
ar
X

iv
:h

ep
-p

h/
99

02
41

8v
1 

 2
1 

Fe
b 

19
99

EPTCO-99-001

Single-Spin Asymmetries

for Small-Angle Pion Production

in High-Energy Hadron Collisions

(submitted to Eur. Phys. J C)

Azad Ahmedov1,∗, Igor V. Akushevich2,†,
Eduard A. Kuraev1,‡ and Philip G. Ratcliffe3,§

1 Joint Inst. for Nuclear Research, 141980, Dubna, Moscow region, Russia
2 Nat. Center of Particle and High Energy Physics, Bogdanovich Str. 153,

220040 Minsk, Belarus
3 Dip. di Scienze CC.FF.MM., Univ. degli Studi dell’Insubria, via Lucini 3,

22100 Como, Italy and Ist. Naz. di Fisica Nucleare—sezione di Milano

February 1999

Abstract

Within the framework of a simple model, we study single-spin
asymmetries for pion production in hadron-hadron collisions at high-
energies with one hadron polarised. The asymmetries are generated
via a mechanism of final (initial) state interactions. For peripheral
kinematics, when the pion belongs to the fragmentation region of the
polarised proton, we find non-zero asymmetries in the high-energy
limit. Numerical results and comparision with existing experimental
data are presented. We also discuss the relationship with odderon
exchange phenomenology.
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1 Introduction

Single-spin correlations have been the subject of theoretical [1–15] and ex-
perimental [16–20] study since the seventies. Earlier theoretical work paid
attention mainly to time-reversal invariance violation in hadron-scattering
processes. No such effect was found whereas C-odd single-spin correlation
asymmetries had been observed at the level of ∼10% in SLAC experiments
with 10–12GeV electrons and positrons scattering off polarised protons, with,
however, large error bars and later in Fermilab experiments at higher ener-
gies. The capabilities of modern CERN and DESY experiments permit the
reduction of these errors due to much improved statistics. We argue here
that, at small momentum transfer, large effects may be understood in the
framework of pomeron and odderon exchange models and may thus provide
an independent method of studying the characteristics of such exchanges in
high-energy pheripheral hadron scattering.

The appearance of single-spin correlations and associated asymmetries in
differential cross-sections is due to a quantum effect of interference between
real and imaginary parts of different amplitudes. In phenomenological ap-
proaches, the amplitudes have been used in a Breit-Wigner form and the
asymmetries turn out to be proportional to the width-to-mass ratio of the
resonance [4, 5]. For the case of polarised proton-proton collisions, with the
production of pions through some intermediate nucleon resonance state in
peripheral kinematics (PK), the asymmetry may be as large as 20–40% [6].
Another mechanism for the generation of imaginary parts in scattering am-
plitudes is due to initial- or final-state interactions. In lowest-order pertur-
bation theory such contributions can arise from the interference between the
Born amplitude and one-loop amplitudes with a non-zero s-channel imagi-
nary part [1].

A similar phenomena has been found for the case of large-angle produc-
tion: for the kinematics of large pT and large xF of the detected hadron,
single-spin asymmetries are generated by twist-3 parton correlation func-
tions constructed from quark and gluon fields. For this case, the theoretical
approach within the framework of perturbative QCD has been recently dis-
cussed by several authors [2, 3, 7, 14, 15].

Here we consider peripheral kinematics, when the unpolarised proton
produces a jet moving along the initial direction of motion, which is then
not detected, whereas the jet produced by the polarised proton contains a
detected pion. The asymmetry originates from a term iǫp1p2la = i

2
s[l ∧ a]z,

where p1 and p2 are the 4-momenta of the initial protons, l is the momentum
of the pion in the center-of mass system (CMS) and a is the spin 4-vector
of the proton with momentum p2, which is essentially a 2-component vector
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located in the plane transverse to the beam axis (z-direction of the initial-
state proton with momentum p1), and s = 4E2 is the square of the total
CMS energy.

For high enough energies, the description in terms of Regge trajectories
is more convenient since, for small enough momentum transfer, the contribu-
tion of operators of all twists will be of the same order of magnitude. Here the
even (spin-independent) part of the differential cross-section is determined by
Pomeron exchange, whereas the spin-dependent part, arising from interfer-
ence between one- and two-gluon exchange amplitudes, should be described
by the odderon trajectory. Note that quark exchange in the t-channel only
gives a small contribution, suppressed by a factor of m2/s, where m is the
proton mass. Thus, the study of single-spin asymmetries in PK may pro-
vide information on the odderon intercept. In this paper, using a QED-like
framework, with the point-like hadrons, we calculate the asymmetry, defined
as follows:

A =
dσ(a, l)− dσ(−a, l)

dσ(a, l) + dσ(−a, l)
(1)

= αQED
(a ∧ l)z

m
A(r, x), (2)

where αQED = 1/137 is the QED coupling constant and the resolving power,
A(r, x), is a function of r = l⊥/m (the transverse momentum of pion in units
of the proton mass, m) and x = 2l0/

√
s (its energy fraction, x ∼ O(1)).

We shall show that A(r, x) is a smooth rising function of x of order unity.
Thus, naively replacing the QED coupling constant by that of QCD or by the
pomeron or odderon coupling with the proton, we find that the asymmetry
may be large for large enough values of l⊥, in qualitative agreement with
experimental data [16–18, 20].

The paper is organised as follows. In Section 2 we calculate the expres-
sions for the squared matrix elements summed over spin states for processes
of neutral- and charged-pion production in the framework of our QED-like
approach. The corresponding charge-odd interferences for these channels are
considered in Section 3, where first we obtain the expressions for asymmetries
in an exclusive set-up (when both the nucleon and pion from the jet devel-
oping along the direction of polarised proton are fixed in the experiment)
and then the ratio of odd and even parts of the cross-section averaged over
final proton momenta are estimated. In conclusion, we discuss the situation
when a hadron is detected in the opposite direction and also discuss the
role of higher-order perturbation theory contributions and the relationship
to odderon exchange.
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2 Calculation of the Cross-Section

Consider first the process

P (p1) + P (p2) → P (p′1) + P (p′2) + π0(l), (3)

for which the relevant Born-approximation diagrams are show in fig. 1. We

p1

p2

p′1

p′2

l

q

k1

p1

p2

p′1

p′2

l

q

k2

Figure 1: The amplitudes for the process pp → ppπ (a) in the Born approx-
imation; the proton with momentum p2 is polarised.

shall use the Sudakov expansion for the momenta of the problem, introducing
the almost light-like vectors

p̃µ1 = pµ1 −
m2

s
pµ2 ,

p̃µ2 = pµ2 −
m2

s
pµ1 . (4)

With these we define the following parametrisation of the momenta in
the problem:

qµ = pµ1 − p
′µ
1 = αp̃µ2 + βp̃µ1 + qµ

⊥
,

p
′µ
2 = (1− x)p̃µ2 + β ′p̃µ1 + pµ

⊥
,

lµ = xp̃µ2 + βlp̃
µ
1 + lµ

⊥
,

qµ
⊥

= pµ
⊥
+ lµ

⊥
, (5)

The transverse parts, v⊥, obey

v⊥·p1 = 0 = v⊥·p2,
v2
⊥

= −v2 < 0. (6)

We have also used the specific properties of PK: the sum of energy fractions
of pion and proton from the jet moving along initial polarised proton is equal
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to unity, x ∼ O(1); moreover, the reality conditions for final particles permits
the neglect of the “small” components of momenta:

sβ ′ =
m2 + p2

2

1− x
, (7)

sβl =
l2

x
. (8)

Here and in what follows we neglect the pion mass squared compared
to that of the proton. The intermediate fermion denominators in the Born
graphs (see Fig. 1) are then given by

d1 = k2
1 −m2 ≃ m2x2 + (xq− l)2

x(1 − x)
, (9)

d2 = k2
2 −m2 ≃ −m2x2 + l2

x
. (10)

Note that k2
1 is just the invariant-mass squared of the jet moving along p2.

We shall show that the dominant contribution arises when this quantity is
of the order of some nucleon mass squared.

In the Born approximation, the matrix element has the following form:

Mπ0 =
4παg

q2
J (1)
µ (p1)D

µν(q)J (2)
ν (p2), (11)

where α = αQED, g is the pion-nucleon coupling constant and Dµν is the
exchange photon polarisation tensor. The current vectors introduced are

J (1)
µ (p1) = ū(p′1)γµu(p1),

J (2)
ν (p2) = ū(p′2)Oνu(p2), (12)

where

Oν =
1

d1
γ5( 6p′2+ 6 l +m)γν +

1

d2
γν( 6p2− 6 l +m)γ5

= γ5

[

6 lγν
d1

− γν 6 l
d2

]

. (13)

In the last step of (13) we have used the Dirac equation for free protons.
For PK, only the so-called “nonsense” components of the decomposition of
photon polarisation tensor give a non-vanishing contribution in the high-
energy limit:

Dµν = gµν
⊥

+ 2(pµ1p
ν
2 + pν1p

µ
2 )/s

≃ 2pν1p
µ
2/s. (14)
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Further simplifications may be made using the current conservation condi-
tion, q·J (2) = 0, which implies p1·J (2) ≃ −q⊥·J (2)/β.

As a result, the matrix element in the Born approximation becomes

Mπ0 = −8παg

βsq2
ū(p′1) 6p2u(p1) ū(p′2)Ou(p2), (15)

where O = qν
⊥
Oν. Here the exchange denominator is q2 = −(q2 + q2m),

with q2m = m2(s̃/s)2 and s̃ = (m2x + p2
2)/(1 − x) + l2/x. However, in order

to regulate the infrared divergences, we shall use a massive vector-particle
propagator: q2 = −(q2 + µ2). For the modulus squared of the Born matrix
element, summed over spin states, we thus obtain

∑

spins

|Mπ0
|2 = (16πgα)2

s2x2q2

d1(−d2)(q2 + µ2)2
. (16)

Note that here we consider the hadrons as point-like particles and so the
high-frequency contributions are not negligible (unrealistically so). Thus,
although all integrals are in fact convergent, we introduce a form-factor of the
form exp(−bq2), with b ∼ 1GeV−2. As is well known, single-spin correlation
effects are absent in the Born approximation, as a consequence of the reality
of Born amplitudes and the form of the proton spin-density matrix:

u(p2, a)ū(p2, a) = ( 6p2 +m)(1 + γ5 6a),
tr[γ5 6a 6b 6c 6d] = 4iǫabcd. (17)

It is also well known that in the case of elastic small-angle charged-
particle scattering, the Born amplitude acquires a Coulomb phase factor,
exp[iαπ ln(−q2/µ2)], when multiphoton exchange is taken into account. A
similar factor appears in the case of inelastic processes in PK, such as those
we are considering here.

3 Calculation of the Spin Dependence

For the spin-dependent part of the interference between single- and double-
photon exchange amplitudes (see Fig. 2), a calculation similar to that per-
formed above gives

∑

spins

∆|Mπ0
|2 =

211π2α3g2s

s̃2|q|4 ln

(

|q|2
µ2

)

× i

4
tr[−γ5 6aÕ( 6p′2 +m)O( 6p′2 +m) 6p1( 6p2 +m)], (18)
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Figure 2: An example higher-order contribution to the process pp → ppπ,
as considered in the text.

where again O = qν
⊥
Oν . After calculating the trace we obtain, for the exclu-

sive set-up,

A =
∆
∑ |Mπ0

|2
∑ |Mπ0

|2

= 4α ln(q2/µ2)m|a||q| sinφq

[xs̃− 2q · l][xq2 + (1− x)2q · l]
s̃ d2 q2

, (19)

where φq is the azimuthal angle between the transverse 2-vectors a and q.
We note that the asymmetry is finite in the small-q limit.

The differential cross-section in the Born approximation is

dσB

dx dr
=

2αQEDαppπ

m2

r

x(1 + ρ)2

[

ln
(1 + ρ)2

σ
− 1

]

, (20)

where αppπ = g2/(4π) ≈ 3, ρ = r2/x2 and σ = (µ2 + q2m)/M
2. The Born

cross-section is a monotonically rising function of x (∼x3) for small x. It
falls rapidly as 1/l3 for large pion transverse momentum l and reaches the
maximum value for l⊥ ∼ mx/

√
3. The asymmetry in the inclusive set-up,

defined as a ratio of even and odd parts of the cross-section averaged over
transverse momenta, may be written, for small σ, in form:

A =

∫

d2q
∑

∆|M |2
∫

d2q
∑ |M |2 = |a| sinφl

4αQEDR

r
[

ln (1+ρ)2

σ
− 1

] , (21)

with

R = x ln(1 + ρ) ln
1 + ρ

σ

+x(1− x)

[

ρ

2(1 + ρ)
ln2 σ + f1(ρ, x) ln σ + f2(ρ, x)

]

, (22)

where f1,2 are rather flat functions; the complete expression for R is given in
the Appendix. The results of a numerical calculation of the asymmetry in
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the inclusive set-up as a function of l for a various of values of the Feynman
variable, x, and as a function of x for various values of l are presented in Fig. 3.
While the detailed dependence on x and l⊥ is not entirely reproduced, the
general trends are seen to be correct.

(a) (b)

(3) – x=0.65
(2) – x=0.40
(1) – x=0.20

(3)

(2)

(1)

(3) – qc=1.4 GeV

(2) – qc=1.2 GeV

(1) – qc=1.0 GeV

(1)

(2)

(3)

p+ p → π0 +X

[17]
p+ p → π+ +X [18]

p + p → π0 +X [17]
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Figure 3: The model calculations for the asymmetry plotted as a function
of (a) l⊥ and (b) x.

A similar calculation for the case of π+ production in the small-q limit
yields

x2
∑

|Mπ+
|2 = (1− x)2

∑

|Mπ0
|2,

x2
∑

∆|Mπ+
|2 = (1− x)2

∑

∆|Mπ0
|2, (23)

where
∑

∆|M|2 stands for the spin-weighted sum. Thus, the asymmetries
for π+ production roughly coincide with those for the π0 case.

4 Conclusions

We see that asymmetry effects due to single transverse polarisation are not
suppressed in the limit of large total CMS energy,

√
s, in the case when the

produced hadron belongs to the jet of the polarised proton. The overall nor-
malisation depends on the detailed mechanism of vector meson (photon and
gluon) interaction with nucleons and is bound to the choice of the parameters
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α and µ. The naive replacements α → αs and µ → ΛQCD lead to asymme-
tries of the same order as those found experimentally and which grow with
transverse momentum for small values. This behaviour agrees qualitatively
with the existing data [16–18, 20].

It should be noted that in the case when the pion is detected in the di-
rection of the jet moving in the opposite direction (i.e., along p1) the asym-
metry effect will be suppressed in the s → ∞ limit. In fact, information on
the transverse polarisation of proton p2 cannot be transmitted to jet com-
ponents developing from proton p1 unless at least one “sense” component of
the virtual photon polarisation tensor is used, gµν

⊥
; consequently, it will be

suppressed by powers of m2/s.1

In particular, for elastic proton-proton scattering where an unpolarised
scattered proton with momentum p′1 is detected we obtain:

Ap(p′
1
) = α

5mq2(a ∧ q)z
2s2

. (24)

Higher-order QCD effects may be taken into account by introducing a
factor (s/s0)

aO into the odd part of the elastic proton-proton scattering zero-
angle amplitude, where aO is the odderon intercept. Thus, the asymmetry
considered here, associated with twice the imaginary part, acquires a factor
a2(s/s0)

aO−aP , where aP is the Pomeron intercept. For small-angle scattering
of electrons off polarised protons, the odderon contribution manifests itself
in higher orders of PT due to conversion of photons into gluons through the
γγ → gg and γg → gg kernels, which may also be investigated at DESY.
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Appendix

After some simple operations, the odd part of the cross-section averaged over
q may be put into the form:

∫

d2q

π

∑

∆|M |2 =
210(πg)2α3

QEDxs
2

d22

|a| sinφl

r
1We are grateful to Lev N. Lipatov for discussions on this point.
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×
∫

d2q

π

ln(q2/µ2)q · l
(q2 + µ2)2d1s̃

[x2q2s̃− 4(q · l)2 − 2xd2q · l], (25)

where we have used another equivalent form of the numerator in Eq. (19):

[xs̃− 2q · l][xq2 + (1− x)2q · l] = x2q2s̃− 4(q · l)2 − 2xd2q · l (26)

We write the integrals of the three terms in square brackets in Eq. (25)
as J1,2,3 respectively. The quantity R introduced in Eq. (22) may then be
re-expressed in terms of the Ji:

R =

∑3
i=1 Ji

x(1 − x)
. (27)

For the first term we have

J1 = x(1 − x)
∫

d2q

π
q · l ln(1/σ) + ln(q2/m2)

q2(q2 − 2q · l/x+ (1 + ρ)m2)
, (28)

where ρ = l2/(m2x2). To use the Feynman trick of combining the denomi-
nators, we use the following representation for the logarithm:

(

m2

q2

)

ln

(

q2

m2

)

= − d

dg

(

q2

m2

)−g
∣

∣

∣

∣

∣

∣

g=1

.

The denominators may be combined using the identity

1

ugvh
=

Γ(g + h)

Γ(g)Γ(h)

∫ 1

0
dz

(1− z)g−1zh−1

[(1− z)u+ zv]g+h
. (29)

The further standard procedure of performing the d2q integration, subse-
quent differentiation with respect to g and integration over z yields

J1 = x2(1− x) ln(1 + ρ) ln
1 + ρ

σ
. (30)

In the evaluation of J2 we may set σ = 0 in the denominator. Joining the
first two denominators we have

1

d1s̃
=

(1− x)2

x

∫ 1

0
dy [q2 − 2q · lη/x+ ηm2(1 + ρ)]−2, (31)

where η = x + y(1 − x). And following a procedure similar to that given
above we obtain

J2 = −4[x(1 − x)ρ]2
∫ 1

0
dy η

∫ 1

0
dz z2(1− z)

×
[

ρη2z2

D3
(2L− 1) +

3L

2D2

]

, (32)
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where L = ln D
(1−z)σ

and D = η(1 + ρ)z − η2z2ρ+ (1− z)σ. We note that we
may set σ = 0 in the expression for D although in evaluating J3 we cannot
omit σ in the denominator. Nevertheless, using the identity

ln

(

q2

σm2

)

= ln

(

q2/m2 + σ

σ

)

− ln

(

1 +
σm2

q2

)

, (33)

we may apply the procedure of differentiation to the first term. The second
is important in the region q2 ∼ σm2 and may be evaluated explicitly:

−2x2(1 + ρ)
∫

d2q

π
(q · l)2

ln(1 + σm2

q2 )

(q2/m2 + σ)2d1s̃

= −x2(1− x)2ρ

1 + ρ

∫

∞

0

dz z ln(1 + 1
z
)

(1 + z)2

= −x2(1− x)2ρ

1 + ρ

(

π2

6
− 1

)

. (34)

The total answer for J3 is then

J3 = −x2(1− x)2ρ

1 + ρ

(

π2

6
− 1

)

+ 2x3(1− x)2ρ(1 + ρ) (35)

×
∫ 1

0
dy
∫ 1

0
dz z(1− z)

[

ρz2η2(2L− 1)

D3
+

L

2D2

]

. (36)
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