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Abstract. The paper is devoted to present some mathematical aspects of the topological derivative and its applications in different fields of sciences such 

as shape optimization and inverse problems. First the definition of the topological derivative is given and the shape optimization problem is formulated. 
Next the form of the topological derivative is evaluated for a mixed boundary value problem defined in a geometrical domain. Finally, an example 

of an application of the topological derivative in the electric impedance tomography is presented. 
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POCHODNA TOPOLOGICZNA – TEORIA I ZASTOSOWANIA 

Streszczenie. W pracy przedstawiono matematyczne aspekty dotyczące pochodnej topologicznej oraz jej zastosowań w różnych dziedzinach nauki, takich 
jak optymalizacja kształtu czy problemy odwrotne. W pierwszej części podano nieformalna˛ definicje˛ pochodnej topologicznej oraz sformułowano problem 

optymalizacji kształtu. Następnie wyprowadzono postać pochodnej topologicznej dla mieszanego problemu brzegowego. W ostatniej części przedstawiono 

przykład zastosowania pochodnej topologicznej dla problemu elektrycznej tomografii impedancyjnej. 

Słowa kluczowe: Pochodna topologiczna, optymalizacja kształtu, elektryczna tomografia impedancyjna. 

Introduction 

The Topological Derivative is defined as the first term of the 

asymptotic expansion of a given shape functional with respect to 

a small parameter that measures the size of singular domain 

perturbation [11, 12]. It represents the variation of the shape 

functional when the domain is perturbed by holes, inclusions, 

defects or cracks. The form of the Topological Derivative 

is obtained by the asymptotic analysis of a solution to elliptic 

boundary value problem in singularly perturbed domain combined 

with the asymptotic analysis of the shape functional all together 

with respect to the small parameter which measures the size of the 

perturbation. The definition of the Topological Derivative was 

introduced by Sokołowski and Zochowski in 1999 [13, 14]. Since 

then, the concept became extremely useful in the treatment of 

a wide range of problems [1, 3, 6]. Some tools of asymptotic 

analysis that allow to evaluate the form of the Topological 

Derivative was given in [8, 9]. 

Over the last decade, topological asymptotic analysis has 

become a broad, rich and fascinating research area from both 

theoretical and numerical standpoints. It has applications in many 

different fields [2, 5, 6], such as shape and topology optimization, 

inverse problems [3, 4], imaging processing [1], mechanical 

modeling including synthesis and/or optimal design of 

microstructures, fractures mechanics sensitivity analysis and 

damage evolution modeling. 

1. Topological Derivative in Shape Optimization 

The Topological Derivative evaluated for a given shape 

functional defined in a geometrical domain and dependent 

on a classical solution to elliptic boundary value problem is 

a principal tool in Shape Optimization. It represents the variation 

of the energy functional while the domain is singularly pertourbed 

by introducing a small hollow void. 

Let Rn , n = 2, 3 an open set with     local Lipschitz 

boundary of  , see Fig. 1 (left). 

  

Fig. 1. Domain   with its Lipschitz boundary     (left); example of admissible 

domain D  (right) 

Definition 1 Let Uad be a class of the admissible domains   

in RN, N = 2, 3, with D  where 
NDR  is a hold-all domain. 

Shape optimization problem consist in finding a boundary   

of the geometrical domain   which minimizes a given (shape) 

functional J ( ) (e.g. weigh of the structure), and subject to some 

supplementary conditions on volume, energy or displacement 

on the boundary. The conditions imposed on   can concern 

the following properties: 

 volume: ,    dx M M 



  R , 

 perimeter: ,    d L L 



   R  

 regularity of the boundary - usually   is locally Lipschitz. 

1.1. Sobolev Spaces 

Let us introduce some notations for the functional spaces, 

which are necessary for the analysis of shape optimization 

problems. 

(i) We denote by D( ) a space of test functions in  . 

Thus, for an open set R ,   2,  ( ) ( )n

Cn D C         , 

is a smooth function with the compact support in  . 

(ii) Denote by D’( ) space of distributions in  . Suppose that v 

is a funtion of L2( ), it means that: 

 
2

22

( )

( )
L

v x dx v
 

   . 

For '( )v D  , we can define the operator 

( ) ( ) ( ),    ( )vL v x x D  


    , the following definitione can be 

formulated: 

Definition 2 For the derivative in the sense of distributions 

'( )
i

v D
x


 


we have: 

 

'( ) ( )

, ( ) ( )
i iD D

v v x x dx
x x




  

 


  . 

Remark. If 
1( )v C   then 

i i

v
v

x x

 


 
. 

(iii) We recall the definition of the first order Sobolev Space. 

Denote by 1 2 2( ) { ( ) : ( ),    1,  ... , }
i

H v L v L i n
x


      


. 

Scalar product in 
1( )H   is defined as: 

 1 ( )
( , )

H

i i

u v
u v uv dx

x x
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1.2. Problem formulation 

The shape optimization problem is usually defined as 

a minimization of a given shape functional. The shape functional 

can be written as an integral over the domain   or on 

the boundary   of a function which depends on a solution 

( ; )u x  of some boundary value problem. 

Suppose that the function 
1( ; ) ( ),    u x H x     is 

a solution to the following boundary value problem: 

 

( ) ( ),   

   ( ) ( ),   

( ) ( ),   

D

N

u x f x x

u x g x x

u
x h x x

n


   


   

    


 (1) 

where 2 1/2 2( ),    ( ),    ( )D Nf L g H h L       and N D     

boundary of the domain  . Consider the following shape 

functional: 

  ( ) , ( ; )J x u x dx


  J , (2) 

where 𝐽: × ℝℝ is a function of class 1C  defined in  × ℝ 

and depending on the solution ( ; )u x  to the Boundary Value 

Problem (1). The shape optimization problem can be written as: 

 Find *

adU  , such, that *( ) inf ( )
adU

  J J . (3) 

In order to decrease the values of the shape functional ( )J  

we have two possibilities to change the shape of the domain  : 

(a) deformation of the boundary of the domain produced 

by changes at the boundary governed by shape derivative 

(cf. Fig. 2 (left)). 

(b) perforation of the domain by creating small holes inside 

  - topological changes governed by topological derivative 

(cf. Fig. 2 (right)). 

   

Fig. 2. Changes of the boundary (left) and changes of the topology (right) 

of the domain   

1.3. Topological derivative 

Changes of the topology of the domain   are made 

by introducing a small hole inside  . Such new domain is called 

a singular geometrical perturbation of the domain   and 

is defined as , where   is a (very small) 

subset of   created at point O (origin) and of size   such that 

 [11, 13]. 

In the modified domain ( )  (see Fig. 2 (right)) the boundary 

value problem (1) is redefined in the following way: 

 

( ) ( ),    ( ),

( ) ( ),    ( )

( ) ( ),    ( )

( ) 0,    

D

N

u x f x x

u x g x x

u
x h x x

n

u
x x

n


















  


   


    


 
 



 (4) 

Note that in this problem, the boundary   is decomposed into 

two parts, one part is called D  on which the Dirichlet boundary 

condition is imposed, and the other part 
N  with the Neumann 

boundary condition. 

Here, for 0   we have ( )   and we define a funtion 

of parameter 0  : 

 
( )

( ) ( ( )) ( , ( ( ); ))j F x u x dx



  


   J  (5) 

Analysis of the behavior of the function ( )j   for 0   

allows us to establish the topological derivative  T(O) of the 

functional ( )J . Using the asymptotic analysis [7, 8, 9] one can 

determine the form of the topological derivative T(O), O  

(O center of the hole  ) of the solution ( ; )u   to the 

boundary value problem (4). If the value of the function T(O) 

is known O , then we can expand the function j  in the Taylor 

series and get the following equality: 

 
2 2( ) (0) ''(0 ) ( )j j j O      (6) 

and (6) can be rewritten in the following form: 

 ( ( )) ( ) ( ) ( )O       T OJ J  (7) 

with dx







    the volume of the hole  . Equality 

2 ''(0 ) ( )j    T O  takes place for the Neumann boundary 

conditions on  . 

1.4. Shape derivative 

Variations of the boundary     are made using the 

so-called shape gradient. The shape gradient g  is derived from 

shape derivative ( ; ) ,dJ V g V n    defined as follows [12]: 

  
0

1
( ; )  lim ( ) ( )t

t
d V

t
    J J J . (8) 

The limit (8) is called derivative of the functional ( )J  

in the direction of the vector field V. Domain t  is a deformation 

of the domain  . 

 

Fig. 3. Transformation of the domain   

This image t  of   is obtained via the transformation 

𝑇𝑡: ℝ2ℝ2 such that: 

 t = Tt(Ω), ∈ ℝN (9) 

t  is a small perturbation of   and is defined as an image of   

via the mapping tT . The mapping is given by the flux of the 

vector field 𝑉: ℝ × ℝ2ℝ2, which is defined as: 

 
( ) ( , ( )),

(0) .

dx
t V t x t

dt

x X





 

 (10) 

where 𝑉(∙,∙) ∈ 𝐶1([0, 𝛿); 𝐶2(ℝ𝑁; ℝ𝑁)), 

and 1( , ( )) ( )t
t

T
V t x t T x

t

 
  

 
. 

Thus, in (10) we have the initial value 𝑋 ∈  ⊂ ℝ2 and 

a position of a particle ( ) ( )t tx t T X   such that we can write: 

 t = {𝑥 ∈ ℝ2: ∃𝑋 ∈  such that 𝑥 = 𝑥(𝑡, 𝑋)} (11) 

In the expression ,g V n  , the element g  is a distribution 

with the support included in     and V n  is a normal 

component of the vector field (0, )V   on the boundary  . 

 _

( ) \ ,    0     

 _
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1.5. Algorithm for solving the standard shape 

optimization problem 

The following algorithm can be applied in order to solve a 

traditional shape optimization problem. Here we present a scheme 

of the procedure that allows to find an optimal shape of a domain. 

Numerical method of finding a solution to a shape optimization 

problem which uses the topological derivative and the method 

of level set was presented in [2]. In [16] the numerical method 

of shape optimization for non-linear elliptic boundary value 

problem was described in details. 

Step 1. Define a domain   for its shape optimization. 

Step 2. Define a shape functional ( ; )J u  depending on the 

solution u  to a boundary value problem given in the domain  . 

Step 3. Solve the boundary value problem in the domain  . 

Step 4. Create small holes in the domain   and/or deform the 

bounadry of the domain in order to minimize the shape function. 

In such modified domain solve the boundary value problem. 

Step 5. Check the value of the shape function. If it is minimal, exit 

the process, if not return to Step 4. 

2. Evaluation of the topological derivative 

for a mixed boundary value problem 

The form of the topological derivative is obtained via 

asymptotic analysis of a boundary value problem and of an energy 

functional. The definition of the topological derivative was 

introduced in [13, 15]. Some notations of the asymptotic analysis 

that allow to evaluate the form of the topological derivative was 

given in [9, 10]. In this paper a mixed boundary value problem 

is considered, the domain decomposition is introduced in order 

to find the explicit form of the topological derivative. 

2.1. Problem formulation 

Let ℝ𝑁, N=2, 3 be a bounded domain with a smooth 

boundary    , see Fig. 4 (left). 

  

Fig. 4. Domain   with its smooth boundary     (left) and its perturbation 
  

(right) 

In such domain we define the following elliptic boundary 

value problem: 

 
   in    ,

0   on    .

u f

u

  


   
 (12) 

with 
2( )f L   where 

22( ) :L f f


  
    

  
 . Next, we define 

the energy functional ⟼ ℝ as: 

 
21

( )
2

u fu
 

    J  (13) 

where u:  ⟼ ℝ is a solution to the boundary value problem (12): 

Since 1

0( )u H   where  1 1

0( ) ( ) : 0   on   H u H u       is 

a Hilbert space, then the elliptic equation can be written in the 

following variational formulation with a test function 1

0( )H  . 

 1

0,     ( )u f H  
 

        (14) 

Taking u   we get from (13): 

 
21 1

( )
2 2

u fu
 

      J  (15) 

Now, we modify the domain   by introducing a small hole 

 x   O  at point O  and the radius  , see Fig. 4 (right). 

In such perturbed domain that we denote by \   , the 

energy functional can be written in the form: 

 
21

( ) ( ) ,    0
2

j u fu

 

   
 

      J  (16) 

where u  is a solution to a corresponding boundary value 

problem defined in the perturbed domain  . If 0   then 

0
( ) ( ) 
  J J . 

Depending on the type of boundary conditions imposed on the 

boundary   of a small inclusion  , we can consider two cases 

of boundary value problems in perturbed domain  : 

1. In the first case we suppose that the solution u  is fixed on the 

boundary   of a small hole. Then, the corresponding Dirichlet 

boundary value problem defined in the domain   is the 

following: 

 
   in    ,

 0   on    .

u f

u

 

 

  


 
 (17) 

In case of Dirichlet condition 0u   on the boundary   

of a hole, for 0   an asymptotic expansion of the energy 

functional ( )j   is the following: 

 ( ) (0) ( ) ( ) 0( ( ))j j        T  (18) 

with 

 ()=
1

𝑙𝑛(𝜌)
 𝑓𝑜𝑟  ⊂ ℝ2 (19) 

 ()=𝜌 𝑓𝑜𝑟  ⊂ ℝ3  (20) 

2. We can also suppose that the solution u  is free on the 

boundary   of a small inclusion; thus the corresponding 

Neumann boundary value problem has the following form: 

 

   in    ,

  0   on   ,

0   on   .

u f

u

u

n

 







  


 



  

 (21) 

For the Neumann condition 0nu   on the boundary   

of a hole, we have: 

 2( )
( ) (0) '(0 ) ''(0 ) ( )

2
j j j j o

 
        (22) 

with 

 ()=𝜌2 𝑓𝑜𝑟  ⊂ ℝ2  (23) 

In the present paper we consider the second case, i.e. 

the mixed boundary value problem with Dirichlet boundary 

condition 0u   on the exterior boundary   and with Neumman 

boundary condition 0
u

n





 on the boundary   of a small hole. 

2.2. Domain decomposition 

According to [13], in order to get the form of the topological 

derivative we introduce the so-called domain decomposition of 

  by introducing a ring 𝐶(𝑅, ) = {𝑥 ∈ ℝ2: < |𝑥 − 𝒪| < 𝑅}, 

see Fig. 5, and we define the following sets R  and  , 

cf. Fig. 6. 

 :a ˇJ
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Fig. 5. Domain decomposition 

   \ : ,        \ :R x x R x x          O O  

  

Fig. 6. Subdomain R  (left) and   (right) 

Note that ( , )R C R    . 

Now we consider our problem in both subdomains R  and 

( , )C R  . In R  we have (cf. Fig. 7 (left)): 

 

   in    ,

       0   on    ,

    ( )   on   ,

R
R

R

R
R R

u f

u

u
A u

n






   

  

 

 


 (25) 

where (1/2) ( 1/2): ( )  ( )
( )

R R

w
A H v H

n








   
 

 is a Steklov-

Poincaré operator defining a flux on R . 

In the ring ( , )C R   (cf. Fig. 7 (right)) we consider: 

 

( , )
   in   ( , ) ,

0   on   ,

     on    .

C R

R

w f C R

w

n

w v

 







 

 
  
 
  

 (26) 

  

Fig. 7. Domain R  (left) and the ring ( , )C R   (right) 

Let us denote by  𝐵𝑅(𝒪) = {𝑥 ∈ ℝ2: |𝑥 − 𝒪| ≤ 𝑅} and 

suppose that 
( )

0
RB

f

 . Thus, in the ring ( , )C R   we consider 

the following boundary value problem: 

 

   0    in   ( , ) ,

0   on   ,

     on    .R

w C R

w

n

w v









  



 


  

 (27) 

By the Green formulae1, the variational formulation 

of the problem is the following (taking w  as a test function): 

 
2

( , ) ( , )

0 ( ) ( ) ( )
( )

RC R C R

w w
w w w w d x w d x

n n


 

    

   

  
           
   
 

    (28) 

We know that 0
w

n





 on   and 1/2( )Rw v H     on R . 

Moreover, from the definition of the operator A  we have 

( )

w
A

n







 

, than: 

 
2

( , )

( ) ( ) ( )

RC R

w v A v d x 

 

       . (29) 

Thus: 

 
( 1/2) (1/2)

2

( ) ( )
( , )

( ) ( ) ( ),
R R

R

H H
C R

w v A v d x A v v  



   


      . (30) 

The term on the left hand side is the energy (if we know 

the asymptotic expansion of the energy functional with respect 

to  , then we know also the norm of A  and the first term 

of the asymptotic expansion of the energy functional). 

From (30) we have the following properties 

of the operator A : 

 The operator A  is positive: 

 
2

( , )

( ), 0,    0
C R

A v v w v 



      (31) 

 The operator A  is linear and symmetric since: 

 

( 1/2) (1/2)( ) ( )
( , )

( , )

( ), ( ) ( )

( ) ( ) , ( )

R RH H
C R

C R

A v w w v

w v w v A

  



  



 

 

   
   

   




 (32) 

Let us consider now the term 
2

( , )C R

w



 . Let (1/2)( )Rv H   

and take cos ,    sinx r y r   . Thus: 

 
2 2

2 2 2

1 1

r r r r 

  
   

  
 (33) 

and 

    ( , ) : ,    ( , ) :R r r R r r         (34) 

Assume that v  has the following expansion of the Fourier 

series (it is the best approximation of the function v ): 

  0

1

1
( ) sin( ) cos( )

2
k k

k

v a a k b k  




    (35) 

From the boundary condition on R  in (27), we have 

that v w , and since 1( )Rw H    (1/2) ( )
R

Rw H 
   so 

(1/2)( )Rv H   and also (1/2)( )Rv H  . We can check easily that: 

 1 2 2

2 2 2

( ) ( ) ( )
'

R R RH L L
v v v

  
   (36) 

For 2

2

( )RL
v


 we have: 

 

2

2 2 2
22 2 2 2 2 2

0( )
1 10 0 0

2 2 2

0

1

1
( ) sin cos

2

( )

R

R

k kL
k k

k k

k

v v d a d a k b k

a a b M

  

    

 

 


 





    

   

    



 (37) 

                                                      

1 Green formula: 0 ( )
u

uvdx u vdx v d x fvdx
n

   


        

    , 

and from the assumption 0f   in  . 
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For 2

2

( )
'

RL
v


, since 

1

'( ) ( cos sin )k k

k

v k a k b k  




  , we get: 

 

2

2 2
22 2 2 2 2 2 2

( )
1 10 0

2 2 2

1

'( ) '( ) cos sin

( )

R

R

k kL
k k

k k

k

v v d k a k k b k

k a b M

 

    



 


 





   

  

   



 (38) 

From the properties of Hilbert space (1/2) ( )RH   we have that: 

 2

2 2 2 2

( )
1

1 ( )
R

k kL
k

v k a b





    (39) 

and from (37) and (38) we get that 2

2

( )RL
v M


  

For 0   we have: 

 𝐶(𝑅, 0) = 𝐵(𝑅) = {𝑥 ∈ ℝ2: |𝑥 − 𝒪| < 𝑅} 

Thus: 

 
2

( )

( )
B R

E v w   (40) 

with w the solution to the boundary value problem: 

 
 0     in   B( ) ,

       on    .R

w R

w v

  


 
 (41) 

For 0   then: 

 
2

( , )

( )
C R

E v w dx 



   (42) 

with w  a solution of the boundary value problem (27). 

Let us now find the asymptotic expansion of the energy 

function (42) in order to determine the first term of the expansion. 

We suppose that the harmonic function w has the following 

Fourier series: 

 
0

1

1
( sin( ) cos( ))

2

k

k k

k

r
w a a k b k

R
 





 
   

 
  (43) 

 

Fig. 8. Description of the ring in polar coordinates 

For r = R we have w = v on the boundary R  and our solution 

has the following form: 

 
0, ,

1

1
( ) ( )( sin( ) cos( ))

2
k k k

k

w c r c r a k b k    




    (44) 

where 0,c   and , ,    0kc k   are the coefficients of the develop-

ment. Since: 

 
2 2

2 2 2

1 1
w w

r r r r
 



   
    

   
 (45) 

then: 

 

,, ,,

0, ,

1

, ,

0, ,

1

2

,2
1

1
( ) ( )( sin( ) cos( ))

2

1 1 1
    ( ) ( )( sin( ) cos( ))

2

1
                       ( )( sin( ) cos( )) 0

k k k

k

k k k

k

k k k

k

w c r c r a k b k

c r c r a k b k
r r

k c r a k b k
r

  

 



 

 

 













    

   

  







 

and then: 

 ,, ,

0, 0, 0,

1 1 1
( ) 0      ( ) ln

2 2
c c r c r r

r
          

and for fixed k we have: 

 
,, , 2 ,

, , , ,2

1 1
( ) ( ) ( ) 0      ( ) ,    1k k

k k k k k kc r c r k c r c r A r B r k
r r

   

        

From the boundary conditons in (27) 0w   on   and w v   

on R  we get: 

 for k = 0 

 0 0ln    on   ,    ln    on   RR a a            

Taking a sum of previous two equations we get: 

 

1 1

0 0 0ln       ln    and   ln ln
R R R

a a a   
  

 

   
       

   
 (46) 

and then: 

 

1 1 0

0, 0 0

ln

ln ln ln ln

ln

r
a

R R
c a r a

R




 



 

   
     

   
 (47) 

 for 1k   we get (see (35)): 

 1   on   ,    0    on   k k k k

k k R k kA R B R A R B R 

        (48) 

and 

 2

2 2
      

k
k

k k kk k

R
A B A

R



  


 (49) 

so 

 
2

, 2 2
( )

k k kk

k k k

r R r
c r

R R r R






      
               

 (50) 

w  can be written as w w z    where z  is a perturbation of 

w  with respect to  . Than: 

  
2

0 2 2
1

ln
1

sin cos
2

ln

k k k

k kk k k k
k

r
R rRz a a k b k

r R r R



 









 
    

  
   (51) 

for 0 < 0 R  . Returning to (42) we have: 

 
2 2

( , ) ( , )

( )
C R C R

E v w dx w z dx  

 

       (52) 

since 
2 22

2w z w w z z            then, using the 

formula 1
r

f

f
f

r 

 
  
 
 
 

 and 
2 2 2

2

1

R
f f f

r 
    we get: 

 

2

2

( , ) ( , )

2 2

2

( , )

1
( ) 2

1

r r
C R C R

r
C R

E v w w z w z
r

z z
r

    
 

  


 
     

 

 
  

 

 



 (53) 

Let us observe that the second integral in (53) disappear according 

to the ortogonality of polynomials and for the first integral we 

have 

 
2 2 2 2

( , ) ( ) ( ) ( )

( )
C R B R B B

w w w E v w   

  

            (54) 

Let us consider the third integral, we get: 
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   (55) 

and since ln ln ln
R
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   then we get: 
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Finally: 

  
2

20( ) ( ) ln
2ln

a
E v E v O







    (56) 

Thus we have the following theorem: 

Theorem 1 

 
2

0( ) ( ) ( )
2ln

a
E v E v v




    (57) 

the expression 
2

0

2ln

a 


 is the first term of the asymptotic expantion 

of the energy functional, and the remainder ( )v  is estimated by 

2
( )

ln

M
v


   and for 0   we have 

1
0

ln 
 . 

3. Applications 

3.1. Example: Electrical Impedance Tomography 

Electrical Impedance Tomography (EIT) is a non-destructive 

imaging technique which has various applications in medical 

imaging, geophysics and other fields. 

Its purpose is to reconstruct the electric conductivity 

and permittivity of hidden objects inside a medium with the help 

of boundary field measurements. This part was prepared based on 

the papers of M. Hintermuller, A. Laurain and A. Novotny [3, 4]. 

 

Fig. 9. Signal propagation in Electrical Impedance Tomography 

Let us denote by   a bounded domain in ℝ𝑁, 𝑁 ≥ 2 being 

the background medium with   its smooth boundary where 

the currents are applied. Assume that   contains material with 

electrical conductivity 0( ) 0q x q  . Then the electrical potential 

u(x) satisfies: 

   0    in     ,div q u     (58) 

              on   ,nq u f    (59) 

where f is an applied current density on   satisfying 

the conservation of chargé ( ) 0f s ds


 . The EIT problem 

consists in finding the electrical conductivity q(x) inside   using 

a set of given values of applied current densities fi(x), i = 1, ..., M, 

on   and the corresponding electrical potentials ui(x) on  . Here 

we assume that the conductivity is piecewise constant and that 

it takes two distinct values, q1 and q2. Then,   can be split into 

two disjoint domains 1  and 2 , with   =  1   2 

and conductivities q1 and q2, respectively, so that    

with 1    (see Fig. 8). We then have 𝑞 = 𝑞1𝑙1
+𝑞2𝑙2

. Due to 

the particular form of q the regularization term becomes: 

 2 1 ( ),q q q


    P  (60) 

where ( )P  stands for the perimeter of 1 . 

Therefore, the problem is reduced to solving the following 

problem which depends only on 2  and the scalar values q1, q2: 

 minimize 2

2 1 2 2 1

1

( , , ) ( ) ( ),
M

i i

i

J q q u m q q
 

      P  (61) 

where ui is the solution of: 

   0    in     ,idiv q u     (62) 

              on   ,n iq u f    (63) 

with fi a known boundary current density for  1,  ...,  i M . 

 

Fig. 10. Domain   =  1   2 

Further, mi is the boundary measurement corresponding 

to fi. In order to fulfill the compatibility conditions required for the 

Neumann boundary conditio (7), the measurements must satisfy: 

 0,    1,  ...,  .im i M


   (64) 

Since the solution of the Neumann problem (62)-(63) 

is not uniquely defined, we impose the condition: 

 0,    1,  ...,  iu i M


  , (65) 

in order to obtain uniqueness. We also introduce 

the functional: 

 2

2 2 1

1

( ) ( ) ( ),
M

i i

i

u m q q
 

      PJ  (66) 

where q1, q2 are now assumed to be fixed. Referring back to (61) 

we clearly see that it contains 2  as an unknown quantity. Hence, 

(61) represents a shape optimization problem. 

3.2. Topological derivative 

Now we assume that the domain 1  is a small ball of radius 

  and center  1 2
ˆ ˆ ˆ,x x x  , and we write 1

  instead of 1 . 

This allows to perform an asymptotic expansion of the shape 

functional  2

J  with respect to  . Here we use 
2 1: \    . 

Eventually, this provides the topological derivative of J. In what 

follows, we assume, for the sake of simplicity, that  ˆ 0,0x  . 

We also introduce 1: 

   . In this simplified framework, 

we are able to prove that the solution ui can be written as 

𝑢𝑖 = 𝑢1,𝑖
𝜀 𝑙1

ε + 𝑢2,𝑖
𝜀 𝑙2

ε , with ( 1, 2,,i iu u  ) the solution of the 

coupled system: 

 
22, 2 2 2,0   in   ,       on   i n i iu q u f         (67) 

 
1 11, 1 1, 2, 2 2, 1 1,0  in  ,    on  ,     on  i i i n i n iu u u q u q u     

           (68) 

Here 1n  and 2n  stand for the outer unit normal vector to 1

  

and 2

 , respectively. Thus, on  , we have 1 2n n  . The 

normal derivatives with respect to 1n  and 2n  are 
1 1nn x    and 

2 2nn x   . In what follows, for the sake of simplicity, we will 

drop the subscript i. This corresponds to only one measurement, 
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i.e., M = 1. We point out that the case of several measurements is 

readily deduced from the case M = 1. 

For the asymptotic expansion, we consider the following 

problems associated with (67)-(68): 

2 1 12 2 2 2 2 2 1 10  in  ,     on  ,      on  ,n n nu q u f q u q u    

           (69) 

 
1 1 1 20  in  ,    on  .u u u   

      (70) 

Problem (69) is a Neumann problem. Since 0f


  and: 

 
1

1

1 1 1 0,n q u u


 

 

      (71) 

the Neumann problem is compatible. As the solution of (69) is 

defined only up to a constant, we impose: 

 
2  0,u



  (72) 

to get uniqueness. 

The following form of the topological derivative was obtained 

in the EIT problem [3]: 

  
with 

  
Some numerical results are presented below. 

  

Fig. 11. First example after 2000 iterations, with 1% noise. Left: conductivity q1 over 

the iterations. Right: initial domain 
1  after topological sensitivity (light gray); 

final domain 
1  upon termination of the algorithm (darker gray); true domain 

1  

(stripes) 

  

Fig. 12. Second example after 10000 iterations. Left: conductivity q1 over 

the iterations. Right: initial domain 
1  after topological sensitivity (light gray); 

final domain 
1  upon termination of the algorithm (darker gray); true domain 

1  

(stripes) 

For more details we refer reader to [3], where the asymptotic 

analysis was provided for the EIT problem and the analytical for 

of the topological derivative was developed. 
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