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Abstract. Morphometric studies often consider parts with internal left-right symmetry, for instance, the vertebrate
skull. This type of symmetry is called object symmetry and is distinguished from matching symmetry, in which two
separate structures exist as mirror images of each other, one on each body side. We explain a method for partitioning
the total shape variation of landmark configurations with object symmetry into components of symmetric variation
among individuals and asymmetry. This method is based on the Procrustes superimposition of the original and a
reflected copy of each landmark configuration and is compatible with the two-factor ANOVA model customary in
studies of fluctuating asymmetry. We show a fully multivariate framework for testing the effects in the two-factor
model with MANOVA statistics, which also applies to shapes with matching symmetry. We apply the new methods
in a small case study of pharyngeal jaws of the Neotropical cichlid fish Amphilophus citrinellus. The analysis revealed
that the symmetric component of variation in the pharyngeal jaws is dominated by the contrast between two alternative
trophic morphs in this species and that there is subtle but statistically significant directional asymmetry. Finally, we
provide some general recommendations for morphometric studies of symmetric shapes.
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Bilateral symmetry is a pervasive feature of the body plans
of most animals, although radial symmetry and other types
of symmetry exist as well. Symmetry implies that an organ
or part of an organ is repeated in a different orientation or
position and, therefore, that the spatial arrangement is strong-
ly patterned and partly redundant. This structure inherent in
morphological data from symmetric parts can be used for
studies in a variety of biological contexts. An extensive body
of work has used fluctuating asymmetry, small differences
between corresponding parts on the left and right body sides,
to measure the imprecision of developmental systems in re-
sponse to various stresses and, more contentiously, as an
indicator of individual condition (Palmer and Strobeck 1986;
Møller and Swaddle 1997). Other studies have focused on
the patterns of covariation of asymmetry to investigate mor-
phological integration and modularity (Leamy 1993; Klin-
genberg and McIntyre 1998; Auffray et al. 1999; Debat et
al. 2000; Klingenberg and Zaklan 2000; Klingenberg et al.
2001a; Klingenberg 2002).

The methods of geometric morphometrics combine the
powerful and flexible tools of multivariate statistics with ex-
plicit consideration of spatial relations of parts and therefore
make it possible to investigate morphological variation with
direct reference to the anatomical context of the structure
under study (e.g., Bookstein 1991, 1996a; Dryden and Mardia
1998). Previous studies have adapted these methods for the
study of left-right asymmetry (Auffray et al. 1996; Smith et
al. 1997; Klingenberg and McIntyre 1998). The two-factor
ANOVA approach for asymmetry studies of conventional
length measurements (Leamy 1984; Palmer and Strobeck
1986) has been extended to quantify individual variation and
asymmetry in the geometric shape of paired structures (Klin-
genberg and McIntyre 1998; Auffray et al. 1999).

A procedure to study variation and asymmetry of shapes

with internal symmetry was briefly outlined by Bookstein
(1996b, pp. 144 ff.) and Auffray et al. (1999, p. 321). This
procedure compares the original shapes of specimens to their
respective mirror-image copies and thereby makes it possible
to partition shape variation into components of symmetric
shape and of asymmetry. Mardia et al. (2000) and Kent and
Mardia (2001) recently elaborated this method and provided
a formal test for directional asymmetry. Here we extend this
approach to encompass the full two-factor ANOVA design
including fluctuating asymmetry and measurement error
(Palmer and Strobeck 1986). We incorporate this method into
a framework for analyses of asymmetry for two- and three-
dimensional data and present improvements that relax the
assumptions of the statistical testing procedures published
earlier (Klingenberg and McIntyre 1998).

The topic of symmetry is relevant even for morphometric
studies that do not focus directly on asymmetry, because
nearly perfect bilateral symmetry of morphological structures
can lead to statistical problems if it is not taken into account
explicitly (Bookstein 1996b, pp. 144 ff.). Therefore, the issue
of symmetry is of concern for all morphometric studies of
bilaterally symmetric structures. Some authors have included
median and paired landmarks in the same analyses without
regard for symmetry (e.g., O’Higgins and Jones 1998; Hen-
nessy and Stringer 2002), whereas others have used various
techniques for averaging between body sides to obtain half-
configurations (e.g., Corti et al. 2001; Ponce de León and
Zollikofer 2001; Webster et al. 2001). The framework ex-
plained here offers a natural way to estimate the axis or plane
of symmetry using the complete information in the data and
extract components of symmetric shape variation for the
many studies in which asymmetry is not the main interest.

We demonstrate the new approach with a dataset from the
lower pharyngeal jaw of the Neotropical cichlid fish Am-
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FIG. 1. Examples of the two types of bilateral symmetry (Mardia
et al. 2000). (A) Matching symmetry, where a structure is present
in two separate copies that are located on the left and right body
sides as mirror images of each other. Each copy of the pair is
confined entirely to one body side. (B) Object symmetry, where a
structure such as the vertebrate head is symmetric in itself because
the midsagittal plane (or median plane; the midline in two-dimen-
sional representations) passes through it. Therefore, with the ex-
ception of asymmetries, the left and right halves of the structure
are mirror images of each other.

philophus citrinellus, which clearly shows internal symmetry
and is a structure that is of great interest for cichlid evolution
due to its adaptive importance and remarkable phenotypic
plasticity (Liem 1973; Meyer 1990a,b; Huysseune et al. 1994;
Smits et al. 1996a). Detailed knowledge of the morphological
variation in such traits is one of the preconditions for a better
understanding of their role in the adaptive evolutionary pro-
cess.

TYPES OF SYMMETRY AND ANALYSIS OF ASYMMETRY

Matching Symmetry and Object Symmetry

Bilateral symmetry can manifest itself in two ways, which
Mardia et al. (2000) have distinguished as matching sym-
metry and object symmetry (Fig. 1). Under matching sym-
metry, a structure of interest is present in two separate copies
as mirror images of one another, one each located on either

body side. With object symmetry, the structure is symmetric
in itself and therefore has an internal line or plane of sym-
metry, so that its left and right halves are mirror images of
each other.

Each structure with matching symmetry exists as a pair of
separate copies, and the plane or axis of symmetry of the
animal is located between them, but does not pass through
either copy (Fig. 1A). Matching symmetry, as its name sug-
gests, can be assessed by optimally matching the shapes of
parts from opposite sides with an appropriate reflection and
superimposition. For example, for a comparison of one’s left
and right hands, this reflection and superimposition corre-
sponds to putting together the palms of both hands. Existing
methods for studying asymmetry of shape have focused al-
most entirely on matching symmetry (e.g., Bookstein 1991,
pp. 267 ff.; Auffray et al. 1996; Smith et al. 1997; Klingen-
berg and McIntyre 1998).

Many parts of biological interest, however, such as the
vertebrate skull, have an internal plane of symmetry and thus
are bilaterally symmetric in themselves. These structures are
instances of object symmetry (Fig. 1B). In addition to the
shapes of parts on the left and right sides, the information
considered for matching symmetry, studies of object sym-
metry also analyze variation of structural features in the me-
dian plane and the way the two halves of the body are con-
nected. Real organisms hardly ever are perfectly symmetric,
however, and small asymmetries also affect those structural
features that lie in the midsagittal plane of the idealized body
plan. In other words, the surface containing the median land-
marks, sutures, and similar midline structures can bulge lo-
cally to the left or right to some extent. Therefore studies of
variation in symmetric structures need to take into account
variation in both the median plane and the paired structures
on either side of it.

Even if symmetry or asymmetry are not the primary focus
of a study, however, the symmetry in morphological struc-
tures is still a concern. It can cause statistical problems, for
instance ill-conditioned covariance matrices if all the land-
mark configurations are very nearly symmetrical (Bookstein
1996b, pp. 144 ff.). If there is exact symmetry, then the
positions of the paired landmarks on one body side can be
determined from the corresponding landmarks on the other
side and those on the median plane. Algebraically, this is a
linear dependence among the landmarks, and therefore, the
covariance matrix of landmark positions will be singular,
which causes difficulties for all statistical procedures that use
the inverse or determinant of the dispersion matrix (e.g., ca-
nonical variate analysis). Even if symmetry is not perfect,
there still can be difficulties because of ill-conditioned co-
variance matrices. Using complex numbers to analyze land-
mark coordinates in two dimensions is no remedy to this
problem (contrary to the statement of Magwene 2001, p. 646).
The problem can be circumvented, however, by taking the
symmetry of the forms into account explicitly and adjusting
the analysis accordingly.

Procrustes Analysis of Shape

Most studies in geometric morphometrics characterize
shape through the coordinates of a set of landmarks: corre-
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sponding points that can be located unambiguously on each
of the specimens under study. A mathematical definition of
shape includes all the features of a configuration of landmarks
except its size, position, and orientation relative to the orig-
inal coordinate system. In the context of matching symmetry,
reflection is another feature that is not relevant for the study
of shape. Procrustes methods eliminate these extraneous fea-
tures to produce an estimate of mean shape and the variation
around the mean (for details, see Rohlf and Slice 1990; Good-
all 1991; Bookstein 1996a; Dryden and Mardia 1998; Klin-
genberg and McIntyre 1998).

Shape analyses of symmetric structures use the generalized
least-squares Procrustes superimposition method (Rohlf and
Slice 1990; Goodall 1991; Dryden and Mardia 1998). Least-
squares fits are preferable over the resistant-fit methods
(Rohlf and Slice 1990) because the algebra underlying the
Procrustes fit ties in with the least-squares approach inherent
in the ANOVA models used in asymmetry studies. Moreover,
for analyses of object symmetry, the repeated median method
that is used for resistant fitting (Rohlf and Slice 1990) may
not obtain a symmetric consensus from the superimposition
of a configuration and its mirror image, and therefore resis-
tant-fit methods may not properly characterize the component
of symmetric variation.

Identifying Components of Symmetric
Variation and Asymmetry

Methods for the analysis of shape with bilateral symmetry
can separate a component of symmetric variation among in-
dividuals, that is, variation in the left-right averages of a trait,
from the left-right asymmetries within individuals. Depend-
ing on whether the part under study shows matching or object
symmetry, there are some differences in the procedure for
shape analysis.

Matching symmetry

For matching symmetry, there are separate landmark con-
figurations for the left and right sides that are mirror images
of each other. Therefore, the analysis includes an additional
preliminary step: reflecting all configurations from one body
side to their mirror images (e.g., by changing the sign of the
x coordinate of every landmark for configurations from the
left side; Klingenberg and McIntyre 1998). After this, all
configurations are superimposed simultaneously with the
least-squares Procrustes method.

Because there is a complete landmark configuration on
each body side, partitioning of variation into components of
symmetric variation among individuals and asymmetry uses
averages and contrasts of those configurations. Variation
among individuals is analyzed using the averages of the left
and right configurations, and asymmetry is measured from
the differences between configurations from the left and right
sides of each individual. Measurement error is assessed by
digitizing each landmark configuration at least twice and
computing the differences between replicates of each con-
figuration (Palmer and Strobeck 1986; Palmer 1994; Klin-
genberg and McIntyre 1998).

Because all of these components of variation are computed
from averages or differences of entire landmark configura-

tions, they all occupy the same shape space. The dimension-
ality of this space, called the shape dimension, corresponds
to the number of parameters that can be chosen freely to
specify a shape or shape difference. For two-dimensional
(2D) data, a configuration of k landmarks is defined by 2k
coordinates, but these also determine the size, location, and
orientation the configuration. Therefore, the number of pa-
rameters for these extra sources of variation (eliminated by
the Procrustes fit) must be removed: one for size, two for
location, and one for orientation. The shape dimension for
two-dimensional data is therefore 2k 2 4 (e.g., Goodall
1991). For three-dimensional (3D) data, there are 3k coor-
dinates, and one parameter needs to be removed for scaling,
three for location, and three for orientation. The shape di-
mension for a landmark configuration in 3D is therefore 3k
2 7.

Object symmetry

For object symmetry, a single landmark configuration pro-
vides information about asymmetry and about the left-right
average of shape. For each individual, there is a configuration
consisting of k pairs of landmarks and l unpaired landmarks
on the median plane or midline of the structure, where k $
1, l $ 0, and 2k 1 l $ 3 (this notation differs slightly from
that of Mardia et al. 2000; Kent and Mardia 2001). For the
paired landmarks, which are situated outside of the median
plane, the analysis is comparable to matching asymmetry,
except that each landmark configuration includes the paired
landmarks for both the left and right sides. Therefore, a single
configuration contains all the information that analyses of
matching symmetry consider separately for the left and right
sides, but it also contains additional information on the ar-
rangement of the two halves relative to each other. For a
configuration with k pairs of landmarks, the analysis of object
symmetry includes all 2k of them simultaneously, whereas a
corresponding analysis of matching symmetry deals with
only k landmarks at a time, but includes twice the number
of configurations. Of course, the unpaired landmarks are
unique to analyses of object symmetry.

The analyses for landmark configurations with object sym-
metry partition the total shape variation into components of
symmetric variation and asymmetry by Procrustes superim-
position of the original configurations and their mirror images
(Fig. 2; Mardia et al. 2000). Before the superimposition, a
reflected copy of each configuration is generated (e.g., by
reversing the signs of the x coordinate of each landmark).
Because the reflection is done before the Procrustes fit, it
does not matter which particular plane of reflection is used
for each specimen (usually this step is done with the coor-
dinate axes of the original measurements). Then the paired
landmarks of the reflected copies are relabeled so that each
paired landmark obtains the label of its counterpart (in the
example of Fig. 2: 3 → 4 and 4 → 3, 5 → 6 and 6 → 5, 7
→ 8 and 8 → 7). The reflection first brings the landmarks to
the opposite side, and the relabeling makes the arrangement
of landmarks compatible with the original forms again (e.g.,
in Fig. 2, landmark 3 is to the right of the median axis in
the original as well as in the reflected and relabeled config-
uration). The Procrustes analysis includes the original and
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FIG. 2. Analysis of shape variation in structures with object sym-
metry. The example illustrates the approach with a single arbitrary
configuration of eight landmarks. Two are single median landmarks
(1, 2), whereas the remaining six are in three pairs (3 and 4, 5 and
6, 7 and 8). The diagram shows the original configuration (filled
triangles and solid line) and its reflected and relabeled copy (hollow
triangles and dotted line) after least-squares Procrustes superim-
position. Their Procrustes average (circles and dashed line) is per-
fectly symmetric. In this average configuration, all the unpaired
landmarks and the midpoints between corresponding landmarks on
either side fall on a straight line, which is a natural estimate of the
median axis (bold dash-dotted line) that allows for asymmetry in
all landmarks. The entire coordinate system after the Procrustes fit
is rotated so that the median axis of the consensus is vertical.

mirrored configurations of a sample combined, and super-
imposes all of them simultaneously.

Even for asymmetric shapes, the least-squares Procrustes
consensus of a set of landmark configurations and their re-
labeled mirror images is a perfectly symmetric shape (Fig.
2; Mardia et al. 2000; Kent and Mardia 2001). In this sym-
metric average, the unpaired landmarks and the midpoints
between pairs of landmarks all lie exactly on a straight line
(or in a plane for 3D data). Likewise, the average of the
original and mirrored configurations of each specimen after
the overall Procrustes superimposition is perfectly symmet-
ric. For all these symmetric averages, the unpaired landmarks
and the midpoints between pairs of landmarks lie on the same
line (or in the same plane) as for the overall consensus. This
is a natural estimate of the median axis (or plane) that allows
for asymmetry in all landmarks, and provides a frame of
reference with a clear anatomical meaning.

The variation among individuals in these averages of orig-
inal and reflected configurations (corresponding to the left-
right averages for matching symmetry) constitutes the sym-
metric component of shape variation. Symmetric variation
includes movements of the unpaired landmarks along the

median axis (or within the median plane) and joint mirror-
image shifts of pairs of corresponding landmarks in any di-
rection. For this component of perfect symmetry, the k pairs
of landmarks can be fully described by the position of one
member of each pair, which is free to vary in any direction,
so that there are 2k free parameters for 2D or 3k free param-
eters for 3D. The l unpaired landmarks can vary in their
positions along the midline or in the median plane and there-
fore add another l free parameters for 2D data or 2l for 3D
data. However, the Procrustes fit introduces a number of con-
straints. The constraint due to size of the whole configuration
reduces the number of parameters by one, the constraint for
location removes one parameter for 2D and two for 3D, and
an additional constraint for orientation in the median plane
removes one more parameter in 3D (but none in 2D). The
shape dimension for variation of symmetric configurations is
therefore 2k 1 l 2 2 for 2D and 3k 1 2l 2 4 for 3D (see
also Mardia et al. 2000; Kent and Mardia 2001).

Asymmetry is quantified through the differences between
the original and mirrored configurations, or equivalently, the
landmark deviations of the original configuration from the
symmetric consensus of the original and mirror image. For
the paired landmarks, asymmetry can be in any direction for
each of the k pairs, which amounts to 2k free parameters for
2D and 3k for 3D. Asymmetry of the unpaired landmarks can
only be in the direction perpendicular to the midline or me-
dian plane and thus adds l free parameters for both 2D and
3D. However, the sum of the asymmetries of all landmarks
in the direction perpendicular to the median plane must be
zero, eliminating one degree of freedom for both 2D and 3D.
Moreover, the rotation step during Procrustes fitting imposes
an additional constraint (e.g., it is not possible that all left
landmarks shift forward and all right ones backward) and
reduces the number of degrees of freedom by one for 2D and
by two for 3D. Notice that there are no constraints for ori-
entation or size of the configurations of the paired landmarks
on either side, because differences in size and in orientation
of these half-configurations are genuine components of shape
asymmetry in structures with object symmetry (e.g., in Fig.
2, the original configuration’s right half is bigger than the
left half). Altogether, the shape dimension for asymmetry is
therefore 2k 1 l 2 2 in 2D or 3k 1 l 2 3 in 3D.

The shape dimensions of the symmetric and asymmetric
components sum up to the total shape dimension for the entire
configuration of landmarks, that is, 2(2k 1 l) 2 4 for 2D and
3(2k 1 l) 2 7 for 3D. This is because the components of
symmetric variation and asymmetry occupy subspaces of the
Procrustes tangent space that are orthogonal complements to
each other (for further details on the geometry of this de-
composition, see Mardia et al. 2000).

If each configuration has been digitized multiple times, the
variation among replicates gives a measure of digitizing error.
This error can affect each of the 2k 1 l landmarks in any
direction regardless of the symmetry of the configuration,
although the covariance structure may be influenced by the
local surroundings of the landmarks. Because the difference
between replicates is based on Procrustes superimposition of
the whole configuration, the shape dimension for measure-
ment error is 2(2k 1 l) 2 4 for 2D and 3(2k 1 l) 2 7 for
3D.
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Procedures and Tests for Procrustes ANOVA

The most usual form of this separation is a two-factor
ANOVA with individuals and sides as the main effects (Lea-
my 1984; Palmer and Strobeck 1986; Palmer 1994). This
ANOVA approach was originally designed for linear distance
measurements, but has been extended for shape data (Klin-
genberg and McIntyre 1998; Auffray et al. 1999).

The ANOVA design is similar for structures with matching
and object symmetry. The ANOVA partitions the deviations
of the configurations from the overall consensus (mean) con-
figuration into components due to individuals, sides (or re-
flections, for structures with object symmetry), individuals
3 sides interaction, and measurement error. Variation among
individuals, corrected for the effects of any asymmetry, is
quantified by the main effect of individuals. Directional
asymmetry, the average difference between the two body
sides, corresponds to the main effect of sides (or reflections).
Fluctuating asymmetry, the variability of left-right differ-
ences among individuals, is the individuals 3 sides inter-
action (or individuals 3 reflections interaction). Measure-
ment error is computed from the variation among replicate
measurements.

Isotropic model

Goodall (1991, p. 314 ff.) first presented a framework for
Procrustes ANOVA of shape data, which has been used in
analyses of asymmetry (Klingenberg and McIntyre 1998).
This model makes the assumption that there is an equal
amount of variation around each landmark, this variation is
isotropic (the scatter of residuals is circular in 2D or spherical
in 3D, i.e., there are no preferred directions of variation at
any landmark), and variation is independent among land-
marks. Therefore, analyses can concentrate exclusively on
the amount and ignore the direction of variation.

To assess the magnitudes of effects due to different sources
of shape variation, it is possible simply to add up the sums
of squares for the different effects across the coordinates of
all landmarks and to divide by the respective degrees of free-
dom (derived from the corresponding shape dimensions; see
Table 1) to compute Procrustes mean squares (e.g., Klingen-
berg and McIntyre 1998; Auffray et al. 1999). These mean
squares are in units of squared Procrustes distance, and there-
fore are directly compatible with the algebra that forms the
core of statistical shape analysis (Bookstein 1996a; Dryden
and Mardia 1998). This measure of the magnitude of different
ANOVA effects is particularly useful, for instance, for as-
sessing the relative importance of digitizing error or the con-
tribution of fluctuating asymmetry to overall variation.

A simple procedure for Procrustes ANOVA under the iso-
tropic model consists of the following steps. First, the land-
mark configurations, prepared as appropriate for matching or
object symmetry, are superimposed by the least-squares Pro-
crustes method. Then, a standard statistics package is used
to perform a separate two-factor ANOVA of each coordinate,
according to the model for univariate studies of asymmetry
(Palmer and Strobeck 1986; Palmer 1994). Individually, the
ANOVA statistics of single coordinates should be interpreted
with the utmost caution, if at all, because they are not in-
dependent of one another due to the overall Procrustes fit.
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Nevertheless, the sums of squares for each effect can be added
over the coordinates of all landmarks, and the Procrustes
mean squares are obtained by dividing by the appropriate
degrees of freedom (Table 1). Statistical significance can be
assessed with parametric F-tests (Goodall 1991) or permu-
tation tests (Klingenberg and McIntyre 1998).

The model of equal and isotropic variation is a fairly re-
strictive assumption that is often violated in biological da-
tasets, which often show clearly patterned variation (e.g.,
Klingenberg and McIntyre 1998; Badyaev and Foresman
2000; Debat et al. 2000; Klingenberg and Zaklan 2000; Klin-
genberg and Leamy 2001; Klingenberg et al. 2001a). There-
fore, although the Procrustes mean squares provide a useful
and appropriate measure of the magnitude of effects, further
interpretations of ANOVA results should be made with cau-
tion. In particular, significance levels obtained by parametric
F-tests may not be reliable. Permutation tests (Good 1994;
Edgington 1995) provide an alternative that can be used for
Procrustes ANOVA even when distributions are nonnormal
or sample size is small (Klingenberg and McIntyre 1998),
but as far as these procedures also sum variation across land-
marks and coordinates, they also rely on the same assump-
tion.

Nonisotropic model

To avoid making the assumption of equal, independent,
and isotropic variation at all landmarks, Mardia et al. (2000)
proposed a fully multivariate test of directional asymmetry
for the case of object symmetry (see also Kent and Mardia
2001). This test is a comparison of the original versus the
reflected and relabeled landmark configuration based on the
T2 statistic, using the mean squares of the individuals 3
reflection effect as the error covariance matrix (for matching
symmetry, the test would be a comparison of the left and
right sides).

It is possible to extend this multivariate approach to the
full two-factor MANOVA corresponding to the univariate
design (Palmer and Strobeck 1986; Palmer 1994). This means
that matrices of sums of squares and cross-products (SSCP)
are computed for each effect, and compared with the standard
statistics for MANOVA (e.g., Seber 1984). There are some
specific problems, however, concerning the dimensionality
of shape variation.

For matching symmetry, the covariance matrices for all
effects of the model span a space of 2k2 4 or 3k 2 7 di-
mensions (in 2D or 3D, respectively), and therefore less than
the number of coordinate axes. Because the standard MAN-
OVA tests involve determinants or inverses (e.g., Seber
1984), which require full-rank SSCP matrices (at least for
the error effect), it is important that they are carried out in
the Procrustes tangent space, using a coordinate system with
the appropriate dimensionality (Dryden and Mardia 1998;
Rohlf 1999). An alternative is to modify the standard test
statistics by using the generalized inverse so that they can
tolerate singular matrices. For instance, the Lawley-Hotelling
trace (Seber 1984, pp. 38 ff.), modified in this way, is the2Tg

sum of the diagonal elements of the matrix BW2 multiplied
by the degrees of freedom for the error effect (where B is
the SSCP matrix for the effect being tested, W2 is the Moore-

Penrose generalized inverse of the SSCP matrix for the error
effect). For MANOVA statistics like Wilks’ lambda (Seber
1984, p. 435), for which determinants of SSCP matrices must
be computed, the product of the nonzero eigenvalues of the
respective matrix is used instead of the determinant. Overall,
however, the MANOVA for matching symmetry is a fairly
straightforward generalization of the univariate model: all the
effects are computed from averages or contrasts in the same
shape space (e.g., left-right differences).

The situation is somewhat more complex for object sym-
metry, because the components of symmetric variation and
asymmetry occupy different subspaces of the shape (tangent)
space for the entire landmark configurations. Particularly, the
test for the main effect of individuals, consisting of sym-
metric variation, cannot use the individual 3 reflection in-
teraction as the error effect because that interaction is part
of the asymmetry component and therefore in a different
subspace. An alternative would be to assume an arbitrary
error model, for instance, with isotropic variation of the same
magnitude as for fluctuating asymmetry at each landmark.
However, this is somewhat at odds with the purpose of MAN-
OVA, whose aim is to avoid precisely that kind of assump-
tion. Another alternative would be to test the main effect of
individuals over the symmetric component of measurement
error, but a test assessing individual variation against mea-
surement imprecision rather than against the developmental
variability of the structure would address a quite different
question. Nevertheless, whether variation among individuals
is statistical significant is rarely the primary question in anal-
yses of asymmetry, and it may therefore often be possible to
omit this test altogether.

The MANOVA test for directional asymmetry is more
straightforward; it is based on the main effect of reflection
and can use the individual 3 reflection interaction as the
error effect. Both these effects use the asymmetry component
of variation and are therefore in the same shape subspace.
Modified MANOVA statistics based on the generalized in-
verse should be used because these SSCP matrices are not
of full rank. This MANOVA test of directional asymmetry
using the Lawley-Hotelling trace statistic is the same as2Tg

the T2 test proposed by Mardia et al. (2000) and by Kent and
Mardia (2001) because the reduces to Hotelling’s T2 sta-2Tg

tistic if there is only one degree of freedom for the effect
being tested (Seber 1984, p. 44).

The test for fluctuating asymmetry, which compares the
individual 3 reflection interaction to measurement error, is
also possible with the modified MANOVA statistics. How-
ever, measurement error is estimated from the total variation
among replicates of the entire landmark configurations and
therefore includes symmetric variation as well as an asym-
metry component of measurement error. The appropriate
measure of error against which to gauge fluctuating asym-
metry is the precision with which left-right differences in the
configuration can be measured. Therefore, the error effect to
test fluctuating asymmetry is the asymmetry component of
the measurement error, which is derived from the differences
between replicate measurements in the differences between
the original and reflected configurations.
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Comparison of Covariance Structure

For each of the effects included in the Procrustes ANOVA,
there is a matrix of mean squares and cross products or of
variance and covariance components that can be used for
analyses of the patterns of covariance. Comparisons of the
covariance structure of individual variation (left-right means)
and of fluctuating asymmetry are relevant to a range of ques-
tions relating to the developmental origins of shape variation.
Agreement or differences in the patterns of shape variation
can be used as evidence of whether the same developmental
processes are involved at both levels of variation (Klingen-
berg and McIntyre 1998; Badyaev and Foresman 2000; Debat
et al. 2000). Moreover, covariance of fluctuating asymmetry
can be used to infer domains within which direct develop-
mental interactions prevail and therefore to delimit devel-
opmental modules (Klingenberg and Zaklan 2000; Klingen-
berg et al. 2001a; Klingenberg 2002).

All the published comparisons of shape covariance struc-
ture between individual variation and fluctuating asymmetry
have focused on parts with matching symmetry (or have treat-
ed the data as for matching symmetry). For this kind of data,
the analysis is straightforward because the analyses of asym-
metry and left-right means are carried out in the same shape
space. The comparison is between the covariance matrix of
left-right averages and the one for left-right differences (Klin-
genberg and McIntyre 1998; Debat et al. 2000; Klingenberg
and Zaklan 2000).

For structures with object symmetry, however, the com-
ponents of symmetric variation and asymmetry occupy com-
plementary subspaces in the tangent space defined by the
whole configurations, and all the features of symmetry var-
iation are therefore orthogonal to the features of asymmetry
and vice versa. Thus, direct comparisons of the covariance
structure are not informative, and an alternative procedure is
required. A possibility is to concentrate on half-configura-
tions and to analyze the corresponding parts of the covariance
matrices for fluctuating asymmetry and individual variation
(i.e., after a Procrustes fit of the whole original configurations
and relabeled reflections). Because variation of the unpaired
landmarks is partitioned into complementary components of
symmetric variation within the median plane and of asym-
metry perpendicular to the median plane, these landmarks
are not informative in this context (but they provide infor-
mation on the axis or plane of symmetry in the overall Pro-
crustes fit). Therefore, the comparison of covariance matrices
must be restricted to the paired landmarks. The symmetry
and asymmetry components for the paired landmarks of one
body side are each specified by 2k coordinates for 2D data
and by 3k coordinates for 3D data. The information in these
data is almost the same as would be included in an analysis
of the paired landmarks within the framework for matching
symmetry, but it contains additional information about the
arrangement of the two half-configurations.

An overall comparison of these partial covariance matrices
can be made by matrix correlation and statistical significance
can be assessed with a Mantel test (Mantel 1967; Cheverud
et al. 1989; Sokal and Rohlf 1995, pp. 813 ff.) adapted spe-
cifically for geometric morphometrics (Klingenberg and
McIntyre 1998, p. 1367). The modifications reflect that the

landmarks, not single coordinates, are the central items in
geometric morphometrics. A difference from the standard
procedure is that the diagonals of the matrices are included
in the computation of matrix correlation because the variation
of each landmark coordinate is informative as well (alter-
natively, if the diagonal is to be excluded, entire diagonal
blocks should be removed including the covariances between
x, y, and possibly z coordinates of each landmark). Moreover,
the Mantel test is based on random permutations of the land-
marks, not of single variables, and therefore leaves the co-
ordinates of each landmark associated with each other (for
additional details see Klingenberg and McIntyre 1998). If the
Mantel test rejects the null hypothesis of total independence
of the matrices, further comparisons of the covariance struc-
tures can be made, for instance, by comparing principal com-
ponents (PCs) (e.g., Klingenberg and McIntyre 1998; Klin-
genberg and Zaklan 2000).

CASE STUDY: MATERIALS AND METHODS

Specimens and Measurements

The lower pharyngeal jaw of cichlid fishes is fused from
the left and right fifth ceratobranchials, which are separate
structures in generalized percoid fishes (Liem 1973; Galis
and Drucker 1996). The midsagittal surface where the two
halves are sutured together is therefore a plane of symmetry
for the pharyngeal jaw, which is a typical example of object
symmetry. We used a sample of 40 pharyngeal jaws of the
Neotropical cichlid A. citrinellus, for which substantial mor-
phological variation associated with trophic polymorphism
has been demonstrated (Meyer 1990a,b). This is a small sub-
set of a larger dataset that will be analyzed elsewhere.

Images of the dorsal side of the pharyngeal jaws were
produced with a flatbed scanner at a resolution of 600 dpi.
Nine landmarks on the outline of each jaw (Fig. 3) were
digitized with the aid of a macro written in Object-Image
(software freely available from http://simon.bio.uva.nl/
object-image.html). One of these landmarks is on the midline
(landmark 1), whereas the others are arranged in four pairs
on the left and right sides. Each pharyngeal jaw was scanned
twice, so that the error associated with the imaging and dig-
itizing procedures could be quantified.

Analyses

To examine the relative amounts of symmetric variation
and asymmetry, we used Procrustes ANOVA (Klingenberg
and McIntyre 1998), as adapted for studies of object sym-
metry (see above). In this analysis we added sums of squares
across landmarks and coordinates and thus assumed equal
and isotropic variation at each landmark. To establish the
statistical significance of the various effects, we conducted
both parametric tests based on F-statistics (Goodall 1991)
and permutation tests (Good 1994; Edgington 1995) follow-
ing the procedures for asymmetry studies (Klingenberg and
McIntyre 1998). For the main effect of individuals, the null
hypothesis was simulated by randomly permuting the land-
mark configurations among individuals, but keeping the orig-
inal and reflected configurations separate. For the main effect
of reflections, the original and reflected configurations were
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FIG. 3. Landmarks used in the study of variation in lower pha-
ryngeal jaws of the cichlid Amphilophus citrinellus, an example of
object symmetry. Landmark 1 is on the midline, whereas the re-
maining landmarks are arranged in symmetric pairs. The lower pha-
ryngeal jaw is composed of the pair of fifth ceratobranchials joined
at the midline (Liem 1973; Huysseune et al. 1994). It has a central
tooth-bearing plate surrounded by an anterior extension (bottom)
and two postero-lateral horns that serve as muscular attachment
sites.

FIG. 4. Average shape and directional asymmetry. (A) The Pro-
crustes consensus for all original and reflected configurations, with
95% equal density ellipses to show the scatter of landmark positions
around the overall average. This configuration is perfectly sym-
metric. (B) Directional asymmetry, shown as the difference between
the averages of all original and reflected configurations and am-
plified five-fold for better visibility (solid line and solid circles).
For comparison, the diagram shows the symmetric overall Pro-
crustes consensus (dotted line and open circles).

TABLE 2. Procrustes ANOVA for the pharyngeal jaws, a structure that shows object symmetry. Sums of squares (SS) and mean squares (MS)
are in dimensionless units of Procrustes distance (for the derivation of degrees of freedom, see Table 1). This analysis adds the sums of squares
over landmarks and coordinates and thereby assumes that all landmarks have the same amount of isotropic variation.

Source df SS MS F
P

(parametric)
P

(permutation)

Individual
Reflection
Individual 3 reflection
Measurement error

273
7

273
560

0.16742
0.00204
0.03577
0.00897

0.0006133
0.0002909
0.0001310
0.0000160

4.68
2.22
8.18

0
0.033
0

,0.0001
0.057

,0.0001

randomly swapped for each individual. Finally, the null hy-
pothesis of no interaction term was simulated by first re-
moving both main effects by subtraction of means and then
permuting configurations among individuals and reflections
(Good 1994). For each effect of the model, the test consisted
of 10,000 rounds of permutation.

The statistic for testing MANOVA effects under the non-
isotropic model was the Lawley-Hotelling trace (Seber2Tg

1984, pp. 38 ff.), modified by the use of the Moore-Penrose
generalized inverse. For the parametric tests, significance lev-
els were computed by an approximation via the F-distribution
(Seber 1984, p. 39). In addition, we also conducted permu-
tation tests as outlined above, but with the statistic.2Tg

For each of the MANOVA effects, patterns of shape var-
iation were visualized with PCs of the respective matrix of
mean squares and cross-products. To compare the covariance
structure between the components of symmetric variation
among individuals and of fluctuating asymmetry, we restrict-
ed the analysis to the paired landmarks of one side (landmarks
2–5). A Mantel test of matrix correlation was used for the
comparison of the modified covariance matrices, with per-

mutations over the landmarks. Because there were only four
pairs of landmarks, it was feasible to base the test on a full
enumeration of all possible permutations, and the P-values
are therefore exact.

RESULTS

Procrustes superimposition of all original and reflected
configurations produced a symmetric consensus configura-
tion (Fig. 4A). Partitioning the variation around this consen-
sus by Procrustes ANOVA (Table 2) indicated that variation
in symmetric shape among individuals accounts for the larg-
est portion of the total variation, but that there is also a
considerable amount of fluctuating asymmetry (individual 3
reflection interaction). Variation of left-right means among
individuals and fluctuating asymmetry are highly significant
statistically. Directional asymmetry is subtle, so that it need-
ed to be amplified for graphical display (Fig. 4B), and its
statistical significance is ambiguous because the P-value from
the parametric F-test is somewhat below and that from the
permutation test slightly above the conventional 5% signif-
icance threshold. On the whole, however, the results of the
parametric and permutation tests agree.

The assumption of isotropic variation at each landmark is
questionable because the scatters of landmark positions
around the overall consensus are not circular (Fig. 4A). Con-
sequently, MANOVA tests will be more appropriate than the
isotropic model. MANOVA tests, carried out with both para-
metric and permutation methods (Table 3), indicate that di-
rectional asymmetry is also highly significant. Because it
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TABLE 3. MANOVA tests for directional asymmetry and fluctuating
asymmetry of the pharyngeal jaws. The error effect used to test the
main effect of reflection is the individual 3 reflection interaction,
whereas the interaction effect was tested against the asymmetry com-
ponent of the among-image variation (replicate measurements). The
test statistic used is the Lawley-Hotelling trace, T (Seber 1984). The2

g

test for the main effect of reflection is identical to the test of directional
asymmetry proposed by Mardia et al. (2000). Notice that, due to object
symmetry, there is no test for the main effect of individuals corre-
sponding to the univariate test (Palmer and Strobeck 1986), because
the individual 3 reflection interaction occupies a different subspace
of the shape space for the whole landmark configurations.

Source T 2
g

P
(para-

metric)
P

(permutation)

Reflection
Individual 3 reflection

43.14
12521

0.007
0

0.0002
,0.0001

FIG. 6. Patterns of fluctuating asymmetry. The figure shows the
first four principal components (PCs) of the covariance matrix for
the individual 3 side interaction effect of the MANOVA model.
In other words, this is the variation of individual asymmetries
around the average (directional) asymmetry shown in Figure 4B.
The diagrams show the shape change from the symmetric consensus
configuration (dotted lines, open circles) to a configuration with an
arbitrary score of 10.1 units of Procrustes distance for the respec-
tive PC (solid lines, solid circles). The signs for PCs are arbitrary,
and the mirror images of the PC patterns shown here would therefore
be equivalent. The percentages indicate the share of the total var-
iation associated with the individual 3 side interaction for which
each PC accounts.

FIG. 5. Patterns of the symmetric part of shape variation. The
diagrams show the first four principal components (PCs) of the
matrix of mean squares and cross products for variation among
individuals, that is, variation in the averages of the original and
reflected landmark configurations. Therefore, all the variation dis-
played here is constrained to symmetry. For each PC, the diagram
shows the change from the overall consensus configuration (dotted
lines, open circles) to a configuration with an arbitrary PC score of
10.1 units of Procrustes distance (solid lines, solid circles). These
shape changes are exaggerated in comparison to those in the data
(e.g., for PC3 landmarks 5 and 6 even cross over through the median
plane). The sign for PCs is arbitrary, and the reverse shape change
would therefore be equivalent. The percentages indicate the share
of the total symmetric component of shape variation for which each
PC accounts.

avoids the assumption of equal and isotropic variation at each
landmark and thus takes into account the structure of shape
variation, the MANOVA test has higher statistical power. It
is pertinent that the largest landmark shifts due to directional
asymmetry (e.g., at landmarks 2 and 9) are in directions for
which the respective landmarks show relatively little varia-
tion (cf. Figs. 4A and B). The test for the individual 3 re-

flection interaction yields a highly significant result with both
methods, because the amount of fluctuating asymmetry great-
ly exceeds that of measurement error.

Principal component analysis was used to identify and dis-
play the patterns of individual variation and fluctuating asym-
metry. The analysis of symmetric variation shows that the
PC1 alone takes up more than half of the variation (Fig. 5).
Compared to the consensus, a pharyngeal jaw shape with a
positive PC1 score has a wider angle at the anterior tip, lateral
horns that are shorter and more robust, and a more convex
(or less concave) posterior contour near landmark 1 (Fig. 5).
This pattern of variation agrees well with a change from
papilliform to a more molariform jaw shape, and we therefore
interpret the PC1 as a contrast between the two morphs of
pharyngeal jaws. The PC2 is primarily associated with an
extension of the lateral horns at the expense of the tooth-
bearing area and anterior tip, and the PC3 and PC4 primarily
feature different aspects of the robustness of the lateral horns
and anterior tip (Fig. 5).

The variation due to fluctuating asymmetry is spread more
evenly over multiple dimensions than is symmetric variation,
as indicated by the percentages of the total variation taken
up by the PCs of the matrix of mean squares and cross-
products for the individual 3 reflection interaction (Fig. 6).
The dominant features of variation concern asymmetry in the
placement of landmark 1 relative to the neighboring land-
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marks 2 and 9 on the posterior edge of the tooth-bearing
plate, the angle between this edge and the lateral horns, and
the length and thickness of the horns.

Comparison of the PCs for symmetric variation among
individuals (Fig. 5) and for fluctuating asymmetry (Fig. 6)
suggests little agreement of the patterns of variation. As out-
lined above, comparison of patterns of symmetric variation
and of asymmetry must be restricted to the four paired land-
marks. The matrix correlation, including diagonal elements,
was 0.46 but not statistically significant (P 5 0.83; computed
through enumeration of all possible permutations of land-
marks). This moderately high value of the matrix correlation
results largely from the diagonal elements being greater than
the off-diagonal elements, that is, the variation at each land-
mark exceeds the covariation among landmarks. According-
ly, the matrix correlation drops to 20.12 (P 5 0.79) if the
diagonal blocks of the matrices (the variances of landmark
coordinates and the covariances between the x and y coor-
dinates of each landmark) are omitted. Because there is no
significant relationship between these covariance matrices,
we do not present any more detailed comparisons.

DISCUSSION

In this paper, we have used the distinction of Mardia et
al. (2000) between matching symmetry, where separate parts
from the left and right body sides are compared, and object
symmetry, where the structure itself has an internal axis or
plane of symmetry. The paper has introduced new method-
ology for studying shape variation and asymmetry in struc-
tures with object symmetry, extending the approach offered
by Mardia et al. (2000) and earlier methods for studies of
matching symmetry (e.g., Auffray et al. 1996; Smith et al.
1997; Klingenberg and McIntyre 1998; Auffray et al. 1999;
Klingenberg and Zaklan 2000). We have demonstrated the
new methodology in a small case study of shape variation in
the pharyngeal jaws from cichlid fishes.

Components of Shape Variation in Pharyngeal Jaws

The lower pharyngeal jaw of cichlid fishes, consisting of
the pair of fifth ceratobranchials sutured together in the me-
dian plane (e.g., Liem 1973), is a typical structure with object
symmetry. The analysis has demonstrated the partitioning of
the shape variation of the whole configuration of landmarks
into complementary components of symmetric variation
among individuals and of asymmetry.

The pharyngeal jaws of A. citrinellus show subtle, but sta-
tistically significant directional asymmetry (Fig. 4B). The
increased statistical power offered by the MANOVA test,
allowing a sharper detection of differences in directions with
smaller variability, has revealed this result for the present
dataset. This finding parallels those from studies of other
structures like mouse teeth, skulls, and mandibles (Auffray
et al. 1996; Debat et al. 2000; Klingenberg et al. 2001b;
Leamy et al. 2001) or insect wings (Smith et al. 1997; Klin-
genberg et al. 1998, 2001a). On the one hand, this result
underscores the apparent ubiquity of directional asymmetry
in animals (Klingenberg et al. 1998) and is in agreement with
the rapidly increasing knowledge about consistent left-right
asymmetries that have been reported from the development

of all major model animals (Tamura et al. 1999; Capdevila
et al. 2000; Ligoxygakis et al. 2001). On the other hand, the
ability to find such subtle effects with high statistical sig-
nificance emphasizes the need to take every possible pre-
caution against systematic errors in the data-acquisition pro-
cess (e.g., parallax error from using stereo microscopes or
other optical distortion during the imaging steps). Any such
systematic error might well appear as a statistically signifi-
cant but spurious finding of directional asymmetry. Careful
checks and calibration of all optical equipment can guard
against this sort of artifact.

Over half of the symmetric component of shape variation
is associated with the PC1 (Fig. 5), which can be interpreted
as the contrast between papilliform and molariform morphs
of pharyngeal jaws associated with the trophic polymorphism
in this species (Meyer 1990a) and other cichlids (Huysseune
et al. 1994; Smits et al. 1996a,b). Fish of the molariform
morph are more effective at crushing snails and accordingly
eat such hard prey items more frequently than do fish of the
papilliform morph, which are more efficient at processing
soft prey (Meyer 1989). As indicated by the names, the teeth
on the pharyngeal jaws are bigger and molar-shaped in the
molariform morph, but smaller and more pointed in the pa-
pilliform morph (Meyer 1990b). But in addition, according
to their use in crushing hard prey items, molariform pharyn-
geal jaws are more robust than papilliform ones, with rela-
tively shorter and stouter muscle attachment processes and
an enlarged tooth-bearing plate; these are the shape changes
that appear in the PC1 (Fig. 5). There is considerable phe-
notypic plasticity in pharyngeal jaw morphology (Meyer
1990a; Huysseune et al. 1994). Accordingly, it is not entirely
clear to what extent the shape variation represented by the
PC1 has a direct genetic basis and to what extent it is a
consequence of the relative numbers of different prey items
eaten by the fish.

A prominent role of phenotypic plasticity may also explain
the discrepancy in the patterns of covariation between the
symmetric shape variation among individuals and fluctuating
asymmetry. Differences in diet that influence the expression
of morphological variation would simultaneously affect both
body sides, and therefore contribute to the symmetric com-
ponent of variation. Its effect thus would be qualitatively
different from those developmental processes that operate
concurrently in the growing structures on either body sides,
but without direct linkage, and therefore may contribute to
both symmetric variation and asymmetry. Behavioral varia-
tion and habitual asymmetries in the handling of prey may
contribute to further variation and asymmetry of pharyngeal
jaw shapes, for instance in the length or robustness of muscle
attachment processes and in the relative size of the tooth-
bearing plate, as they are represented by the PC2-PC4 of
symmetric variation (Fig. 5) and the PCs of fluctuating asym-
metry (Fig. 6). In this way, phenotypic plasticity in response
to diet composition would cause a qualitative difference be-
tween the processes affecting the symmetric and asymmetric
components of variation (see also Debat et al. 2000).

These results should be interpreted with caution, however,
and need to be reevaluated with a larger dataset. The small
sample size limits the statistical power, and the small number
of landmarks limits the spatial information available for the



1919SHAPE VARIATION OF SYMMETRIC STRUCTURES

analyses. Particularly for the comparison of the symmetric
component of variation and fluctuating asymmetry, the com-
parison is based on only four pairs of landmarks (with ad-
ditional constraints imposed). The purpose of this paper was
to introduce and demonstrate new methods, but to address
the biological questions raised here, these methods will have
to be applied in a more extensive study.

Recommendations for the Study of Symmetric Shapes

The geometry of many morphological structures has an
internal symmetry, that is, they show object symmetry. Single
landmark configurations from such parts provide information
about both symmetric variation and asymmetry, and mor-
phometric analyses of such configurations should take this
data structure into account. On the one hand, this avoids
statistical problems in the analyses (e.g., Bookstein 1996b,
pp. 143 ff.) and unambiguously separates variation among
specimens from intra-individual asymmetries. On the other
hand, the alignment in the median plane provides morpho-
metric studies with a clear frame of reference that relates
directly to the anatomy of the organism.

Studies that focus on the variation among individuals,
where asymmetry is not of particular interest, will focus on
the component of symmetric shape variation. For each land-
mark configuration, a reflected and relabeled duplicate is add-
ed to the dataset, a simultaneous Procrustes fit is done for
all the configurations, and subsequent analyses are based on
the averaged Procrustes coordinates of each specimen and its
mirror image. This provides a multivariate space of the ap-
propriate dimensionality to study shape variation. The di-
mensionality is 2k 1 l 2 2 for 2D data or 3k 1 2l 2 4 for
3D data, even though there will be more coordinates for the
configurations. This limited dimensionality should be taken
into account particularly in statistical tests. In addition, mul-
tivariate analyses that involve the inverse of the covariance
matrix, for example, canonical variate analysis, discriminant
analysis or MANOVA, should be modified by the use of the
generalized inverse (e.g., Dryden and Mardia 1998, p. 152).
Even though asymmetry may not be the focus of interest, the
asymmetric component of variation can still be useful as a
measure of developmental variability and measurement error
that can be used as a standard for comparison with the sym-
metric variation among individuals.

The implications are even more immediate for studies of
asymmetry. Object symmetry is different from matching
symmetry because information about asymmetry is contained
in the single configuration of landmarks. There is no separate
analysis for the asymmetry of size, as for matching symmetry,
because differences in the size of the left and right halves of
a configuration are part of the overall shape variation of con-
figurations with object symmetry. Nevertheless, the two-fac-
tor ANOVA customary for asymmetry studies can be applied
with some modest modifications. As we showed, however,
the comparison of covariance structure between fluctuating
asymmetry and the symmetric variation is more difficult for
configurations with object symmetry than for those with
matching symmetry.
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