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DEMOGRAPHIC STOCHASTICITY AND THE VARIANCE
REDUCTION EFFECT
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Abstract. Demographic stochasticity is almost universally modeled as sampling var-
iance in a homogeneous population, although it is defined as arising from random variation
among individuals. This can lead to serious misestimation of the extinction risk in small
populations. Here, we derive analytical expressions showing that the misestimation for each
demographic parameter is exactly (in the case of survival) or approximately (in the case
of fecundity) proportional to the among-individual variance in that parameter. We also show
why this misestimation depends on systematic variation among individuals, rather than
random variation. These results indicate that correctly assessing the importance of demo-
graphic stochasticity requires (1) an estimate of the variance in each demographic parameter;
(2) information on the qualitative shape (convex or concave) of the mean–variance rela-
tionship; and (3) information on the mechanisms generating among-individual variation.
An important consequence is that almost all population viability analyses (PVAs) over-
estimate the importance of demographic stochasticity and, therefore, the risk of extinction.

Key words: conservation biology; demography; extinction risk; homogeneous populations; pop-
ulation viability analysis; stochastic demography; variance reduction effect.

INTRODUCTION

The idea of demographic stochasticity, variation in
vital rates due to chance variation in how individuals
realize their propensities to survive and reproduce, has
been used in population ecology for three (MacArthur
and Wilson 1967, Levins 1969) or four decades (Leslie
1958), and in probability theory for well over a century
(Watson and Galton 1874, Lotka 1931, Feller 1939,
Kendall 1949), although early workers did not use the
term ‘‘demographic stochasticity.’’ Nevertheless, pop-
ulation ecologists continue to grapple with how to de-
fine, estimate, and assess the importance of demograph-
ic stochasticity (Richter-Dyn and Goel 1972, Gilpin
and Soulé 1986, Shaffer 1987, 1990, Menges 1992,
Lande 1993, Engen et al. 1998, Kendall 1998). De-
mographic stochasticity plays an important role in both
theoretical and applied demography (Pollard 1973, Ga-
briel and Bürger 1982, Nisbet and Gurney 1982, Tul-
japurkar 1990, Tuljapurkar and Caswell 1997). Our un-
derstandings of extinction processes (Legendre et al.
1999) and of life history evolution (Fox 1993, Benton
and Grant 1999) thus depend, to some degree, on how
well we understand demographic stochasticity.

Kendall (1998) pointed out that demographic sto-
chasticity is usually modeled incorrectly, as sampling
error in a population that is stochastically uniform (i.e.,
every individual in a stage class has the same chance
of surviving and reproducing), rather than having dif-
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fering chances. This model simplification is not nec-
essarily benign (contra Kendall 1998). Individual het-
erogeneity (variation in demographic traits that each
individual retains through its lifetime) reduces the ex-
tinction risk of small populations of iteroparous or-
ganisms (Conner and White 1999). Engen et al. (1998)
suggested that if the demographic covariance (a de-
scription of how an individual’s fate depends on the
fates of others in the population) is negative, it would
effectively raise the magnitude of environmental sto-
chasticity. However, Kendall and Fox (2002) showed
that this non-independence actually lowers the mag-
nitude of demographic stochasticity.

More generally, Kendall and Fox (2002) showed that
any sort of structured variation among individuals
means that modeling populations as homogeneous can
cause overestimation of the importance of demographic
stochasticity for survival. By structured variation, we
mean any factor that imposes systematic demographic
variation. Kendall and Fox (2002) list a number of
examples, including variation in maternal provisioning
among offspring, some cases of genetic variation, and
differences in territory quality. In a nutshell, a popu-
lation with individual variation in survival probabilities
has reduced variation in the number of survivors (and
hence reduced mean survival probability) when com-
pared with a homogeneous population. This is a con-
sequence of Jensen’s inequality, which states that for
a concave function of a variable argument, the mean
of the function is less than the function of the mean
(Jensen 1906; see Ruel and Ayres 1999).

Survival over a time interval is a binomial process
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(see the Appendix for a discussion of human demog-
raphy models using a Poisson approximation to the
binomial): an individual either survives or it doesn’t.
The function relating the variance in the number sur-
viving to the survival probability is a quadratic with
negative second derivative. Thus, if survival probabil-
ities vary within a population, then the variance in
survival probability for the population as a whole must
be less than the variance in a population homogeneous
for the mean survival probability (Kendall and Fox
2002). We refer to this reduced variance in the de-
mographic outcome as the demographic variance re-
duction effect. Kendall and Fox (2002) demonstrated
that this qualitative effect is general and included some
worked examples, but failed to find a formulation for
the magnitude of this effect. We discuss some issues
concerning the binomial model in the Discussion.

An immediate conclusion flowing from our result
(Kendall and Fox 2002) is that population viability
analyses (PVAs), which universally model survival by
using the binomial sampling variance, have overesti-
mated the importance of demographic stochasticity
and, thus, the risk of extinction of small populations.
This result may help to explain a recent empirical per-
ception that PVAs tend to generate predictions that are
overly bleak (Beissinger and Westphal 1998, Belovsky
et al. 1999, Mann and Plummer 1999).

Brook et al. (2000) applied five PVA models to 21
long-term demographic data sets and concluded that
the ‘‘PVA predictions were surprisingly accurate.’’
However, examination of their ‘‘supplementary mate-
rial’’ reveals that in fully 12 out of the 21 analyses, all
of the PVA models had the same bias (either all neg-
ative or all positive) in their prediction of final popu-
lation size; the bias was negative in eight of these cases.
This is far more often than would be expected if the
model errors were independent of one another, sug-
gesting that many populations have important demo-
graphic structure that all of the existing PVA models
overlook.

Here we present further results on the nature of the
reduction in survival variance in heterogeneous pop-
ulations. First, we show how to calculate the magnitude
of the variance reduction, both for theoretical cases
with continuous variation and for empirical cases with
finite populations. Then we provide a simple model
that helps to explain why it is that population structure,
but not random assignment of survival probabilities,
causes the variance reduction effect.

HOW MUCH VARIANCE REDUCTION IS THERE?

The key result is, in words: when there is variation
among individuals in survival probability, then the var-
iance in the number of survivors is proportional to the
sampling variance in a population of ‘‘average indi-
viduals’’ minus the variance in individual survival
probability. In the section on Variance reduction and
random assignment of survival probabilities, we delim-

it exactly what we mean by ‘‘variation among individ-
uals in survival probability.’’

Define the total variance in the number of survivors
in a population of size N as Var(S). Using p for indi-
vidual survival probabilities, define among-individual
variance in survival probabilities as Var( p), with E[p]
as the expected value of p across populations. Define
the sampling demographic variance (VD) associated
with a particular value of p as VD( p). Then the verbal
result above can be written as

Var(S) 5 N{V (E[p]) 2 Var(p)}.D (1)

Infinite populations

The derivation of this result is simple. The sampling
variance for survival probability p is given by the bi-
nomial variance p(1 2 p). To get the variance for the
number surviving in the whole population, simply mul-
tiply this binomial variance by the population size N
and the frequency distribution of p, f( p), and integrate
over all possible values of p. Recalling a basic result
from probability theory, that for a random variable p,
Var( p) 5 E[p2] 2 E[p]2, this integration gives

1

Var(S) 5 N p(1 2 p) f (p) dpE
0

1 1

25 N pf (p) dp 2 p f (p) dpE E5 6
0 0

25 N{E[ p] 2 E[ p ]}

25 N{E[ p] 2 [Var(p) 1 E[ p] ]}

5 N{E[ p](1 2 E[ p]) 2 Var(p)}

5 N{V (E[ p]) 2 Var(p)} (2)D

which is the result we asserted previously.
This result (Eq. 2) is entirely general. As an illus-

tration, consider the case in which variation in p is
described by the beta distribution, which is often used
in survival models. Integrating Eq. 2 with the frequency
of p described by the beta probability density function
(pdf) (with parameters a and b) gives N(a 1 b)Var( p).
By Var( p) here, we mean the variance under the beta
distribution, ab/(a 1 b)2(1 1 a 1 b). If p is fixed at
its mean (5 a/(a 1 b) under the beta), the result is N(a
1 b 1 1)Var( p). Thus the variable population has a
variance in survival that is smaller than that of the
homogeneous population by exactly NVar( p). In this
example, as for any frequency distribution of p, the
total variance in number surviving is proportionally
reduced by the variance in the survival probabilities
(Eq. 2).

Finite populations

Demographic stochasticity is important mainly in
small populations. The results just presented are
couched in terms of continuous variation in p, but in
small populations, variation is likely to be discrete:
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each individual i may have a unique survival proba-
bility pi.

The results just presented extend to finite popula-
tions. In a population of N individuals, each with sur-
vival probability pi, the total variance in number of
survivors is given by

N N N
2Var(S) 5 p (1 2 p ) 5 p 2 pO O Oi i i i

i51 i51 i51

2 25 Np 2 Np 5 Np 2 N[Var(p) 1 p ]i

5 N{V (p ) 2 Var(p)}. (3)D

The result for finite populations (Eq. 3) is exactly
analogous to that for continuous variation (Eq. 2): the
total variance in number of survivors is proportionally
reduced by the variance in the survival parameter p.
This means that one can apply our results on variance
reduction in empirical settings (in particular, in PVAs)
when the population’s survival rates are only poorly
approximated by a continuous model.

EXTENDING THE RESULTS TO REPRODUCTION

Demographic stochasticity occurs in reproduction as
well as survival: some individuals are more fecund than
others. Unfortunately, there is no simple stochastic
model like the binomial for variance in reproductive
output. We observed (Kendall and Fox 2002) that re-
production is often modeled with the Poisson distri-
bution, but without biological justification.

If one could justify the use of the Poisson model,
the variance for number of offspring would equal the
sampling variance in a population of ‘‘average indi-
viduals.’’ Because the mean equals the variance under
the Poisson, the variance as a function of the mean is
neither concave nor convex, and Jensen’s (1906) in-
equality would have no effect. On the other hand, if
the variance is a convex function of the mean (that is,
the opposite of survival), individual variation in num-
ber of offspring would actually increase the total var-
iance in number of offspring.

There is no a priori basis for predicting the shape of
the mean–variance relationship in fecundity, and we
suspect that the shape of the mean–variance relation-
ship may vary among taxa. Here we propose a way of
estimating the direction and magnitude of the changes
in variance induced by demographic stochasticity in
fecundity.

This method uses a Taylor series approximation of
the sampling variance of offspring number. Expanding
the sampling variance for the per capita offspring num-
ber m around its expectation E[m] gives

V (m) 5 V (E[m]) 1 (m 2 E[m])V9 (E[m])D D D

1
21 (m 2 E[m]) V 0(E[m]) 1 · · · (4)D2

where the primes represent differentiation with respect

to m. As long as the third derivative of the mean–
variance relationship is small, one can approximate the
sampling variance for a given value of m using just the
first three terms that we have spelled out. If the ap-
proximation is a good one, we can find the total var-
iance for the population by integrating Eq. 4 over all
possible values of m to get

`

Var(F) 5 N V (m) f (m) dmE D
0

`

ø N V (E[m]) f (m) dmD E5
0

`

1 V9 (E[m]) (m 2 E[m]) f (m) dmD E
0

`1
21 V 0(E[m]) (m 2 E[m]) f (m) dmD E 62 0

5 N V (E[m]) 1 V9 (E[m])E[m 2 E[m]]D D5
1

21 V 0(E[m])E[m 2 E[m]]D 62

1
5 N V (E[m]) 1 V 0(E[m])Var(m)D D5 62

(5)

where Var(m) is the among-individual variance of m
and Var(F ) is the variance in the total number of off-
spring. Clearly Eq. 5 is analogous to the results for
survival (Eqs. 2–3; for survival, 5 22 always), andV0D
can be restated in words: the total variance in repro-
duction is approximately given by the sampling vari-
ance in reproduction of a population of ‘‘average in-
dividuals’’ plus the variance in individual fecundity
times half of the second derivative of the mean–vari-
ance relationship. Variance in individual fecundity can
thus either reduce or inflate the total variance for the
population, depending on whether the mean–variance
relationship is concave or convex. Thus the second
derivative term in Eq. 5 provides a first-order approx-
imation for the magnitude (and direction) of the effect
of individual variation on total variance in reproduc-
tion.

Inspection of Eq. 5 reveals that, had we kept higher
order terms in the Taylor expansion, they would have
been multiplied by the corresponding higher moments
of m (skew, kurtosis, etc.). Thus if m is normally dis-
tributed, Eq. 5 is exact. Any skew in the per capita
offspring number is likely to be positive (long positive
tail), so if the variance–mean relationship were sig-
moidal (negative third derivative), the variance in total
offspring number would be reduced further. It is easy
to imagine plausible distributions of m that have either
positive (e.g., uniform) or negative (e.g., bimodal) kur-
tosis, so there is no way to generalize about this term.
However, an empirical estimate of the fourth derivative
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of the variance–mean relationship will typically be pos-
sible only if there is a known parametric form for the
distribution of m.

VARIANCE REDUCTION AND RANDOM ASSIGNMENT

OF SURVIVAL PROBABILITIES

Kendall and Fox (2002) observed that the reduction
in demographic stochasticity due to individual varia-
tion requires that survival probabilities of individuals
not be randomly assigned. More technically, the re-
quirement is that the survival probabilities not be in-
dependently and identically distributed (i.i.d.). This
seems puzzling at first. To gain intuition on this point,
consider a simple model of a random seed rain onto
sites that are ‘‘good’’ or ‘‘bad.’’ The probability of
landing on a good site is f; in good sites survival
probabilities are pg, while in bad sites survival prob-
abilities are pb. Thus, the mean survival probability in
the population is

p̄ 5 (1 2 f)p 1 p f.b g (6)

Following two seeds through their lives, the prob-
abilities of two, one, and zero survivors are

2 2 2 2P 5 (1 2 f) p 1 2f(1 2 f)p p 1 f p2 b b g g

2P 5 (1 2 f) (1 2 p )p1 b b

1 f(1 2 f)[ p (1 2 p ) 1 (1 2 p )p ]b g b g

21 f (1 2 p )pg g

2 2P 5 (1 2 f) (1 2 p ) 1 2f(1 2 f)(1 2 p )(1 2 p )0 b b g

2 21 f (1 2 p ) .g (7)

These are exactly the probabilities of survival obtained
by using the mean survival probability. For example,
squaring Eq. 6, the average probability of survival,
gives the probability of two survivors. This result is
identical to P2. The probabilities of 1 and 0 survivors
are also identical to those obtained if the population
were composed of individuals with the mean survival
probability. The variances in survival are thus also
identical.

Why does this occur? In a basic sense, all individuals
do have the same survival probability. Prior to dis-
persal, every seed has the same chance of falling in a
good spot and the same chance of surviving if it does.
Thus assignment of survival probabilities, when it is
i.i.d., leads to exactly the same fraction of survivors
as well as the same variance in survival.

More generally, random assignment of survival prob-
abilities always leads to a different result than systematic
structure because the variance is calculated differently
in the two cases. When survival probabilities are i.i.d.,
the total variance in survival is calculated as the average
squared deviation from E[p]. However, when survival
probabilities vary in some systematic fashion, the total

variance in survival is calculated as the sum of the
squared deviations from each of the pi’s.

For the sake of brevity, we do not present an analo-
gous model for reproduction, especially because, as we
have suggested, there is no simple, general model. How-
ever, it is clear that the same logic holds as for survival:
variance reduction (or inflation) requires that fecundity
not be i.i.d. among individuals in a population.

DISCUSSION

Most empirical demographic studies have focused
on average behavior, assuming a homogeneous popu-
lation. This can lead one to seriously misestimate ex-
tinction risks. Our results show that total variance of
survival is reduced by exactly the variance in survival
probabilities. Our results for reproduction show that
variance in offspring number depends (approximately)
linearly on the variance in fecundity; the direction and
magnitude of the change depends on the curvature of
the mean–variance relationship.

These results underline the importance of acquiring
data from real populations on variation among indi-
viduals for demographic parameters. Correctly assess-
ing the effects of demographic stochasticity, crucial in
theoretical demography (Pollard 1973, Nisbet and Gur-
ney 1982, Tuljapurkar 1990, Tuljapurkar and Caswell
1997), life history evolution (Fox 1993, Benton and
Grant 1999), and applied (e.g., pest management and
conservation) settings, hinges on knowing both the
means and variances of demographic parameters, as
well as the shape of the mean–variance relationship for
fecundity.

Estimating vital rates and their variances

Previously (Kendall and Fox 2002), we commented
that accounting for variance reduction requires more
intensive study but not longer data sets. The present
results clarify this: for any given demographic param-
eter, what is needed is an estimate of the among-in-
dividual variance in the parameter, quantitative infor-
mation as to whether the mean–variance relationship
is concave or convex, and a determination as to whether
the parameters are i.i.d. Although this is more work
than estimating the mean for the parameter, it generally
will not involve orders of magnitude more work, and
in many cases, the required individual-level demo-
graphic data probably already exist in field notebooks.

An essential feature of the necessary data is that they
be recorded as individual data rather than population
aggregates. As an example of what not to do, consider
a standard approach to estimating plant fecundity for
matrix models: divide the number of seedlings by the
number of adults, perhaps weighted by adult size. This
does estimate the mean fecundity, but does not lead to
an estimate of individual variance. To get the latter, we
need data from individuals; admittedly, this is difficult
in some taxa.

To estimate vital rates and their variances, one must
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select an underlying model. This can be done either
from a priori biological considerations (Lindsey 1995,
Fox 2001) or by fitting data to a number of distributions
and asking whether they differ in a measure of good-
ness-of-fit such as their likelihoods. Demographic data
strongly violate normality: survival probabilities are
constrained to be between 0 and 1, and individual fe-
cundities are constrained to be positive integers. As we
have described, survivorship can be modeled as a bi-
nomial distribution (also see the Appendix). Elucidat-
ing plausible models for demographic variation in fe-
cundity and growth remains an important empirical and
theoretical challenge.

To account for additional population structure, there
are essentially two approaches, which are not mutually
exclusive. The first involves hypotheses about partic-
ular factors that structure populations, whereas the sec-
ond entails estimating the effect of underlying and un-
measured inherent differences in vital rates.

The first approach is probably more familiar to ecol-
ogists. One asks how the vital rates are affected by mem-
bership in a particular stratum such as gender, family
within a population, or possession of a genetic marker.
A familiar example is the use of logistic regression
(Floyd 2001) or categorical modeling approaches to ask
whether groups differ in their risk of death. The pro-
cedure directly provides estimates of mortality rates for
the different strata in the population, as well as their
variances. If the fraction of the population in each stra-
tum can be estimated from these or other data, then one
can directly infer the variance of the mortality rates for
the population as a whole. Data on the dates of death
also can be used to estimate mortality rates and their
variance. There are several statistical models designed
for estimating the effects of different strata on time-to-
event data (Fox 2001). The model’s parameter estimates
can then be used to calculate the cumulative chance of
dying in the interval of interest (for examples using SAS,
see Allison 1995). Similar approaches can be used for
fecundity data. For example, one can use categorical
models to estimate the probabilities of individuals in
different strata having a particular number of offspring.
Depending on how the data are distributed, especially
for fecundity data, there may be no standard regression
models for examining the effect of strata on the vital
rates. However, programmable statistical packages like
S1, SAS, and GLIM can accommodate almost any un-
derlying distribution.

The second approach is to use ‘‘frailty’’ or ‘‘hetero-
geneity’’ models (Vaupel et al. 1979, Keyfitz 1985, Lind-
sey 1993, Fox 2001). These assume that individuals vary
in an unobserved quality that can be thought of as the
chance that an individual dies, relative to a ‘‘standard’’
individual (with a frailty of 1). In a typical frailty model,
the risk of mortality m(t) at time t is multiplied for each
individual i by a frailty zi, so that individuals with zi 5
2 face twice the risk of a standard individual.

Clearly, an individual’s frailty can be directly esti-

mated if one has repeated measurements of the event
(this is done in industrial reliability applications), but
for better or worse, one only dies once. Perhaps sur-
prisingly, one can estimate the variance in frailty from
a sample even though no individual’s frailty can be
estimated. For example, Manton et al. (1981) estimated
the variance in frailty within both genders of two hu-
man populations. Similarly, Service et al. (1998) es-
timated the variance in frailty for a Drosophila pop-
ulation. In both of these studies, models including frail-
ty terms fit the data better than do models assuming
that the population was homogeneous. Frailty models
have been severely criticized (Mueller et al. 2000) as
being ill-defined (because individual heterogeneity can
occur through any parameter in any model) and as mak-
ing it possible to always propose post hoc frailty mod-
els (which by definition model unmeasured variables)
to fit data. Analogous criticisms, of course, can be ap-
plied to many hypotheses.

How does one estimate the shape of a mean–variance
curve for fecundity? A completely empirical approach
is to plot observed among-individual variances against
a series of observed population means and ask whether
the curve is convex or concave. Desirable as such anal-
yses are, it is clear that we will not often be able to
conduct them. An alternative relies on parametric sta-
tistical models. Given data on individual fecundities,
one will already have used a model to estimate the
variance of fecundities. For example, the data might
be best fit by a generalized Poisson distribution (B.
Kendall and K. Keith, unpublished manuscript). If
there are no further data from other populations, one
could proceed by assuming that the same distribution
(with different parameters) is likely to give a reason-
able description of variation in fecundity for a range
of conditions. Analysis of the distribution and esti-
mated parameters will usually provide the needed in-
sight: for example, in the Poisson distribution, the
mean–variance function is a straight line, whereas in
the generalized Poisson distribution, the variance can
be either a concave or a convex function of the mean.

How can we determine that variation among indi-
viduals in survival probability or fecundity is not i.i.d.?
Rarely will there be sufficient data to test this statis-
tically. Instead, we must examine the natural history
of the organism to determine that an individual’s mem-
bership in a particular demographic stratum is not com-
pletely random, or that an individual’s fate is not en-
tirely independent of its neighbor’s. Kendall and Fox
(2002) gave a number of biologically reasonable ex-
amples in which survival probabilities of individuals
are not i.i.d.

Variance reduction or model misspecification?

We have shown that the variance reduction effect is
caused by systematic population structure. Does this
imply that models, such as those used in many PVAs,
are simply misspecified? Should all that structure sim-
ply be included in the model?



July 2002 1933DEMOGRAPHIC STOCHASTICITY

Consider the case of genetic variation. At best, it is
difficult to model quantities like genetic variance for
survival or fecundity; there is no organism for which
the genetic architecture of this kind of variation is well
understood. The errors are large for parameter esti-
mates in quantitative genetics (Shaw 1991), and in the
case of endangered species, can easily require studies
larger than the number of individuals in a population.
Without knowing the detailed genetic architecture of
such traits, as well as the details of the mating system,
it is impossible to predict how parameters like heri-
tabilities and genetic covariances will change over time
(Turelli 1988), even if there were no selection on the
traits. Indeed, our approach of finding second-order
terms to simulate the effects of the unmodeled structure
is analogous to the use of quantitative genetics in mod-
eling traits that are affected by many (potentially in-
teracting) loci.

Similar arguments can be made regarding many of
the causes of population structure. The sad truth is that
there are a large number of factors that structure pop-
ulations, and they may have interactive effects on one
another. Even with very large populations and long
careers, we are unlikely to be able to specify models
incorporating more than a very few of these factors.
The remainder must be treated as random variation.

The future may be better (or worse) than we thought

A biased method can be useful if the direction of
bias is known. In particular, our results can be used to
place bounds on the importance of demographic sto-
chasticity. For example, a simple PVA of a homoge-
neous population always gives an overestimate of the
variance of the number surviving due to demographic
stochasticity, and therefore overestimates the extinc-
tion probability when the population is small. By the
same token, if it is known whether the mean–variance
relationship for fecundity is concave or convex, one
can say that a model of a homogeneous population
gives an overestimate (if concave) or underestimate (if
convex) of the variance in fecundity. Even if models
are able to describe some of the population structure,
they will still tend to err in the same direction, because
it is not possible to fully account for all of the factors
causing population structure.

This sort of logic may suggest an optimistic view of
our results: we know how models are biased, and ex-
tinction risks are often lower than had been thought.
We believe, however, that such optimism must be
strongly tempered. First, an upper bound for the im-
portance of demographic stochasticity is not a partic-
ularly useful quantity if it is greatly overestimated. Sec-
ond, variation among individuals in survival probabil-
ity and fecundity may act in opposite directions; with-
out additional information on the sizes of the individual
effects (and their covariances) the net direction of bias
for a given PVA is unknown. Third, and perhaps most
important, this uncertainty is made worse by the way

most PVA applications implement environmental and
demographic stochasticity. They estimate environmen-
tal stochasticity by the observed variation (which in-
corporates demographic stochasticity) and then add on
‘‘demographic stochasticity’’ as sampling error (Ken-
dall 1998). This procedure can cause substantial errors
in estimating quantities like variance in population
size, minimum viable population size, and extinction
risk (see also Ludwig 1998, Brook 2000, Fieberg and
Ellner 2000) in unknown directions.

Thus, it is not clear whether to be optimistic or pes-
simistic about extinction risks and the net direction of
bias: they may be better or worse than PVAs have
suggested. What is clear, however, is what we need to
know to answer that question. We need estimates of
the among-individual variances in vital rates. In the
case of fecundity, we also need to know the shape of
the mean–variance curve. For both survival and fe-
cundity, we need to estimate the effects of factors sus-
pected to make populations heterogeneous.

In the last decade or so, there has been considerable
progress in understanding and modeling the effects of
population structure caused by differences in size, de-
velopmental stage, and age (Tuljapurkar and Caswell
1997, Caswell 2001). We now need to add estimates
of factors that cause heterogeneity in vital rates with
stage, size, and age classes. In some cases, this can be
done by analyzing the effects of observable factors
(like family, genetic markers, birth order or position,
etc.) using statistical methods like those just discussed
(see Estimating vital rates and their variances). How-
ever, there is also a multitude of factors that we are
unable to observe, much less model, that can also con-
tribute to heterogeneity among individuals. Heteroge-
neous populations have properties that are very dif-
ferent from homogeneous populations; although the
heterogeneity can be challenging to quantify, doing so
will improve the predictive accuracy of population
models.
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APPENDIX

A description of binomial and other survival models is available in ESA’s Electronic Data Archive: Ecological Archives
E083-033-A1.




