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Abstract: Prognosticds seen asa key component of health usage monitoring systems,
where prognostics algorithms can both detect anomalies in the behaviomerderof a
micro-device/system, and predict its remaining useful life when subjected to neohitor
operational and environmental conditions. Light Emitting Diodes (LEDs) are epti@slic
micro-devices that are now replacing traditiomadandescent and fluorescent lightirag
they have many advantages including kigleliability, greater energy efficiency,ng life
time and faster switching speed. For some LED applications there is r@megnti to monitor
the healthof LED lighting systems angredictwhenfailure is likely to occur. This is very
importantin the case of safetgritical and emergencgpplications.This paper provides
bothexperimental and theoretical results that demonstrate the use of prognostiesiémd
monitoring techniques for high power LEDs subjected to harsh operating conditions.

Keywords: reattime health monitoringdatadriven prognostigshigh powerLED

1. Introduction

Prognostis and health monitorings a technologyused to monitor degdation in engineering
systems,understand when failurenay occur, and provide a cost effeee strategyfor scheduled
maintenane. Health monitoring and prognostics of engineering systems or prodsdtetame very
important as failuremay cause severe damage to the system, environment and users, and may result ir
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significant costly repairsAdopting realth monitoring andrpgnostis techniquesequirescontinuous
monitoring of key performance parameters and detecting any aesrrahese parameters.

Even though typical life time of high powerlight emitting diode(LED) is very high typically
specified in the order d0,000 h[1], statistics show thdtalf of the light emitting diodes fail before
this limit is reachedThe reason for this is th#itis specification is not based on indivadly measured
characteristics of LEE® Thereforemanufacturers and lighting system designers still needotaitor
the healthof assembled_.EDs and predict thie failures, especially for safety emergency critical
applications in sectors such as aerospace, medical, energy and others.

Numerous papers have been published that characterigelitii@lity and thermal behaviour of
LEDs [1-9]. Recent publications have detailed the importance of temperature on the reliability of
LEDs and the need for suitable packaging to ensure that appropriate heat is extraBtegs[d$ of
Failure Models fohigh power LEDs have also been developed wteanomechanicahodelshave
been used to characterise a number of failure mfdis At present there is no reported work on
reaktime monitoring of LEDdegradatioror theuse of data driven models to predict degradation and
remaining useful life for LEDsThis paper investigates two data driven methods which can easily be
programmed onto a microcontroller for real time monitoring of LEDs

This paper demonstratesdatadriven prognosticsapproach tanonitor andidentify LED failures
based orthe requiremenfor the light output power. In the case of general lighting it is established that
the light power should ndie less tharr0% of the initialpower of the lightsréferred to agsypical
expectation of té light power) [5]. It is also reported that the LBEtuallywill not fail physically, but
rather its light outpupowerwill decrease with time [5]. Therefqréheapproach adopteid this work
is to assess the lifef an LED lighting system after their deploymeln@sedon the power of thdight
output emitted This paper discusses two distance measure technifjudsuclidean Distanceind
(i) MahalanobisDistance thahave been usetb analyg the degradation of light output arassess
remaining lifetime of LEDs. These data driven techniques are based on monitoring selectwoal
and performance indicatorsising sensors.The main advantage of these two distance measure
techniques ishatthey can be implemented amicrocontrollerused tocontrolthe LED drive circuit
and hence monitor the LED degradation in real time.

2. Prognostics Approaches

Figure 1 illustrates ththree approaclsdo prognostics, which ar@ Data driven (ii) Model driven
and (iii) Fusionbasedmodeling which combines both (i) and (ii) methodologies.

Figure 1. Prognostics and health management approaches.
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2.1. Data Driven Approach

Data driven approach is considered as a black box approach to PHM as they do not réquoire sys
models or sgtems specific knowtige to start the prognostics [11]. Monitored and historical data are
used to learn the systems behavioansl used to perform the prognostiddence he data driven
approachs suitablefor the systems which ammplexandwhich behaviourscannot beassessed and
derived fromfirst principles.The implemenation of data driven techniques for the purpose of health
monitoring and prognostics generalhased on the assumption that the statistical characteristics of
system’s performamcwill not change until fault occurs [L1Thereforethe main advantage of data
driven approach is that the underlying algorithmscariekerto implementandcomputationally more
efficient to runcompared to other techniques. Howevérnsinecessary to have historical datad
knowledge of typical operationglerformance datahe associated criticahreshold values antheir
margins.Data driven techniques rely completely the analysis of data obtained from sensors and
exploit operational operformance relatesignalsthat can indicate the health of thnitoredsystem
Data drivenstrategiesfor diagnostics and prognostitgwve been applied in a number of different
Prognostics and Health Managemd?iiV) applications [2—-19].

The principal disadvantage othe data driven approacis that the coridence levelin the
predictionsdepends on thavailable historical and empirical data. Historical and empirical data are
required inthe data driven approach to define the respective threshold vidussne instanceis is
difficult to obtain or havénistorical dataavailable, for example in the caseaohew system or device
that may require longme and/or expensive tests to failure to generate this Hetaever, there are
techngues and procedures available that can be used to achiej@dpid. Two of the strategies used
to address this challenge are based on the use of:

1. Hardwarein-theLoop simulations (HiL).

Hardwarein-theLoop is a computer simulation which is useddst a real product or system by
connecting it hardware that applies simulated loads as in real appli¢atsovery fast and cheap to
implement. In addition, several failure parameters., (operational and environmental) can be
controlled independently. HiL can also be usedalgorithm development, testing and validation,
benchmarking and development of metrics for prognos2ds [

2. Accelerated Life TeqtALT)

Accelerated load test is designed to cause the product to fail more quickly thannardat
conditions by applying accelerated (elevated) stress conditions resulting in the same failure
mechanisms ALT becomes an important methodology in the development of the R¥M
electronics. Several environmental and loading conditions can be apptegendently to
accelerate théilure [21].

2.2. Model Driven Approach

The model driven approach uses mathematical equations that predict the physicegdagures
and thereforeés sometimeseferred toasthe Physics of Failure (PoF) approadhrequires knowledge
of the failure mechanisms, geometry of the system, material properties and the external loads beinc
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applied to the systemin accurate mathematical model can bertbétprognostics proceswherethe
differencebetween the outpditom amathematical model and the real output of the system caseae

to find the anomalies, malfunctions, disturbaete [22]. Using the difference between model and data
values for a performangearameterthe early warnings for failures amdmainirg useful life can be
predicted. There are many PHM work have been reported based ordnivetebpproach [161922—-24.

A block diagram of a typical model based approach shown below in the Figure 2.

Figure 2. Block diagram ok model driven approach.
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2.3. Fusion Approach

The usion approacks basel on the advance featureshafth data driven and model based approach.
This aproach will require an accurateathematical modedf the system for physics based failure
approach and enough historical data and knowledge of typical operational perfodatmder data
driven approachlhe aim of the fusion approach is to overcome the limitations of both thel iod
data driven approach testimate theremaining useful life RUL) [19]. Therefore the @uracy of
the fusion approach should b&gh [19], although for reatime analysis it may not be suitable due to
the computational resource requiredlhere are many applicationeeported based on fusion
approach [2—-29. A block diagram of a typical model based approach shown below Fghee 3.

Figure 3. Block diagram of a fusion approach.
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3. High Power Light Emitting Diodes (LEDS)

A high powerLED is an optoelectronic device which consists p-type region, rtype region and
a pn junction. A high power LED is defined as an LED with power equal or greater thiéattl
When theLED is forward biase@nd current passes through tha unction electron in the negion
get sufficient energy to move across the junction into the gegion ancholes are injected into the
n-region from the gregion through pt junction[30]. Some of the electrons and holes recombine in the
active region (i junction) where electrons move one energy band to andthisrprocess is known
as theradiative recombination process. When the radiative recombinat&es place energy is
released in the formf photonswith the wavelength related to the change in the energy Gémsl.
procesis illustrated inthe Figure 4 Applications of High PoweLEDs are ontinuously increasing as
they areenergy efficient (typically 85%)green €.g.,no mercury)have demonstrated longer life than
traditional lighting sourcesand emits low UV radiatiof80]. Single colour LEDs have demonstrated
over ten time efficient #n the incandescent lamps and white LEDs are more than two times
efficient than the incandescent lamj@®]. For example, yipical LEDs can operatéor >50,000 h
(approximately 11.yearsfor a 50% calendar time usage) provided the drive current-snginction
temperatureremain within the limits specified by the manufacturdd]. For example, for the
Philips Luxeon Star when operated in warm white mdlge,maximum values reconended forthe
DC forwardcurrent andunctiontemperature ar850 mA and 13%C respectively{31]. A schematic
crosssection of a LED assembly with typical constructisshown in Figure 5.

Figure 4. Radiativerecombination process in thengunction (LED die) where thphoton
emitted in the form of light
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Previous research in performance of LEDs has showrgthdtial reductionf the luminanceaup to
30%is expected for nesafety critical applications [5]Therefore, the useful life of a LED for general
lighting is given by the time in which it takes for the luminance to reduce by 30% fromidbkvalte.
But somefor safety critical and emergency applicatiaghe amount of luminance reduction allowed
may be less thaB0% It should also be noted that thie time specified by the manufacer is the
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average life time of LEQsand somé.EDs would fail before tis specified life timedue to variations
in individual characteristics, manufacturing quality and environmental conditions
Figure 5. Cross section of LED assembly
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In addition to ight output powerdepreciation, @other mode of failure is due thscolouration of
the LEDs or LED die encapsulate. Befdine light outputof an LEDdepreciateto a certain levelthe
colour of the light changeswith time. This isbecause of the surrounding environmental conditions
such as moisture, temperatuetc. Hence the LED lighting systems require maintenance which
requires labour and measuring instruments. PHM approach can be used to changschbdule
maintenance actity into an evidence basedcheduled maintenance activity which will reduce the
maintenance cost by a considerable amount.

Monitoring the light output power and the wavelength of the light intres might be difficult as
they require light and colour sensors respectively. Although the light sensorsafledla in the
market, placing the sensors into the luminaries is diffidiits work is carried out based on current
and temperature measurements to perform the prognostics and health monitorocugsateted only
the failuremoderelated tolight outputpowerreduction. We use the 30% reduction of light output as
the failure criteria, and any LED in operation that has lumens below this lieined as a failed LED.

There is no life time modeleveloped and reported in the literature soféarLEDs [32—34]. The
main cause of the failure in the LEDs is the heat generated atrthengtion[4]. Under the forward
bias condition theqm junction carries a current which is almastexponential function of the applied
voltage which means if there is an increase in the applied votteggyrrent through the-p junction
increases exponentially. This characteristic is explainethd$hockley’s Equation35]. An increase
in the current will causéhe temperature to increase dramatically which means the heat generated in
the p+ junction increases.

In the experiments detailed below, the current through thejynction and the 4o junction
temperature can be defined as the performance indicators of the LED. Therefore, any accelerated tes
can use the current or the temperature asstitess parameter of the LEDEDs are controlled by
controlling constant current through the sense voltage (analogue diming) or pulse width modulated
switching(digital diming) [30]. In this experimenthe constant current required to operate the LED is
controlled by controlling the forward voltage across the LED and the experisngesigned to test a
single LEDat atime. This experiment also designed to acceleratéathges based on current and the
temperatureTherefore, thdorward/applied voltages used as an acceleratidgmage conditio the
experimentsThe acceleration ahe applied voltage results in the elevatiorboth stress parameters
(e.g.,the curent and the temperature).
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4. Prognostics for LED’s using theData Driven Approach

The realth of a product or system is defined as the extent of deviation or degradation from its
expected typical operating performan8é][ This extent of deviation or degradatifsom the expected
typical operating performance has to be determined accurately to assess the reliability of a product anc
predictits remaininguseful life

In the caseof High power LEDs which are semiconductor deviceoverall reliability (i.e., an
individual LED) dependson severalfactors such as properties ofnpjunction, band gap energy,
internal quantum efficiency.€., product of current injection efficiency and radiative efficiency), light
extraction #iciency, cavities or defects in the active regi@c Modeling these individual LED
characteristic$or the purpose of prognostics and health monitoring is diffi@dtadriven approach
for PHM has been identified as a best candidate as they dequiter system specific knowledge but
require historical and failure data. Dataven approach is also easy to implement in particular in a
real-time environmentFocus of this paper is to apply data driven approach for the prognostics and
health monitoring of the high power LEDs based on light output power degradation failure mode.

Light output power degradation is caused by high temperature atrthjangtion due to the heat
generated at thep junction. Heat generated depends on the current throughnthenption.Injection
current (current through the-rp junction) and the 4n junction temperature can be usasl the
performance indicators of the LEDdonitoring the current and temperature at the junction anl
relating them to the drop in output lumens.(power) will provide the ability to monitor the degradation
of the LED in real time. Toachievethis, two distance measure techniques have been asdsess
(1) Euclidean Distance and (2) Mahalanobis Distance.

4.1. Euclidean Distance

Euclidean distance (ED) is the physical distance between two data points and it is the most
commonly used distance measure in many different fiftids.defined as théistance that examines
the root of square differences between any data.eet$ can be in any dimensiofor a data matrix
X which contains robjects measured by p variableg.(n x p matrix), ED can be calculated in the
vector space as follov}]:

ED; = (X; - X)(X; = X)" (1)

HereX is the mean vectoin the case of prognostics and health monitoring of high power LEDs,
C andT are the meawalues ofcurrent through the-p junction and g junction temperature under
typical operating condition€; andT; are the new observation dakD; will be computed for the new
observatiordata as followgi.e., two dimensional datdB7]:

ED, =4/(C; ~C)2 +(T, - T)? 2)

The ED value will give an estimate of LED’s deviation or the degradation from the typical healthy
LED. Higher values for the ED will indicate anomalieghe performance and by monitorittige ED
values prognostics of LED can be achieved.
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4.2. Mahalanobis Distance

Mahanobis distance (MD) is another physical distance mea3udrgg[ Although similar to the
Euclidean distance, the Mahalanobis distance takes into account the actual correlations oséte data
Since the health of the system &fided as the deviation from expected typical operating performance,
Mahalanobis distance is useful in determining the similarity/distance between the typicahgperat
performance ananonitoredoperating performancelhis stratey hasbeen applied succdafly in
different datadriven PHM approach3B—43. For a data matrix X which contain n objects measured
by p variables as above MD can be estimatetervector space as follow37,39:

MD; =/(X; — X)Covid(X; - X)T 3)

HereX is the mean vector ar@oy is the varianc&ovariance matrix of data matrix X. In the case of
prognostics and health monitoring of LEBandTare the mean values of current through the
p-n junction and g junction temperaturgndCovcr is thevariancecovariance matrix of current and
temperature under the typical operating conditi@sandT; are the new observation dat@henever
new data becomes available MD can be calculasedllows for two dimensional data [37].

MD; =/(G; ~C)Covgk (T, —T)T (4)

R De Maesschalcket al, formulatel MD formula for two dimensional data using the
variancecovariance matrix given belof87):

2
o PctOcoT
PcTtOcOoT or

In this casec? and o7 are the variance ofurrent and temperaturend p.,o.o is the

covariance ofturrent and temperaturender the typical operating conditioridsing these variables
MD can bederivedas follows B7]:

o e [ B e e

The MD valuewill give an estimate of LED’s deviation or the degradation from the typicathyeal
LED. Higher values for the B will indicate anomalies in thegpformance and bghonitoringthe MD
values prognostics of LED can be achieved.

The advantage of the abovehaiques is that they transform medimensional sensor readings into
a single performance parameteraddition, fault parameters can also be isolated in the event of faults
or anomalies in the ED or MD estimates by monitoring the individual sensar§ et can be used to
analysethe fault and find the root cause of the anomadigault. Using MD or ED techniqueBor the
purpose bhealth monitoring and prognostios LEDs requirehistorical datdo establish the threshold
values representing wheie LED is performing outside its safe limii® generate this data we have
used an accelerated voltage to stress the components to faguaeesult of this, the current and the
temperaturelso increase
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5. LED Health Monitoring

Measuring the light output ofan LED in reaktime (.e, in the field) is difficult. Instead,
performance indicators of the LEDs suchasrent through the-p junction and the g junction
temperaturecan beused to measurany deviations inperformanceand torealiseany prognostics
assessmenCurrent through the-p junctionis measured using power resistirs., current sensors
the ordinary resistors cannot handle the typical expected current throughDeevbieh is 350nA. It
is impossibleto measure the-p junction temperature directly as it immpossible to reach the-p
junction.However, it is possible testimatethis valueby measuring the temperature at a nearest point
to the pn junction, and then use the following edienensional heaconductionequation to estimate
the junction temperatui,3].

T] :Tb‘l‘RHJbXVXI (7)

whereT; is the pn junction temperaturdy, is the board temperaturRgy, is the pn junction toboard
thermal resistance coefficieny, is the input voltage antlis the input currentThermal resistance
coefficient depends on the power dissipation at the junction, ambient tempenatomef af heat sink
and the orientation of the heath sink3[2,

For the purpose of redéime health monitoring angbrognostics we assume the average power
dissipation of the LED remains constamd ambient temperature, amount of heat sink and orientation
of the heat sink remain samethe power dissipation, ambient temperature and heat sinkimesame,
board temperature and junction temperature will vary lind8flyin addition a large heat sink is used
in the experiment and hence the junction temperature can be estimated with dheimparature [3].
For the Philips Luxeon Star the thedmesistance cefficient is 2@/W [31] which can be assumed as
a constantThis allows us to monitor the board temperature and use this temperature tioetdzita
driven approach instead of thengunction temperature.

The reaktime health monitoring and prognostiepproach adoptenh this study is based othe
outputfrom boththermocouple datandcurrent sensor datdhis data is then fed intine chta driven
techniques to predict the amaliesin LED performanceAppropriateextrapolation techniques are
used to predict the remaining useful ldad discussed in th&ection 9 The test data was obtained
using a National Instruments’ (NI) PXI reatime platformwhich gathered data for a High Power
Luxeon Star LED under accelézd voltage conditions.

6. Experiment Setup

There are standard developaylthe Illluminating Engineering Society of North America (IESNA)
to test the LED lighting systems foretipurpose of qualifications. IESNA LvI9-08 was developed as
a standard to measure electrical and photometric characteristics solid state lighting products such a
LED luminaries and integrated LED lamps. IESNA 18@-08 was developed as a standard tottesst
solid state light source such as LED packages, arrays and modtlesnjnaries) for lumen maintenance.
Purpose of these standard$o allow all the manufacturers to follow a common measuring procedure
so that the users can compare the performahdke different product in the market. This is also a
requirement of the Energy Star which is international standard for energgrefpcoducts [33,34].
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The Alliance for Solid State Illumination Systems and Technology (ASSIT) Isasdaveloped
standad for life test of the LED based on 50% light output degradatiebOjLand 30% light output
degradation (L70) [5,6] Manufactures are performing tests and producing the result based on these
standard and test$hese standard and testing procedurespudliide the data for comparing the life
expectancy of the different solid state lighting product but does not provide d@téilenation on the
failure modes and mechanisms heiitcavill not help to estimate the life time of an LED in the
field [30]. When theLEDs are deployed in the field, thea@e many known and unknown factors
which affect the performance of the LED lighting systems and increase the Iggssibithe
catastrophic failuresthe experiment belovis designed ta@apture such failuresaused by voltage and
current fluctuations, driver break dowemperature increasesg

Figure §a) shows a Luxeon star LED from Philipsmiledslighting andFigure b) shows ditted
LED on a holdethat represents the LED test set up.

Figure 6. (a) Luxeon sar LED from Philips{b) Luxeon star LED with holder.

(@ (b)

Figure 7details the experimental test setup, which consists of a data acquisition system (National
Instruments PXI), a voltage regulator and sensors, and a single High Power IRhiéps Star LED.
For purpose of light measurement the LED is placed within a spharical enclosure which also
contains a photodiode light sensor.

Figure 7. Test benchExperiment stup with National Instruments’ PXI Systems

al

Spherical Light Integrator

Test Circuit
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The National Instruments PX@latform can be coneéed to both analog ardigital input modules
providing the ability to measunltage leveldor different types of signals. For this experiment we
use a24-bit universal analog input module (NI 9219) to measure the applied voltage, araltége v
across the three sensors (current, temperatureigmd

The gplied voltage is measured by connectihganode and cathode terminals of the LHDis
together with the three sensors (current, light, temperature) are all connected to the datemacquisit
platform. Voltage is measured for all three sensors, for example to mdigbtireutput we use a
photodiodewhich converts light into voltagandis calibrated to convert the light into voltage in a
proportional mannerTo measure temperature we use a thermocouple which generates very small
voltage (nV) related to the temperature on the board. For current we measure the solagge the
power resistor and this is converted into current. Figure 8 shows all threessggesbim this experiment.

Figure 8. (a) Photodiode TSL250RF; (b) NI readymade Jype termocouple
(c) Current sensoRower resistor, MHP 160.250).

(@) (b) ()

7. DataAcquisition for Training the Algorithms

Data is obtained under both normal conditions and accelerated stress condition. dhela@ns
obtained under normal conditions is used to predict the mean values of voltage for thertboee s
(current, temperature and light). The data obtained from the accelerated stress test isdesdityto
the threshold values for the ED and MD algorithms, above which the LED willc@degtade.

7.1. Data AcquisitionNormd Operating Conditions

Sensor dta is obtainedvhen the LED is operating under normal conditions. This data is then
analysed to identify the mean values for the sensors when the LED is operatingyndmaaldition
to this the MD and ED values are also calculated under these condltabis.1 detds the mean
values of the data collected for all three sensshen the applied voltage is 3.42 V. Fig@shows
the collected data aritecalculated values for bottf the data driven techniques (MD and ED).

Table 1 Mean Sensor readings when LEDbjgerating normally.

Parameters Sensor Values Real Values
Applied Voltage 3.42V 342V

Light Output 1.18V Not Available
Board Temperature 2.2 mV 42.7 °C

Current 0.09V 0.35A
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Figure 9. Sensor data for normal operating conditions.
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What isinteresting in the above is the sensitivity of the MD method to small changes entdwe s
readings.Table 2 below shows the ED and MD values (mean, maximum and minimum) for normal
operating conditions. Under these conditiamsLED typical life time will be on average 50,000
High values for ED and MD are observed at the initial stage as the temperature is increasingewith ti
until it reaches a stabe valuee( in this case actual temperature is increasing from the room
temperature to 42° C which is normal operating board temperature) whilarteatauickly reached
its stablevalue.In this case maximum value for MD is observed at the initial stage of the experiment.

Table 2. Mean, maximum and minimum values for ED and MD under typical operating conditions.

Distance Measure Minimum Maximum Mean Value
Euclidean DistancéD) 0.046 0.44 0.16
Mahalanobis Distanc@D) 0.47 3.80 2.16

7.2. Data AcquisitionAccelerated Life Test

A run-to-fail accelerated voltagest isdesigned to providdata to identify the threshold values for
both MD and ED algorithms. In this test the applied voltage is increased in steps fromidghefinit
3.29V to a maximunmof 3.99V. This maximumis also the typical maximum forward voltage of the
LED. Note that the normadperational voltage that is required for the LED is 3#4Data fromthe
sensors are theanalysed to identify the threshold values for ED and MD.

Figure 10shows the voltage applied to a single LED and the readings from the current, light and
temperature sensors. In addition to this the graph shows the value of light thresholdemtesbnts a
30% drop in the light output from what its value would be when operating normally Wétg.an
applied voltage of 3.4¥). Hence if the light reading goes below this value then we have a reduction
in light output over 30% and hence a failure.
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Figure 10. Sersor chta fromaccelerated life test
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We can calculate the ED values using the data above from the temperature and current sensors. Tt
light readings are only used to observe the reduction of light from the LED and hence fahelie
to a drop of 30%r more. Figure 11 shows the predicted ED values, the applied voltage and the data
from the light sensor and its threshold value. We would expect the light output tasmas the
voltage increases. Hence, to calculate the threshold value for the ED parameter we identify the point a
which the light output starts to decrease continuously. This threshold value represents the point in time
at which the LED starts to degrade. For the data set shofigune 10 the threshold value for ED is
2.5. So, any value for ED which goes above this threshold value identifies that degradagbnh in li
output is taking place. Hence by monitoring the ED parameter we can diagnoseghhenitput is
degrading based on the monitored data from both a temperature and current sensor.

Figure 11. EuclidearDistance aalysis for sensorada
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Figure 2 shows asimilar analysisfor the Mahalanobis tance(MD) algorithm again usinggame
data set as show in Figure 10.For the MD method the light output is observed to decrease
continuously from the MD value of 17, onwards. Hence the threshold value for MD is 17, above which
the light ouput is degrading. So, as with the MD method, by monitoring changes in current and
temperatureywe can use the MD calculation and its threshold value to diagnose wheuiglt
degradation starts.

Figure 12. Mahalanobs Distance aalysis for sensoraia
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The above was undertaken on seven different LED’s wheréhtashold values we calculated
separately for each. For ED and MDetbalculated threshold valueere similar. For the following
validation cases we have used the minimum predicted threshold wadiah are ED = 2.5 and MD = 17.

8. Validation of Diagnostics Capability

Data shown in the Figurg3 is used todemonstrate botdata driventechniquesn terms of their
diagnostics capabilityThis data isagaincollected froman accelerated stress test, where the applied
voltage sincreased over time beyond its normal operating value. The LED used for thiasesgjan
a Philipis Luxeon Star, but a different one from the batch of ten used to derive the thiedhes. In
this accelerated test tlapplied voltage is increasedery 30 minby 0.2 V. This is a different voitge
profile to that used for the generating data for the predicting the threshold Glkesdy we can see
when the light output has degraded by 30% which is aftemd85We can also observe when the light
begins to degrade which is after approximately idih

Figure ¥ demonstrates thED technique for the data shown kigure 13 It shows that using the
defined treshold value of 2.5 an early warning for havinndgeB operating at conditions that lead to
failure is given. ED is gradually increasgnafter its maximum healthy value of 0.44dble?2) as the
applied voltage is incread gradually. In this case ED equals @rBdictsstart ofthe degradation in
the light output at time approximateld3minsand it takes anothé&40min to degrade compiely to
reach thdight failure threshold value of 0.83 V.€., 70% light degrdation from typical value).
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Figure 13. Sensor dta fromaccelerated life test
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Figure 14. Demonstratiorof Euclidean Distance
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Figure B demonstrate®ID analysis of thdestdata set shown in the Figur8.1t shows that the
early degradation in the light outpoan bepredicted using MD. When MD reaches its threshold
values of 17light output starts to degradghis is the point of giving an early warning.

Although bothED and MD detect the degradation in the light output, ED curve demonstrates a
more accurate result compared with the MD curve. At time 443 min there is an increase in ED which
corresponds to the temperature increases even though the current contineoneslgas. But the MD
curve illustrates opposite behavior because of the correlation between current and temperature.

Parameters which cause the degradation can be identified by monitoring the indsedsar
reading (.e., current or temperature) and their variation from the typical values. This cionbesoon
after anomalies detected in the ED and MD values. This information can be used further tasaalys
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identify the corresponding failure mechanism and root cause of the degradation. Sucis stoidy
undertaken as part of this work as the main focus is on the data driven techangudikeir
diagnosis/prognostics capability.

Figure 15.Demonstration of Mahalanobis Distance.
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9. Validation of Prognostics Capability

The values for EandMD can be used also to make predictions for the remainsedullife of
LEDs. During light degradation both current and temperature values thatamiéoreddecrease with
time when theapplied voltage to the LED does not chang@hbis observation is made during the
experiment.This will correspond t&eD and MD parameteralso decreamg over time(i.e., reach a
peak value and start to decreasd)e observed maximum values (peak) for ED and MD vary for
different LED and they indicatine different individual characteristics of the LEDsthe case of the
LED lighting systems, the extent of deviation or degradatien ED or MD) will not continuously
increaseuntil LED completely fails(i.e., output drops to 70%)As light output eégradesto 70%,
current will also decrease aridis impliesthat the ED or MD shodl decrease to certain level.
Continuous constant rate of degradation in the light output can be observed in the edtetidm in
the ED and MD.

The gradient of the ED anlID curvescan be used to forecast thaene-to-Failure (TTF) ED and
MD values that correspond to the failure of LEDs, when light output drops below 70% from the
typical value are definedising experimental datnd referred ®ED failure limit and MD failure limit
respectively Almost linear reduction in the ED and MD is observed duringtéses when the LED
undergoes degradation procelswear extrapolation of the ED addD decreasingrendwhen light
degrades, above thespective threshold limitgan be applied andsedwith the ED and MD failure
limits to calculate the remaining useful life (RUL)his predictiorfor the RUL can be undertakeat
any particular time pointif the ED and MD curves are above the thresholduerafindicating
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degradation takes place) and the trerdkisreasingAs new data becomes available over tinme| BD
andMD are recalculated, their trends are adjusted Bt predictionsre-calculated

9.1. Estimation of ED anMID Failure Limits

Test data obtained usirsgpvenLED devicesare used toobservethe respective values &D and
MD at the time when the power light output drops below 70% from the initial visdya.ED failure).
Each LED was tested under slightly different acceleratdthge test where the peak value of the
applied voltage was set to be in the range 3.6 to 3.99 V. The aim is to obtain dhardationship
between the extreme ED and MD values (denotegisEBnd MDuax respectively) computed at the
applied voltage pdés and the respective ED and MD failure limits (denotegpFand Flvp
respectively) It is observedhatthe values of ED anWD at LED failure i.e., FLgp and FlLyp, are
dependenbn the elevated applied voltage level, respectivelyhenassociated pealatue of ED and
MD at that voltage leveli.e., EDvax and MDyax). TO capture the existing relationships between the
peak values of ERndMD, andthe related ED aniID failure limits, powelaw approximatios from
the available datasets are derivediodlsws:

FLep = 1.0912x (EDjyy, ) *8°%° (8)

FLyp = 2.3105x (MD y; ) %¢74° (9)

9.2. Real-Time Sequential Estimation of RUL

Since the data is collected periodically, RUL is estimated sequentiallyimagsgthe mean trend
of the ED and MD curves over time period when they exhibit decreasing trend and are over the
respective early warning threshold ED; and MD; denote the ED and MD values obtained at the
discrete time step then nean trendn of ED is @lculated sequéially usingthe following equation:

t-1 1
my :Tn}fl"‘?(EDt —ED¢4) (10)

wheremis the mean trend at a given time steymd thetime stept = 0, 1, 2... n,starting witht = 0 at
the time when ERax and MDyax are detectedn thisstudy, the time steps are defined oweervalsof
one minutej.e., the mean trendor ED andMD is calculated every minutellowing the observation
of a decreasindgrend of the ED andMD curveswhen BD and MD areabove th& respective
threshold valus.

Similarly, mean trend in the case of MD distance measure isediefis follows:

t-1 1
m :Trr‘[—l"'?(MDt_MDt-l) (11)

Once the mean trends above are availahky can be usdd predict thduture time poinivhenthe
trends of the ED and MD intercept the respective failure linfitds extrapolation of the trend
providesa prediction fortheremaining useful lifeUsing the approximations for computing the feglu
limits (Equations (6) and (7))and Euations (8) and {9the RUL can be estimatefilom Equations
(10) and (11) using ED and MD values respectively:
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RUL=

RUL=

9.3. Failure Prediction Example

95
ED, —1.0912x ED,,, >%°%
12
m (12)
MD, — 2.3105x MD ,, *°"*° (13)

m

To demonstratéhe predictions for RUL. and for the Timeo-Failure of an LED respectivelythe

LED testdata used in Section(8ee Figure 3)
with time of ED and MD parameters for the

is usedagain Figures 16 and liflustratethe change
studied LED and gtteavthe failurelimits. In this case

the EDuax and MDuax Values used in the prognostics calculations are 3.28 andl 28 @ectively. The
respective failure limits ardi) FLgp = 2.8 and (ii) FLyp = 21.7. The failure limits are obtained from
the approximations shown in Equations (6) and (7).

Figure 16. ED history and the ED failure limit for LED test datative Figure 13.
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Table 3 shows a sunary of prediction results for failure time at five diféanttime points based on

both ED and MD curves and usigjuations
time of the LED made at time 400 min

(10) and (11). For exampe, the predictions for failure

estimate faildgimes 473 min (RUL = 73nin) and

457 min (RUL = 57) from ED and MD data respectivly. The actual failore for this LED is 481 min.
It is evident fromTable 3that with time the predictions become more aateuas more data is used in
the caluclation of the mean trends of ED and MD. In this case the results usingakidirda provide

better predictions with time. On the other

fluctuation because the MD is yesensitive to the correlation between the current and temeprature

data used to calculate the MD.

hand, the predictions based on the MD psoduze
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Figure 17.MD history and the MD failure limit for LED test data in the Figure 13.
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Table 3. Time-to-Failure (TTF) estimation from ED and MD parameters.

Time at which TTF Failure Time from  Failure Time from True Failure
prediction is made (min) ED (min) MD (min) Time (min)
300 434 373 481
350 458 425 481
400 473 457 481
450 484 475 481

Data collectedrom 7 LEDs are used to find the threshold value and establish the relationship
between ERa.xand Flep, and MDyax and Flyp. EDvax and MDyax are calculated for specific LED
based on current and temperature sensor readings.afd FlLyp are calculated from thestablished
relationships between K[k and Flep, and MDyax and FlLyp, and calculated Efax and MDyax.
Obtained different values for Efa, MDwmax, FLep and Flyp indicate how differently same type of
LED perform under the same accelerated conditions. Thiedause of the individual characteristics
of the LEDs. ERaxand MDyaxare used to detect the start of degradation in the light outpgs.afd
FLuvp are used to detect the 30% reduction in the light output power. Reliability of thisaelppran
be improved by undertaking more tests, incorporating the data collected from testbtisle better
relationship between the maximum values (gEand MDyay) and failure limits (Fkp and Flyp) and
establishing more reliable value for threshold value.

10.Conclusions

This papeias discussedata driven PHM approach for reahe health monitoring angrognostics
of high powerLEDs usingtemperature and curredatafrom sensorsThe result$rom theundertaken
experiments show thalata drivertechniquesdr PHM can be used to detect accurately when unusual
changes in the expected performanfan LED start to take plageandcan successfullprovide an
early warningif light output degrades and approacties failurelimit. In addition to the diagnostics
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capabilities of the data driven approach, this paper also demonstrated hraningmseful life of an

LED can be predicted-heaccuracy of th@rognosticxalculationamprove with time as more dato

perform the sequential estimation of the ED and Midds becomes available.addition, embedding

the temperature sensors very close to the junction will improve the temperature measurement in all
situations hence the approach will become more accurage.ED technique is found to be more
suitable for tis application as it involves less mathematical operations and require less computational
time compared to the MD techniquéhe undertaken tests have indicated that the ED curves are
generally less sensitive to noise in the monitored parameters and when tesbreoridit, applied
voltage) change.

Further study is required to generalize this result for harsh operating conditiecis are not
considered in this work such as high and low room temperatures which will #fiecboard
temperatureetc. This will require controlling the current and temperature independently. Further
experiments are also necessaryintegrate other parameters which affect the LED life, into a
generalized approach of LED health monitoring under harsh operating conditions.

Studieddata driven prognostics algorithms can be implemented in any LED lighting sysleng
with the LED driver to monitor the reliability and report tiek of failure in advance. Future research
in this realtime data driven prognostics systems faltus on the developmeahd deploymentf an
intelligent LED driver tomonitor andimprove the remaining usefdife of LEDs. Embedding
temperaturend currensensors int@n LED package will make th implementation possible andll
also make the temperature measurement more accurate.

Future work will focus also on improving the accuracy of studied data driven approach, fpieexam
by including appropriate physiesf-failure (PoF)models Future research in these rtale PHM
systems will aim at thdevelopment ohybrid or fusion approactor reattime health monitoring and
prognosticof LEDs. This can be accomplished imgegrating thenodelingof temperature and current
profiles using pn junction characteristicnodelswith sensor data on LE[Paraneters The main
challenge here will be to develop fast PoOF models that can run in real time andlél wéhathe data
driven computations.A specific topic that requires further studies is the failure related to
discolouratiorof the LED die or LED ecapsulate.

The data driven PHNdresented in this paper cha appliedo other semiconductor deviceach as
microprocessorto monitor the realime health and do the prognostics by embedding suitable sensors
(i.e., temperature, accelerometeibration, humidityetc) into those semiconductor devices. This will
allow the semiconductor devices to have embedded health and usage monitoring capaidlitie
execute thesm reattime.
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