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Abstract Let K be a field of characteristic p and let G be a finite group of order divisible by p. The
regularity conjecture states that the Castelnuovo–Mumford regularity of the cohomology ring H∗(G, K)
is always equal to 0. We prove that if the regularity conjecture holds for a finite group H, then it holds for
the wreath product H � Z/p. As a corollary, we prove the regularity conjecture for the symmetric groups
Σn. The significance of this is that it is the first set of examples for which the regularity conjecture has
been checked, where the difference between the Krull dimension and the depth of the cohomology ring
is large. If this difference is at most 2, the regularity conjecture is already known to hold by previous
work.

For more general wreath products, we have not managed to prove the regularity conjecture. Instead
we prove a weaker statement: namely, that the dimensions of the cohomology groups are polynomial on
residue classes (PORC) in the sense of Higman.
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1. Introduction

Let K be a field of characteristic p and let G be a finite group. Then the regularity
conjecture [2,3] states that the Castelnuovo–Mumford regularity of the cohomology ring
Reg H∗(G, K) is always equal to 0. Briefly, the definitions are as follows. We write m for
the maximal ideal of positive-degree elements in H∗(G, K). If M is a graded H∗(G, K)-
module, we define ΓmM to be the m-torsion in M : namely, {x ∈ M | ∃n > 0, mnx = 0}.
Then Γm is left exact but not right exact, and its right-derived functors give the local
cohomology of M and are written Hi

mM . Since there is also an internal grading, we write
Hi,j

m M for the jth graded piece. We define ai
m(M) = max{j ∈ Z | Hi,j

m M �= 0} (±∞ is
allowed) and the Castelnuovo–Mumford regularity is Reg M = max{ai

mM + i}. This is a
measure of how far you have to go along a resolution before ‘regular behaviour’ sets in.

There are various motivations for studying regularity of cohomology rings. One is that
it gives a priori bounds for how much of a projective resolution you have to compute
before you can be sure that you have all the generators and relations in the cohomology
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ring (see Theorem 10.1 of [3] for further details). Another motivation is that it gives more
precise information about the duality developed by Benson and Carlson [4]. In terms of
the definitions of that paper, a regularity of zero ensures that the ‘last survivor’ really is
last. A further consequence of the regularity conjecture is that regular behaviour for the
dimensions of the cohomology groups dimK Hn(G, K) begins straight away, as we prove
in Theorem 5.5.

In Theorem 1.5 of [3] it was proved that, as long as the Krull dimension and the
depth of H∗(G, K) differ by at most two, the regularity conjecture holds. Unfortunately,
the vast majority of the examples for which the regularity conjecture has been checked
satisfy this bound; for example, this is the case for all 2-groups of order at most 64 [5]
as well as various other classes of finite groups studied in [11, 13, 17, 20]. So to gain
more confidence in the conjecture, it is desirable to check families of examples where the
difference is greater than 2.

One good way of producing examples where the difference between the Krull dimension
and the depth is large is to look at wreath products. The goal of this article is to provide
further evidence for the regularity conjecture by examining wreath products. In particu-
lar, we shall prove that the conjecture holds for the cohomology of the finite symmetric
groups, where the difference between the Krull dimension and the depth is arbitrarily
large. This follows from Quillen’s stratification theorem [18,19]: Σpn has p-rank pn−1,
so this is the Krull dimension; but there is also a conjugacy class of elementary abelian
p-subgroups of rank n, so that the depth is at most n.

Let H be a finite group and consider the wreath product

H � Z/p = Hp
� Z/p.

Our main theorem is the following, the proof of which can be found in § 3.

Theorem 1.1. Suppose that Reg H∗(H, K) = 0. Then Reg H∗(H � Z/p, K) = 0.

Our proof involves using the structure of the cohomology of wreath products, as
described in Nakaoka [15]. Using the fact that the Sylow p-subgroups of Σn are direct
products of wreath products, we obtain the following corollary.

Corollary 1.2. If Σn � G � Sylp(Σn), then Reg H∗(G, K) = 0.

The corollary is obtained in § 3, where we also treat the alternating groups A2n in
characteristic 2.

For more general wreath products, similar techniques probably work. But the tech-
nical details become much harder. Instead, we show that a numerical consequence of
regularity does hold for more general wreath products. Namely, in Theorem 5.5 we
show that one consequence of the regularity conjecture is that the dimension function
i �→ dimK Hi(G, K) is a polynomial on residue classes (PORC) function in the sense of
Higman [12].

Theorem 1.3. If |G| is divisible by the characteristic of K and if Reg H∗(G, K) = 0,
then there exist an integer d and polynomials f0, . . . , fd−1 such that, for all i � 0,
dimK Hi(G, K) = fj(i), where j is the remainder on dividing i by d.
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The fact that this regular behaviour occurs for large enough i is a simple consequence
of finite generation. The interesting consequence of the regularity conjecture is that the
eventual behaviour begins straight away. We prove the following theorem in § 5.

Theorem 1.4. Let K be a field of characteristic p. Let H be a finite group and let
G be a permutation group on a finite set Ω. Let H � G be the wreath product, where G

permutes a product of copies of H indexed by Ω. Suppose that p divides the order of
H, the function i �→ Hi(H, K) is PORC, and that for every subgroup J of G of order
divisible by p the function i �→ Hi(J, K) is PORC. Then the function i �→ Hi(H � G, K)
is PORC.

2. Castelnuovo–Mumford regularity

Let R =
⊕

j�0 Rj be a Noetherian graded commutative K-algebra. Here graded commu-
tative means that for homogeneous elements x and y we have yx = (−1)|x| |y|xy, where
|x| denotes the degree of x. We shall assume that R is connected, meaning that R0 = K.
For example, these conditions hold in the case where R is the cohomology ring of a finite
group: R = H∗(G, K). Let m be the maximal ideal spanned by the homogeneous ele-
ments of positive degree, m =

⊕
j>0 Rj . If M is a graded R-module (we allow positive

and negative grading), then the local cohomology is doubly graded: Hi,j
m M . The first

grading is the local cohomological degree and the second is the internal degree coming
from the grading on R and M . We define the a-invariants of M to be

ai
m(M) = max{j ∈ Z | Hi,j

m M �= 0},

ai
m(M) = −∞ if Hi,j

m M = 0 for all j and ai
m(M) = ∞ if Hi,j

m M �= 0 for arbitrarily
large values of j. Note that ai

m(M) = −∞ unless i lies between the depth and the Krull
dimension of M , by a theorem of Grothendieck.

The Castelnuovo–Mumford regularity is defined to be

Reg M = max
i�0

{ai
m(M) + i}.

See § 4 of [3] for further details, and § 20.5 of [9] for the history and geometric significance
of this definition for strictly commutative K-algebras whose generators have degree equal
to 1. See also [14] for a more general context for this definition, and [7] for a closely related
definition. The significance of regularity in group cohomology is the following conjecture
from [2,3].

Conjecture 2.1. Let G be a finite group. Then Reg H∗(G, K) = 0.

We mention that it is proved in Theorem 4.2 of [3] that the inequality

Reg H∗(G, K) � 0 (2.1)

holds.
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Regularity can be reformulated in terms of free resolutions as follows. Let ζ1, . . . , ζr be
a filter regular homogeneous system of parameters in R, and let

0 → Fr → · · · → F1 → F0 → M → 0

be a minimal free resolution of M over the polynomial ring K[ζ1, . . . , ζr]. Define βR
i (M)

to be the largest degree of a generator of Fi as an R-module (or βR
i (M) = −∞ if Fi = 0).

Then it is proved in Corollary 5.7 of [3] that

Reg M = max
i�0

{βR
i (M) − i} −

r∑
j=1

(|ζj | − 1). (2.2)

In particular, if M is finitely generated, then Reg M is finite, and hence the ai
m(M) are

either finite or equal to −∞.
In order to prove the main theorem, we begin with some general properties of regularity.

Proposition 2.2. Suppose that

0 → M1 → M2 → M3 → 0

is a short exact sequence of R-modules. Then we have

Reg M2 � max{Reg M1, Reg M3}.

If Reg M1 � Reg M3, then Reg M2 = Reg M3.

Proof. This follows from the long exact sequence in local cohomology:

· · · → Hi,j
m (M1) → Hi,j

m (M2) → Hi,j
m (M3) → Hi+1,j

m (M1) → · · · .

If Reg M1 � Reg M3, choose i and j so that i + j = Reg M3 and Hi,j
m (M3) �= 0. Then

Hi+1,j
m (M1) = 0 and so Hi,j

m (M2) �= 0. �

Corollary 2.3. Suppose that

M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = {0}

is a filtration of an R-module M . Then

Reg M � max
0�i<n

{Reg Mi/Mi+1}.

If for 0 < i < n we have Reg Mi/Mi+1 � Reg M0/M1, then Reg M = Reg M0/M1.

Proof. This follows from Proposition 2.2 and induction on n. �

Proposition 2.4. If R1 and R2 are graded K-algebras satisfying the hypotheses of this
section, with graded modules M1 and M2, respectively, then we may regard M1 ⊗K M2

as an R1 ⊗K R2-module, and its regularity is

Reg(M1 ⊗K M2) = Reg M1 + Reg M2.
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Proof. If ζ1, . . . , ζr is a homogeneous system of parameters for R1 and η1, . . . , ηs is
one for R2, then

ζ1 ⊗ 1, . . . , ζr ⊗ 1, 1 ⊗ η1, . . . , 1 ⊗ ηs (2.3)

is a homogeneous system of parameters for R1 ⊗K R2. If F∗ and F ′
∗ are minimal free

resolutions of M1 and M2 over the respective polynomial subrings of R1 and R2, then
F∗⊗K F ′

∗ is a minimal free resolution of M1⊗K M2 over the polynomial subring generated
by the parameters (2.3). It follows that

βR1⊗R2
i (M1 ⊗ M2) = max

j+k=i
{βR1

j (M1) + βR2
k (M2)}

and so

βR1⊗R2
i (M1 ⊗ M2) − i = max

j+k=i
{(βR1

j (M1) − j) + (βR2
k (M2) − k)}.

Now use the formula (2.2) for regularity. �

Next, we write R[p] for the graded ring whose homogeneous elements are symbols x[p]

with x a homogeneous element of R, and with |x[p]| = p|x|. Since (−1)(p|x|)(p|y|) is equal
to (−1)|x| |y| in K (check separately for p = 2 and p odd), R[p] is again a Noetherian
graded commutative K-algebra. Similarly, if M is a graded R-module, we write M [p] for
the corresponding graded R[p]-module with homogeneous elements m[p].

Proposition 2.5. We have

p Reg M − (p − 1) Dim(M) � Reg M [p] � p Reg M − (p − 1) Depth(M).

Proof. Let d be the depth of M and let s be its Krull dimension. We have

ai
m(M [p]) = pai

m(M),

and so

Reg M [p] = max
d�i�s

{p · ai
m(M) + i} = max

d�i�s
{p(ai

m(M) + i) − (p − 1)i}.

�

3. Proof of the main theorem

It was proved by Nakaoka (see Theorem 3.3 of [15]; see also the end of § 4.1 of [1]) that
there is a ring isomorphism

H∗(H � Z/p, K) ∼= H∗(Z/p, H∗(Hp, K)).

We write t for the generator of Z/p, and we use multiplicative notation, so that Z/p =
〈t | tp = 1〉.

As a representation of Z/p, H∗(Hp, K) ∼= H∗(H, K)⊗p decomposes as a direct sum of
two pieces. One piece is spanned by the elements x ⊗ · · · ⊗ x, as x runs over a vector
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space basis of H∗(H, K), with trivial Z/p-action; the other piece is spanned by tensors
involving more than one basis element, and the Z/p-action on this summand is free.
Notice that this decomposition depends on a choice of homogeneous basis for H∗(H, K),
and is therefore not canonical.

Let T ⊆ H∗(H � Z/p, K) be the image of the transfer from H∗(Hp, K). Then T lies
inside H0(Z/p, H∗(Hp, K)) = H∗(Hp, K)Z/p and consists of the invariants in the free
summand described in the previous paragraph. Furthermore,

H∗(H � Z/p, K)/T ∼= H∗(Z/p, K) ⊗ H∗(H, K)[p], (3.1)

where [p] indicates, as in § 2, that the degrees have been multiplied by a factor of p.
The elements of H∗(H, K)[p] in this isomorphism are spanned by the images x[p] of the
elements x ⊗ · · · ⊗ x.

We regard everything in sight as a module over H∗(H � Z/p, K) for the purpose of
computing regularity. We may compute regularity by means of the following proposition.

Proposition 3.1. Let H be a subgroup of a finite group G. Then the regularity of
an H∗(H, K)-module is the same whether regarded as an H∗(H, K)-module or as an
H∗(G, K)-module via restriction.

Proof. By a theorem of Evens [10], H∗(H, K) is finitely generated as a module over
H∗(G, K) via the restriction map. So if M is an H∗(H, K)-module, then the local cohom-
ology of M is the same whether computed as an H∗(H, K)-module or as an H∗(G, K)-
module. �

Lemma 3.2. We have

Reg H∗(H � Z/p, K)/T = Reg H∗(H, K)[p] � p · Reg H∗(H, K) − p + 1.

Proof. The equality follows from the isomorphism (3.1) and Proposition 2.4. The
depth of H∗(H, K) is at least 1 by a theorem of Duflot [8], so the inequality follows from
Proposition 2.5. �

Lemma 3.3. As an H∗(H � Z/p, K)-module, H∗(H, K)⊗p has a filtration with p + 1
filtered quotients, which consist of p−1 copies of T followed by one copy of H∗(H, K)[p],
and finally another copy of T .

Proof. Since the image of the restriction map H∗(H � Z/p, K) → H∗(H, K)⊗p con-
sists of Z/p-invariants, we have commuting actions of H∗(H � Z/p, K) and KZ/p on
H∗(H, K)⊗p. Consider the action of (1 − t) ∈ KZ/p. As mentioned above, H∗(H, K)⊗p

has only trivial and free summands as a KZ/p-module. So we have a filtration of
H∗(H � Z/p, K)-modules

H∗(H, K)⊗p ⊇ Ker(1 − t)p−1 ⊇ Ker(1 − t)p−2 ⊇ · · ·
· · · ⊇ Ker(1 − t)2 ⊇ Ker(1 − t) ⊇ Im(1 − t)p−1 ⊇ 0.
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All except one of these filtered quotients come from the free summand and are isomorphic
to T . The remaining filtered quotient,

Ker(1 − t)/ Im(1 − t)p−1,

is isomorphic to the trivial KZ/p-summand, namely to H∗(H, K)[p].
We remark that by switching from kernels to images earlier in the filtration, the copy

of H∗(H, K)[p] as a filtered quotient may be placed anywhere except at the beginning or
the end. �

Proposition 3.4. If Reg H∗(H, K) = 0, then as an H∗(H � Z/p, K)-module we have
Reg T = 0.

Proof. By Lemma 3.2, we have Reg H∗(H, K)[p] < 0, and by Proposition 2.4 we have
Reg H∗(H, K)⊗p = 0. Applying Corollary 2.3 to the filtration of H∗(H, K)⊗p described
in Lemma 3.3, we deduce that Reg T = 0. �

Proof of Theorem 1.1. If Reg H∗(H, K) = 0, then by Lemma 3.2 we have

Reg H∗(H � Z/p, K)/T < 0,

and by Proposition 3.4 we have Reg T = 0. It follows from Proposition 2.2 that
Reg H∗(H � Z/p, K) � 0. Combining this with the inequality (2.1), this completes the
proof of Theorem 1.1. �

4. Examples

The most obvious example where we can apply our main theorem is the Sylow p-sub-
groups of the symmetric groups. These are direct products of iterated wreath products
Z/p � Z/p � · · · � Z/p, and so by Theorem 1.1 and Proposition 2.4 the cohomology in
characteristic p of these Sylow p-subgroups satisfies the regularity conjecture. To complete
the proof of Corollary 1.2 we apply the following proposition.

Proposition 4.1. Let K be a field of characteristic p and let S be a Sylow p-
subgroup of a finite group G. Then Reg H∗(G, K) � Reg H∗(S, K). In particular, if
Reg H∗(S, K) = 0, then Reg H∗(G, K) = 0.

Proof. A standard argument using the transfer map (see, for example, § XII.10 of [6])
shows that H∗(G, K) is a direct summand of H∗(S, K) as an H∗(G, K)-module via the
restriction map. Combining this with Proposition 3.1 proves the first statement. For the
second statement, we use the inequality (2.1). �

There are other interesting finite groups whose Sylow p-subgroups are direct products
of iterated wreath products in a similar manner. For example, if G = GLn(Fq) with q

coprime to p, then the Sylow p-subgroups of G have this form (except in certain cases
when p = 2). However, for these groups the computations of Quillen [20] show that
H∗(G, K) is Cohen–Macaulay, so that the regularity conjecture holds (for example by
Theorem 1.5 of [3]).

A more interesting class of examples is the alternating groups in characteristic 2.
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Proposition 4.2. The Sylow 2-subgroups of A2n are of the form

Z/2 � Z/2 � · · · � Z/2 � (Z/2 × Z/2).

Proof. This interesting and subtle fact was communicated to me by Mark Feshbach.
The proof can be found in a paper of Wong [22]. The essential observation is that if S

is a Sylow 2-subgroup of A2m, then V m
� S is a Sylow 2-subgroup of A4m. Here, V is

a Klein four group acting regularly on four points, and each pair of points permuted by
S is replaced by a copy of V with an outer automorphism of order 2. As an abstract
group, V m

�S is isomorphic to Z/2 �S. This is an example of Neumann’s twisted wreath
products [16]. �

So an analysis of the case of A2n involves understanding wreath products with Z/2 ×
Z/2.

Theorem 4.3. Let K be a field of characteristic 2. If Reg H∗(H, K) = 0, then
Reg H∗(H � (Z/2 × Z/2), K) = 0.

Proof. We can mimic the proof for the wreath product of H with Z/p as follows.
Let V = Z/2 × Z/2 = {1, a, b, c}. Let T1 be the image of transfer from H∗(H4, K) to
H∗(H � V, K). Then T1 lies inside H0(V, H∗(H4, K)), namely inside the invariants of V on
H∗(H, K)⊗4. We write T2 for the image of transfer from H∗(H2, K) to H∗(H � Z/2, K), so
that there is a direct sum of three copies of H∗(Z/2, K) ⊗ T

[2]
2 inside H∗(H � V, K)/T1,

one for each subgroup of order 2 in V . These three copies of T
[2]
2 can be seen as the

subspace of H∗(H, K)⊗4 spanned by elements like x ⊗ x ⊗ y ⊗ y, where the tensor
factors occur in two pairs. Finally, the quotient of H∗(H � V, K)/T by these summands
is isomorphic to H∗(V, K) ⊗ H∗(H, K)[4]. We shall show that each of these pieces has
regularity less than or equal to 0.

We filter H∗(H, K)⊗4 in such a way that the filtered quotients consist of four copies
of T1, two copies of T

[2]
2 for each of the three subgroups of V of order 2, and one copy of

H∗(H, K)[4]. The top and bottom filtered quotients are copies of T1. By Proposition 3.4,
we have Reg T2 = 0, and so by Proposition 2.5 we have Reg T

[2]
2 < 0. Also by Proposi-

tion 2.5 we have Reg H∗(H, k)[4] < 0. Since Reg H∗(H, K)⊗4 = 0 by Proposition 2.4, it
follows from Corollary 2.3 that Reg T1 = 0.

Again applying Proposition 2.4, we have

Reg H∗(Z/2, K) ⊗ T
[2]
2 < 0 and Reg H∗(V, K) ⊗ H∗(H, K)[4] < 0.

Finally, we apply Corollary 2.3 to the filtration described in the first part of the proof
to deduce that H∗(H � V, K) has regularity less than or equal to 0. Combining this with
the inequality (2.1) completes the proof of the theorem. �

The same method of proof presumably works for a wreath product with any p-group,
but it seems hard to set up the details of the filtrations.

Corollary 4.4. Let K be a field of characteristic 2. If A2n � G � Syl2(A2n), then
Reg H∗(G, K) = 0.
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5. PORC functions

A function i �→ ci from non-negative integers to integers is said to be PORC if there
exists a positive integer d (the modulus) and polynomials f0, . . . , fd−1 such that for all
i � 0 we have ci = fj(i), where j is the unique integer satisfying 0 � j < d and j ≡ i

(mod d). The function i �→ ci is said to be almost PORC if this condition holds for all
large enough i.

It is well known that a function is almost PORC if and only if the Poincaré series
f(t) =

∑∞
i=0 cit

i is the power series expansion of a rational function of the form

f(t) =
p(t)∏r

i=1(1 − tni)
(5.1)

where p(t) is a polynomial with integer coefficients and where n1, . . . , nr are positive
integers. The modulus d can be taken to be any positive number divisible by all the ni.
So f(t) could be rewritten in the form p(t)/(1 − td)r by multiplying the numerator and
denominator of the rational function (5.1) by suitable polynomials.

Example 5.1. The Poincaré series of the cohomology of an elementary abelian p-group
E of rank r is given by ∑

i�0

dimK Hi(E, K) =
1

(1 − t)r
.

The coefficients are PORC if and only if r > 0.

The following lemma summarizes some obvious properties of PORC functions.

Lemma 5.2. The set of Poincaré series of PORC functions is closed under the follow-
ing operations:

(i) addition and subtraction,

(ii) multiplication,

(iii) multiplication by integers (non-zero constant functions are not PORC, so this is
not a special case of (ii)),

(iv) division by t if c0 = 0 (but not multiplication by t),

(v) division by a non-zero integer, if each of the ci is divisible by that integer,

(vi) replacing t by tn for some positive integer n.

Theorem 5.3. Let

f(t) =
∞∑

i=0

cit
i =

p(t)∏r
i=1(1 − tni)

be the Poincaré series of an almost PORC function i �→ ci. Then the function i �→ ci is
PORC if and only if the degree of p(t) is strictly less than

∑r
i=1 ni.

Proof. The hypothesis is unchanged if we multiply the top and bottom of the rational
function by a suitable polynomial so that all the ni are equal, say ni = d.
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First we suppose that deg p(t) <
∑r

i=1 ni, and we will prove that i �→ ci is PORC.
Since Z-linear combinations of PORC functions are PORC by (i) and (iii) of Lemma 5.2,
it suffices to treat the case where p(t) = tj for some j < dr. So f(t) takes the form

f(t) =
tj

(1 − td)r
= tj

∞∑
i=0

(
i + r − 1

i

)
tid =

∞∑
i=0

(
i + r − 1

r − 1

)
tj+id.

Since j < dr, for values of i with j + id � 0, we have i + r > 0. So the binomial
coefficient

(
i+r−1
r−1

)
makes sense and is a polynomial function of i that takes the value 0

for −r < i < 0.
Conversely, suppose that f(t) is the Poincaré series of a PORC function i �→ ci. If

deg p(t) � dr, then using the fact that tj/(1−td)r is PORC for j < dr, we may repeatedly
add PORC functions and divide by t (using parts (i) and (iv) of Lemma 5.2) until only
the term of highest degree remains, and p(t) is a non-zero multiple of

tdr/(1 − td)r = tdr
∞∑

i=0

(
i + r − 1

r − 1

)
tid =

∞∑
k=r

(
k − 1
r − 1

)
tkd.

The polynomial
(
k−1
r−1

)
takes value (−1)r−1 at k = 0, which does not agree with the value of

c0, contradicting the statement that f(t) is PORC. So we conclude that deg p(t) < dr. �

Proposition 5.4. Let K be a field, and suppose that R =
⊕

i�0 Ri is a connected
graded commutative Noetherian K-algebra (see the comments at the beginning of § 2).
Let M =

⊕
i�0 Mi be a finitely generated non-negatively graded R-module. Then i �→

ci = dimK Mi is a PORC function provided that the a-invariants satisfy ai
m(M) < 0 for

all i � 0.

Proof. Let ζ1, . . . , ζr be a homogeneous system of parameters in R with deg ζi = ni

and set S = K[ζ1, . . . , ζr]. Using Theorem 5.5 of [3], if ai
m(M) < 0 for all i � 0, then

βS
i (M) <

∑r
j=1 nj for all i � 0. Let

0 → Fr → · · · → F0 → M → 0

be the minimal free resolution of M . The Poincaré series of each Fj has the form

polynomial of degree less than
∑r

i=1 ni∏r
i=1(1 − xni)

.

The Poincaré series for M is the alternating sum of those for the Fi, so it has the same
form. Now apply Theorem 5.3. �

Theorem 5.5. Let G be a finite group and let K be a field of characteristic p dividing
|G|. Among the following statements, we have the implications (a) ⇒ (b) ⇒ (c):

(a) Reg H∗(G, K) = 0;

(b) for all i � 0 we have ai
mH∗(G, K) < 0;

(c) the function i �→ dimK Hi(G, K) is a PORC function.
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Proof. By a theorem of Duflot [8], since p divides |G|, the depth of H∗(G, K) is
at least 1. So a0

mH∗(G, K) = −∞. Condition (a) states that ai
mH∗(G, K) � −i for all

i � 0, so it follows that (a) implies (b). The statement that (b) implies (c) is contained
in Proposition 5.4. �

Remark 5.6. It is shown in Corollary 4.7 of [3] that condition (b) in Theorem 5.5
is equivalent to the existence of a quasi-regular sequence in H∗(G, K) in the sense of
Benson and Carlson [4].

Proof of Theorem 1.4. Using Nakaoka’s formula [15] for the cohomology of the
wreath product, and some counting arguments of Burnside, Webb [21, Theorem 3.1]
gives the following formula for the Poincaré series of the cohomology of the wreath
product: ∑

i�0

ti dimK Hi(H � G, K) =
1

|G|
∑

J′�J

µ(J ′, J)|J ′|gJ′(t)fJ(t). (5.2)

Here, the sum ranges over all pairs of subgroups J ′ ⊆ J of G. For each subgroup J

of G, fJ(t) denotes f(t|Ω1|) · · · f(t|Ωn|), where f(t) =
∑

i�0 ti dimK Hi(H, K) and where
Ω = Ω1 ∪ · · · ∪ Ωn is the decomposition of Ω into orbits of J . The function gJ(t) is the
Poincaré series

∑
i�0 ti dimK Hi(J, K).

It follows from Theorem 5.5 and parts (ii) and (vi) of Lemma 5.2 that the functions
fJ(t) have PORC coefficients. We divide the terms in the sum (5.2) into two types. The
terms where |J | is not divisible by p have PORC coefficients by part (iii) of Lemma 5.2,
whereas for the terms where |J | is divisible by p we need to use parts (ii) and (iii) of the
lemma. Finally, the quotient by |G| has PORC coefficients by part (v) of the lemma. �
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