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Abstract. The primordial curvature perturbation ζ may be generated by some curvaton
field σ, which is negligible during inflation and has more or less negligible interactions until
it decays. In the current scenario, the curvaton starts to oscillate while its energy density ρσ
is negligible. We explore the opposite scenario, in which ρσ drives a few e-folds of inflation
before the oscillation begins. In this scenario for generating ζ it is exceptionally easy to solve
the η problem; one just has to make the curvaton a string axion, with anomaly-mediated
susy breaking which may soon be tested at the LHC. The observed spectral index n can be
obtained with a potential V ∝ φp for the first inflation; p = 1 or 2 is allowed by the current
uncertainty in n but the improvement in accuracy promised by Planck may rule out p = 1.
The predictions include (i) running n′ ≃ 0.0026 (0.0013) for p = 1 (2) that will probably be
observed, (ii) non-gaussianity parameter fNL ∼ −1 that may be observed, (iii) tensor fraction
r is probably too small to ever observed.

Keywords: inflation, alternatives to inflation, physics of the early universe

ArXiv ePrint: 1110.2951

c© 2012 IOP Publishing Ltd and Sissa Medialab srl doi:10.1088/1475-7516/2012/03/022

mailto:konst.dimopoulos@lancaster.ac.uk
mailto:kohri@post.kek.jp
mailto:d.lyth@lancaster.ac.uk
mailto:matsuda@sit.ac.jp
http://arxiv.org/abs/1110.2951
http://dx.doi.org/10.1088/1475-7516/2012/03/022


J
C
A
P
0
3
(
2
0
1
2
)
0
2
2

Introduction. The primordial curvature perturbation ζ is already present a few Hubble
times before cosmological scales start to enter the horizon. At that stage, and on those
scales, its Fourier components ζ(k) are time-independent and set the principle (or only)
initial condition the subsequent formation of large-scale structure in the Universe [1]. As
a result, ζ(k) can be determined, and one of the main tasks of theoretical cosmology is to
explore models of the early universe that can generate it.

The generation of ζ(k) presumably starts at horizon exit during inflation (k = aH ≡
ȧ where a(t) is the scale factor of the universe) when the vacuum fluctuation of one or
more scalar (or vector [2]) fields becomes a classical perturbation. According to the original
scenario, ζ is generated by the perturbation δφ of the inflaton field in a single-field slow-roll
inflation model. In that case, ζ is generated promptly at horizon exit, remaining constant
thereafter. According to the curvaton scenario [3], ζ is instead generated by the perturbation
δσ of a ‘curvaton’ field, that has practically no effect during inflation and generates ζ only
when its energy density becomes a significant fraction of the total.

Instead of the curvaton scenario one can consider an inflaton-curvaton scenario where
both δφ and δσ contribute significantly to ζ [4]. One can also suppose that ζ is generated
during multi-field inflation, or by a ‘modulating’ field that causes an effective mass or coupling
to be inhomogeneous [1]. In this Letter we stay with the simpler curvaton scenario.

Up till now, it has been assumed that the curvaton starts to oscillate while its energy
density ρσ is a negligible fraction of the total. Here we assume instead that ρσ comes to
dominate the total while it is still slowly varying, giving rise to a second era of inflation.
For simplicity, we demand that these ‘cosmological scales’ are outside the horizon (k < aH)
when the second inflation begins.

A second inflation has been discussed many times before, but always within a scenario
where the first inflation generates at least a significant part of ζ, and/or some or all cosmo-
logical scales start out within the horizon. The second inflation is usually supposed to begin
while the inflaton of the first inflation is still oscillating. The contribution of the second in-
flation for this ‘double inflation’ is calculated for instance in [5, 6] taking cosmological scales
to be outside the horizon, and in [7] taking them to be partially inside. A second inflation
starting during radiation domination might be called late inflation. Slow-roll late inflation
was considered in [8], and fast-roll late inflation in [9], but these authors ignore the effect on
ζ of the second inflation. There is also thermal inflation [10] which really has no effect on ζ.
Our scenario is different from all of these.

Duration of the second inflation. By ‘cosmological’ scales we mean those probed more
or less directly by observation. They range from k = a0H0 where 0 denotes the present, to
around k = e15a0H0. According to a standard calculation [1], requiring that they are outside
the horizon when the second inflation starts corresponds to

N2 . 45− ln(10−5MP/H2)/2 , (1)

where N2 ≡ ∆(ln a) is the e-folds of expansion during the second inflation, H2 ≡ ȧ/a is the
Hubble parameter then and MP ≡ (8πG)−1/2 = 2× 1018GeV. [A subscript 1(2) will always
denote the first (second) inflation.]

The right hand side of eq. (1) takes ρ = 3M2
PH

2 to be constant during the second
inflation and then ∝ a−4 (radiation) till the observed matter-dominated era. Replacing some
of the radiation domination by matter domination reduces the right hand side. The second
term is positive because H2 < H1 and we need H1 < 10−5MP or the tensor perturbation
with spectrum Ph = (8/M2

P)(H1/2π)
2 would have been observed (see eq. (9) below).
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CDM and baryon number cannot be created before the curvaton (or any other mech-
anism) creates ζ, since that would give an isocurvature perturbation excluded by observa-

tion [3]. That requires something like ρ
1/4
2 > 103GeV corresponding to H2 > 10−30MP and

N2 < 16. We therefore require roughly N2 < 45 to 16.

Calculating the curvature perturbation. The curvature perturbation ζ is described
non-perturbatively through the δN formalism as in [11]. In this paper, we just work to first
order in δρ, as in [3]. Then

ζ(k, t) = −H(t)
δρ(k, t)

ρ̇(t)
=

1

3

δρ(k, t)

ρ(t) + p(t)
, (2)

where p is the pressure, and δρ is defined on the slicing with uniform locally-defined scale
factor a(x, t) (flat slicing). The second equality corresponds to the energy continuity equation
ρ̇ = −3H(ρ+ p).

Keeping only super-horizon scales, the energy continuity equation is valid locally. As a
result [12], ζ is constant during any era when p(x, t) is a unique function of ρ(x, t); that is the
case for pure radiation (p = ρ/3) or matter (p = 0). When cosmological scales start to enter
the horizon, the temperature T is somewhat less than 1MeV and we know that the Universe
is practically pure radiation giving a time-independent ζ(k, t) that we are denoting simply
by ζ(k). According to the curvaton scenario, ζ(k, t) does not vary between curvaton decay at
t = td and T ∼ MeV, which is guaranteed if the universe is completely radiation-dominated
throughout that era.

In any curvaton scenario, ζ is generated while ρ = ρσ + ρr and p = pσ + pr, where
ρσ = V (σ) + σ̇2/2 and pσ = −V (σ) + σ̇2/2 are the curvaton contributions. For the original
curvaton ρr cannot be matter and is taken to be pure radiation, ρr ∝ a−4. For the inflating
curvaton, ρr might be matter, ρr ∝ a−3 allowing it to correspond to the oscillation of a
field φ responsible for the first inflation. It might even decrease more slowly, say like a−2

corresponding to a frustrated cosmic string network, although it is generally very difficult to
achieve frustration for cosmic strings [13].

In these cases though, we demand that ρr becomes radiation before it is a significant
fraction of ρ after the curvaton inflation, so that ρr does not cause ζ to vary significantly.

To facilitate an analytic calculation, one writes eq. (2) as ζ(k, t) = f(t)ζσ(k, t) where
3ζσ ≡ (δρσ)/(ρσ + pσ) and f(t) ≡ (ρσ + pσ)/(ρ + p). There is supposed to be negligible
exchange of energy between the two components, so that ζσ is constant if pσ(x, t) is a unique
function of ρσ(x, t). For the original curvaton, ζσ becomes constant only after the oscillation
begins, when pσ ≃ 0. We now argue that for the inflating curvaton, ζσ will become constant
soon after the second inflation begins at the epoch t = t2. We begin with the following
equation, valid in the absence of perturbations [1]:

σ̈ + 3Hσ̇ + V ′(σ) = 0 . (3)

Since sub-horizon modes of σ(x, t) redshift away that quantity has negligible spatial gradi-
ent [1]. As a result it satisfies eq. (3) for each x, with 3M2

PH
2 = ρσ + ρr the locally defined

quantity and t the proper time. Also, pσ is a unique function of ρσ if and only if σ(x, t) is
unique up to the choice of t = 0 (attractor solution). We expect that soon after the inflation
begins it will be slow-roll or fast-roll (see below), and both of these make σ̇ a unique function
of σ giving indeed the required attractor solution.

– 2 –
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If ρr were completely negligible we could invoke a more general argument for the at-
tractor [14], but that might not apply because although the contribution of ρr to H becomes
small soon after the second inflation begins, its contribution to

2ǫH ≡ 2|Ḣ|/H2 = 3

(

σ̇2 +
4

3
ρr

)

/ρ (4)

may be dominant at least initially. While that is happening, f(t) ≃ (σ̇2)/(4ρr/3) ≪ 1. But
just before σ decays at td we have f(td) ≃ ρσ/[ρσ + (4/3)ρr] which will be very close to 1, In
contrast, the oscillating curvaton can have f(td) ≪ 1.

Keeping only super-horizon modes, f(td) = 1 gives ζ(x) = δρσ(x, t2)/3σ̇
2(t2). To first

order in δσ, ζ(x) = V ′δσ(x)/3σ̇2. At horizon exit during the first inflation δσ is nearly
gaussian with spectrum H1/2π. Allowing σ(x, t2) to be a function g of its value at horizon
exit, but taking both σ(x, t) and H1 to be time-independent while cosmological scales leave
the horizon, we get the scale-independent spectrum

P1/2
ζ ≃ g′

3

V ′(σ(t2))

σ̇2(t2)

H1

2π
. (5)

Observation gives [15] P1/2
ζ ≃ 5 × 10−5. This formula is obtained taking g to be linear

in σ(t1).
Taking into account the time-dependence of H1 and σ while cosmological scales leave

the horizon one finds [1]

n(k)− 1 ≡ d lnP/d ln k = −2ǫH1 + 2η1 , (6)

with the right hand side evaluated at horizon exit k = aH and 3H2η ≡ ∂2V/∂σ2. [Note
that V = V (σ, φ, · · · ) during the first inflation where φ, · · · are the fields responsible for
that inflation.] Assuming a tensor fraction r ≡ Ph/Pζ ≪ 10−1 and |n′| ≪ 10−1 where
n′ ≡ dn/ ln k, observation [15] gives n− 1 = −0.037± 0.014.

Eq. (6) is a universal formula, applying whenever a field σ different from the inflaton
generates ζ. It can easily happen (as in our case, see below) that the last term is negligible.
Then we need 2ǫH1 ≃ 0.037, leading to three important consequences.

1. To get the required ǫH1 we need [16] a large change in the inflaton field φ during the first
inflation. To achieve that one usually takes φ to have the canonical kinetic term with
V (φ, σ) ≃ V (φ) = Aφp. Then ǫH1 ≃ p/4N(k), where N(k) is the number of e-folds of
the first inflation after the scale k leaves the horizon [1]. Defining N1 ≡ N(a0H0), we
need N1 ≃ 14p to get the required 2ǫH1 ≃ 0.037. While one is free to postulate any p the
only choices of p with good justification are p = 1 (corresponding to monodromy [17])
and p = 2 (corresponding to ‘extranatural’ [18] inflation or N -flation [19]. These give
N1 ≃ 14 and 28 respectively.

2. A standard calculation [1] gives N1 ≃ 60− ln(10−5MP/H1)/2−N2, where the equality
would be exact if ρ were constant during both inflations and ∝ a−4 otherwise until the
observed matter-dominated era. Combining this with eq. (1) gives

15 +
1

2
ln(H1/H2) . N1 . 60− 1

2
ln(10−5MP/H1) . (7)

Taking into account the uncertainty in n this is compatible with N ≃ 14p for p = 1
or 2, though p = 1 may be ruled out when Planck reduces the uncertainty. For the
oscillating curvaton, where N2 is absent, we would probably need p ∼ 3 to 4.

– 3 –
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3. Since n(k)− 1 ∝ 1/N(k) the ‘running’ n′ is given by n′ = (1− n)/N1. This prediction
holds also for the oscillating curvaton scenario (if |η1| ≪ ǫH1), and for the inflaton
scenario within some simple slow-roll models and it makes n′ big enough to observe
in the future. For the oscillating curvaton, and the inflaton scenario, one expects
roughly N1 ≃ 60 corresponding to n′ ≃ 0.0007. For the inflating curvaton, we have for
V (φ) ∝ φp and taking account of the uncertainty in n

n′ =

(

1− n

0.037

)2 0.0026

p
, (8)

with p = 1 or 2. This precise prediction for n′ will be probably be tested in the future
(see for instance [20]).

We require the contribution of the first inflation to be negligible, s ≡ Pζφ/Pζ ≪ 1.
Assuming canonical kinetic terms for the inflaton(s) [1],

P1/2
ζφ

≥ 1√
2ǫH1

H1

2πMP

(9)

and r ≤ 16sǫH1 implying H1 ≤ 1.1 × 10−4(rs)1/2MP. (The equalities hold for a single
inflaton.) Observation [15] gives r . 10−1. Even if the second term of eq. (6) contributes
significantly, it is unlikely to accurately cancel the first term which means that we need
ǫH1 . 0.02, giving r . 0.3s and H1 . 6 × 10−5s1/2MP. The tensor fraction will not be
observed by Planck [21] if s . 10−1, and it will probably never be observed [22] if s . 10−3.

To calculate the non-gaussianity parameter fNL we expand δρσ to second order in δσ
giving

ζ(x) = V ′δσ/3σ̇2 + (3/5)fNL(V
′δσ/3σ̇)2 (10)

fNL = (5σ̇2V ′′/V ′2)(1 + g′′/g′2) . (11)

Observation [15] requires −10 < fNL < 74 which means that the second term of eq. (10) gives
a negligible contribution [23] to Pζ . We need |fNL| & 1 if fNL is ever to be detected [24].
With such a value it will indeed be a good approximation to ignore the non-gaussianity of
δσ [25]. But our first-order treatment of δρσ is reliable only [1] for |fNL| ≫ 1; for |fNL| ∼ 1
one should go to second order, or use the δN formalism as in [3].

The usual way of achieving inflation would be through the slow roll approximation
σ̇ ≃ −V ′/3H2. That will typically make N2 too large but let us anyway see what it implies.
Differentiating it requires ǫH2 ≪ 1 and |η2| ≪ 1 where η2 ≡ V ′′/3H2

2 . Using eq. (4) the
former condition requires ǫ2 ≡ M2

P(V
′/V )2/2 ≪ 1 and ρr ≪ ρ. Then we get

P1/2
ζ = (2ǫ2)

−1/2(H1/2π)(g
′/MP) (12)

(3/5)fNL = η2(1 + g′′/g′2) . (13)

We would need |g′′| ≫ g′2 to get a detectable fNL.

Most discussions of the oscillating curvaton take V (σ) ≃ m2
σσ

2/2. This choice is im-
possible for the inflating curvaton scenario if the first inflation has inflaton(s) with canonical
kinetic terms. Indeed, using eqs. (9) and (13) the curvaton contribution Pζσ is given by
Pζσ/Pζφ = 2ǫH1N2(σ2/σ1)

2 . 1 which means that Pζσ cannot dominate.

– 4 –
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The curvaton a string axion. Any scheme for generating ζ from some field χ encounters
the η problem; that a generic supergravity theory gives [26] in the early universe |ηnrχ | & 1,
where ηnrχ ≡ (∂2V/∂χ2)/3H2

nr and 3M2
PH

2
nr ≡ ρnr excludes any radiation contribution. It is a

problem for two reasons; (i) we need |ηχ| . 10−2 while cosmological scales leave the horizon
to keep |n − 1| small enough, (ii) unless |∂V/∂χ| is exceptionally small we generally need
|ηχ| ≪ 1 at all times or χ will be quickly driven to a minimum of V .

For the inflaton scenario, the η problem exists only during inflation when H ≃ const;
it is often ignored and could be regarded as a fine-tuning requirement on the parameters
of the supergravity inflaton potential. For the oscillating curvaton scenario the η problem
may be more severe because it may exist for a long time after inflation, with H strongly
decreasing. For the inflating curvaton it is definitely more severe because it exists during
both inflations with very different values for H, in that the generic value |η| ∼ 1 would imply
a very strong evolution of ∂2V/∂σ2 between the two evolutions corresponding to a highly
non-trivial potential V (σ, φ, . . . ).

To avoid the η problem for the curvaton one can take it be a pNGB with the potential

V (σ) =
1

2
V0

[

1 + cos

(

πσ

σ0

)]

, (14)

practically independent of other field values. It is known [3] that σ0 ≪ MP gives the oscil-
lating curvaton, but it is unclear how to motivate such a value. Choosing instead σ0 ≫ MP

would give a second inflation with |η2| ≪ 1, but N2 would typically be too big and this choice
anyhow seems impossible within string theory [27]. (If the latter difficulty is ignored we can
replace σ in eq. (14) by φ to arrive at ‘Natural Inflation’ [1].)

What we need for the inflating curvaton is σ0 ∼ MP. Then, in the regime σ ≪ σ0 we
have V ≃ V0−m2σ2/2 giving |η2| ∼ 1 and just a few e-folds of inflation. Setting 3M2

PH
2
2 = V0

gives H2
2/m

2 ≃ (2/3π2)(σ2
0/M

2
P). The required value σ0 ∼ MP is achieved if σ is a string

axion with gravity- or anomaly mediated susy breaking. [27]. Then m is of order the gravitino
mass mg [27]. The curvaton and gravitino have to decay before they can upset BBN which
requires [28] m & 104GeV ∼ 10−14MP. This corresponds to anomaly mediation, which gives
m ∼ 104 to 105GeV and (like any version of susy) may soon be tested at the LHC.

The contribution of η1 to n− 1 will be negligible if H1/m ≫ [3(1−n)/2]−1/2 = 4. With
such a low m this is a mild requirement which we will take to be satisfied, so that eq. (8)
holds.

Writing V ′ = −m2σ, and taking H2 to be constant, eq. (3) gives during the second
inflation [29]

σ̇ ≃ FH2σ , F ≡ −3

2
+

√

9

4
+

m2

H2
2

∼ m/H2 . (15)

The slow-roll regime is m ≪ H2 but we are interested in the ‘fast-roll’ [29] regime m & H2

corresponding to F & 1. (The approximation F ≃ m/H2 is adequate for m2/H2
2 & 3.) In

the fast-roll regime, eq. (15) is self-consistent if N2 ≫ 1 and σ ≪ σ0.

Since eq. (3) is linear, g is a linear function and we get

P1/2
ζ =

1

3

(

m

FH2

)2 H1

2πσ1
∼ H1

6πσ1
(16)

(3/5)fNL = −(FH2/m)2 ∼ −1 . (17)

– 5 –
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The result for fNL may be strongly modified by the correction of second order in δρσ, but
barring a strong cancellation it seems that fNL may eventually be detectable.

Since inflation ends at σ ∼ σ0 we have FN2 ∼ ln(MP/σ2). Since N2 ≫ 1, we have
F ≪ FN2, hence m/H2 ≪ FN2. Using eq. (16) with H1 > H2 & 104GeV gives FN2 . 24.
Going the other way, eq. (16) with H1 ∼ 10−6MP implies FN2 . 4.

Eqs. (16) and (17) are roughly the same as those of the oscillating curvaton model with
f(td) ≃ 1. But the result for n′ is different for the oscillating curvaton [1]; there we might
have n− 1 ≃ 2η1 with n′ negligible, and even if eq. (8) holds we expect p ≃ 4.

One may worry about the assumption that σ(t1) is near the top of the potential, given
that the first inflation may be of long duration. For a given H1(t), the late-time probability
distribution of σ at the end of the first inflation can be calculated [30]. Taking that dis-
tribution to apply and also taking H1 to be constant, we would need H4

1 & V0 to have a
significant probability that σ is near the top. This requires H1/H2 & MP/H1 & 105 and
(since H2 > 104GeV) H1 & 10−7MP. The former bound would probably make eq. (7) in-
compatible with p = 1. But to know whether the estimate H4

1 & V0 is realistic one would
have to calculate the evolution of the probability distribution with the correct H1(t) and a
range of initial values of σ.

Conclusion. The hypothesis that the curvaton is a string axion leads to a simple early-
universe scenario. The curvaton generates a few e-folds of inflation with H ∼ 104GeV,
during which ζ is created. The main inflation takes place earlier, with a potential V (φ) ∝ φp,
with p = 1 or 2 needed to reproduce the observed spectral index within current observational
uncertainity. The hypothesis requires low-energy susy with anomaly-mediated susy breaking
which may soon be tested at the LHC. It predicts that a tensor fraction r that is probably too
small ever to observe, but a running n′ that eventually be observed and will decide between
the linear and quadratic potentials. A third prediction fNL ∼ −1 may also be testable, but
the accuracy of the calculation needs to be improved.
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