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ABSTRACT

An important tool in time series analysis is that of combining information
in an optimal way. Here we establish a basic combining rule of linear
predictors and show that such problems as forecast updating, missing value
estimation, restricted forecasting with binding constraints, analysis of
outliers and temporal disaggregation can be viewed as problems of optimal
linear combination of restrictions and forecasts. A compatibility test
statistic is also provided as a companion tool to check that the linear
restrictions are compatible with the forecasts generated from the historical
data. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WorDs Compatibility testing; disaggregation; missing data; outliers;
restricted forecasts

INTRODUCTION

Combining information is so common in the practice of statistics that the practising statistician
often does not realize that he or she is applying it. Hedges and Olkin (1985) present many
statistical problems that can be analysed from this point of view. Draper et al. (1992) provide a
thorough review of this field with many examples and ideas for future research. Similarly, Pefia
(1997) considers combining information with emphasis on understanding the structure and pro-
perties of the estimators involved in the combination. In fact, the idea of combining observations
can be traced back to Gauss (see Young, 1984).

This paper presents a basic (least squares) rule that has been frequently used in time series for
combining information. We consider here that some information, additional to the time series
data, is available in the form of linear restrictions that have to be fulfilled exactly by an optimal
predictor. Our basic concern is to obtain (conditionally) unbiased Minimum Mean Square Error
Linear Predictors (MMSELP) of random vectors. Hence no distributional assumption will be
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required for obtaining the optimal predictors, although when normality is a reasonable assump-
tion, the linear qualification can be dropped from MMSELP.

Each of the two sources of information is assumed to provide a linear and (conditionally)
unbiased predictor. The unbiasedness assumption may be considered in some instances as unduly
restrictive (see Palm and Zellner, 1992 or Min and Zellner, 1993). For our purposes and in the
problems here considered, we deem such an assumption general enough and unrestrictive, since
debiasing can be carried out before combining. With respect to the use of only two sources of
information, we note that this is only to ease the exposition, since the ideas can be extended
straightforwardly to several sources.

We assume that the models involved as well as their corresponding parameters are known, so
that model building and parameter estimation are of no importance for us. Neither are we
concerned with such an issue as efficient computer implementation of theoretical solutions
provided by the combining rule. In fact, we are mainly interested in emphasizing the central role
played by the basic rule, as a unifying tool of several apparently different approaches that have
been employed to provide techniques in linear time series analysis. Furthermore, throughout this
paper we consider specifically the families of autoregressive integrated moving average (ARIMA)
models to represent the behaviour of a univariate time series. Nevertheless, the results hold true
for any linear time series model. It should be stressed that we do not claim originality in the
solution of the problems considered here, since they have been solved by many different authors,
including ourselves in previous work. In fact, we do not provide real data examples, since they
can be found in the original papers dealing with the particular problems encompassed by our
approach. What we think is new is to show that such problems as missing data, restricted
forecasting with binding constraints, influential outliers and temporal disaggregation, among
others, can be seen as particular cases of a simple structure and therefore they share the same
basic solution. This result can be useful to transfer optimal solutions found for any of these
problems to other fields. For instance, issues of robustness, non-normality or non-linearity could
be seen under the same structure.

In the following section we establish the notation and the basic combining rule which will be
used extensively in subsequent sections. A test statistic for validating an implicit compatibility
assumption between sources of information is also provided there. After that, we apply and
interpret the basic rule within the context of forecast updating and missing data estimation. Then
we concentrate on the problem of restricted forecasting, with some variants that respond to
different states of knowledge about the future. Afterwards we touch upon the problems of
influential and reallocation outliers in time series. Several simulated numerical examples are
provided to illustrate the use of the rule in practical applications. The final section concludes with
some comments and points to the need for some other combining rules.

BASIC COMBINING RULE

Here we present an optimal combining rule that can be employed when two basic sources of
information are available: (1) a statistical model based on an observed data set X, that produces
the unrestricted MMSELP Zp, of the random vector Z, and (2) some extra-model information
Y = CZ given in the form of linear restrictions imposed on Z. As indicated in the Introduction,
we shall assume that the model is known, as well as its parameters. We now establish the rule and
illustrate its use in different situations afterwards.

Copyright © 2000 John Wiley & Sons, Ltd. J. Forecast. 19, 103—122 (2000)
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BASIC COMBINING RULE (BCR). Let us suppose that the two observed vectors Zp, of
dimension / x 1, and Y, of dimension m x 1, are related to an unobserved random variable Z by

Z,=EZ|X) (1)
where X is a well-defined information set, and
Y =CZ )
where C is a known m x h matrix of rank m < h. Let e = Z — Z_ be the forecast error and
assume that E(e|X) = 0, E(Ze' | X) =0 andACov(e | X) = X, with 2, a known positive definite
matrix. Then the MMSELP of Z, based on z, and Y, is given by
Z=17,+AY - CZ) 3)
where
A4=zx,C'(cx,cy )
Furthermore, the MSE matrix of errors for this adjusted forecast, I’ = COV(Z — Z), s given by
T =, - A0, 5)

where I, is the h-dimensional identity matrix.
Proof Any linear predictor of Z based on Y and Z, must be the form

Z=AY+ A2, =(A4,C+ A)Z,+ A,Ce

with 4, and 4, some constant matrices. The forecast error is Z — Z = (4,C + A, — Ih)Zp
—(, — 4,C)e, and we shall require that Z satisfy Gauss’s error consistency (see Sprott, 1978)
which leads us to select Z as the predictor that coincides with Z when e = 0. In such a case

A4,C+4,=1,

which implies conditional unbiasedness since F(Z — Z|X) = 0. Then Z — Z = -, —A4,C)e
and

Cov(Z —Z) = (I, — 4,02, — 4,C)
Therefore, by taking the derivative of this equation with respect to 4, and equating it to zero
we obtain A, = A. Alternatively, let us consider 4, = 4 + A with A an arbitrary constant
matrix, then it follows that

Cov(Z —2) =%, — 3,C(CE,C)'CE, + ACE,C'N (6)

Hence, the MSE matrix Cov(Z — Z) of any linear and (conditionally) unbiased predictor Z
exceeds I' by a positive semidefinite matrix Hl

Copyright © 2000 John Wiley & Sons, Ltd. J. Forecast. 19, 103—122 (2000)
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Comments

(1)

)

(€)

4)
)

As an example of the BCR, let us consider the original Kalman state-space model (see
Young, 1984) given by the state equation

27, =07, | +a,
and a measurement equation without noise

Y =CZ

t t

At time 7—1, before observmg Y, we have an estimate of the state Z, given by
Z, ,=0Z_,, where Z, | is the estlmate of Z,_, including the information up to Y, |-
Letus call P,|,_; to the covariance matrix of this estimate. Once Y, is observed, the previous
estimate is revised so that the restriction is fulfilled. Then, by using equation (3) with

X, =P, 1 Z = (I)Z, LY=Y,and Z = Zr\r’ we have that
Ztlt = Zz|r71 + A[(Y, - CZt|r71)
where 4, = P[“_IC/(CP,‘,_IC/)_I. This is the standard state updating equation of the

Kalman Filter and 4, is the Kalman Gain. We conclude that the state-space model without
measurement error is a particular case of the formulation presented in the paper. The
formulation of the BCR does not assume any particular structure for the form of the
forecast Zp, whereas in the state-space model the Markovian structure imposed by the state
equation leads to efficient recursive computations.

The estimate of Z given by equation (3) can be interpreted as a linear combination of the
linear and (conditionally) unbiased predictors provided by the two different sources of
information. To show this, note that equation (2) leads to the linear predictor Z = PY with
P a matrix satisfying the condition CP = I, so that CZ coincides with Y. Slmllarly, Z isa
hnear and (conditionally) unbiased predlctor of Z. Then we should combine linearly Z and
Zp in such a way that the MSE matrix of the resulting predictor is minimized, and we go dek
to equation (3).

We can allow X, to be singular, provided that CX,C’ is non-singular. This is a useful
extension, since it enables iterative application of the BCR, e.g. given a known constraint
Y, = C,Z, one could consider a further constraint Y, = C,Z provided that (C,, C,) is a full
rank matrix.

I is always singular because the estimator Z satisfies the linear restriction (2), thus CT" = 0
and I has rank /7 — m.

The formulation considered can be generalized by including an additive error term in
equation (2). In that case, the restrictions would be considered as subjected to uncertainty
and the problem lies in combining two forecasts. Several time series problems, such as
benchmarking (see, for instance, Hillmer and Trabelsi, 1987, or Cholette and Dagum, 1994)
can be covered by this umbrella. However, in this paper we concentrate on the specific
interesting case in which the restriction is deemed certain and must be fulfilled exactly.

Copyright © 2000 John Wiley & Sons, Ltd. J. Forecast. 19, 103—122 (2000)
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(6) An alternative specification would consider a prior distribution for Y. In that case, a
complete Bayesian analysis is advisable. Some work dealing with that approach has already
appeared in the literature. We refer the reader to de Alba (1988, 1993) for more information
on this topic.

(7) The closed expressions of the BCR provide a fairly simple and straightforward theoretical
solution to a very general problem. However, when the dimension /4 is high the solution may
not be computationally efficient and it is more convenient to formulate the problem in a
recursive way to compute the solution. In fact, in several of the problems we will analyse in
the following sections the general solution presented can be computed by a recursive method
such as Kalman filtering.

The BCRAallows us to combine Zp and Y in an optimal manner, but it does not necessarily
follow that Z_and Y should always be combined. In particular, it will not be sensible to combine
them when they contradict each other. Then, it makes sense to test if the restriction (2) is
compatible with the data set that produced Z To that end, a compatibility test (CT) derived on
the assumption of normality for e can be employed That is, let us consider as null hypothesis H:
Y — CZ = 0. On this hypothesis, Y — CZ is normally distributed with mean vector zero and
covariance matrix CX,C'. Therefore, a statlstlc for testing the compatibility between Y and Z is
given by

= (Y - CZ,)(C,C) (Y — CZ,) (7

which will be distributed as a ¥ with m degrees of freedom.

MAKING EFFICIENT USE OF ALL AVAILABLE DATA

This section presents two elementary applications of the BCR, first in the well-known case of
forecast updating and second, in missing data estimation. We show that in both cases the optimal
estimate can be obtained in the same way: we start with an initial set of forecasts obtained from
historical data and we revise them by imposing the restriction that at some specific time points the
forecasts must be equal to the corresponding observed values. By posing the problem in this
framework we prove that the usual optimal estimators, already derived in the literature by other
approaches, are also obtained with the BCR.

Let X = (Z,, ..., Z;) be the historical data and Z = (Z;,, ..., Z;, ) be the H > 1 future
values to be forecasted with origin at time 7. The vector of forecasts is Z (ZT(I)
ZT(H))/ = E(Z | X) and, when the series follows an ARIMA model with pure movmg dverdge
(MA) representation Z, = y(B)a,, we know that

h—1

Loy = BZr X)) = Z‘paﬂh o forn=1,.... H
Jj=

Copyright © 2000 John Wiley & Sons, Ltd. J. Forecast. 19, 103—122 (2000)



108 V. M. Guerrero and D. Peria

where Y(B) = (Y, + ¥, B + ¥, B>+ ...) with y, = 1, so that the y's are the MA weights of the
model and {a,} is a zero-mean white-noise process with variance ¢2. This expression holds true
for both stationary and non-stationary time series and can be rewritten in matrix notation as

Z-7,=¥;,a ®)
where a = (a;, |, ..., ap, ) and W, is the lower triangular matrix
1 0 0 0
v, 1 0o ... 0
Y,=| ¥, v, I ... 0
Vi1 Va2 Vs !

We shall call e = ¥ ,a the forecast error and X, = ¢>¥ ¥, will be its covariance matrix, which
is given by

1 vy ¥, Yo
¥ L+ Vit EWiy
o= vy v, LYY s ©)
Vi EWgae Iy . S

Also TI(Z — Zp) = a, where IT = Wz' is a lower triangular matrix with ones in the main
diagonal, —n, in the first subdiagonal and so on, where the n,’s are the pure autoregressive (AR)
coeflicients of the process in the representation n(8)Z, = a,, with n(B) = (1 — n,; B — nsz— S
Then Z;l = ¢ 2IT'II represents the matrix of autocovariances of the inverse process Z, = n(B)a,
and it is called the inverse autocovariance matrix of the process.

Forecast updating
We consider here the problem of updating a vector of ARIMA forecasts, initially obtained with
or1g1n at time 7. In this case, as soon as we observe the new observation, Z; ,, the forecasts
ZT(2) ZT(H) become suboptimal. We shall now prove that by introducing the restriction
Zy(1) = Zr,, and revising the initial forecast vector via the BCR, we obtain the usual
forecast upddtlng equations. Taking Z = (ZT(I) ZY(H))’ Y=Z2; ,and C = (1,0)with 0
a column vector of size H—1, and then calhng 2=Zs,, Zr (1), ..., T+1(H_ 1)),
Y, =0, ¥yand 4 = (1, ¥, ..., ¥,_,), the BCR yields

Z=17,+AZr., —Z1)
which leads to the well-known equation (cf. Box and Jenkins, 1976, Ch. 5)
Zroi()=Z7G+ )+ )(Zpy, — Zp(1) forh=1, ... H—1

Copyright © 2000 John Wiley & Sons, Ltd. J. Forecast. 19, 103—122 (2000)
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and

I = 62(0 0, )
- !
0 ¥, ¥,

This matrix reflects the fact that the first term of Z is observed and therefore has zero variance. In
general we could use m (1 < m < H) additional observations at once, if they arrive in a batch, or
else we could update the forecasts recursively; the answer will be the same.

Next, the compatibility statistic in the situation Y = Z; | with {a,} Gaussian leads us to
declare the new observation compatible with the historical record of the series, at the 100a%
significance level, when

K=1[Zp — Z (/0" < 11(2)

which is a standard forecasting test (see Box and Tiao, 1976). When the new data arrive in
batches, the K-statistic can be used as a Cumulative Sum (CUSUM) test (See Inclan and Tiao,
1994).

Estimation of missing data

We now consider the problem of completing a univariate time series which has some missing
values. We will show that the optimal estimation of the missing values can be obtained as follows.
(1) Take the observation just before the first missing value as forecast origin and compute the
vector of forecasts for all the sample period; (2) revise the forecasts using the BCR with the
restriction that the new forecasts must be equal to the observed values. The revised forecasts for
the missing value provide directly the optimal missing value estimates.

To prove this result, let us suppose that the series has k > 1 missing values (without any specific
pattern) and 1nclude them in the vector Z,, = (ZT , ZT v Zp )’ in which 7, < T, if i <j. Let
also X = (Z,,...,Z, _,) be the historical data before the ﬁrst m1ss1ng value. Thls set will be used
to generate the forecasts for the rest of the values. Let Z* = (ZT , ..., Z; ) be the vector of
observations to be forecasted and Z; = (Z, |, Zr, v Zrqs ...,ZT _1s ZT 41> --+» Zp) bethe
vector of observed sample points after the 1'"1rst mlssmg value. Then the random Varlable to be
forecasted, Z, can be written as Z = (Z Mo ZG) = QZ* with Q a permutation matrix that merely
changes the chronological ordering of Z*. That is, Q is a T'— T, + 1 square matrix obtained
from the identity matrix, in which the rows 7, i = 1, ..., k, of the identity are placed as the first k
rows of Q. Thus Z = E(Z|X) = QE(Z*|X) contains the ARIMA forecasts for the observations

Zrs-s Zp. The correspondmg forecast error is e = Q¥;._; ,,a, with covariance matrix
2 / / 2 > >
L, =0 Q¥ \Yr Q=0 <2;‘246 ZMGG> (10)

where  02%,, = Cov[Z,, — E(Z,|X)], 0%, = E{[Z,, — EZ,||Z, — EZX)]} and
0?2, = Cov[Z, — E(Z,|X)].

Copyright © 2000 John Wiley & Sons, Ltd. J. Forecast. 19, 103—122 (2000)



110 V. M. Guerrero and D. Peria

We now revise the forecasts by introducing the restriction that the new forecasts for the
observed values must be equal to the sample data. Then, by choosing C = (0, I_ T, —k 4 withOa
(T'— T, — k + 1) x k matrix, we obtain Y = Z and the weighting matrix

-1
4 = ZEC/(CZEC/)_I — z“MGZG
Ir 1 k41

Thus, by the BCR, the MMSELP of Z based on E(Z| X) and Z, leads to ZG = Z, and the
estimation of the missing values is given by

Zy = EZyX) + 2,26 [Zg — E(Z|1X)] (11

with
COV(ZM —Z,) = 7’ <2M - ZMGZEI Z;MG) (12)
To illustrate these equations, let us consider the case of a missing Value, k=1 attimeT, =h
in an AR(l) process (1 = ¢B)Z, =a, Then Z,, = Z,, X =(Z,, ..., Z,_ ), Ly =(Z,_,, ...,
T)/ =(Z,,....Z;),and Q = IT s 1- Also, by equation (10) ZM = 1, while the term X,

2! can be obtalned directly from the inverse of X . This matrix is given by ¢~2I'Tl, and in this
case I1 has ones in the diagonal, —¢ in the next subdlagonal and zeros everywhere else. Thus the
first row of this matrix is ¢~ %(1 + c]f)z, —¢, 0, .., 0). On the other hand, using the standard
formula for the inverse of the partitioned matrix (10) we know that this first row is given by
o Xa, —aZMGZEI), and so a = (1 + ¢*) and

-1 ¢
ZMGZG - <T¢2’ 0, ceey O)

and the optimal estimator of the missing value is

¢ ¢
+¢ + ¢

This expression is the standard equation for estimating a missing value in an AR(1) process.
When ¢ = 1 the optimal estimator is just the average of the two contiguous observations,
whereas when ¢ < 1 this estimator shrinks the value towards the average of the process (zero in
this case).

It is shown in the Appendix that the general expression for missing value estimation presented
here is equivalent to the one obtained by Pena and Maravall (1991) using the inverse auto-
correlation function. Alvarez, Delrieu and Jarefio (1993) indicated the possibility of using
restricted estimation to estimate missing values. From a practical standpoint, it is important to
realize that the matrices involved in the missing value estimation may be relatively large,
although, as shown in the previous example, the term X MG25 can be obtained from the matrix
x ' = ¢—2IT'T1, which is known given the process. This solution is equivalent to the one
presented in the Appendix and can sometimes be computationally as efficient as the recursive
solutions (see Gomez and Maravall, 1994; Gomez, Maravall and Pefia, 1999).

Z,=¢Z,_, + ——5 0 - ¢’z ) =3 L+ Z,) (13)

Copyright © 2000 John Wiley & Sons, Ltd. J. Forecast. 19, 103—122 (2000)
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The statistic to test for compatibility between Z; and E(Z; | X) becomes
K =[Z; - EZ N2 [Zg — LIV ~ 17 1 4

and it compares all the data after the first missing value with the forecast of these data from the
first period of complete data. It is interesting to realize that this CT can be considered as a
generalization of the one proposed by Box and Tiao (1976) as an overall check of model validity
because it checks whether the data posterior to the missing value is compatible with the previous
ones. Rejection of the compatibility assumption may be expected when the missing values occur
not just by chance, but are due to some exogenous intervention or structural changes in the time
series which may affect several observations after the missing value.

RESTRICTED FORECASTING WITH BINDING CONSTRAINTS

The problem considered now is presented with two variants that may be deemed as relevant
possibilities derived from compatibility testing.

Restricted forecasting without uncertainty in the restrictions

This case occurs when some restrictions to be imposed on the time series forecasts are known to
be true in advance. For instance, we may consider imposing budget constraints, or else we may
view this kind of application as a scenario (or what if) analysis. For instance, Guerrero (1989)
faced the problem of forecasting the monthly Financing Granted by the Mexican Bank System
when Y, the total annual financing, was known in advance. Furthermore, the m restrictions in
Y = CZ are assumed to be linearly independent and coming from outside information (external
to the model). On these conditions the BCR applies with 4 = ¥, ¥},C'(C¥,¥,,C")"" and the
corresponding CT statistic becomes

K=(Y~-CL)(CY,¥,C)' (Y~ CL)/c ~ 1,

We emphasize the importance of compatibility testing, since rejecting this hypothesis may lead to
different relevant formulations. For instance, we may assume that Y is true and that 2p is not a
valid forecast, because a structural change is foreseen during the forecast horizon.

To shed some light into how the BCR works, let us assume that we want to forecast some
quarterly expenses, with the restriction that their annual sum is equal to some budget constraint.
Thus, we let Zp = (ZT(I), e 27(4))/, C=1=(,1,1,1)and Y = Z:ZIZTM. Then we have
that

4
Z=27,+AY - Zh)] (14)
h=1

where 4 = W, P, 1(1'P,¥,1)"" is a vector of weights whose elements add up to one. In
particular, when the series follows a white-noise process, ¥, =1, and 4 = 1/41, so the
discrepancy between Y and the sum of the forecasts is distributed evenly among the quarters.

Copyright © 2000 John Wiley & Sons, Ltd. J. Forecast. 19, 103—122 (2000)



112 V. M. Guerrero and D. Peria

The square root of the CT statistic becomes in this case

4 4 4—h
K2 =¥ =320l | o | 3 ) (13
0

h=1 h=1 j=

which can be easily interpreted as a standardized normal test.

As an example suppose that we want to forecast four quarterly observations of a time series
which follows the model (1 —0.5B) Z, = a,, from origin at T = 60, where a, are iid N(0,1)
and Z,, = 0.37, satisfying the annual budget constraint given by ¥ = CZ = 3 where C = 1" and
L= (Zg, ..., Zg) . First, we test for compatibility by calculating K as given by equation (15)
with Z, = (Zg(1), ..., Zg(4)) and

1 0 0 0
e 1 00
=1 o 10

$ ¢ b1

so that, as ¢ = 0.5, A(l"I’4‘I’;1)_1 = 0.1017 and Zp = (pZgy - - $*Zgy) = (0.185, 0.092, 0.046,
0.023), then ¥ — I'Z, = 2.654 and

K=Y -1Z)1"P¥,1)" (Y -1Z)/¢" =0.72

By comparing this figure with a Chi-square distribution with one degree of freedom we conclude
that the restriction is compatible with the historical data at any sensible significance level.

The restricted forecasts are then obtained from equation (14), where 4 = (0.191, 0.274, 0.289,
0.246)

~

4
Z=7,+A1Y =Y Zyh] = (0.691, 0.818, 0.814, 0.677)
h=1

It can be easily verified that the restriction is fulfilled exactly by these forecasts. Furthermore, the
BCR also yields

0.642 —0.013 —-0.293 —-0.337
—0.013  0.596 —0.067 —0.574
—0.293 —0.067 0.490 0.462
—0.337 —0.574 0.462 0.805

Cov(Z — Z) = o’(I, — A1)¥, ¥, =

This matrix should be compared with

1 0.5 025 0.125
0.5 1.25 0.625 0.016
0.25 0.625 1.313 0.656

0.125 0.016 0.656 1.328

Cov(Z, - 2) = ¥, ¥, =

which corresponds to the unrestricted ARIMA forecasts. We then reach the conclusion that a
substantial gain in precision was obtained, particularly with the second and third forecasts, by

Copyright © 2000 John Wiley & Sons, Ltd. J. Forecast. 19, 103—122 (2000)
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incorporating the restrictions. It should be stressed, however, that the validity of these forecasts
rely heavily on the compatibility assumption between restrictions and ARIMA forecasts. For
instance, had the restriction been Y = 5, then the CT statistic would have taken the value
K = 3.25, which becomes significant at the 10% level. In that situation, if the restriction is
deemed valid, perhaps a structural change should be expected during the forecast horizon.

Change foreseen in the deterministic structure of the model
Let us now suppose that a structural change in the deterministic structure of the time series model
is foreseen to occur during the forecast horizon of interest. This idea may come from subject
matter considerations, for example when an intervention is anticipated. For instance, suppose we
know that the time series measurement system is going to change due to a different weighting
scheme of the time series components. This case may be considered as an ex-ante intervention
analysis in which the whole effect of the intervention is presumably accounted for by way of some
linear restrictions on the future values of the series. This kind of problems were considered by
Guerrero (1991).

We start first with a formulation that allows us to take into account the intervention effects.
That is, we assume that the future values of the series {Z(”} will verify

D) _
7z =7 4+ D, (16)
with {Z } the series without intervention effects and D, a dynamic function of the intervention

effects. Since in practice we usually have access only to one or two restrictions, we are forced to
postulate at most the following first order linear dynamic model for D,

(t+1)
(1 =6B)D, = wS, (17)
where S{7 is a step function that takes on the value 1 when 7 > 7 and is 0 otherwise, with 7 the

time point at which the intervention effects start, so that T'< t < T + h. For simplicity we
assume 1 = T + 1.

To employ the BCR let Z = (Z; |, ..., Z, )" be the vector of future values without inter-
vention effects, D = (D, ..., Dy, )" be the deterministic effects and y AL (Z(TDng, e

Z(TDl ) = Z + D the unknown future observed values. Then, calling Zp = E(Z|X) + D, and
assuming that Y = CZ® imposes m linear independent restrictions, it follows that

2P =7,+¥,¥,C'(CY,¥,C)'[Y - CZ)

A difficulty with this equation is that Z_is assumed known, but in practice we can generate
E(Z| X) and D has to be specified by solving

CD =Y — CE(Z|X) (18)

which is assumed to be a system of consistent equations (i.e. any linear relationship existing
among the rows of C also exists among the rows of Y — CE(Z | X)). Hence we get

2P = EZ|x)+ D (19)

Copyright © 2000 John Wiley & Sons, Ltd. J. Forecast. 19, 103—122 (2000)



114 V. M. Guerrero and D. Peria

On the other hand, the compatibility statisAtic is always zero in this case because Zp and Y are
necessarily compatible by construction of D.

As an example, let us consider the problem of forecasting the monthly growth of a production
index subjected to the constraint that the average growth during that year must be equal to Y. In
this case it is assumed that an intervention, whose effects can be represented by equation (17) with
0 = 0 (implying a level change) will take place at the beginning of the year. The forecasts E(Z | X)
are only used as a starting point and the main problem lies in obtaining D. Thus, calling 1 =
(1, 1, ..., 1) since in this case we know that C = 1/121" and D = w1, then equation (18) implies

1 & -
= __2ZZT(h)

This is not a surprising result, since it indicates estimating the intervention effect as the difference
between the restriction and its corresponding unrestricted forecast.

ANALYSIS OF OUTLIERS IN TIME SERIES

Some of the developments of the previous sections are now applied to derive several important
results in the context of outlier analysis. These examples may help to appreciate the potential
usefulness of the BCR and the CT as employed in more specialized situations.

Detecting and measuring the effect of influential outliers

We consider first the single additive outlier case with known time of occurrence 4. Additive
outliers (40) are considered for instance, by Tsay (1986), Chang, Tiao and Chen (1988) and Pefia
(1990). We assume that the observed series {Z19} is generated as

A40) (/1)
ZE =Zz+wAPz1

where P{") denotes the pulse function that takes on the value 1 when ¢ = & and is zero otherwise,
and {Z } follows an ARIMA model.
The AO can be posed as a missing value problem and solved as indicated previously by
equations (11) and (12). From equation (A3) in the Appendix this predictor can also be written as
Z, =1,11TZ,

where in place of D we use 1, as a vector with one at position / and zero elsewhere, while Z  has a
zero at position 4 and the observed values otherwise. Now, calling p! to the inverse auto-
correlation coefficients and Z, = E(Z, | X*), with X* = (X, Z), this expression can be rewritten
as

5 1
Zh = _Zpi(zhfi + Zh+i)

which is a well-known equation obtained by Brubacher and Wilson (1976) as the optimal inter-
polator of a time series. Then the optimal estimator of the outlier effect is given by

N AO
&, =787 — B(Z,|Xx%)
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with
Var(®,) = a°(1 — 2,62 Zhe)

Moreover, on the Gaussianity assumption for {a,} we obtain the following statistic for testing
compatibility between Z§'? and E(Z, | X*):

A2 2 - / 2
K=&0°(0 = 2,20 ol ~ 10

Noting that (1 — ZMGEEIZ’MG)*I is the (1,1) element of the matrix X' = ¢~2IT'TI, it is clear
that

T—h

-1 2
1 =262 Z;\m = Z”i
i=0

Therefore, the CT statistic can be written as ®%/(¢?Zx?), which is the likelihood ratio test
proposed by Chang, Tiao and Chen (1988) to test for additive outliers. This statistic is also
related to the influence measures derived by Pefia (1990).

Reallocation outliers

A situation considered and illustrated by Wu, Hosking and Ravishanker (1993) consists of
restricting a block of consecutive observations affected by outliers to produce the same sum as if
no outliers were present. So let us consider the multiple additive outlier formulation

7R = 7 4+ Zz,P‘”’) (20)

where {Z{F\ is the series with Reallocation Outliers (RO), P*” is the pulse function defined as
before and /, is the effect associated with the outlier occurring at time ¢ + i. The values of ¢ and m
(timing and duration of reallocation) are assumed known, although Wu, Hosking and
Ravishanker (1993) also addressed the case in which ¢ and/or m are unknown.

Now let us define Z(RO) = (zR, ZED, ..., Z80)y and Z2,, = (Z,, Z, . ..., (+m)’ as the
Vectors of observations with and without outller effects. Similarly let X = (Z,, ..., ) and
G = (Zoymy1s - - Z7) be the vectors of past and future observations with respect to Z(RO) and

= (X, Z). Then calling Z = E(Z,,] X) and if we consider that ¥ = 1'Z(*9) is given, with 1
an m-vector of ones, the BCR ylelds

Z,=72,+ 10T '1'(Z*) - 7,)

with
r=x, - 281(1’281)_11’26 21
Next, from equation (20) we have ZR? = Z + A with 4 = (Zgs Ays -5 Ay), 5O that
A=2%0 —7,, =@"0 - 7)) - 310’z )"12* - 7,) (22)
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and Cov(1) = T. Furthermore, the CT statistic (7) for testing compatibility between ¥ = 1'Z(RO)

and Z,, on the normality assumption for e, is given by

K=@2" 121’51y A2 —1'Z,)

23
=['@Z"7 - 7,)F/A'Z) ~ 13 e
Expressions (21)—(23) are easily seen to be the same as those deduced by Wu, Hosking and
Ravishanker (1993), by recognizing that in their notation 024 ~! and A~!b are £, and Z(R9) — Zp
in ours. In particular expression (23) is useful for testing whether the additive outliers are re-
allocation or not. Moreover, they also proposed a statistic for testing the null hypothesis of no
outlier effects versus influential outliers, which in our context becomes a test for compatibility
between ZR and Z - that is.

k¥ = (Z* — 7,V 2RO - 7,) ~ 1, (24)

Let us consider as an example of this situation the case in which a promotional campaign
launched by a company increased its sales during one quarter, but it is feared that the increase in
sales at time ¢ (the previous quarter) is compensated by a decrease in the sales of the current
quarter. That is, we assume that the campaign took place at time ¢ = 59 and the duration of the
reallocation is m = 1, so that Ay = —2;, ZRO = (Zsy + 2y, Zgy + 2))s Zyy = (Zsy, Zy,) and
X=(Z,,...,Z), whereas no additional data Z exist. We assume the same simulated data used
in the previous example with the model (1 — 0.5B8) Z, = a, where a, are iid N(0,1). In this case the
simulated values are Z;, = —0.964, Z,, = —0.260, Z,, = 0.369 and 4, = 4. The problem is to
estimate 4 = (/,, ;)" on the basis of the observed values affected by the promotional campaign
ZR0) = (3.740, —3.631) and the historical data X, producing the forecasts Z, = E(Z,|X) =
(PZsg, $*Zsg) with

Ze = 0-2‘112‘{"/2 = ()'2<;s ! fqbz) where ¢ =0.5

Then we obtain

~

2, =17,+AZ"” -7, = (—0.320, —0.053)
since

A=310)7'1 = (0462 0-462)

0.538 0.538

A relevant question in this context is whether the promotion had a significant effect at all. To
answer it we can apply expression (24) in such a way that

K*=(Z* — 7,V ' 2R - 7,,) = 47.93

leads to rejection of the null hypothesis of non-significant effects in favour of the alternative of
influential outliers. Hence we may proceed to calculate

A=2R0 _ 7, = (4060, —3.578)
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with
Cov(d) = (I, — AT, = <

0.308 —0.308
—0.308  0.308

so that 95% confidence intervals for 4, and A, are, respectively, (2.972, 5.148) and (—4.666,
—2.490), which obviously cover the true values.

Another interesting question to be considered now is whether the outliers (that we already
know have significant effects) are in fact reallocation or not. The answer in this case is fairly
obvious from the confidence intervals, but it is also supported by the CT statistic

K=[1'@Z" - Z)F/(1Z,1) = 20.16

which, when compared against a y7 distribution, indicates rejection of the null hypothesis of no
reallocation.

TEMPORAL DISAGGREGATION OF TIME SERIES

The problem of temporal disaggregating a time series is that of estimating an unobserved random
vector Z = (Z,, ..., Z,,,) on the basis of knowing some linear aggregates ¥, = X'_,¢,Z,; . .
with i =1, ..., m. Here, n denotes the intraperiod frequency of observation (i.e. if {Y}} is
observed annually and {Z,} is a monthly series, n = 12) m is the number of whole-period obser-
vationsand ¢ = (¢, ..., ¢,) # 0. Some usual forms of care: ¢ = (0,0, ..., 0, 1) for interpolating
a stock series, ¢ = 1’ for distributing a flow series and ¢ = 1/n1’ for distributing an index series.
Here we can appreciate again that the BCR provides a starting solution on which the analyst may

elaborate to obtain a final working solution, depending on different assumptions.

Temporal disaggregation without auxiliary data

Let us assume that {Z,} admits an ARIMA representation, and expression (8) holds true, with
a=a,=(a,,, ..., a,,,) such that E(a,|X) =0 and E(aja,|X) = oI, where X = (...,
Z_,, Z,) denotes the infinite past of the series. In fact, for an ARIMA model to be reasonable in
this situation we assume that the process started at a finite time point with fixed initial values. The
vector Y = (Y, ..., Y,) can be written in the form Y = CZ by defining C = I, ® ¢/, where ®
denotes Kronecker product. Then the problem is posed as in the BCR, so that the MMSELP of
Z, when E(Z]X), Y and azz‘P ¥’ are known, is of the form (3). However, in practice such a

mn mn
formula is useless because X is unknown, as well as E(Z | X) and ¢°¥, W/ . Some approaches

mn mn*
that have been followed to overcome these difficulties are the following.

(1) Assume a priori that E(Z|X) and ‘I’mn‘l’;ﬂn have some simple structures, say
I —¥ ¥ C(C¥Y W C)'ClEZX)=0 and ¥, is derived as if an integrated
process of order one or two were an adequate representation for {Z }. Then calculate

mn mn mn mn mn mn

mn lI‘:Tl}’l C/)_ l Y (2 5)

Z=%,6¥, CC¥

mn

Such a solution was essentially proposed by Lisman and Sandee (1964) and by Boot, Feibes
and Lisman 1967) when n = 4, and by Cohen, Miiller and Padberg (1971) for arbitrary n.
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(2) Assume that the model for {Z } can be somehow known to the analyst, perhaps by assuming
that some disaggregated observations exist. This allows the specification of the matrix ¥,
a priori, so that we can calculate Z if E(Z|X) is also known. That was the approach of
Harvey and Pierse (1984).

(3) Derive the disaggregate ARMA model of the stationary series {(1 — B)"Z,} from that of
{(1 — BYY .} using the theoretical relationship that links those two series. Thus, obtain the
autocovariance matrix of {(1 — B)dZ,} and use it in an expression similar to (25). Then
obtain the predictor of Z from the previous one, by applying a linear operator that essenti-
ally services to transform ((1 — B)YZ ,(1=B)YZ Y into Z = (21’ ..., Z Y. This

d+1° mn ‘mn

solution was developed by Wei and Stram (1990), see also Stram and Wei (1986)

As an example we now assume that the only data available consists of # = 3 annual figures of
{Y,}, and we want to obtain the 12 unknown data points of the quarterly series {Z}, given that we
assume that the model for quarterly observations is (1 — 0.58) Z, = a, where g, are iid N(0,1), so
that we can apply Harvey and Pierse’s (1984) solution. The corresponding series are linked
through the linear expression Y = CZ where C = I; ® ¢’ withe = (1, 1, 1, 1), in such a way that

Y, = ZJ 1624 1y4» for i =1, 2, 3. The unobservable data are assumed to be

t 1 2 3 4 5 6 7 8 9 10 11 12

Z, —0.235 0958 1.034 0.551 —0.238 —2.289 —2.477 —1.585 —1.841 —1.891 1.329 0.528

while the annual observations are Y = (2.308, —6.589, —1.875)'. As

1 0 ... 0
o 1 0

Y,=| ¢ ¢ 0 where ¢ = 0.5
('15'1‘1 (;b'ua 1

In that case, expression (25) produces the estimate

Z = (0.706, 0.844, 0.669, 0.088, —1.213, —1.789, —1.914,
—1.673, —0.878, —0.506, —0.327, —0.163)

whose elements are not only close to the true quarterly Z values, but also add up to the annual
data, as they should.

Temporal disaggregation on the basis of a preliminary series

The problem now is the same as before, except that X will no longer be considered as the infinite
past of the series. Rather Z = E(Z | X) will be considered a preliminary estimate, derived
perhaps from a set of mformatlon on auxiliary variables X which help to explam the behaviour
of {Z } orelse Zp is observed directly. In both cases, a preliminary vector Zp is known and it will
be assumed to be the MMSELP of Z. Now let us also assume that a = (4, ..., a,,)" such that
Ea|Z ) = 0 and E(aa’ |Z ) = P, where P is a positive definite matrix. This assumptlon may
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be justified by assuming that {Z,} and {ZAN} follow the same ARIMA model, with the same AR
and MA parameters, but different white noise-generating processes. Such an assumption makes
sense when Zp is indeed a preliminary estimate of Z and it allows derivation of the matrix ¥, ,
from the observed data. It should also be noted that the usual specification of Z as Z_plus
noise is not assumed here, because it would imply a different autocorrelation structure for {Z }
and {Z, }. ,

Thus, if Zp, X, = az‘IJWP‘I’m” and Y are known, we obtain by the BCR

mn mn mn

72=17,+%,P¥, CCY,PY, C)(Y-CZ) (26)

and

r = O-2[1]‘)1}’1 - \Ilﬂl}’l P‘I’:’I‘I}’IC/(C\P}’H}’I P‘I’:TI}’IC/)ilcq]len P\P;nn (27)
Guerrero (1990) showed that the corresponding expressions proposed by Denton (1971) are
particular cases of (26) and (27) when 2p is directly observed. Similarly, when comparing Chow
and Lin’s (1971) solution with (26), it is clear that they focused their attention on simultaneously
estimating Z and the regression parameters linking the auxiliary information X with Z. By doing
so they did not pay much attention to the potential autocorrelation structure in the regression
errors. In addition, the covariance matrix of their solution is (28) plus another term that can be
related to the fact that only X (not 21,) was assumed to be given.
To apply (26) and (27) in practice, we require knowing not just ¥, = (which is obtainable from
the ARIMA model for {ZAP',}), but P as well. Guerrero (1990) suggested a feasible solution based
on a two-step procedure, akin to using estimated generalized least squares.

CONCLUSIONS

We have shown that the BCR for combining information from two different sources is a very
useful tool for solving time series problems. Such a rule produces in fact a weighted average of the
two predictors coming from both sources of information. Its optimality is easily revealed by the
corresponding MSE matrix which is not only minimum for the class of linear and unbiased
predictors considered but shows that using the extra-model information reduces the original
variability in the model predictor.

Realizing that many statistical procedures are derived by combining information is important
from a unifying point of view. Besides we advocate the use of the CT in order to appreciate
whether the combination makes sense or not. Some of these tests have already appeared in the
time series literature, associated mainly with likelihood-based inferences. Both the BCR and the
CT are very simple statistical tools that have helped (and will surely keep helping) time series
analysts to solve other practical problems.

APPENDIX

The relationship between additive outliers and missing observations leads to estimating the
missing values by inserting zeros at the missing points and adding dummy variables to the model
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for each of these zero values to represent an additive outlier. Calling D the matrix of dummy
variables, it can be shown that the MMSELP of Z,, is given by

Z,=-D%'D)y'Dz]'Z, (A1)

where Z_ denotes the completed series with zeros at the missing points. The MSE matrix of this
estimator is then given by

Cov(Z,, — Z,) =’ D'E;'D (A2)

To show that expressions (A1) and (21) are equivalent, let us first recall that 2;1 = ¢ 2II'TI, so
that

Z,, = (DTI'ND) ' D'TI'MZ, (A3)

Now, for simplicity let us suppose that the k missing values are consecutive and located at the
time points 4, i+ 1, ..., h+k — 1, so that D = (0, I, , 0)’. Then let us partition IT as follows:

m 0 o0
M= |1, I, 0 (A4)
H3 HS H6

with IT,, IT, and Il square matrices of dimensions # — 1, k and T — i — k + 1 respectively, while
I1,, I1; and I1; are rectangular arrays of appropriate dimensions. Similarly, let Z, = (X, 0, Z,),
so that (A1) can be rewritten as

Z,, = —(T,T1, + TT15) " ' [(T,IT, 4 TI1,)X + T5I1,Z ] (A5)

Then, inverting (10) by blocks taking into account that 2;1 = ¢ 2II'TI and using (A4) we
obtain %,,.Z;' = —(I I, +H/5H5)_1H’5H6. On the other hand, calling Z, = (E(Z,,| X),
E(Z;1X)) and Zy = (X, 0/, 0') we have

Z,=—(D,I'lID,) 'D,II'MZ, (A6)
where
0 1 0
py= (0 k& ) AT
" (0 0 1T7T7k+1 ( )

After some algebraic manipulations and inserting expressions (A6) and (A7) into (11), we
obtain (AS5).
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