the 

mathematical models of explaining mechanism of emission 

accumulation on the basis of the developing defects energy 

concepts; obtainment of the analytical expressions of interrelation 

of fracture parameters with the characteristics of AE signals 

through the functions of the applied tension.  

1. Formalization of the problem 

Theoretical explanation of the change in the structure of 

nanoscale objects develops in two ways: use of discrete models 

and continual ones. A characteristic feature of the energy spectrum 

of AE signal is the dual mechanism for the formation of AE 

signals: the discrete nature of structural changes and the 

continuous propagation of acoustic waves. All this makes it urgent 

to develop mathematical models of media with a microstructure. 

In the model of a continuous medium in the form of a linear 

chain, the atoms interact by means of paired central forces 

connecting atoms and directed along a straight line connecting the 

centers of atoms. The instantaneous model of a continuous 

medium is based on the fact that the interaction between atoms 

remains paired, but it is realized through forces and moments. In 

the structural model of a continuous medium, its motion in space 

is described not by the coordinates and velocities of individual 

particles, but by the scalar density field and the vector field of 

velocities. 

Behavior of this cell under load is characterized by interaction 

with the environment and is described by kinematic variables. 

Such models include, as information parameters of the structure, 

the dimensions and shape of the particles, on which the modulus 

of elasticity depends. 

2. Results and discussion 

One of the most important elements of this apparatus 

of mathematical physics is the concept of a quasi-continuum, 

which allows one to consider discrete and continuous models 

within the framework of a single formalism. 

By a quasi-continuum we mean a one-dimensional x-space 

and a class of admissible functions defined on it (Fig. 1). 

It will assume that a = const, independent of n. The value 

of the function at the nodes is denoted by u(n). At points x = na, 

the function u(x) takes on the values u(na) which are the shifts 

of the oscillating point [9]. 

 

Fig. 1. One-dimensional quasicontinuum 
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The elementary one-dimensional model of a discrete non-local 

microstructure can be presented in the form of an unlimited linear 

chain of the pointwise masses connected with elastic connections 

 (Fig. 2). 

 

Fig. 2. Model of the discrete simple homogeneous structure:  – cooperating atoms 

of the basic chain;  – the nearest neighbours 

The potential energy of such a chain is a functional from a 

field of displacement u(n), causing elastic oscillations in the 

environment of [10]. 
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The difference of kinetic energy T and a potential energy Φ 

defines Lagrange function L. If medium particles are effected by 

exterior forces q(n,t) Lagrange function in harmonious approach 

expresses law of energy conservation and takes a form 
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Model parameters Φ(n), Φ(n, n'), Φ(n, n', n") are force 

constants. The force constants, defining the properties of such 

discrete model, are parameters of elastic connections between the 

particles. 

The representation of function of one argument Φ(n) defines 

the elastic connections in a homogeneous linear chain.  

 )()( nn   (3) 

If Φ(n) is distinct from zero for n > N each particle can 

cooperate with N-neighbours on the right and with N-neighbours 

on the left. 

 

Taking into account Lagrange function the equation of an 

particles oscillated motion a linear chain will be the following 
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In the real mechanical systems long-range action is always 

limited by medium damping. 
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Taking this fact into account for the two particles n and n’ 

value of a potential energy Φ equals 
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The kinetic energy of such pointwise masses chain for 

displacement u(n,t), which depends on time equals 
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The elementary model of a complicated medium can be 

presented as a linear chain divided into elementary cells, each of 

which consists of two masses connected by elastic connections 

(Fig. 3). 

 

Fig. 3. Model of the discrete complicated structure 

In this case the equation of the particles of n-th cell movement 

will be the following 
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where n – cell number,  mj (j=1,2) – a mass of particles in a cell, 

f(n, j) – exterior force, ω(n, j) – displacement of j-th particle in 

n-th cell. 

The wave of constant intensity can be the source of energy, 

which is lost at sudden decrease of rigidity. The wave concluded 

in an elastic forerunner leave from the front of destruction. 

At metal straining the distance between the atoms under the 

influence of exterior forces varies, lines and the planes passing 

through atoms bent and at the expense of these facts the crystalline 

lattice is distorted. Elimination of the exterior forces between 

atoms again takes place in a crystalline lattice, and the material 

completely fills the volume it occupies.  

Dislocations happen in places where the energy of activation, 

which is necessary for their formation, is reduced owing to the 

concentration of tension. 

The energy demanded for the formation of the dislocation of 

one interatomic distance equals the energy, which is necessary for 

the formation of one vacant place in a lattice. In lack of other 

dislocations or imperfections it will move. 

The transition from a discrete model to a continuum is done by 

extra-polarization of the functions given at discrete points by 

continuous fields of shifts and micro-turns. Depending on the 

number of expansion terms, we can consider different 

approximations of the discrete model of the structure of the 

medium and build a hierarchy of continual models. 

The presence of internal connections between translational and 

rotational properties of a continuous medium is manifested in their 

connection with oscillatory properties. 

In the mechanics of a continuous medium, the figure, which 

limits the region of structural changes during the initial stage of 

crack formation, has rotational symmetry if it passes into itself 

with all rotations. An analogue of such models is Cosserat 

model (Fig. 4). 

 

Fig. 4. Cosserat model 

For this, in the model of a continuous medium that initiates the 

occurrence of AE signals (Fig. 5), it is necessary to introduce 

variables: relative displacement of particles inside the cell (9) and 

displacement of the cell center of mass (10) . 
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where m1 and m2 are the masses of the atoms in the cell, I is the 

moment of the cell inertia, ξ1 and ξ2 are the coordinates of the 

particles in the cell with correspondence to the coordinate of the 

mass center, m = m1 + m2, I = m1ξ1
2 + m2ξ2

2. 

 

Fig. 5. Model for initiating acoustic emission signals 
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Equation of motion  
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Here, the matrix Φss' (n) (s, s' = 0, 1) is coordinatewise 

expressed in terms of the power constants Φ (n, j, j ') of the 

precursors of AE signal [8]. 

The use of information and structural modeling to analyze the 

spectrum of AE signals of precursors of occurrence of internal 

stresses in a material is based on Fourier transforms of AE signals.  

Fourier transform preserves the signal energy. It is meaningful 

only for signals of finite duration, the energy of which is finite. 

The spectrum of such initial signals rapidly approaches zero. 

These provisions are in full accordance with the physical meaning 

of the acoustic emission phenomenon. 

The graph of the complex numbers argument values is the 

phase spectrum, and the modulus graph is the amplitude spectrum. 

One of the main properties of Fourier transform is the 

independence of the amplitude spectrum from the time shift of the 

signal, since when the function moves only its phase spectrum 

changes. 

Fourier image of a real signal has symmetry: the amplitude 

spectrum is always an even function. This allows us to reduce 

complex functions and their Fourier-images to simpler ones. The 

spectrum of the total time function is equal to the sum of the 

spectra of its components. In Fourier transform AE signal is 

distributed to a basis of sines and cosines of different frequencies.  

When constructing the model of the energy acoustic emission 

signals spectrum, the following assumptions are introduced: 

 locality, i.e. limiting of structural changes in the environment; 

 dynamism of processes; 

 the signal to the radiation point is a pulsed Poisson process; 

 Fourier transform of AE signal has stationary characteristics. 

The displacement of elementary masses caused by structural 

changes in a one-dimensional chain of particles connected by 

elastic bonds Ψ (x) initiates a propagating wave: 

 )(),( tkxiAetxu   (13) 

The coefficients of Fourier transform are found by computing 

the scalar product of the signal with complex exponentials: 
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where f (t) is the signal, F (ω) is Fourier transform. 

The shape of the propagating AE signal depends not only on 

the displacement time t, but also on the frequency ω. Therefore, in 

addition to the displacement functions in the time u(t), we should 

consider their Fourier-images u (ω) related by the relations: 

Their Fourier-images u (ω) related by the relation: 
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Fourier transform has a number of drawbacks due to the fact 

that the individual features of the signals cause minor changes in 

the frequency image and are smoothed over the entire frequency 

axis. 

Part of the problem of spectral analysis and synthesis of AE 

signals can be solved by means of a window Fourier transform: 
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In this case, the operation of multiplying a signal by a window 

(t – b), which is a local function moving along the time axis, is 

used. Then the transformation becomes time-dependent and the 

frequency-time description of the signal is realized. 

3. Fourier-transform experimental data 

The results of experimental studies on the establishment 

of the interconnection between the appearance of AE signals and 

the parameters of the force field for various loading stages 

of St3 (Fig. 6, 7).  

Identification of structural features of material damage 

accumulation from AE data was carried out on the basis 

of an analysis of the degree of deformation of samples obtained 

from tests on a breakaway machine UM5. 

Transformer oil was used as the contact material between the 

AE converters and the sample. The measuring unit used 

broadband sensors to the AF-15 acoustic and emission instrument. 

The information and measuring system used in the experiment 

provided the indication, registration and pre-processing of AE 

signals with their further storage in the memory of computer for 

subsequent post-processing of the received data and their real-time 

visualization using the RIGOL DS1052E Digital oscilloscope. 

 

Fig. 6. Amplitude time distribution of spectral density of AE signals, under various 

loads 
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Fig. 7. Fourier-transform experimental data 

When processing the experimental data, Mathematica 9.0 

computer mathematics system and algorithms for working with 

numerical data arrays were used: finding the maximum 

(minimum) elements of the array, sorting the data of the array by 

the characteristic, combining the data, spline interpolation. 

The density distribution of AE signals was determined by 

calculating the ratio of the number of intersections of the zero 

level of AE signal form to the time of its existence. The effect of a 

significant decrease in the distribution density of AE signals with 

increasing load is detected and quantitatively confirmed. 

4. Conclusions 

Compression of AE signal in time leads to an expansion of its 

spectrum, while shifting of AE signal in time, causes a phase shift 

of the spectrum proportional to the frequency. At the same time, 

the fundamental condition of translational and rotational 

invariance is observed in accordance with transformations of AE 

signal. 

The presented results of the theoretical and experimental study 

of the energy spectrum of acoustic emission (AE) signals in 

the models of a continuous medium, the informational parameters

of which are the operators of elastic energy, showed that the 

violation of internal bonds between translational and rotational 

properties of the continuous medium model in the form of a 

diatomic cell connected by elastic bonds initiates the oscillatory 

properties of the precursors of the destruction of materials of 

structures that are under load. 

In the information and structural model of precursors of the 

appearance of acoustic emission signals, the oscillations of 

particles in a cell are characterized by the high-frequency 

component of AE signal, while the center-of-mass oscillation is 

characterized by its low-frequency component. Increasing the size 

and structure of the cell allows, in the extreme case, us to move 

from a discrete to a continuum model of the medium. The 

obtained results make it possible to establish the limits of the use 

of discrete representations of changes in the structure of materials 

and the continuum model of the propagation of acoustic vibrations 

in a medium.  
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