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Abstract

This thesis explores three major areas of research; integration of virutalization into sci-

entific grid infrastructures, evaluation of the virtualization overhead on HPC grid job’s

performance, and optimization of job execution times to increase their throughput by

reducing job deadline miss rate.

Integration of the virtualization into the grid to deploy on-demand virtual machines

for jobs in a way that is transparent to the end users and have minimum impact on

the existing system poses a significant challenge. This involves the creation of virtual

machines, decompression of the operating system image, adapting the virtual environ-

ment to satisfy software requirements of the job, constant update of the job state once

it’s running with out modifying batch system or existing grid middleware, and finally

bringing the host machine back to a consistent state.

To facilitate this research, an existing and in production pilot job framework has been

modified to deploy virtual machines on demand on the grid using virtualization ad-

ministrative domain to handle all I/O to increase network throughput. This approach

limits the change impact on the existing grid infrastructure while leveraging the exe-

cution and performance isolation capabilities of virtualization for job execution. This

work led to evaluation of various scheduling strategies used by the Xen hypervisor to

measure the sensitivity of job performance to the amount of CPU and memory allo-

cated under various configurations.

However, virtualization overhead is also a critical factor in determining job execution

times. Grid jobs have a diverse set of requirements for machine resources such as CPU,

Memory, Network and have inter-dependencies on other jobs in meeting their dead-

lines since the input of one job can be the output from the previous job. A novel re-

source provisioning model was devised to decrease the impact of virtualization over-

head on job execution.

Finally, dynamic deadline-aware optimization algorithms were introduced using ex-

ponential smoothing and rate limiting to predict job failure rates based on static and

dynamic virtualization overhead. Statistical techniques were also integrated into the

optimization algorithm to flag jobs that are at risk to miss their deadlines, and taking

preventive action to increase overall job throughput.
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Chapter 1

Introduction

“Nothing in life is to be feared, it’s only to be understood.”

Marie Curie

Grid computing is an infrastructure where computing resources are highly distributed

geographically spanning over very many data centers, and provides sharing of re-

sources for diverse community of users in decentralised fashion [7]. Grid computing

is an evolutionary upward step from cluster computing, which was very popular in

1990’s, as the main computing platform for scientific applications [8, 9].

In the past few years, under utilization of server resource in data-centers led to the

uptake of virtualization technology to increase their resource utilization which leads

to lower support costs, higher mobility of the applications, higher fault tolerance with

lower Capital Expenditure (CapEx) [10]. ” At a high level, virtualization means turning

physical resources into logical ones. It’s a layer of abstraction. In this sense, it’s something

that the IT industry has been doing for essentially forever. For example, when you write a file to

disk, you’re taking advantage of many software and hardware abstractions such as the operating

system’s file system and logical block addressing in the disk controller. Collectively, each of these

virtualization levels simplify how what’s above interacts with what’s below” [11].

Deployment of operating system virtualization on the Grid has also been an active

arena of research since the virtualization technology became an established desktop
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tool [12]. This is particularly challenging for large research organizations like Euro-

pean Organization for Nuclear Research (CERN) where thousands of servers or worker

nodes have to be constantly configured for large set of software environments: if a plat-

form can be configured by simply deploying a virtual machine (VM) rather than ardu-

ously reconciling the needs of several different communities in one static configuration,

then the infrastructure has a better chance to serve multiple communities.

Given this potential, one important question raised is how this technology could ben-

efit large scientific experiments like Large Hadron Collider (LHC) and it’s grid infras-

tructure i.e. LHC Computing Grid (LCG) to process its data-intensive and processor-

intensive jobs or workloads in VMs at large scale.

Over the past few years, another marketing-friendly term ”Cloud Computing” has

emerged. According to J. Barr ”. . . enterprise grid users see grid, utility and cloud com-

puting as a continuum: cloud computing is grid computing done right; clouds are a flexible

pool, whereas grids have a fixed resource pool; clouds provision services, whereas grids are pro-

visioning servers; clouds are business, and grids are science.” [13].

Thus, virtualization has increasingly brought a paradigm shift where applications and

services could be packaged as thin appliance and moved across distributed infrastruc-

ture with minimum disruption. Despite these major developments, some fundamental

questions remain unanswered especially for running High Performance Computing

(HPC) jobs in the VM’s being either deployed on the Grid or Cloud. And how sig-

nificant virtualization overhead could be under different workloads, and whether jobs

with tight deadlines could meet their obligation if resource providers were to fully vir-

tualize their worker1 nodes [14].

Grid infrastructure that serves the needs of LHC scientist executes many millions of

jobs per month. These jobs could fail for many reasons such as submission to incorrect

grid sites which doesn’t match the resource requirements of the job, lack of availability

of required libraries or software, missing input data sets et cetera. Most of these prob-

lems could be effectively resolved through better system configuration on the grid sites.

But one challenge that remains is how to reduce the impact of virtualization overhead

on job execution. Job execution and their deadlines gets extended due to virtualization

overhead since the job takes longer to complete.

1In this thesis, worker, compute and execution nodes are the same thing and used interchangeably.
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Experimental studies, as discussed in chapter 5, show that this overhead is a dynamic

property of the system and depends on the type of workloads being executed. e.g. if

there are more cpu intensive jobs running in a worker node while heavily using net-

work bandwidth, then the virtualization overhead can go up to 15% where as it could

be around 1-5% if the jobs were more memory intensive and less cpu intensive.

This range of overhead adds a layer of uncertainty at the scheduler level that couldn’t

be handled externally and prior to the execution. By simply extending job deadlines

will result in over commitment of system resources as now the resources will become

available at later stage generally. It cannot be resolved by better estimation of job dead-

lines. This opens up a research space which this thesis attempts to answer by using

adaptive and real-time scheduling algorithms that dynamically optimize job deadline

miss rate by using selective acceptance criteria. This thesis focuses on investigation

to resolve this dynamism in virtualization overhead, and the resulting impact on job

deadlines at the scheduler level of worker nodes by using rate-limiting and statistical

techniques as discussed in chapter 4 and 6.

1.1 Research Questions

The research questions that this work addresses are:

1. How can virtualization be integrated into scientific grids with minimum change

impact on the existing infrastructure to deploy virtual machines on-demand for

job executions and being transparent to end-users?

2. What are the performance implications of introducing virtualization into grid en-

vironments? What are the key performance criteria and metrics that can be used

to describe the performance of these systems? What are the tuning parameters

and what is the relative sensitivity to each of these?

3. Can an optimization technique/s be devised to counter the effects of virtualisa-

tion overheads and thus improve the performance of HPC tasks in such environ-

ments? Can the technique be generalised and applied to other scientific domains?
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1.2 Research Objectives

The above mentioned research questions are further expanded to achieve the following

objectives:

1. Integration of virtualization into grid: To investigate how virtualization technol-

ogy could be integrated into the grid in such a way that its transparent to the end

users and requires minimum changes into grid infrastructure, see chapter 2 for

more details. To achieve this objective, both existing grid middleware and their

deployment frameworks were investigated and adapted. The success of this ob-

jective has been the implementation of proof of concept deployment as discussed

in detail in chapter 5. This objective is linked with research question 1.

2. Investigating the performance of HPC jobs in virtual machines: To investigate

how virtualization technology could be deployed for HPC jobs, and to validate

that whether it provides a measurable advantage over physical machine based

execution. Virtualization technology has both advantages and disadvantages (see

chapter 2). The advantages are resource isolation, environment portability and

granularity of control over what can be installed in the virtual machines but at

the same time it incurs a performance penalty which extends job durations and

increases the likelihood of a job missing its deadline. This is further discussed and

results are presented in detail in chapter 5. This objective is linked with research

question 2.

3. Optimizing virtualization performance for HPC jobs in the grid: To reduce the

impact of virtualization overhead and resulting performance penalty for the grid

applications when run in virtual machines, and to employ performance optimiza-

tion techniques that could be used to achieve this objective. Various configu-

rations of CPU and Memory parameters for the virtualization hypervisor were

probed, and the outcome of the empirical results are summarized in chapter 5.

This objective is linked with research question 2.

4. Investigating dynamic optimization techniques to reduce job deadline miss-

rate: To conduct a simulative study that uses rate-limiting algorithms and sta-

tistical techniques in real time by applying a novel approach that increases the
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chances of a job meeting its deadline which would otherwise overrun due to vir-

tualization overhead. This is discussed in detail in chapter 4. The results of exper-

iments conducted with optimization algorithms are further presented in chapter

6. This objective is linked with research question 3.

5. Application to a large research project with complex resources and data sets:

The final objective of this research has been to apply the research to a real world

application that is applicable to other computing domains as well. This research

work has applied virtualization technology to the workloads of A Toroidal LHC

Apparatus (ATLAS) experiment at CERN (see appendix A), and has provided in-

sight into how virtualization could be deployed on its scientific grid namely LCG.

1.3 Research Method

The research presented in this thesis spans multiple domains within computer science,

including grid, virtualization, and optimization algorithms.

The investigation requires three main phases: an initial empirical study of a real world

implemented system ; followed by theoretic development of new optimization tech-

nique/s; and finally empirical investigation of the performance of the adaptive and

statistical techniques. Some iteration between these work phases will be necessary to

permit feedback, reflection and tuning.

To validate the usefulness of virtualization for scientific grid computing, first of all a

real-world grid infrastructure such as World LHC Computing Grid (WLCG) will be

studied along side of the grid applications. One such application is a pilot job deploy-

ment framework. It’s a job leasing mechanism and is used by large number of scientists

to deploy their grid jobs. It’s explained in detail in section 5.1. This application man-

ages the complete life-cycle of the grid job from submission, deployment, execution

and reporting and has access to target worker nodes.

To enable virtualization on the grid infrastructure, such a pilot job framework is ex-

pected to be an excellent case-study application. The initial research aim will be to

fully understand its architecture and functionality - hopefully yielding insights into the
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development of an architecture where all job data is downloaded in the host machine

prior to execution and then inserted into the virtual machine for job execution.

This will lead to preliminary experimentation to compare network throughput both on

the host machine running virtualization software and in the virtual machine.

Current and recent work done by the community will also be studied and used as a

reference against the work and progress of this project. The preliminary studies will be

extended to encompass all relevant themes of current work in the fields of virtualiza-

tion, grid and high performance computing. It will evaluate the feasibility of running

HPC grid jobs in virtual machines and will study the impact of CPU and memory allo-

cation on job performance. Real tasks will be used to ensure to evaluate the techniques

suitability for HPC workloads.

Detailed analysis of this study will inform the second, theoretical development phase2.

A test-bed platform will be set up to permit empirical study of the delta adaptive and

statistical techniques, and to enable fine tuning of the adaptive algorithms. The empir-

ical study will involve several different types of experiments based on the simulated

data derived from the preliminary studies, and a number of different performance met-

rics will be identified and used to benchmark overall job throughput rate (success rate),

job deadline miss rate and job termination rate (jobs that are prematurely killed as they

were unable to meet the acceptance criteria or when sufficient machine resources were

not available for execution).

The effectiveness of the optimization technique will be critically evaluated measuring

the absolute benefits of dynamic and real-time optimization of job deadlines using re-

maining job duration of the jobs as an acceptance criteria. The significance of empirical

results will be analysed in terms of the benefits gained relative to other performance

factors impacting on the system and thus explaining the extent of impact of the tech-

niques proposed in this thesis. The value of each technique (delta adaptive or statis-

tical) will be placed into perspective in terms of the extent of its generalisability over

different computing platforms and a variety of application domains.

2For logical clarity of the thesis structure, theoretical development phase is discussed first in chapter 4.
And the preliminary experimentation that led to these theoretical concepts comes after in chapter 5 and
6. This is solely done to discuss theoretical background first and then presenting the results of various
experimentation in later chapters.
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1.4 Thesis Structure

This thesis is divided in to following chapters:

1. Introduction: This chapter provides an overview of the whole thesis beginning

with highlighting the increasing role of virtualization in scientific computing. It

also elaborates on the key research objectives and questions that underpin the

research presented in this thesis regarding virtualization and VM scheduling in

the context of grid computing. It also summarizes each chapter and the content

presented in each of those chapters linking to the core research objectives.

2. Background: This chapter lays the foundation for the thesis by explaining the

background concepts. Commencing with virtualization technologies and how

they work is discussed focusing primarily on x86 architecture, and then diving

into the details about what sort of challenges are presented to the hypervisor to

fully virtualize a guest operating system. Next, grid system with it’s core objec-

tives and present implementations are summarized with clear emphasis on gLite

middleware [15] which is used for LCG Grid and Production Analysis and Dis-

tributed system for ATLAS (PanDA) pilot job framework [16]. Both gLite middle-

ware and PanDA pilot framework act as a reference implementations to the stud-

ies conducted in this thesis.. Finally, challenges of deploying virtual machines

on-demand in the grid infrastructure are discussed and explained i.e. VM image

management, performance overhead, live migration, advantages and disadvan-

tages of virtualization for large e-science projects such as grid.

3. Literature Review: This chapter begins with an analysis of various virtualization

approaches published in the last few years with their benefits and drawbacks,

and the research issues such as VM deployment tools, pilot job frameworks for

grid computing, live migration of virtual machines and image management for

the cluster. A comprehensive overview of optimization techniques developed by

the community to reduce CPU and I/O overhead, and to increase VM security is

also presented. A supplementary section on the emerging systems such as clouds

and green computing are also briefly touched upon as they are not the primary

focus of this thesis. Finally, scheduling of virtual machines and existing research
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trend are analyzed for HPC jobs running both on physical and virtual machines

in the grid.

4. Theoretical Concepts: Continuing the research work presented in the previous

chapter, this chapter focuses on the core issue of scheduling jobs in VM and how

their chances to meet their deadlines could be improved. Various optimization

strategies based on dynamic and static virtualization overhead are first evalu-

ated, and then integrated into delta adaptive and statistical deadline optimization

techniques. These optimization techniques are also presented in this chapter.

5. ATLAS Job Performance Experiments: This chapter first provides an overview

of the existing ATLAS and PanDA pilot job framework, and presents the modifi-

cations made to it to deploy virtual machines on the grid to minimize the changes

required in the grid software. This work involved development and integra-

tion of a virtual machine deployment engine called vGrid, and VIrtualization Re-

source Management (VIRM) API in to the PanDA pilot at worker node level (both

vGrid and VIRM API were developed by the author of this thesis). In later sec-

tions, this chapter presents the results from preliminary experiments conducted

to determine network throughput, and impact of virtualization overhead on cpu-

intensive and memory-intensive jobs.

6. Optimization Experiments for Deadline Miss Rate: This chapter presents the

empirical results from the optimization algorithms presented earlier in chapter 4.

It first elaborates on the experimental setup and the initial training phase neces-

sary to determine key system parameters, and then the final results are discussed.

7. Conclusion: This chapter concludes with an overview of the research questions

addressed in this thesis, and the scientific contribution made by the author to the

body of knowledge on key areas of virtualizing grid computing, optimizing HPC

work loads for virtual machines and reducing job deadline miss rate by incor-

porating novel techniques from the domains of signal processing and statistical

methods.

8. Future Work: Finally, future work and potential areas of research are identified

and highlighted to continue the scientific research process in the direction of op-

timization of virtual machine based HPC job execution both in grid and cloud

infrastructures.
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1.5 Contribution

In the best knowledge of the author, this thesis has contributed to the body of knowl-

edge in number of areas. The primary contribution is the application of rate-limiting al-

gorithms using delta adaptation of the threshold in the domain of scheduling to reduce

job deadline miss rate. This approach was further complemented by using cumulative

distribution function to achieve the same result by studying the probablity of success

of jobs that appears to miss their deadlines (see section 4.2).

The novelty of this research was to introduce a ratio of job deadline vs job duration

remaining, and using it as a acceptance/selection criteria which acted as an input to

the above mentioned algorithms. The results showed that job deadline miss rate can be

reduced by more than 10% when compared to the dynamic adjustment of virtualization

overhead (also proposed in this thesis), and increased job success rate by 40% when

compared to static application of virtualization overhead. This novel approach is both

extensible and applicable to other computing domains which are deadline-oriented.

Other areas were improving the understanding, through experimentation, about the

impact of virtualization overhead on cpu intensive, memory intensive and network in-

tensive applications. This provided a clear understanding about the upper and lower

limits of job performance achievable, and what should be expected if a real world HPC

application is migrated to virtual machine based deployment. New resource allocation

boundaries (cpu, memory and network) were identified for HPC workloads to achieve

optimal execution and throughput without severely degrading the overall system per-

formance.

This showed in some instances that badly configured systems could lead up to 80% de-

cline in job execution performance, and by downloading input data for jobs in admin-

istrative domain rather then virtual machines provides significantly higher network

throughput. This provided insights into efficient deployment of grid jobs in virtual

machines.
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Fundamental Concepts

“A man’s errors are his portals of discovery.’

James Joyce

This chapter introduces the fundamental concepts needed for understanding the re-

search work presented in this thesis and covered topics include virtualization, grid

computing and job scheduling. A more comprehensive review of these approaches

is presented in the next chapter. This chapter also identifies and describes key termi-

nology that is used throughout the thesis, therefore readers might have to revisit this

chapter when they come across terms which they are not familiar with.

This chapter continues as following: section 2.1 describes virtualization technology and

identifies key challenges faced in achieving operating system virtualization. It provides

an overview of various virtualization technologies, and the approaches adopted at the

software and hardware level by software and hardware vendors. Section 2.2 first iden-

tifies the key concepts behind grid computing and abstracts the key requirements for

scientific grids. It than further elaborates on those requirements and links them to the

existing scientific grid infrastructures to familiarize the reader with the distribution of

various grid services and their operations. Finally, it concludes with an overview of

pilot jobs, scheduling domains and the constraints faced by grid sites, and how virtual-

ization could contribute to efficient functioning and expansion of the grid environment.
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2.1 Virtualization Technology

Virtualization technology made it’s debut in 1960’s when International Business Ma-

chines (IBM) first successfully implemented it in its VM/370 operating system that al-

lowed users to time-share hardware resources in a secure and isolated manner [17, 18].

Since then the technology reappeared in the form of Java Virtual Machine (JVM) to

provide secure and isolated environment for java application execution.

Later on with the arrival of more powerful desktops and server computers equipped

with faster processors and more memory; virtualization technology moved to desktop

and server computing, and recent advancement in hardware level virtualization further

allowed introduction of abstraction between the executing environment and the under-

lying hardware by adding new features in CPUs to allow hypervisor to virtualize guest

operating systems. Grid Computing was a way forward to achieve a different level of

virtualization at a different scale to utilize distributed computing resources (network,

storage, CPU) in a uniform fashion through standarised interfaces and protocols [7].

Building upon the success of the internet and high throughput batch systems, grid

computing systems perform execution management through job abstraction where un-

verified, untrusted applications/code runs within secure and isolated environment re-

ferred to as sandbox [19]. Such sandboxing has been achieved through various safety

and security checks but has potential drawbacks such as leaving residual state (log

files, compiled code and libraries) on the physical resources, creation of a dependency

between the job execution and the execution environments tied to physical resources

and root security exploits. The present day grid computing systems rely on operat-

ing system mechanisms to enforce resource sharing, security and isolation, and their

vulnerability and inadequacy is discussed in detail by Butt and Miller [20, 21].

There have been a number of approaches to achieve such sandboxing through technolo-

gies such as chroot [22] and Jails [23] common to FreeBSD. However, such sandboxing

techniques are limited to isolating host operating system functions and processes, and

thus impose restrictions on applications that could utilize them. In the past few years,

with the increase in the computing power of commodity CPUs; new technologies have

emerged that enabled operating systems to be runnable as applications through an

abstraction layer of software called Virtualization Hypervisor or Virtualization Machine
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Monitor (VMM) which interfaces between hardware and host operating system, and

runs the guest operating system as Virtual Machines (VM) in an isolated environment,

see section 2.1.2.

Figueiredo et al [14] first proposed the idea of integrating virtual machines in to the

grid computing systems to run grid jobs which later on was implemented by many

projects such as Virtual Workspace, Gridway and others, see section 3.1.1.2. Utilization of

VMs as sandboxes can offer very clear advantages over other approaches as discussed

below.

2.1.1 Advantages of Virtualization

Following are the advantages of virtualization of guest OS that are relevant to grid

computing:

Flexibility and Customization: Virtual machines could be configured and customized

with specific software such as applications, libraries for diverse workloads such as LHC

experiments (see section A.1) without directly affecting the physical resources. This

decouples the execution environment from the hardware, and allows fine-grain cus-

tomization to enable support for jobs with special requirements such as root access or

running legacy applications.

Security and Isolation: Virtualization adds an additional layer of security as all the

activity taking place within one VM is independent and isolated from the other VM.

This model prevents a user of one VM affecting the performance or integrity of other

VMs, and secondly limiting the activity of a malicious user to a particular VM if it gets

compromised. This allows the underlying physical resource staying independent and

secure in the event of a security breach, and the compromised VM could be shutdown

without affecting the whole system. Each job runs in its own VM container, so this add

another layer of isolation as it is started with its separate environment without being

contaminated by the residual state of another job running in a separate VM but being

on the same machine.

Migration: VMs are only coupled to the underlying hypervisor software and stay inde-

pendent from the physical machine. This capability is particularly useful if a running

job has to be suspended and migrated to another physical machine or grid site (cluster
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participating in the grid) as long as it’s using the virtualization software. This capability

allows migrating virtual machines to another server which matches its requirements,

see also section3.3.1 for further discussion on this topic.

Resource Control: Virtualization allows fine-grained control to allocate well-defined

and metered quantities of physical resources (CPU, network bandwidth, memory, disk)

among multiple virtual machines. This leads to better utilization of server resources

and could be dynamically managed to match demand-supply profile among compet-

ing virtual machines. It also enables fine-grained accounting of resource consumption

by the virtual machines, and thus fits very well with the Virtual Organization (VO)

resource control policies.

2.1.2 Under the hood

Operating Systems (OS) traditionally have been designed to interface directly with the

underlying hardware, and there are a large number of kernel level calls that are made

directly to the processor’s registers to properly execute. Since x 86 is one of most wide-

spread architecture in both batch and desktop computing, it’s important to focus on

the specific challenges it poses to introduce virtualization hypervisor layer between the

hardware and the OS. It uses a 2-bit privilege level to distinguish between user level

applications and operating system kernel calls, and prevent operating system instruc-

tions from fault which could only be run in highest privilege mode. There are four

privilege levels [0-3]. 0 being most privileged where non-virtualized operating sys-

tem runs to execute processor level instructions, access address and page tables and

other processor specific registers. While most of the user application runs at privilege

level 3 which have least privileges [24]. This is illustrated in the following figure.

Operating System

Applications

0

1

2

3
Lowest

Highest

FIGURE 2.1: 2-bit Privilege levels for x 86 processor architecture.
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Host Operating System

Guest Applications
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Guest Operating System

(a) 0/1/3 Model

Host Operating System

Guest Applications

0

1

2

3
Lowest

Highest

Guest Operating System

(b) 0/3/3 Model

FIGURE 2.2: Virtualized Guest Operating System Ring De-privileging

To introduce any hypervisor (also known as VMM) such as Xen [25], VMWare [26]

and KVM [27]; the guest operating system would have to run with less privileges with

out faulting kernel calls. To achieve this, a techniques know as ring deprivileging is

employed. Under this technique, VMM runs exclusively at level 0 while the guest op-

erating system could either be run at level 3 along side with guest applications known

as 0/3/3 model or at level 1 with guest applications running at level 3 known as 0/1/3

model. They are shown in figure 2.2.

To achieve the above objective of virtualizing guest operating system which is tradi-

tionally built to run on real hardware, this poses significant challenges for VMM to

deal with. Uhlig et al [24] have discussed these issues in great detail. Few of these

points are briefly summarized here:

• Ring aliasing: It refers to problems related to determining privilege level for the

software when executed at level different than that for which it was written for

i.e. OS being unable to determine its execution privilege level which could poten-

tially lead to the corruption of OS calls if not dealt with.

• Address-space protection: To manage a guest operating system, VMM requires ac-

cess to portions of virtual address space of the guest operating system and to pro-

cessors full virtual address space. This enables the VMM to control the processor

and must deny guest operating system accessing them to protect its integrity.

• Non-faulting access to privileged state: Since the guest OS is unaware of being virtu-

alized, VMM must emulate guest application/operating systems instructions re-

quiring higher privilege level while running them at lower privilege level, and yet
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preventing them from execution fault, whenever it tries to access CPUs privilege-

state hardware registers. This is achieved by redirecting OS calls to virtual regis-

ters maintained and updated by the VMM.

• Interrupt virtualization: Since guest OS is designed to respond to disk, I/O or to

other external interrupts when ever they happen and take action, under such

circumstances VMM must mask all such external interrupts and deliver virtual

interrupts to guest operating system when it is ready. This intercepting of exter-

nal interrupts leads to additional overhead, thus the intercepting frequency plays

a very important role in determining the VMM performance. e.g. This could hap-

pen if the user application running in the VM makes regular OS kernel calls that

have to be intercepted by the VMM.

• Ring compression: This occurs when VMM is forced to run guest OS at the same

privilege level as the guest application thus called privilege ring compression.

The main cause of this is when guest OS is running in 32-bit mode and is forced

to use paging mode for memory management which doesn’t distinguish between

0-2 privilege level, thus VMM must run guest OS in privilege level 3 . This

problem is only specific to 32-bit architectures and doesn’t affect other hardware

platforms.

• Access to hidden state: To manage the state of the guest OS, 32-bit Intel architec-

ture have some hidden registers which are not accessible through software and

are essential for maintaing the integrity of the OS. To schedule CPU and other

hardware resources to a VM (guest OS), VMM must have access to these hidden

registers when parallel running VM’s are saved and restored or migrated.

There have been on-going efforts by processor manufactures such as Intel and AMD,

and by VMM providers and OS companies to deal with the above challenges at various

levels (both at hardware and software level) and through different techniques. Some of

these techniques are discussed below:
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2.1.3 Software Virtualization

To address the virtualization challenges, VMM designers have come up with creative

solutions which require modifications of the guest operating system either at source or

binary level. Following are various techniques employed:

• Emulation: In this approach, the hypervisor completely emulates the raw hard-

ware into virtual interfaces. Any operating system supporting those virtual in-

terfaces could, in principal, be deployed as virtual machine. Qemu [28] is one

example of it. The trade-off in this approach is the performance over head due

to complete emulation of the underlying hardware platform, and this could be

quite significant for High Performance Computing (HPC) for their high perfor-

mance requirements.

• Para-Virtualization: In this technique, guest OS kernel has to be modified to re-

place calls, directed at the underlying H/W, with calls to virtual registers and

memory page tables maintained by the VMM. It offers highest performance among

the available techniques but it requires source level modification to guest-OS ker-

nel to replace low level kernel calls. This is only suitable for those guest-OS sys-

tem whose source code is available such as Linux®. Xen hypervisor [25] imple-

ments para-virtualization technique along others.

• Binary Translation: Another way to handle external interrupts is to replace the

binary instructions matching kernel calls on the fly originating from either guest-

OS or a virtual machine application at the run time. The advantage is the ability

to run legacy and proprietary operating systems without any modifications to the

guest operating system but at the cost of the performance loss due to additional

overhead for live monitoring of binary code and kernel calls. This improves over

time since VMM builds a cache table for most calls, and after a warm up phase

(when the caches reaches a certain threshold) performance stabilizes. VMWare

[26] have implemented this approach for example for Microsoft Windows®whose

source code is proprietary.

• Containers: This approach implements operating system level virtual machine by

encapsulating and isolating kernel processes. The host operating system kernel

is shared among all the running virtual machines. The tradeoff is that different
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operating systems could not be deployed as all the virtual machines share the

same host kernel. This technique works best in running multiple native applica-

tions on the same home operating system where only application level isolation

is required. Sun Solaris Containers and Zones, and Virtuozzo implement this

technique [29–32].

2.1.4 Hardware Virtualization

To improve virtualization performance and to reduce the overhead associated with in-

terrupt handling; CPU hardware designers have come up with ways that allows the

guest OS to be virtualized without corrupting its executing state. New control struc-

tures, registers and CPU operations have been added to facilitate this to allow VMM’s

to manage different privilege levels for the guest operating systems. Similar modifica-

tions have been made to both Intel™and AMD™processors to solve the virtualization

challenges described in the previous section.

The advantages of Hardware Virtual Machine (HVM) is that it takes away the software

overhead incurred at the VMM level to do interrupt handling, and reduces the need to

modify guest OS, thus improving VM performance. For closed-source guest OS, which

can’t be modified by end users as compared to open-source ones, there have been a

surge in the uptake of HVM technology.

This has also raised licensing issues related to how software providers license their

products for virtualization, but certainly this is outside the scope of this study.

The ultimate aim is to allow VMM to safely, transparently and directly use CPU to

execute virtual machines, therefore creating an illusion of a normal physical machine

for the software running in a virtual machine [33].
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2.2 Large Scale Distributed Computing

Since the advent of the computers, the scale of the computing capabilities have been

revolutionized from where Electronic Numerical Integrator and Computer (ENIAC)1

was the first computer built to do digital calculations using large vacuum tubes, as

shown in figure 2.3, while the present day supercomputer such as Tianhe-1A2, as shown

in figure 2.4, is able to perform calculations at PetaFLOPS scale.

FIGURE 2.3: ENIAC: The first large-scale general-purpose electronic computer in 1946.
(Image source: Wikipedia)

Despite the technological improvements, the cost of acquiring and maintaining the su-

percomputers have drastically increased to a scale which is becoming prohibitively

expensive to acquire and maintain for academic organizations, and it also poses signif-

icant challenges for researchers as they would need to get additional training to write

optimized code for it as compared to the traditional batch job based system. This led

to the emergence of the idea of Grid computing as a large scale distributed computing

infrastructure for scientific applications.

1ENIAC: http://www.library.upenn.edu/exhibits/rbm/mauchly/jwmintro.html
2National Supercomputing Center in Tianjin, China: http://www.nscc-tj.gov.cn/en/
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FIGURE 2.4: Tianhe-1A supercomputer at National University of Defense Technol-
ogy in China which is world fastest supercomputer as of May 2011. (Image source:

Wikipedia)

2.2.1 Grid and it’s Architecture

The term ”Grid” was coined in mid 1990’s to represent a uniform and transparent ac-

cess to distributed compute and storage resources with different time zones and ge-

ographical boundaries [7]. It borrowed the concept from typical power distribution

grids where users are able to access electric power without even knowing from what

source that power was generated or where it was generated. Computer grid ”visionar-

ies”3 envisaged that such an infrastructure will be able to address key needs of scientific

computing:

• Diverse Set of Resources ranging from computers, softwares, files, data, sensors

and networks connected by large scale and high speed networks.

• Sophisticated Access Control to provide a precise level of control over how re-

sources are shared, level of sharing granularity and access control, and applica-

tion of policies ranging from local to global scale.

• Highly Flexible Sharing of resources involving both clients, servers and non-

centralised access.
3Ian Foster, Steve Tuecke and Carl Kesselman are informally referred to as ”grid fathers” who jointly

wrote a seminal paper, ”The Anatomy of the Grid”, coined the term ”grid” in the 1990s.
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• Diverse Usage Modes for single-user or multi-user access while running perfor-

mance and cost-senstive applications which involves issues like quality of service

and delivery, resource allocation and provisioning, accounting and monitoring.

The scientific computing and engineering communities are very diverse in their needs,

scope, size, purpose and sociology. Therefore their sharing policies that govern such

complex sharing between so many different components has to be standardized. One

such sharing model is often described as a Virtual Organization [34]. There are number

of grid implementations available today built with different tools and technologies but

they all could be abstracted to the following architecture to provide resource specific

capabilities:

1. Computational resources spanning computers and other hardware required to

run computational tasks related to resource sharing, access, control, scheduling

and monitoring of the grid resources.

2. Storage resources to store files and data objects, and providing mechanisms to

access them in a transparent and reliable manner involving advance reservation

and replication.

3. Network resources are critical for the functioning of the grid and interaction of

it’s components and services to transfer data, jobs and other sets of information

related to resource discovery and global enforcement of sharing policies.

4. Resource protocols are categorized as information, management and data trans-

fer, and are needed to inquire about resource state (it’s availability, configuration

and state), negotiate (requirements, reservations), execute operations (creation of

process and data access across distributed clusters) and to monitor.

5. Catalogues and Software repositories are needed to provide required software

for process execution and sharing across communities, and to provide real time

meta-information on distributed resources.

A typical implementation of the above mentioned resource model is described as Grid

Operating System and also called Grid Middleware (see section 2.2.2).
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2.2.2 Grid Middleware

Over the years, different grid infrastructures and their corresponding middleware have

been developed such as Globus4, gLite5 and Arc6 where each has taken a slightly dif-

ferent approach to serve the needs of their dominant user communities.

One such grid infrastructure is LHC Computer Grid (LCG) (see appendix A) deployed

at European Organization for Nuclear Research (CERN). It provides a world-wide grid

service to its physics research communities distributed around the globe for simulation,

storage and analysis of scientific data using gLite middleware. Over the past few year’s

it has been expanded to incorporate bio-medics, astronomy and material sciences as

part of Enabling Grids for E-Science (EGEE) project7.

2.2.2.1 gLite Architecture

gLite middleware runs on the LCG Grid and incorporates software components and

services from other open-source middlewares such as Globus, Virtual Data Toolkit8

(VDT) and other middleware components [35].

To fully understand the context and scope of this research, it’s important to have an

overview of the structure and functioning of the gLite components. This will enable

the reader to contextualize the challenge of integration of virtualization in the grid

environment which is already in production use. This is discussed in section 1.1 and

part of research question 1.

gLite middlware is composed of the Workload Management System (WMS, a Data

Management System (DMS), an Information System (IS), an Authorization, Authen-

tication and Accounting System (AAA), Montioring Services (MON) and various

utility installation services [36] and adheres to grid resource capabilities as discussed

in section 2.2.1. Some of these systems consist of further smaller components that are

responsible for additional functionalities, and are often separated by distributed net-

works as shown in figure 2.5.

4Globus Toolkit: http://www.globus.org
5gLite Grid Middleware: http://www.eu-glite.org
6Arc Grid Middleware: www.nordugrid.org/middleware/
7EGEE Project: http://www.eu-egee.org
8Virtual Data Toolkit: http://vdt.cs.wisc.edu/
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The WMS is responsible for providing the necessary software infrastructure for users

to submit grid jobs and for management of these jobs by resource match making, provi-

sioning, allocation and scheduling them to the appropriate computing cluster. It tracks

the progress of jobs and allows users to retrieve output when ready.

Some of the key software components of Workload Management System are as follows:

• User Interface (UI) allows users to access the functionalities of WMS by submit-

ting jobs, retrieving their status and output, cancellation of jobs and accessing list

of resources compatible with job resources. It is either installed on user machine

or other host machine that is reserved for grid access.

• Workload Manager (WM) receives the job submitted by the user, identifies the

resources that match the job requirements and then submit them to the computing

clusters for execution.

• Logging and Bookkeeping (LB) is responsible for gathering job status informa-

tion from various WMS services, and a user can later access it through UI.

• Computing Element (CE) is the interface between the grid and the remote cluster;

it submits the jobs to Local Resource Manager (LRM) a.k.a Batch System.

• Worker Node (WN) or compute node is the final destination for a job and it is

here where it gets executed. It’s managed by a single CE and runs minimal grid-

aware services. The cluster level job management at WN is handled by the batch

system, and enforces cluster level policies.

The IS is responsible for maintaining the status information about distributed resources

and is used by the WMS for match making. It includes directory service components

for discovery and caching while using Berkeley Database Information Indexing9 for

indexing purposes.

The DMS layer is responsible for movement of data and files between grid sites and

users for job execution, recovery and storage purposes. It provides a number of file

transfer and access protocols such GridFTP10 and RFIO11. Additionally, it also includes

9BDII: http://www.oracle.com/technology/products/berkeley-db/index.html
10Globus GridFTP: http://www.globus.org/grid software/data/gridftp.php
11RFIO Protocol: http://hikwww2.fzk.de/hik/orga/ges/infiniband/rfioib.html
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replication and catalogues services to speed up the process of the data transfer and

caching.

One key aspect of grid architecture is to provide sophisticated access control as dis-

cussed earlier in section 2.2.1. All the users and their related credentials linked to

their respective Virtual Organization are managed and controlled by AAA services,

and keeps tracks of resource usage on per user basis at each VO level to enforce re-

source sharing regime defined by the site and grid providers.

To enable grid managers and operators to run the system smoothly and efficiently, and

to troubleshoot whenever problems occur requires access to consistent and up-to-date

information so that problems can be quickly identified, analyzed and fixed. Manage-

ment System (MS) is responsible for maintaining grid services status, resource usage

and custom information related to running jobs for user access.
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2.2.3 ATLAS Computing

ATLAS is one of the LHC experiments (see appendix B) and it’s workloads run on the

LCG grid. ATLAS users are part of the ATLAS virtual organization. To provide a uni-

form and comprehensive access to WMS infrastructure, ATLAS scientists have devel-

oped a high level computing software layer [37] that interacts with the grid middleware

and manages job submission, monitoring, resubmission in case of failures, queue man-

agement with different scientific grids such as Open Science Grid12, NorduGrid13 and

LCG while providing a single and coherent grid accesibility interface to its users.

2.2.3.1 Job Submission Mechanisms

The ATLAS computing software uses two different job submission mechanisms to the

grid:

1. Direct submission

In this model, the ATLAS users submit their jobs directly to a specific grid work-

load management system, which schedules the job to a suitable site that meets

job’s resource and software requirements. There are multiple application do-

mains from other experiments sharing the same grid infrastructure which leads

to latencies in scheduling the job and larger queue waiting times. If the job fails

while executing or gets terminated while waiting in the queue, then the user has

to resubmit their job. This leads to lower utilization rate of the system and higher

management overhead for the user.

2. Pilot Jobs

In recent years, ATLAS computing has developed a job submission framework

that interfaces with different scientific grids and takes care of job submission and

monitoring in an automated fashion. The system submits redundant and dummy

jobs called pilot jobs acquiring processing resources on the grid which are later

scheduled for real jobs by the external brokerage systems. Then the job is down-

loaded for execution from high-level ATLAS computing queues which is external

from the grid infrastructure.

12Open Science Grid: http://www.opensciencegrid.org/
13NorduGrid: http://www.nordugrid.org/
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Pilot jobs are a kind of resource leasing mechanism, and their allocation and ac-

cess to the worker nodes is determined by the VO policies. They are responsible

for delegating the job scheduling responsibility away from the workload manage-

ment systems for resource provisioning and allocation for ATLAS jobs to reduce

unnecessary system load on the WMS. To prevent pilot jobs for submitting too

many jobs to local schedulers and reducing the share of resources for local jobs,

there are separate queue for pilot jobs and local jobs. This way a site administrator

manages the fair allocation of available job slots for pilot and local jobs.

Pilot jobs provides a very neat solution to over-come the unnecessary delays at

the WMS level, but there are certain limitation to their performance. One of the

main limitation is that a pilot job will have not control over what kind of job slot

it gets allocated by the local batch scheduler, and it only discovers the concrete

resource allocation once its deployed. At that stage, if the job slot doesn’t meet

the resource requirements of the downloaded job then the job is terminated, and

rescheduled. This could potentially lead to additional queueing delays.

ATLAS computing uses Production And Distributed Analysis system (PanDA)

for pilot job submissions [16], see section 5.1.1. Similar high level workload man-

agement and automated pilot systems are developed by other projects such as

Distributed Infrastructure with Remote Agent Control (DIRAC) [38].

2.2.4 Job Scheduling

With the evolution of grid middleware and development of pilot jobs, it’s important

to note that job scheduling takes place at different levels in the grid infrastructure.

Resource provisioning and allocation is handled by multiple and distributed system

which overlay each other. Three key systems that contribute to scheduling of ATLAS

jobs are following:

1. Central Scheduling: Jobs directly submitted to the grid are scheduled at the level

of WMS including pilot jobs to eventually acquire an execution slot at the worker

node. Scheduling at this level is determined by resource sharing policies between

various virtual organizations, and WMS makes sure that only jobs from authen-

ticated and authorized users goes through it.
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2. External Scheduling: Pilot job frameworks are external to the grid WMS and

once their jobs have acquired processing job slots, based on the configuration of

the job slot; pilot server sends the jobs from their centrally managed queues to the

worker nodes directly for execution. The primary metrics for scheduling at this

level is that the target worker node meets the software requirements of the job.

It is determined by the pilot job daemon when it starts executing on the worker

node, and send the details of resources it acquired back to PanDA server so that

job matching the acquired resources are sent to it.

3. Local Scheduling: Batch system level scheduling is the last link in the scheduling

hierarchy. They interface with grid CE which upon job arrival schedules them

to the worker nodes which could be either user jobs or pilot jobs. At this level

scheduling is more concerned with enforcement of local site policies such as sep-

arate queues for short, medium and long duration jobs.

2.2.5 Grid Sites Constraints

In this section, the existing problems faced by the grid sites (clusters participating in the

grid), especially those which are part of ATLAS experiment, are discussed. It provides

one of the core motivations to integrate virtualization in to the grid and utilize it’s

benefits to deploy and migrate portable execution environment i.e. virtual machines.

Following are the major issues that concerns such grid sites:

• Site Configuration: Whenever new middleware patches are released for the grid

sites, a number of sites get mis-configured resulting in the site going offline. This

results in no jobs being submitted to the site for a certain period of time until a

system administrator corrects the problem. This causes under-utilization of re-

sources and unnecessary administrative overhead for the site administrators.

• Platform Availability: Presently ATLAS recommends Scientific Linux CERN op-

erating system, which is derived from Red Hat Enterprise Linux with CERN spe-

cific modification, for its grid sites. This reduces choice for site providers who

might have a different OS preference due to local site needs and requirements

such as if the cluster is deployed in an academic institution and used for local

research activities.
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• Analysis Software: Atlas job requires additional stack of analysis software which

is 7GB in size. To support the grid sites, which do not have their own local

installation, CERN provides this software through read-only Andrew File Sys-

tem (AFS) over the Internet. Under heavy load, this leads to higher latencies,

which results in frequent job failures and could be very costly in terms of job

re-submission overhead for the long running jobs which have to be started again.

• Software Update: The update cycle for the ATLAS analysis software is around 2

weeks and requires downloading of hundreds of tarballs to the site. This process

is repetitive and burdensome for both the site providers and the ATLAS software

managers as it is prone to misconfigurations, and require efforts directed at trou-

bleshooting mis-configured sites.

Executing ATLAS jobs in virtual machines will certainly enable the site administrators

to manage their physicals resources more efficiently as operating system virtualiza-

tion decouples the execution environment from the host machines by turning them

into generic compute resources. Further more, pre-configured and pre-certified virtual

machine images with ATLAS software, if available locally at the site, will provide an

elegant solution to the current deployment strategy that relies on error prone software

distribution and update life cycle. There has been some progress on this front where

large grid sites participating in CERN’s LCG have developed regular virtual machine

images used for job execution. It will also open an avenue in the future that user’s

could package their job with the required software in the virtual machine image and

send it to the grid for execution.
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2.3 Summary

This chapter has described the fundamental concepts needed by reader that runs through

out this thesis, and placed the research into context. It provides a detailed discussion of

virtualization technology and the resultant overhead which arises as hypervisor soft-

ware has to continuously handle interrupts and kernel calls coming from guest operat-

ing systems.

It gave an overview of different technologies such as para-virtualization, emulation,

container and binary translation to achieve operating system virtualization at the soft-

ware level. It also described the hardware based virtualization which is increasingly

used these days due to fact that microprocessor manufacturers have updated the pro-

cessor hardware architecture by removing or adapting the CPU instructions to enable

more transparent virtualization of the guest OS.

In later sections, a detailed overview of the grid technologies, its goals and architecture

has been presented. This was further expanded in the context of a real-world grid

middleware i.e. gLite which has been deployed on the WLCG grid for CERN’s flagship

LHC experiment. Various components of gLite middleware has been presented such

as workload management system, accounting and book keeping, user-interface and

computing nodes, and their relationship to each other. This provided the basis for the

reader to fully locate the ATLAS experiment and it’s PanDA pilot job framework in

the context of grid computing. This was important since both ATLAS jobs and PanDA

pilot framework has been the subject of research in this thesis as real-world case study.

Finally, this chapter concluded with a discussion about the scheduling of jobs that has

taken place at various levels within grid workload management system, at batch sys-

tem level and finally by the PanDA pilot server. It also highlighted the challenges faced

by both system administrators and grid users in managing and using such a large and

distributed infrastructure. Operating system level virtualization is one of the promis-

ing approaches that could help in resolving some of these challenges to enable scientific

grids to be more dynamic, agile and optimal in delivery of computational services to

scientists around the globe.
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Literature Review

“We are made wise not by the recollection of our past, but by the responsibility for our future.”

George Bernard Shaw

According to Ruth et al. ”Grid computing technology....provides opportunities for a broad

spectrum of distributed and parallel computing applications to take advantage of the massive

aggregate computational power available...spanning multiple domains” [39].

Large scale distributed infrastructures such as grid and PlanetLab1 serve the needs of

diverse set of users running very many different applications. Some of these applica-

tions require pre-configured and customized execution environments (e.g. a particular

OS with specific libraries needed for diverse set of workloads). It may not be possible

to fulfill all such requirements in a grid infrastructure all the time for every worker

node. This requires the underlying infrastructure to possess certain flexibility to meet

competing and often contrasting requirements. Virtualization is a promising technol-

ogy to provide such flexibility to configure and deploy on-demand virtual execution

environment in a distributed grid infrastructure.

This chapter presents an overview of the body of work done to integrate virtualization

in to large scale grid infrastructures and attempts to categories different techniques.

Some of these techniques interfaces with batch systems to integrate virtualization at

1PlanetLab overlaying Infrastructure. See http://www.planet-lab.org
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the gird site level or solely focus on virtualizing a local cluster, while others directly in-

tegrate with grid middleware software. These techniques are discussed in detail along-

side with their architectural differences and implementation methods (see section 3.1).

This provides a comparative overview of the techniques that are complementary to the

approach taken to virtualize LCG grid through PanDA pilot (see chapter 5).

Yet, there is a parallel phenomenon going on in the large scale distributed computing

community to enable pay as go access to the infrastructure namely cloud computing.

Although the research presented in this thesis is primarily targeting grid computing,

but to properly contextualize this work and to provide an over view of the emerging

trends, a discussion on cloud computing is included in this chapter as well (see section

3.1.2).

Virtualization technology incurs a performance penalty as discussed in previous chap-

ter. A detailed analysis of it’s impact on job performance is further discussed in section

3.2.1 along side optimization techniques to overcome and reduce the impact of over-

head. This is relevant to the scope of this thesis since one of its main objective is to

investigate optimization techniques that are complementary to job schedulers by lever-

aging the overhead profile which changes due to the types of workload running in

virtual machines.

Section 3.3 describes live migration of virtual machines, and power management to

optimize infrastructure management with emphasis on security implications of virtu-

alization. Live migration techniques are useful to reduce virtual machine downtime

and migration times. Power management via intelligent task placement and determin-

ing hotspots in the cluster is crucial to minimize the energy costs of a data center, and

various approaches taken by other researchers are summarized. Although these topics

are beyond the scope of this study but are included since they are relevant to the issues

arising when grid infrastructure is virtualized.

Finally, a discussion of work related to various scheduling approaches taken to opti-

mally schedule virtual machines for interactive and batch applications is presented.

Scheduling architecture of the underlying Xen hypervisor provides number of differ-

ent scheduling algorithms and parameters to tweak job performance, and is presented

in section 3.4, and appropriate references are made to the contribution of this thesis

presented in next few chapters.
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3.1 Virtualization in the Infrastructure

The primary motivations for the uptake of virtualization has been resource isolation,

capacity management and resource customization: isolation and capacity management

allow resource providers to isolate users from the grid site and control their resource

usage while customization allows fine-grain modification of the execution environment

without affecting the host system.

Various approaches have been taken to integrate virtualization in grid infrastructure,

and they are discussed in the following section.

3.1.1 Virtualized Grid Computing

3.1.1.1 Resource Management

Deploying grid jobs in VM’s on-demand does not only involve performance and man-

agement issues but also presents challenges such as how to provision and allocate re-

sources for job submission, suspension and migration. This could be described as Qual-

ity of Life regarding an execution environment meeting all software requirements and

Quality of Service in relation to resource allocation [40]. Before looking in to various

techniques about how to virtualize grids and clusters, it’s important to define particu-

lar machine resources required for these techniques.

Resource Definition

The resources that have to be provisioned for a virtual machine before it could be de-

ployed are as follows:

• VM Image: The VM images contain the guest operating system and must be

downloaded to the destination machine before it can start. This requires allo-

cation of disk space on the storage system. VM image could be mounted as a
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loopback device2 with additional disk space for data write or it could be decom-

pressed into a logical volume group (LVM) which also facilitates to take periodic

snapshots of the disk if needed.

• Memory: Just like any other machine, VM’s require access to Random Access

Memory (RAM) which generally has to be pre-allocated. For multiple VM de-

ployment, RAM have to be reserved for each VM. Size and availability of RAM

on a given machine constrains how many VMs can be deployed simultaneously.

• Networking: Network bandwidth is another important resource for download-

ing VM images and input data sets for jobs on destination machines. Under a de-

fault configuration, network bandwidth consumes CPU shares of the VM while

the network bridge3 is emulated by the hypervisor (VMM) which requires man-

agement of network traffic in hypervisor software layer.

• CPU: The CPU share among all the virtual machines is allocated by the hypervi-

sor and is configurable for different VMs. These days multi-core CPU’s are widely

deployed and could dramatically influence a site provider’s virtual machine de-

ployment model; pre-deployed (pool of VM already running grid services) vs.

on-demand.

Provisioning Model

Resource management and efficient provisioning poses complex algorithmic challenges.

Each resource request is driven by multiple factors such as how much of the resource is

required, when it is required, how long it is required for and where it could be allocated

in the system. Grit et al. [41] have defined it as a knapsack problem where different items

and values have to be fitted in finite space of fixed volume. It becomes a multiple knap-

sack problem with multiple sites or physical hosts with different resource capabilities

such as CPU, disk, memory and network bandwidth.

Nevertheless, the resource-provisioning model will also depend on how virtual ma-

chines are deployed. There are two ways to achieve this:

2In Unix-like operating systems, a loop device, vnd (vnode disk), or lofi (loopback file interface) is a
pseudo-device that makes a file accessible as a block device.

3A software layer that connects the underlying networking interface hardware to the virtual machine.
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• On-Demand (no predeploy): For each new job request, a new VM is deployed

using an image that has the complete software environment required by the job.

Since deployment of VM from scratch takes a constant time; if its greater than the

job duration then this model will be least efficient as the job will be most likely to

miss its deadline.

• Sliver Resizing (predeploy): In this scenario, a pool of virtual machines are pre-

deployed and running on a cluster. Upon job arrival, the physical resources (CPU,

disk, network, memory) for the virtual machine are dynamically adjusted. This

model improves avg. job turnaround - time it takes for a job to complete, for short

duration jobs. The constraints of this approach is that a pre-defined set of VM

images are used which would match most of job requirements but not all of them.

This could be realistic when a site provider only participates in a single Virtual

Organization (VO) and have to manage limited set of pre-defined VM images.

For a site with multiple VO participation, there could be large set of VM images

and pre-deploying them may not be practical for all real-world use cases.

VM Image Management

Virtual machine image management poses serious challenges to large-scale deploy-

ment of virtualization in the grid. It’s a difficult problem to address and raises ques-

tions about how to create, certify and propagate these images to the required destina-

tion machines when required. The virtual machine startup, shutdown and destruction

stay constant as of 23 seconds, 11 second and <1 sec respectively for the VM image of

size of 2GB-4GB when benchmarked on 3GHz CPU [42]. The largest overhead in the

virtual machine deployment is due to image staging to the computational node and it

significantly increases job turnaround time.

Bradshaw et al. [43] have identified the following issues related to VM image manage-

ment:

• Generation: The flexibility to customize virtual machine images to meet job re-

quirements on-demand requires that images to be generated on-demand or prior

to deployment depending on a specific configuration such as user rights, applica-

tion installation and configuration etc. Configuration management process needs
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to be automated to specify which packages have to be included in an image.

Generating images on-demand, depending on the configuration, constitutes to

a significant time overhead. This could be avoided by decoupling the process

of image generation from the job request so that they could be generated, config-

ured and certified by the site administrators in advance. Such a configuration and

customization process is also referred as Contextualization [44], and the resulting

virtual machine is called Virtual Appliance [45].

• Management: Over the lifetime of an image, which is generally of few weeks,

a mechanism has to be developed to automate image updating process to patch

latest security packages. This requires some sort of a standard way to define

configuration, probably expressible in XML, so that distributed images are auto-

matically updated when new patches are available.

• Propagation: Another challenge is about devising a policy of where to locate

the images (on remote gird sites or locally cached on each cluster) and how to

download these images to worker nodes when needed. Relative locality (locating

images closer to where they are needed) reduces the time required for an image

to be downloaded to the destination machine but puts constraints on local sites

for having additional storage space since a typical ATLAS VM image is around

15 GB each. This also puts additional constraints on the network bandwidth and

could be optimized utilizing content based downloading mechanisms where only

the image difference is downloaded to the target machine, and patched to the VM

image on the fly [46].

There are also security risks associated with VM images as the site administrators

would be reluctant to execute images on their resources which they have not certi-

fied. Hence, allowing users to download their own customized virtual machine im-

ages, which offer maximum flexibility, poses a risk that a malicious grid user could

utilize such a VM to stage further attacks. One possible model could be virtual image

repository for each site containing images certified by the site authority whereas also

reducing image download overhead through relative locality.

Constandache et al. have employed a different approach to this challenge by developing

a technique to modify a generic VM image on the fly according to it’s user requirements

[47]. They used a control-binding protocol by using a pre-installed piece of software in
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the VM image which upon boot up first authenticates itself with its owner or a con-

troller proxy through secure tokens, and then customizes it according to its need. This

reduces the overhead of generating VM images on the fly which can rather be config-

ured on-the fly from a single VM image.

Recently, cloud software infrastructure providers have developed proprietary solutions

to address some of the challenges discussed above related to VM image management

and could be applied to grid computing on ad-hoc basis. Cloud computing infrastruc-

tures have developed standard ways to access distributed data (e.g. S3 query language

provided by Amazon Web Services), use of high-speed network based access for vir-

tual machine images and automatic patching of the virtual machine images when new

updates becomes available etcetera.

3.1.1.2 Deployment Techniques

There have been a number of approaches taken to bring in virtualization capabilities

in to clusters and grid systems. Often these techniques have employed methods that

are specific to a particular application domain e.g. serial jobs requires different sort of

mechanisms as compared to parallel job where job performance depends on message

passing, thus has to be deployed together in close proximity to reduce latency in mes-

sage passing which leads to higher synchronization costs. Also, significant work has

been done in the context of deployment platforms already in production use, and there-

fore makes sense to modify them to enable virtualization. This is the same approach

taken for the research work presented in this thesis.

These deployment techniques could be broadly grouped as follows:

• Virtual Cluster Management (VCM): In this model, no modifications are made

to the Cluster or Local Resource Managers (LRM) (a.k.a. batch systems) architec-

ture. The implementation of virtualization is completely external and opaque to
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the batch system e.g. Condor4, Torque5 and Platform LSF6. All the issues of re-

source allocation, scheduling, resource provisioning, security and optimization

are handled by an external software layer through an overlaying management in-

terface with batch systems and grids, but primarily work independently to pro-

vide clusters on-demand.

• Virtual Grid Coordinator (VGC):

In this model, VGC is implemented to interface with the existing grid workload

management system such as WMS or Globus Grid Resource Allocation and Man-

agement (GRAM) service. Grid job scheduling is done independent of the under-

lying virtualization management system, and VGC takes care of resource provi-

sioning, allocation and scheduling of the virtual machines as job arrives at a local

site for execution.

• Virtual Batch System (VBS):

This model follows the approach of integrating virtualization within the batch

system which stays transparent to the external grid infrastructures and utilize its

capabilities. In this model, the pre-existing schedulers would have to be modified

to incorporate virtual machine states corresponding to job states such as running,

paused or cancelled in order to monitor both jobs and virtual machines. This

enables the batch system for on-demand deployment and periodic resizing of

virtual machines according to the system load.

Virtual Cluster Management

The Cluster-On-Demand (COD) project falls under this category and implemented a

service-oriented architecture [48]. COD implements resource allocation based on CPU

speed, memory and disk allocation within the isolated virtual cluster. It can manage

both physical and virtual clusters where some of the machines are physical while oth-

ers are VM’s. Its extensible architecture allows specific modules to be plugged-in to

4Condor project for High Throughput Computing (HTC). See http://www.cs.wisc.edu/condor/
5PBS/TORQUE is an open source resource manager providing control over batch jobs and distributed

compute nodes. See http://www.clusterresources.com/products/torque-resource-manager.php
6Platform LSF is the workload management solution for high performance computing (HPC) environ-

ments, schedules batch and interactive workload for compute- and data-intensive applications in clus-
ter and grid environments. See http://www.platform.com/workload-management/high-performance-
computing
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provide fine-grained services, and it could interface with grid web-services for cluster

management and resource brokering.

They also introduce a concept of lease which is based on weak assurance, or best effort,

and represents a contract of a resource and is part of their Shirako project to handle site

based policy management and resources leasing [49]. It doesn’t implement advance

reservation of resources and the model is implemented in such a way that fundamen-

tals of leasing mechanism are decoupled from the leasing policy which varies from site

to site. Thus allowing fine-grained control over resources under different deployment

scenarios; it could be storage, network, and physical or virtual clusters.

Shariko can provide simpler resource allocation policies with in a site, which are exten-

sible, but more complex economic policies with external sites using credits are achiev-

able with an additional software module called Cereus [50]. The COD implementation

could be best described as distributed overlaying cluster management system, which

is fairly flexible and extensible, but it lacks precise mechanisms for integration in to

EGEE, OSG or other grids.

On the other hand, Maestro-VC project has taken a different implementation route than

COD. COD primarily focused on fine-grained resource allocation for both physical and

virtual machines, Maestro-VC tries to completely virtualize a physical cluster, and then

creates virtual clusters on-demand for its clients [51]. Their resource allocation model

is different since it is concerned more with VM performance which executes a par-

ticular job. Maestro-VC could be described as virtual batch system where it runs its

own management software on the physical machines along side with a global and local

scheduler to orchestrate virtual clusters on-demand.

This is particularly useful for parallel jobs that have to be run simultaneously and with

in a close-proximity to reduce latency for message passing, and Maestro-VC attempts

to address this problem by co-locating virtual machines on physical macines. Such a

deployment tool could be integrated in to the grid by the site providers to increase

resource utilization, but it remains confined to small scale cluster deployment rather

then large scale virtualization in the grid.
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Virtual Grid Coordinator

Virtual grid coordinator (VGC) differs from the previous technique as it is more focused

on integrating with the grid middle ware then fine-grained resource management at the

cluster level. It could be used in conjunction with the VCM tools.

Virtual Workspaces [52] (VW) project is a part of Globus Middleware7 and has been

very tightly integrated into its services. It defines a virtual machine instance as a

workspace.

Whenever a new job arrives, VW service manager initiates a workspace deployment

process. After verifying resource availability and job requirements on the target node,

a workspace creation request is communicated to the VW Node Manager that deploys

the virtual machine on the physical node which is very similar to vGrid agent as dis-

cussed in section 5.1.2.1. The virtual image is either taken from the local cache if present

or else downloaded from the central repository. Once VM is deployed, VW Server is

notified and it updates its resource status, and Grid file transfer protocol (FTP) service

is used for any pre-staging data/file transfers into the virtual machine for each job ex-

ecution. Upon job completion, VW Node Manager terminates the virtual machine with

the similar architectural approach as we implemented for PanDA daemon (see section

5.1.2.3).

VW has also developed techniques for image downloading and caching to the target

physical nodes. Despite the promising results from their prototypes, Virtual Workspaces

project kept its focus on integration and deployment of virtual execution environments

in the Globus middleware, in particular, and yet much has to be done to achieve opti-

mization in resource allocation and scheduling of virtual machines.

In comparison to VW, GridWay [53] is a meta-scheduling system that allows unat-

tended execution of grid jobs by supporting all the steps involved in the life-cycle of

a job such as resource discovery and selection, job preparation, submission, monitor-

ing, migration and termination. It could be used as VGC for gLite middleware while

7Globus Grid Alliance. See http://www.globus.org
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using VW as a virtual machine deployment backend at the cluster level. Their proof-

of-concept deployment has been for PBS/Torque batch system using XMM-Newton8

scientific application which matches ATLAS workloads in many respects.

One if its component is Execution Manager that interfaces with GRAM grid web-service

and submits a wrapper program to it. The wrapper program validates availability of

a virtual machine matching job requirement, and if none is available invokes virtual

workspaces to deploy a virtual machine. While the virtual machine is deployed, it polls

for virtual machine boot up. Once the virtual machine is deployed, then PBS/Torque

prolog step, executed before job is started, is initiated to copy input files into the virtual

machine. Upon the completion of the job, the wrapper program terminates the virtual

workspace initiated by epilog step - always executed at the end of each job.

This combination of VW and GridWay is very similar to the implementation taken for

Virtual PanDA pilot. The major difference is that VW-GridWay combination solely em-

ployed Globus grid resources, and makes it harder to be integrated in to gLite middle-

ware which uses PanDA pilot job framework. Secondly, it supports more generic jobs

which comes in with small and pre-package payload rather than the existing PanDA

pilot jobs which downloads its preload between VM setup and execution to avoid net-

work overhead of virtualization.

Virtual Batch System

Virtual batch system (VBS) approach is similar to VCM as it also focuses on the local-

cluster but rather then directly managing the cluster, it enhances the capabilities of

the batch system. Thus utilizing scheduling, resource allocation, queue management

and other features provided by the batch systems. VBS could complement some of

the capabilities of the VCG approach where former provides virtualization enablement

and latter provides integration into the grid.

Magrathea have one of the most interesting approaches in enabling virtualization in

the batch system [54]. Their model is based on a paradigm shift of scheduling virtual

8The European Space Agency’s (ESA) X-ray Multi-Mirror Mission (XMM-Newton) is a space
based telescope. It carries 3 high throughput X-ray telescopes with an unprecedented effec-
tive area, and an optical monitor, the first flown on a X-ray observatory. The large collecting
area and ability to make long uninterrupted exposures provide highly sensitive observations. See
http://xmm.esac.esa.int/external/xmm about/
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machines rather than jobs in the context of deployment by integrating their services into

the batch system to seemless scale up and down of pre-deployed pool of virtualized

worker nodes. It has extended PBS Professional9 scheduler to include virtual machine

states as jobs starts, executes and finishes.

The architecture of Magrathea consists of a master daemon and slave daemon. A mas-

ter daemon runs on each computational/worker node in a supervisory virtual machine.

It is responsible for monitoring worker virtual machine states and allocating resources

to them on demand. Each worker virtual machine runs slave daemon that intercepts

job requests from the scheduler for execution and if it does, then it communicates its

status to the master daemon running on the worker node.

If a job is interrupted or suspended during execution, then slave daemon notifies the

master daemon, which updates the virtual machine state in the cache status interfacing

the scheduler so that scheduler could reallocate resources using sliver resizing technique

to dynamically scale up or down physical resources allocated to a given VM. In such

an event, the master daemon will reduce virtual machine resources such as CPU share,

memory and will put the virtual machine in hibernation mode. For dynamic resource

allocation, master daemon interfaces with the Xen hypervisor on each worker node. Job

preparation and monitoring is handled by PBS monitoring facilities using standard PBS

epilog/prolog scripts that are always launched at the start and end of the job execution.

Currently, Magratheas usage scenario is one job per active virtual machine, and it is a

static deployment model where VM’s are pre-deployed and pre-configured as worker

nodes. It has been deployed for EGEE infrastructure where ATLAS jobs also get exe-

cuted. Another constraint to their approach is the lack of an image management sys-

tem, which would be critical, to manage images in a central repository with a local

cache to deal with a large-scale virtual machine deployment.

On the other hand, the Dynamic Virtual Clustering project have a taken a different ap-

proach of deploying virtual clusters on per job basis [55]. Its prototype implementation

9Portable Batch System (or simply PBS) is the name of computer software that performs job schedul-
ing. Its primary task is to allocate computational tasks, i.e., batch jobs, among the available computing
resources. It is often used in conjunction with UNIX cluster environments. PBS is supported as a job
scheduler mechanism by several meta schedulers including Moab by Cluster Resources and GRAM (Grid
Resource Allocation Manager), a component of the Globus Toolkit. See http://www.pbsworks.com/
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is using Xen hypervisor, Moab Scheduler10 and Torque resource management system.

It analyses parallel and message passing interface (MPI) HPC workloads where parallel

VM’s are deployed on demand to executed all parallel jobs in one go that depend on

each other to execute successfully. DVC focuses on three objectives to achieve this:

1. To run a job on a cluster without modifying the underlying physical resources.

Upon arrival of an MPI job, a cluster of virtual nodes running resource manager

daemon is deployed. The resource manager daemon takes care of the staging of

files, job monitoring and notifying Moab scheduler upon job termination.

2. To migrate jobs with in the cluster. If a job has to be suspended and later on

moved to another virtual cluster due to heavy load or else, then DVC deploys the

job on another cluster while keeping the previous job image to keep the environ-

ment consistent. This way it increases job capacity by utilizing all the available

resources and reduces average job turnaround time.

3. To achieve cluster spanning when additional resources for a job are required. The

cluster scheduler borrows additional resources from another cluster scheduler

for a given timeframe, and returns the resources upon the completion of the jobs

using leasing mechanisms as described earlier in VCM deployment model. Once

the job is terminated, then DVC shuts down virtual cluster and Moab scheduler

is updated for the availability of physical resources for future job requests.

DVC achieves virtual clustering by tightly interfacing with the batch system to provi-

sion, allocate and schedule VM resources for MPI jobs.

3.1.2 Rising ”Clouds”

What is Cloud computing? According to National Institute of Standards and Technol-

ogy (NIST) ”Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.” [56].
10Moab Grid Suite is a powerful grid workload management solution that includes schedul-

ing, advanced policy management, and tools to control all components of grids. See
http://www.clusterresources.com/pages/products/moab-grid-suite.php
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This buzzword has clearly captured the imagination of researchers working in the do-

main of distributed, grid, utility and service-oriented computing [57, 58]. Can cloud

computing be described as ”utility computing with a marketing friendly name....sprinkled

with little internet pixie dust” or is it ”grid computing done right” as claimed by J. Barr

in his article [13].

Cloud computing is a flexible resource pool which is elastic to grow or shrink based on

demand fluctuations and focuses on better resource utilization and business flexibility

to scale up and down the capacity while leveraging technologies such as virtualization

with standard interfaces to access the infrastructure. Where as, grids are a set of re-

source pool (servers, disks, tape drives, network resources) reserved and provisioned

for each virtual organization to enhance resource sharing among complex scientific ap-

plications, and often requiring dedicated infrastructure to maximize highest possible

performance and task throughput. These comparison are shown in table 3.1. Buyya et

al. have provided a very detailed analysis of clusters, grids and cloud paradigms and

the need to converge them in the 21st century computing vision [59].

There are currently various approaches to deploy clouds from federating clusters to

desktop grids and data centers. Some even have explored the idea of transforming en-

terprise desktops into a cloud and delivering desktop computing over cloud by bench-

marking capacity planning and workload analysis in the context of an enterprise [60].

While others have ventured on evaluating cost benefits of Volunteer Computing (VC)

such as BOINC project11 in the context of running parallel and compute-intensive ap-

plication both on clouds and volunteer computing [61]. Their results currently shows

lower start-up and operating costs using VC platform as compared to cloud utilization

when utilization is extrapolated for a year long commitment.

Nevertheless, due to the large number of cloud infrastructure providers in industry

with different services, the distinction between them has been obfuscated leading to

confusion among researchers and engineers to fully utilize the capabilities of the cloud

services for their particular applications. Lenk et al. have come up with an architectural

model that categories existing cloud services into various service types [62]. According

to them, the stack consists of three major categories:

11BOINC Project: Open-Source software for volunteer computing and grid computing. See
http://boinc.berkeley.edu/
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Grids Clouds
Provision Workloads Provision Services

Dedicated Elastic
Scientific Focus Business Focus

Resource Sharing Resource Utilization
Complex to Setup/Operate Accessed On-Demand

TABLE 3.1: Comparative difference of cloud computing from grid computing

1. Infrastructure as a Service (IaaS): This model refers to cloud offerings where core

infrastructure such as computation, storage and network are offered as a service.

e.g. Amazon Compute Cloud (computation), Simple Storage Service12(storage),

OpenFlow (network) [63]. To deliver IaaS, software tool kits are required to auto-

mate setup of the virtual machines, demand based scalability, operating system

hosting and leasing resources. Projects like Eucalyptus [64], OpenNEbula [65],

Nimbus [66] and Haizea [67] provides these cloud services.

2. Platform as a Service (PaaS): In this model, a particular platform, programming

environment or execution environment is provided as a service and the isola-

tion between services is at application level. Google AppEngine13 and Microsoft

Azure14 services are examples of this where a developer could deploy their Python

application on AppEngine or .NET applications on Azure clouds.

3. Software as a Service (SaaS): This model refers to cloud deployment where exist-

ing enterprise applications are delivered through internet as a standard service.

Users can access these applications on demand and also utilize SaaS API to inte-

grate such applications in their own platforms. e.g. Google Maps15 and Docs16,

Microsoft Office Live17.

Having said that, it’s also important to look into the potential usefulness of cloud com-

puting for HPC applications, and whether they could be comparable in performance

and cost per Giga Floating Point Operation (GFLOP)/sec. Napper et al. have looked into

this very interesting arena of research and their initial results provide some insights

into the performance of clouds for HPC [68]. They ran High Performance Linpack

12Amazon Web Services. See http://aws.amazon.com
13Google AppEngine. See http://www.google.com/apps
14Microsoft Azure Services Platform. See http://www.microsoft.com/azure
15Google Maps API. See http://code.google.com/apis/maps
16Google Docs. See http://docs.google.com
17Microsoft Office Live. See http://www.officelive.com
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(HPL)18 to benchmark the performance of dense linear algebra in Amazon EC2 Cloud.

Their results show that performance drop was exponential when linearly increasing the

problem size and available cluster size to match the problem, and they could only ob-

serve 70% of peak theoretical computational performance for a single node size cluster.

They identified that lack of large available memory and faster network interconnects

as potential performance bottlenecks in the cloud.

Another issue related to cloud based model is security of the data within the cloud.

This could be of two types; first that cloud provider respects the integrity of the data

of their customers by not not introspecting the VMs, and secondly whether a malicious

user can break into one’s VM through co-residency placement. Co-residency placement

refers to multiple VM’s sharing the same physical infrastructure. Cloud providers use

load-balancing algorithms to distribute the VM’s for a particular user with in a cluster

of physical machine, and these VM’s have both internal and public IP address. Fur-

thermore, this increases the likelihood of an adversary sharing the same computation

machine as a target customer, and perhaps able to interfere with the integrity of the

target customer through cross-VM attacks.

Ristenpart et al. have successfully shown in their study that such attacks are not only

possible but feasible to develop [69]. They employed various techniques first to deter-

mine co-residency and then to launch an attack on a target VM (which in this case is

their own). Using network probing, IP address translation and DNS queries, measur-

ing small packet round trip times, establishing covert-disk channels through random

read/write of 0/1 bits and shared memory. They were first able to create a map of exe-

cuting VMs in the cloud and then later co-place their ”attacker” VM next to the ”target”

with the success rate of 40%. This study is very valuable in the context of security of

utilization in the cloud, and raises important questions about their viability for HPC

applications with the current state of technology.

Nevertheless, there are high level tools emerging to rapidly deploying a cluster on a

cloud. One such project is SnowFlock that uses VM cloning from a pre-defined image

and deploys it on the cloud with a a cluster size ranging from up to ten’s of nodes

[70]. It significantly reduces adaptation and entry barrier for the HPC applications to

18HPL is a software package that solves a (random) dense linear system in double precision (64
bits) arithmetic on distributed-memory computers. It can thus be regarded as a portable as well
as freely available implementation of the High Performance Computing Linpack Benchmark. See
http://www.netlib.org/benchmark/hpl/
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be quickly deployed on the cloud infrastructure. Another example is the Gaia project

which deployed an data grid in the Amazon cloud to analyze data of five years of 2

million stars taken from number of international space telescopes where the primary

emphasis was to get a grid up and running with minimum investment in the physical

infrastructure [71].

W. Gentzsch argued ”Grids did not evolve in to the next fundamental IT infrastructure for

every thing and every body” [72]. The diversity of computing environments for differ-

ent scientific applications led to a usage model which is significantly different from

business usage where emphasis is on flexibility and less on performance. By combin-

ing grids with automation, virtualization, elastic capacity management leads to cloud

computing where both co-exit in their respective domains of utility.

Despite the advantages and flexibility of clouds, they also abstract away the visibility

of underlying platform which is often necessary for HPC applications where code is

pre-compiled for a particular platform to yield best performance. Possible examples of

is a genomic study of protein folding, climate change, analysis of physics data coming

from LHC at CERN. Unless and until new paradigms and programming languages are

developed which allow performance optimization with out the knowledge of target

platform, grid computing will continue to serve as primary computational model for

HPC community. Additionally, whenever more computational capacity is required for

a short span of time, cloud computing would be able to provide such capacity without

long term commitments and on-demand basis.
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3.2 Virtualization and Performance Challenges

There are several ways to build a system to share machine resources among heteroge-

neous applications. The simplest way has been to run a host with a standard operating

system such as Linux or Windows, and running applications as user processes. In such

a model, OS multiplexes the underlying CPU, memory, disk and network resources

among competing applications. Such an approach also creates complex configura-

tion interaction between running applications, and administrative overhead to manage

such a system. Such an approach poses additional challenges to prevent one applica-

tion adversely affecting the performance of the concurrently running applications, and

have been subject of OS research in late 90’s. One way to address this problem was to

enable operating system to provide performance isolation at process level [73, 74].

Development of the virtualization hypervisor, which multiplexes the physical resources

at the granularity of entire operating system is able to provide better resource utiliza-

tion but at the cost of performance overhead. Since running a full OS is more heavy

weight than a process in terms of initialization and resource consumption. Successful

partitioning of a machine to execute concurrent operating system poses a significant

challenge of performance isolation among virtual machines ”especially when virtual ma-

chines are owned by mutually distrusting users” [75].

In section 2.1, the key design issues of virtualization are discussed in detail highlight-

ing performance overhead incurred due to constant interception of hardware events by

the hypervisor when ever guest OS tries to access machine resources. In this section,

additional disk and network (I/O) overheads are discussed and a survey of on-going

research is presented where various approaches have been taken to optimize virtual-

ization overhead in the context of HPC applications with in Xen hypervisor.

3.2.1 Overhead Diagnosis and Optimization

Virtual machines provide Fault Isolation so that failure in one virtual machine does not

affect other VMs hosted on the same machine, and Performance Isolation that the re-

source consumption of one VM should not compromise the promised guarantees to

the adjacent VM’s.
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Xen hypervisor inserts a logical isolation layer between the hardware and I/O device

drivers (disk, network etc) to achieve fault isolation. In the initial design of Xen, de-

vice driver code was part of the hypervisor and provided safe shared access. Since

external events in device drivers could potentially create issues of dependability, main-

tainability, and manageability with in the hypervisor code, Xen moved to the architec-

ture where device drivers were hosted in Isolated Device Domains (IDD) and executed

in a separate scheduled virtual machine called Domain0 / dom0 or Dom0 [76]. Dom0 is

created at boot time and provides the control interface to manage the VM’s and their

resource allocation policies.

This model is certainly more efficient to enable fault isolation but results in a more com-

plex CPU model. It has two aspects; CPU consumed by the guest VM, and CPU con-

sumed by the IDD in the Dom0 that contains the un-modified device driver and per-

forms I/O processing on the behalf of the requesting VM.

3.2.1.1 Diagnostic and Monitoring

Diagnostic and monitoring of the VM resource consumption requires an accurate mon-

itoring framework that not only reports the amount of CPU allocated by the scheduler

for the execution of a particular VM but also the work done for I/O processing in IDD

for that particular VM e.g. consider a guest VM limited to 25% CPU consumption. If

the I/O processing in IDD for this VM accounts for 15%, then that VM has actually

consumed 40% of CPU.

To accurately monitor resource consumption in each domain and in IDD for each do-

main, Gupta et al. developed a monitoring and performance profiling framework called

XenMon. It provides sub-tools to enable event-logging with in Xen hypervisor at ar-

bitrary control points to collect information, and then provide meaningful information

[77]. XenMon has been integrated into the official Xen 3.0 code base.

Cherkasova et al. built their work on it, and conducted investigations to accurately mon-

itor CPU consumption for a network intensive application i.e. a web server [78]. Since

Xen uses a technique called Page Flipping for the exchange of I/O data between the Xen

and guest VM, where the memory page containing the I/O data is exchanged with an

unused page provided by the guest VM.
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They ran their experiments where varying degree of webpage size (from 1KByte to 70

KByte) were requested from the web server in the VM, and measured the number of

memory pages exchanged between the hypervisor and Xen, and thus calculating CPU

processing time of Dom0.

They observed that smaller network requests i.e. < 5KB were CPU bound since a min-

imum number of memory pages must be exchanged for each KByte of TCP/IP data

and the server could only do a maximum number of exchange at a given clock-speed

of the processor. Larger network requests i.e. > 50KB were found to be network-bound

where bottleneck was the total available network bandwidth available to the system

and confirmed a prior study [79].

Menon et al. attempted to optimize I/O overhead by developing a system-wide per-

formance profiling toolkit called XenoProf [80]. Their approach is to identify micro-

architectural components such as the cache and CPU instruction pipelines to measure

the impact of virtualization on the applications running in the VM, the VMM and be-

tween the VM domains.

They achieved this by generating sampling interrupts at regular intervals through hard-

ware performance counters using the OProfile19 toolkit, and running a domain-level

profiler in each domain and an administrative profile in the Dom0 to collect perfor-

mance samples. They were able to identify specific routines with in the Xen hypervisor

where the bottlenecks lie, and led to several optimization and bug fixes.

The networking throughput experiments conducted in this thesis are used to measure

the available throughput in a VM. Network throughput in a VM depends on available

memory in Dom0 which schedules CPU to process network packets. These results are

presented in section 5.3.1.

19OProfile is a system-wide profiler for Linux systems, capable of profiling all running code at low
overhead. OProfile is released under the GNU GPL. It consists of a kernel driver and a daemon
for collecting sample data, and several post-profiling tools for turning data into information. See
http://oprofile.sourceforge.net/about/
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3.2.1.2 Approaches

The optimization of networking I/O in virtualization hypervisor has recently been the

focused of active research due to the fact that after proliferation of virtualization on

high performance servers, network throughput for virtualized applications is one of

the performance bottlenecks.

To achieve networking optimization, different approaches have been taken; developing

better I/O scheduling in the hypervisor; virtualization support in the NICs; optimiza-

tion of inter-VM I/O throughput. This section attempts to provide a brief survey of the

research work conducted on this subject.

One of the primary reason for reduced networking performance in virtual machines

is that on the receiver side, considerable amount of CPU time is spent on bringing the

packet into the system, performing software classification (depending on the type of

traffic), pushing the network traffic through the hypervisor layer before it’s transferred

to the destination VM. This whole process is very expensive in terms of consuming

valuable CPU time which could other wise be available for VM execution.

Project Crossbow, which is part of OpenSolaris networking stack, have developed a

novel idea of partitioning physical NICs into virtual NICs (VNIC) where each is seen

as an independent data channel by the rest of the system [81], and assigned to VM’s

for direct access. VNICs could be grouped together to create dedicated virtual network

lanes each with it’s own queues so that all the lanes receive fair scheduling to process

the incoming/outgoing network traffic. Dedicated virtualization lanes could either be

implemented at the hardware level as is already happening in modern NICs e.g. Intel’s

Virtual Machines Device Queues (VMDq) [82], or at the software level in the kernel to

support legacy NIC which do not have built-in virtualization capabilities.

In such a model, most of the packet processing takes place at the NIC thus relieving

some of the software classification load on the hypervisor, and accessed directly by the

VM’s a safe and secure networking access.

Another approach is to dedicate one of CPU cores specifically for I/O processing since

present day HPC machines are equipped with multi-core CPU’s. Liu et al. have fol-

lowed this route in their Virtualization Polling Engine (VPE) project by extending hy-

pervisor’s event model with dedicated polling threads running on separate cores [83].
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Their implementation platform of hypervisor is a KVM but the key ideas are equally

applicable to Xen as well. With this dedicated CPU approach, they were able to demon-

strate 5 times performance increase for transmitting network packets and 3 times in-

crease in receiving them on a 10 Gigabit ethernet network.

There are also software based optimization approaches to reduce virtualization I/O

overhead. The advantages of hardware based optimization is higher performance but it

increases hardware cost. The primary performance bottleneck for software approaches

is that they are interrupt driven, and event handling in VMs is expensive. Furthermore,

the software components are schedulable entities requiring CPU cycles to execute, and

thus incurs additional overhead due to context switching and transfer of control be-

tween software components. This increase caches misses at the processor level when-

ever one VM yields CPU to another one [84].

Organa et al. attempted to reduce the scheduling overhead of the software components

as discussed above. They identified performance bottlenecks in Xen default scheduler

in the areas of event-channel mechanisms used by the hypervisor to scan hardware de-

vices e.g. Dom0 being interrupted in the middle of I/O processing and sorting out VMs

in runnable state according to their remaining CPU shares. Some of their recommenda-

tions made their way through official Xen release since they were able to demonstrate

30% gain in I/O processing time when all combinations of their techniques were ap-

plied [85].
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3.3 Infrastructure Management through Virtualization

3.3.1 Live Migration of Virtual Machines

In 1980’s, there was a great deal of research done to enable process migration between

operating systems in the cluster and it was experimented on various systems [86, 87].

This approach had very many difficulties and also referred Residual Dependencies such

as open file descriptors, shared memory segments, application level state and kernel-

level state (e.g. the TCP control block for active connections) [88]. This was particu-

larly challenging because it required that original host machine must remain available

and accessible through network while synchronization of various dependencies is com-

pleted between host and target machines.

There were efforts done in this space to optimize these challenges. Zyas et al. devel-

oped techniques like imaginary segment and copy-on-reference in memory where process

memory was accessed through virtual address space and only copied to the migrating

machine if needed other wise a network reference is maintained [89]. Their measure-

ment matrix included number of bytes required for process migration and remote ex-

ecution based on these techniques providing empirical proof that minimal amount of

bytes transfered took place. On the other hand, Zap project introduced the notion of

process domains (pods) where dependencies such as file handles, sockets are grouped

together in a namespace and migrated. The draw back of the approach was that it re-

quired process to be first suspended, copied and then resumed on the new machine

[90].

If all the processes are encapsulated in a virtual machine, then it alters the dynamics of

the process dependencies. Since virtual machine is very close to the underlying VMM,

thus migration of VM’s with their complete set of executing applications and processes

provide a very clean solution to the problems faced by the process-level migration tech-

niques. This leads to better fault management, load-balancing and low-level system

management since operators of the data centers could migrate the complete VM as a

single-unit with it’s running processes to another machine and carry out maintenance

work on the original machine or simply decommission it. This is very useful in the

context of grid computing where virtual machines could be migrated on demand with
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out any serious deterioration of performance while remaining transparent to the end

user.

There are two key factors that determine the efficacy of live-migration of virtual ma-

chines. Firstly, to reduce downtime during which a VM is not available. And secondly,

to optimize migration time during which a VM is copied over from one machine to

the other and it’s in-memory state is synchronized. Clark et al. have demonstrated that

they could optimize downtime up to tens of milliseconds where they experimented with

high latency and low latency workloads being executed in the VM [91]. They employed

pre-copy technique where memory pages are iteratively copied over to the destination

machine from the source with out stopping the VM until very few faulted pages are

left. Once very few faulted pages are left, VM is stopped and started on the destina-

tion with faulted pages are ’pulled’ on demand from the host machine. Despite these

benefits, their work is restricted to VM migration in the local cluster.

This poses additional challenges in the grid environment where clusters are largely

distributed. Bradford et al. have looked into this problem and have come up with novel

approach to address this in their XenoServer project [92] where they proposed a solution

for wide-area network (WAN). They method utilizes pre-copy technique to transfer in-

memory state of the migrating VM but also transfer it local persistent state - a file system

used by VM, and often referred to as VM Image. Since a VM migration over WAN resets

its Internet Protocol (IP) address, and if the VM is running a network application such

as web server then it looses its existing connections and network state.

To counter this challenge, in the final phase of VM migration they use IP Tunneling20

technique to redirect existing client requests to new VM while the redirection of the

new IP address is handled through Dynamic DNS21 protocol. Harney et al. addressed

the migration of network state and the VM over WAN by using MobileIPv622 protocol

[93].
20An IP tunnel is an IP network communications channel between two networks. It is used to transport

another network protocol by encapsulation of its packets. See http://tools.ietf.org/html/rfc2003
21Dynamic DNS is a method, protocol, or network service that provides the capability for a net-

worked device to notify a domain name server (DNS) to change, in real time (ad-hoc) the active
DNS configuration of its configured hostnames, addresses or other information stored in DNS. See
http://www.ietf.org/rfc/rfc3007.txt

22Mobile IPv6 is a version of Mobile IP - a network layer IP standard used by electronic devices to
exchange data across a packet switched internetwork. Mobile IPv6 allows an IPv6 node to be mobile
- to arbitrarily change its location on an IPv6 network - and still maintain existing connections. See
http://www.ietf.org/rfc/rfc3775.txt?number=3775
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Despite these advantages of low downtime of pre-copy approaches, it significantly in-

creases the total migration time of the VM which is of particular interest to the work

done in this thesis e.g. if a VM, running an ATLAS job, has to be live migrated to an-

other physical node in the cluster, then this will require that migration time is as low as

possible so that the job could be restarted as quickly as possible.

Post-copy method of live migration is another novel technique to reduce network over-

head and total migration time of the VM. The way it work is that rather than first

transferring in-memory state of the memory iteratively, it transfers the VM’s CPU state

called processor-state to the target machine. Upon this transfer, the VM is resumed on

the target machine and then in-memory state is fetched from the host system.

Hines et al. have implemented post-copy mechanism combined with a pro-active form

of memory pre-fetching pages should they fault on the host machine during the VM re-

sumption. Furthermore, they were able to further reduce the network overhead by 21%

by reducing the number of memory pages, to be transferred from host to the destina-

tion, by dynamically releasing free memory pages which was allocated to the VM but

were not used [94]. This approach is very useful for VM’s running workloads which

are large in size and require less migration time vs. downtime during migration phase.

Nevertheless, the task of transferring large VM disk images (e.g. 1 GB each) in offline

mode across WAN sites is particularly challenging. The work done by Hirofuchi et al.

and their performance results are promising in this area. By combination of a Network

Block Device (BND)23 and LZO Algorithm24 to compress the raw disk image before

and after live migration, they were able to optimize network overhead by 63% [95].

Given the enhanced attention this research area of live migration of VM’s is receiving;

large degree of focus is placed on how to optimize the migration process. There yet

remains an unanswered question that what if the migration VM leads to Service Level

Agreement (SLA) violation of co-hosted VM applications at that particular moment.

Stage et al. have looked into this area, and came up with a scheduling technique that dy-

namically controls the network bandwidth reserved for migrations to limit the impact

23In Linux, a network block device is a device node whose content is provided by a remote machine and
are used to access a storage device that does not physically reside in the local machine but on a remote
one. See http://www.linuxjournal.com/article/3778

24LZO is a data compression library which is suitable for data de-/compression in real-time. This means
it favours speed over compression ratio. See http://www.oberhumer.com/opensource/lzo/
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of network demand fluctuations [96]. They used network weather forecasting service

[97] to determine average network utilization, and then schedule VM migration accord-

ing to a limited and targeted allocated bandwidth. This work is particular of interest

to us and to the research presented in this thesis, since a typical ATLAS VM is around

15 Gbyte of size. Suppose if 10 such VM have to be migrated to another cluster in the

grid, then they can have the potential to completely saturate the network link. Thus

dynamic scheduling of VM migration is another important area of future research.

3.3.2 Green Computing

Power management has become increasingly necessary in large data centers to opti-

mally deliver cooling and power within the constrains of energy costs. With the in-

creasing trend of power density in rack servers and blades, increased electricity con-

sumption leads to higher operating costs. This is particularly relevant to large grid

sites such as CERN where due to it’s geographical location, it draws power from both

Swiss and French electric grids, and often have to schedule power cuts due to higher

costs during peak usage in winter times.

Furthermore, increased energy consumption have a direct environmental impact. In

the beginning of this decade, considerable amount of research was done to reduce

power foot print of data centers through intelligent power-ware scheduling and work-

load placement on servers and turning off some servers at off-peak usage [98, 99].

With the proliferation of virtualization in the data centers for resource consolidation,

energy management through virtual machines have become an active area of research

and is complementary to the research presented in this thesis. Virtual machine based

execution of workloads enables resource providers to efficiently manage energy foot

print by using techniques that provision server resources according to temperature-

awareness [100] and enforces energy-management at the VM level [101].

In this context, VirtualPower project have adopted a very interesting technique to tackle

this problem both at hypervisor and VM level with out performance loss [102]. Virtu-

alization hypervisor (VMM), in this case Xen, traps the hardware signals coming from

the processor related to temperature and heat, which are then leveraged by the Virtu-

alPower to export ”soft power” states to the VM. Guest OS running in the VM generally
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also have power management facilities which are further customized to act upon these

incoming ”soft power” states in a certain policy manner to reduce power consumption

by 34% in the VirtualPower project.

This approach certainly requires both modification to the underlying hypervisor and to

the guest OS before optimal power management could be achieved. On the other hand,

Kusic et al. have taken an approach that incorporates concepts from approximation the-

ory to first predict the behavior of arriving workloads [103]. Secondly, they explicitly

consider the risk as a measure of switching cost of turning on and off of virtual ma-

chine during variable load conditions as metric to define profit. In their simulation

model, they were able to show that by dynamically power-aware provisioning virtual

machines, performance gains up to 22% could be made.

The study conducted by Verma et al. is complementary to this research thesis since they

assume that their HPC workloads are deployed to the cluster as a job, to be executed in

the virtual machines and dynamically scheduled by their software called pMapper [104].

They identified that power consumption by HPC workloads is application dependent,

non-linear and have a large dynamic range by running different types of HPC applica-

tion and evaluating the performance results by dynamically placing them according to

their resource consumption profile to save power.

3.3.3 Security implications of Virtualization

Diversity is an important source of robustness in biological systems where it provides

protection both to individuals because an individual might be resistant to a particular

problem, and for the population as a whole since any particular problem is unlikely

to affect the every individual. Computer systems are notable for their lack diversity

and prone to the spread of security threats once a vulnerability is exploited by hack-

ers. There has been a number of approaches taken to build diverse software systems to

enhance security through heterogeneity [105]. And to provide protection against par-

ticular forms of binary attacks such as Code Injection and State Corruption where a target

program is made to run a malicious code through code injection or by corrupting a

program’s state [106].
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Virtualization technology provides numerous benefits in containing such attacks to the

infected VM and provides mechanisms to quickly respond to the security vulnerability

by shutting it down with out affecting all other services running in parallel VMs. It also

augments the degree of vulnerability by reducing system heterogeneity since guest OS

are replicated to serve multiple applications which earlier could have been running

on a single system. Therefore, it increases the security risk as vulnerability surface is

increased through multiplication.

Certainly attacks targeting a particular program and VM could be contained, but at-

tacks attempting to escape the virtual machine isolation, if succeeded, could very quickly

undermine the underlying system. This requires Intrusion Detection System (IDS), as

first conceptualized by Anderson [107], to detect and monitor attempts to access infor-

mation, manipulate information or in worst case render a system unusable or unreli-

able.

In highly critical systems, this is achievable through specialized hardware as such

Trusted Platform Module (TPM) where a security chip is attached to a system. A remote

party can then validate the integrity of the system by comparing stored and remotely

calculated hashes to detect an intrusion attempt, and IBM Integrity Management Ar-

chitecture (IAM) is one such example where all executable code is first measured before

loading into the system [108]. The drawback of such systems is that they comes with

a hefty financial cost to install, maintain and operate which might often be feasible for

scientific grid providers.

KVMSec project have attempted to achieve this through software layer by running in-

tegrity monitoring daemons both in dom0 and VMs. They monitor critical file paths in

the virtual machines to detect any traces of intrusion or attack, and constantly validate

VM integrity with the host system. This allows to control unauthorized changes to the

guest OS when an intruder attempts to escape the VM boundaries, and notifies the host

system through shared memory [109]. The draw back of this approach is that it doesn’t

provide security against network based attacks.

SVGrid project fills this gap by running grid application in a VM’s and using dom0 as a

monitor VM [110]. Both grid application VM and monitor VM runs a client and server,

and all the pre-defined sensitive filesystem in the grid application VM is exported to

the monitor VM. Any access request for the system files have to be passed through this
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virtual file system server in the monitor, and fine-grained security policies are enforce-

able at this level. It also tags each grid VM with an ID and monitor VM maintains a

database of their MAC and IP addresses. To prevent a malicious grid user to spoof a

VM’s IP address to launch Denial-of-Service (DoS) attacks, all network traffic is verified

against this database. It’s a promising approach with additional 8% overhead as noted

by the authors.

Intrusion detection certainly acts as a first step to enable system administrators to detect

an intrusion in their system but it is not sufficient to carry out computer forensics after

the aftermath [111]. Determining which process, files, and system resources got infected

by an attacker is critical in brining back the service into secure and consistent state.

Jiang et al. employed anomaly detection technique of IDS to trace contamination path

from the break-in-point onwards [112]. They developed a novel process coloring tech-

nique where each process is assigned a ”color” which is a system-wide unique iden-

tifier. The color is either inherited when ever a child process is spawned or diffused

through processes actions (e.g. read or write operations) along the flow of information

between processes or between processes and objects (e.g. files or directories).

They leveraged virtual machine introspection (VMI) [113] to color processes within

a VM and then detect intrusions, and trace the contamination path by logging color

information in the system logs and then partitioning it based on contaminated color to

identify infected processes and system objects. Their approach is very interesting but

was not able to prevent a false alarm when a legal inter-application interaction takes

place. Nocentino et al. applied color processing technique to checkpoint a VM’s state

(memory pages, cache status, shadow pages, program counters) at periodic intervals

by hooking into the hypervisor, and later replay a VM from a previous point in time

[114].

Therefore, it could be said that virtualization technology does provide a considerable

degree of isolation though with additional overhead and increasing threat surface, and

mechanisms to maintain grid applications and services in consistent and stable state by

being able to quickly identify break-in-points, restarting the VM or replaying the VM

to a previous known secure state.
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3.4 Scheduling and Virtualization

This section focuses on the scheduling frameworks and approaches applied at hyper-

visor level. It is the hypervisor that dynamically maps physical CPU to the virtual

CPU of the virtual machines according to a scheduling strategy. CPU scheduling for

virtual machines has been largely influenced by the research in process scheduling in

operating systems.

A vast body of work on scheduling for different domains exists with various approaches,

theories and objectives [115]. In this particular instance, this thesis looks in to a limited

category of schedulers. A large number of these schedulers belong to the class of Pro-

portional Share (PS) schedulers.

Proportional share (PS) scheduler allocates CPU to a VM in proportion to the number

of shares (weight) assigned to it [116]. Proportional share schedulers are different from

Fair share (FS) schedulers since they aims to provide instant form of sharing among

active clients where as Fair share schedulers provides time-averaged form of propor-

tional share measured over longer period of time [117]. These schedulers can either use

Work Conserving (WC) or Non Work Conserving (NWC) modes.

In WC-mode, CPU shares are mere guarantees and if there is an idle CPU and a runnable

VM, then this mode allows allocation of additional CPU time to the VM. In NWC-

mode, CPU shares are hard-limits, and a VM is not allocated additional CPU even if

it’s available. WC-mode is optimal for throughput and HPC workloads to maximize

resource utilization where as NWC-mode work best for real-time and interactive appli-

cations to make sure that each VM receives it’s share of CPU at required times.

Xen hypervisor currently implements various FS schedulers, and three of them are de-

scribed below:

• Borrowed Virtual Time (BVT) is a fair-share scheduler using the concept of vir-

tual time, and only supports WC-mode. It provides low-latency support for real-

time and interactive application by allowing them to gain scheduling priority,

and borrowing CPU from their future allocations while they are in running state

by using context switching allowance [118].
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• Simple Earliest Deadline First (SEDF) is based on real-time algorithms and uses

slice and period for CPU allocation with NWC-mode. Each VM is allocated a slice

of time with in a length of period e.g. a VM can be allocated 10% of CPU time

by setting it’s slice value to 1ms in a period of 10ms or 10ms slice in the period

of 100ms. It could be optimized for throughput workloads but fairness of CPU

allocation depends on the period length and lacks the support for load-balancing

for multiprocessors. [119].

• Credit Scheduler is the latest PS scheduler in Xen. It uses weight and cap param-

eters to determine the CPU allocation of a VM using either WC or NWC modes.

If cap is set to zero, then a VM can receive additional CPU time if there are no

other runnable VM’s in the queue. A non-zero cap restricts the CPU allocation to

a given percentage. It provides supports for global load balancing in SMP host,

and makes sure to fully utilize idle CPU when ever a runnable VM is available. It

monitors resource usage every 10ms and calculates VM priorities (credits) every

30 ms. [120].

These schedulers were developed in Xen incrementally, and each of them have both ad-

vantages and disadvantages for different types of application workloads. Cherkasova et

al. were among the first ones to evaluate each of these schedulers and the performance

impact of their parameter values on the applications. They studied BVT, SEDF and

credit scheduler with different context switching allowance, period of CPU allocation

and credit allocations to determine the optimal performing scheduler for network and

disk I/O applications i.e. a webserver [121].

There results shows that BVT scheduler delivers best resource allocation when the con-

text switching allowance is larger, and SEDF (both in WC and NWC modes) for smaller

lengths of period. This allows the web server workload application to deliver higher

number of pages by reading the disk and sending over the pages over the network, and

for both schedulers gains up to 25% were made.

Credit scheduler showed similar performance to SEDF but with higher CPU allocation

error of between 1%-30%. This is fairly large range and points to more work to be done

to improve the credit scheduler but it showed better performance than SEDF when

more than two VM’s were run in parallel. This is a very similar use case to the ATLAS

application where multiple PanDA pilot jobs are deployed on a worker node. The
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investigations of ATLAS workloads running in VM with credit scheduler are described

in detail in section 5.3.

Sodan A. looked into adaptive resizing and reshaping of the virtual machine size as

the system load changes over time to maintain Quality of Service (QoS) guarantees

agreed at job start up time [122]. This work is purely theoretical and is an early study

looking into performance efficiency achieved by looking into the impact of WC and

NWC modes on the CPU resource allocation.

Buyya et al. has also approached the deadline-constrained scheduling from meta-scheduler

perspective for Bag-of-Task (BoT) application where a user has a set of task to be com-

pleted by a given deadline when limited load information is available from private

resource providers [123]. Their work is similar to the research presented in this thesis

in a sense that pilot jobs land at worker nodes with limited load information, and of-

ten get cancelled due to high virtualization overhead. The approach they have taken

is to include a meta-scheduler to gather as much as load information, and incase a

task misses its deadline then either the task’s deadline is extended or its deployed on

a different resource provide with a revised offer. We approached this problem from a

different perspective to monitor deadline-miss rate of jobs, and then use it to adapt job

admission threshold to reduce deadline miss rate.

Xu et al. conducted an evaluation study of performance impact when different ap-

plications types are consolidated on a virtualized server [124]. They concurrently ran

database application (disk I/O), web server (network I/O) and cpu-intensive applica-

tion. Their results re-inforces the results presented for ATLAS workload being executed

in virtual machine in section 5.3 that application performance is heavily influenced by

the type of application running in parallel VM. CPU cap plays a more critical role in

credit scheduler to impact the application performance as compared to weight of the

VM comparative to dom0.

Lin et al. work extended Earliest Deadline First (EDF) scheduler to develop a real-time

scheduling algorithm that caters for the needs of interactive, batch and parallel jobs,

and is very similar to SEDF scheduler [125]. They built upon the concept of scheduling

slice and period of EDF (also common to SEDF), and identified constraints for each type

of workload e.g. slice value for batch VM is set to tens of seconds,; batch VM’s running

parallel jobs need to be scheduled together so all of them had same slice and period
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parameters; and finally interactive VM’s running games requires faster response time

achieved through milliseconds scale for period and slice.

This way they were able to mix various different type of workloads on the same phys-

ical host and able to increase response time for interactive VM’s by 25%. This work is

complementary to the research done in this thesis since it’s primary focus on reducing

scheduling jitter for interactive applications running in the VMs where as we primarily

focus on grid batch jobs which are cpu, memory or network bound.

All the above studies shows that much work remains to be done in CPU scheduling

for Xen hypervisor to achieve optimal resource allocation in the context of large scale

deployments for grid computing. And application performance is directly influenced

by the type of workload running in parallel VM, and fine-tuning of scheduling param-

eter is directly dependent on application types. It’s certainly a very interesting area for

future research to improve application performance in VM’s.

3.5 Summary

This chapter has provided a comprehensive review of research done in the context of

integrating virtualization into grid computing, and the approaches taken to improve

network and execution performance. Each virtual machine represents a set of hardware

and software resources allocated to it, and poses significant challenges.

Different approaches have been adopted by the researchers to dynamically provision

these resources on small and large scale distributed infrastructures. This required man-

agement of virtual machine images which contains the necessary software needed for

a job to execute. These approaches also extended into virtual machine deployment

strategies either by integrating into grid middleware (e.g. in Globus virtual workspaces

project) or into the batch system.

All of these methods have been influenced by the needs of their underlying infrastruc-

ture and have both pros and cons, and has been discussed in detail in section 3.1. An

overview of the emerging cloud infrastructures has been provided to highlight their

similarities and differences from scientific grids.
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Section 3.2 goes into detail to discuss the approaches taken to overcome virtualization

overhead at CPU level, and to improve its I/O architecture. Introducing virtualiza-

tion into grid computing also provides additional capabilities such as live migration of

VM’s across servers, hot spot management of the data center according to peak and off

peak demands, and security of virtual machines. These topics are briefly discussed in

section 3.3 to give the reader a larger context of current research done in integrating

virtualization into scientific grid infrastructures.

This chapter concludes with a discussion in section 3.4 on scheduling strategies adopted

by other researchers to enhance performance. First different schedulers in Xen hypervi-

sor and their broad features have been dicussed. These schedulers are using Borrowed

Virtual Time, Credit based Scheduling and Earliest Deadline First based approaches.

Xen’s credit scheduler has been evaluated in preliminary studies and is presented in

chapter 5 to achieve optimal execution performance and resource utilization.

In the last section, an overview of the approaches to dynamically resize the virtual ma-

chines, improve performance for data and network intensive application and to deter-

mine real-time scheduling algorithms for batch and interactive jobs has been presented.

This study of existing body of literature shows that integration of virtualization into

grid computing has not been a straight forward process. Different installations and

grid sites use different set of tools, and this has pushed for different solutions. Vir-

tual Workspace project integrated virtualization into the Globus grid middle ware to

deploy virtual machines on demand which are targeted for serial jobs but it doesn’t

provide support for parallel MPI jobs. There are other projects such as DVC which

have attempted to fill the gap by orchestrating deployment of co-located virtual ma-

chine based cluster to execute parallel jobs.

Another issue is how to manage virtual machine images that have been to pre-configured

for a certain application, a process also known as contextualization, for different grids.

These applications all vary in their resource requirements i.e. different types of config-

uration and applications are needed, and have different execution stages, and therefore

require prior knowledge of the application before the virtual machines could be con-

textualized.
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This is an on-going area of research in the wider community but compelled this re-

search to look into space where standardization could be brought in when it comes

to integrating virtualization deployment engines in the grid for various applications.

This has been attempted through the development of VIRM interface to connect vari-

ous grid applications to various virtual machine deployment engines through standard

set of interfaces as discussed in the next chapter.

The evaluation of performance of the virtual machine done by other researchers sheds

light that there is room to improve networking overhead of virtualization since under-

lying CPU cycles are used for forwarding packets in various virtual machines. This is

an important factor as ATLAS jobs which are used as a case study in this thesis have

some workload that are I/O intensive. Coupling this problem with the contextual-

ization issues require that additional novel approaches must be explored to optimize

on-demand deployment of virtual machines for LHC Grid.

Scheduling of virtual machines are the level of a batch system or grid level is another

challenging task to address. Number of approaches has been evaluated by the re-

searchers such as work conserving mode vs non-work conserving mode for borrowed

time, deadline-first and credit based proportional schedulers. Each approach has its

pros and cons, and it depends on the types of workload being executed (serial, batch,

parallel or interactive) as they require different scheduling techniques.
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Chapter 4

Theoretical Concepts of

Optimization Algorithms

“Do not worry about your difficulties in Mathematics. I can assure you mine are still greater.”

Einstein

This chapter presents the assumptions and hypothesis, and the optimization techniques

investigated to overcome virtualization overhead. The motivation to develop these op-

timization techniques is to reduce the job failure rate arising due to increased execution

time. The sections in this chapter describe the architecture of the simulation engine im-

plemented to evaluate optimization algorithms and their design, and the performance

metrics such as success rate, failure rate and deadline miss rate used to benchmark the

system profile.

As described in section 1.3, the results from the preliminary studies provided a way for-

ward in developing the optimization techniques that are presented in chapter 5. This is

to maintain structural clarity of the thesis. The empirical results to evaluate the impact

of the optimization techniques on simulated ATLAS jobs are presented in the following

chapter 6.
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4.1 Theory and Simulation Design

Some of ATLAS jobs can take up to 24hrs each to complete (see Appendix B). To suc-

cessfully evaluate scheduling techniques to reduce job failure rate, it was necessary

to simulate thousands of jobs with very tight deadlines while applying virtualization

overhead. The objective was to remove all other possible reasons for job failure such

as missing input data, lack of physical resources, job failing due to misconfigured ma-

chines etc. This way the direct relationship between job deadline miss rate and virtu-

alization overhead can be established. Therefore, simulation of these jobs was the only

realistic way to investigate these issues since access to production grid at CERN is re-

stricted to physics only research especially during the early phase of LHC experiment

startup.

Virtualization overhead represents a slowdown in the execution of a job and is de-

scribed in more detail in section 3.2.1, and depends on the profile of parallel executing

jobs. For example, if there are more cpu-intensive jobs then the resulting virtualization

overhead is higher than if there are mixture of cpu-intensive, memory-intensive and

network-intensive jobs. This dynamism alters the virtualization overhead of the system

in real-time depending on the nature of jobs concurrently running in separate virtual

machines, thus an intelligent scheduling approach is needed to compensate against the

rising job deadline miss rate due to the overhead.

There are open-source simulators available for cloud computing, and notably CloudSim

and GridSim [126]. CloudSim is designed to simulate a complete cloud infrastructure

at the scale of a data-center, and provide very useful functionalities. It builds upon the

GridSim simulation layer to orchestrate a grid infrastructure. The focus of CloudSim/-

GridSim is more on evaluating the complete infrastructure and impact of allocation

policies where as we needed a more specific simulator to the research questions pre-

sented in this thesis. Therefore, a custom simulator was developed as part of this re-

search to study and measure the impact of virtualization overhead on job deadlines.

4.1.1 Assumptions and Hypothesis

There are a number of assumptions made in the course of development of this simula-

tor and are described below:
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4.1.1.1 Assumptions

1. Each job in the system is a batch job and does not require interactive access.

2. All jobs execute concurrently in the virtual machines and do not require network

I/O access during execution.

3. Jobs have well defined resource requirements except their execution time. Execu-

tion time estimates vary from user to user and are imperfect.

4. Jobs are not pre-emptive and can only be restarted from beginning if they fail or

get terminated during execution.

5. The local batch scheduler has no influence over the high-level grid job queues

managed by the grid middleware, and it is only concerned with maximize re-

source utilization of the machine with minimum job deadline miss-rate.

6. Virtualization overhead is the only factor that influences job deadlines in the sim-

ulation.

These assumptions have been derived by analyzing CERN’s LCG grid system where

once the input job data is downloaded, then the jobs are executed and upon completion

their output is uploaded to the grid. Although there could be many factors that might

lead to job failure, but to evaluate the algorithms only virtualization overhead is used

as an influencing factor. It has to be noted that virtualization overhead increases CPU-

intensive jobs as the hypervisor have to schedule the real hardware among competing

virtual machines. If these virtual machines also intensively utilize the network I/O,

then that requires additional CPU cycles to process the network traffic. This has been

discussed in detail in section 3.2.

This is essential to establish relevancy between the simulation engine and the real grid

system (especially a worker node) to mirror the conditions of the real-world applica-

tion. These assumptions still apply to other domains where workloads execute in simi-

lar conditions and have similar profile e.g. Astrophysics and protein folding workloads

that are CPU, memory and I/O intensive.
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4.1.1.2 Hypothesis

The following hypothesis forms the basis of the optimization strategies discussed in

section 4.2.6:

1. Virtualization overhead fluctuates depending on the nature of tasks running in

the virtual machines (higher for more CPU-intesive tasks; lower if mixture of

tasks are running). Dynamic calculation of virtualization overhead enables the

system to better predict job deadlines for mixed set of workloads (cpu-bound,

memory bound or network-bound). Thus allowing it to lower the job deadline

miss rate as compared to static overhead which never changes and applies higher

virtualization overhead.

2. Impact of virtualization overhead could be improved by observing deadline miss

rate in real time to adapt scheduling choices, and dynamically selecting jobs to

continue running based on heuristics data gathered during execution.

4.1.2 Software Simulator Architecture

This section describes the high-level architecture of the software simulator used in op-

timization experiments to investigate deadline miss rate and virtualization overhead

with different adaptive algorithms. The core software components of the simulator are

described and also shown in figure 4.1:

• Job Generator: it generates the jobs matching ATLAS jobs such cpu-intensive,

memory-intensive and with large requirements for network I/O.

• Global Job Queue: it models the global grid job queue like any compute node

in the grid, which doesnt have control over the jobs submitted to it and functions

on First In, First Out (FIFO) basis (from worker node perspective as new jobs

arrived).

• Execution Engine: once the job arrives, the scheduling engine verifies if there are

enough resources available for the job to execute. If yes, then it lets the execution

engine run the job.
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• Resource Monitor: this is auxiliary service that provides a CPU and Memory

map to the simulator for real-time resource utilization and availability.

• Performance Monitor: it measures all performance metrics (defined in section

4.2.3) as the simulator goes through various execution phases to gather data re-

lated to overall system performance, and job deadline miss rate et cetera.

• Scheduling Engine: it takes decisions whether to let the job run or not if it will

appear to miss its deadline in near future using one of the two optimization algo-

rithms.

Performance
Monitor

Resource
Monitor

Algorithm Scheduling
Engine

Execution
Engine

Job 
Generator

Global
Job Queue

submits job to

uses

direct job input

resource
allocation

performance
metrics

execution
updates

FIGURE 4.1: Simulator architecture illustrating the major software components and
their inter-relationship.

4.2 Algorithms Design and Architecture

ATLAS experiment jobs fall into two categories; user analysis jobs and production jobs

which are further categorized into three types (see appendix C.1 and B.2). In this ex-

perimentation, only ATLAS production jobs were used as an input workload to the

simulation engine since they constitute large share of grid jobs and their resource re-

quirements are well defined. Additionally, the Service Level Agreement (SLA) for AT-

LAS experiment guarantees one CPU core per job in the grid. The same policy was

implemented in the simulator for virtual machines.

This section elaborates on the theoretical contribution and the mathematical formulas

used to calculate and determine different parameters of the simulator to prove the hy-

pothesis discussed above.
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These formulas and parameters revolves around some key concepts to describe a typ-

ical job life cycle. Job duration is the time needed by the job to complete its execution,

and deadline is the initial user estimate before which the job should complete. Over-

head is the delay in execution due to virtualization, and results in slower execution of

the job and missing its initial deadline.

4.2.1 Virtual Execution Time

In the simulator software, the scheduling engine schedules the job, denoted as ji, to job

slots (represents a slice of CPU and allocated memory resources) and builds a historic

sample space of jobs that missed their deadlines. Based on virtualization overhead

at any given moment, it re-estimates whether ji will meet it’s deadline di. If not, then

either the job is prematurely terminated or one of the scheduling algorithms is activated

as described in section 4.2.6.

As described in detail in section 3.2, the causes and extent of virtualization overhead

varies with the type of job being executed in the virtual machine. The generic formula

to calculate is following:

virtualexecutiontime = (duration× overhead) + duration (4.1)

At different intervals of the execution, virtualization overhead changes. This requires

that at the arrival of every new job, all job deadlines are recalculated and for each job

they are denoted as dnewi . Once the new deadlines are recalculated based on the current

overhead value, then the new virtual execution time becomes the new deadline since it

represents the new execution estimate for the job to be completed. We denote virtual-

ization overhead coefficient as δ and eV as virtual execution time. This is expressed as

following by expanding the pervious equation:

eV = (eT ∗ δ) + eT , δ > 0 =⇒ dnewi = eV (4.2)

It’s also assumed that at the start of every job, its deadline di is always larger then it’s

original execution estimate eT and can be expressed as ∀ji : eT ≤ di.
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4.2.2 Deadline Constraints

For the purpose of proof, if di =∞ then every job will be meeting its deadline despite

virtualization overhead and therefore it would be an ideal condition for a scheduler,

and is the upper bound in the system.

In this system deadlines are not unlimited but rather set to tight constraints. The sum

of original job execution duration is always less then the sum of original deadlines for

physical machines as there is no virtualization overhead involved. This is expressed as

below:

n∑
i=1

eTi ≤
n∑

i=1

di (4.3)

This equation changes when virtualization overhead is applied which is always greater

than zero, therefore it can be said that the total sum of virtual execution duration for all

jobs will always be greater then the total sum of original deadlines (di) estimated. It is

formerly expressed as below:

n∑
i=1

eVi ≥
n∑

i=1

di (4.4)

The initial experimentation, see section 5.2, has shown that for ATLAS workloads vir-

tualization overhead ranges between 5% and 15%. So if a job has a deadline which is

10% of actual execution duration, then under high virtualization overhead it will miss

its deadline. This condition can be further hardened by reducing the deadline limit

to 5% of the job execution which is equal to minimum virtualization overhead in this

system.

In this case when the deadline limit is restricted to 5% ahead of original execution

time (eT ). Then even with lowest virtualization overhead of 5%, the virtual execution

time (eV ) will always exceed the original execution time (eV ≥ eT ). Therefore, the new

deadline (dnewi) will always be higher then the original deadline (di) for all jobs, and is

expressed below:

∴ ∀ji : dnewi > di (4.5)
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This is the lower bound of the system as all the jobs would be missing their deadlines

since dnewi > di once virtualization overhead is applied. And if the batch system kills

them when they appear to exceed their individual allocated run time then this results

in an under utilized system since all these jobs have to be re-submitted and previously

utilized resources can be considered as wasted.

Although in this experimental context, no monetary incentive is involved, but it would

be an interesting arena to explore for future research to commercially schedule virtual

machines to introduce economical parameters in the system following the approach of

Fledman et al which they used for scheduling sponsored Googles advertisement slots to

a set of bidders [127].

We abstract physical machine resources (CPU and memory) as resource units or slots

and the boundaries set for each resource slot between time interval of [0, t). Then the

number of time slots (T) a job needs to complete is calculated by T := eV
t . Therefore t

(maximum slot time interval) becomes the frequency of the scheduler after which all

the schedules are periodically recalculated for new deadlines.

This enables the system to measure the utilization of CPU/Memory resources for ex-

ecuting jobs during each scheduling period. Presently the scheduling period or fre-

quency is set to the average time of the shortest job category in the ATLAS job queue

(i.e. event generation job, see table B.1 in appendix B).

This is important for determining optimal slot periods. If scheduler frequency is too

high, then the machine resources will be over-booked for longer periods of time even

for shorter jobs which might get completed earlier. On the other hand, shorter slot

period can decrease overall allocation of the slots to the jobs as granularity of the period

will be lower then the avg. job durations in the queue; thus increasing the utilization

rate but also increasing the scheduling overhead to allocate slots (more slots in the same

period of time).

4.2.3 Performance Metrics

Following metrics were defined to meaure the performance of the scheduling algo-

rithms. These metrics are calculated periodically after every scheduling cycle during

the course of simulation:
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• Success rate measured as total number of jobs completed.

• Deadline miss rate representing all those jobs that were predicted to miss their

deadlines, and were allowed by the optimization algorithms to continue and still

failed to meet their deadline.

• Termination rate representing jobs that were cancelled either because they didn’t

meet the acceptance threshold criteria or there weren’t enough CPU/memory

available in the system to run them when they arrived in the system from the

global queue.

• Failure rate as a measure of jobs which missed their deadlines since last optimiza-

tion adaptation. It is a subset of overall job deadline miss rate mentioned earlier.

• Utilization rate for the CPU and memory to measure how long each resource has

been active.

4.2.4 Execution Flow of Algorithms

To allow the scheduling algorithm to measure the above metrics, an internal job duration-

deadline ratio parameter was introduced for every job that is projected to miss its dead-

line for the first time, and denoted as JD-DR. It is determined by:

JD −DR =
durationremaining − timedeadline

durationremaining
(4.6)

The aim here is to select a job duration-deadline ratio which will act as an acceptance

criteria (XThresh) for all other jobs. This is driven by the fact that since virtualization

overhead is a dynamic property in the system and cannot be predicted all the time,

therefore some jobs will manage to succeed despite the fact that they might have ap-

peared to miss their deadlines in the first instance.

The first step is to set an acceptance threshold (XThresh) such that jobs meeting thresh-

old criteria (xi < XThresh) are accepted and the rest are rejected when optimization

algorithms are activated. The key idea behind this approach is that the acceptance of

jobs beyond a certain threshold would be counter-productive as some of them would

always fail due to the virtualization overhead and tight deadlines.

72



Chapter 4 Theoretical Concepts of Optimization Algorithms

Whenever a running job first appears to be missing its deadline, it is terminated if

it doesn’t meet the acceptance criteria. If the job’s xi ratio meets threshold criteria,

then it is given a lease or extension (referred to as flagged) and entered into a list of

jobs which are exempted from further acceptance criteria tests. These flagged jobs are

allowed to run until either they succeed or fail till their last allocated resource slot is

utilized. Those which still fail to meet their deadline are measured as deadline miss

rate.

For example, let’s assume that at a given instance while running the simulator XThresh

was set at value of 0.45 and there were three jobs running in the system. One of these

jobs which was not very cpu intensive finishes, and a new job starts execution along-

side the other two. This new job is highly cpu-intensive and as a result virtualization

overhead shifts to higher value i.e. from 0.05 to 0.1. This in turn triggers the scheduling

algorithm to recalculate the new deadlines for all running jobs, and after this recalcu-

lation one of the job is projected to miss it’s deadline i.e its duration-deadline (xi) ratio

is calculated. If this ratio happens to be below 0.45 (XThresh in the system at that time)

then the system lets the job continue till its completion or it gets terminated if it uses

up it’s last execution slot. If its xi ratio happens to be above 0.45, then the job gets

terminated straight away and eventually gets resubmitted by the user at a later time.

The algorithm is described as following, and it is the first control loop in our system:

1: if xi < XThresh then

2: flag job ji and let it continue

3: else

4: terminate job ji and let new job run

5: end if

The adaptive threshold mechanism, shown in figure 4.2, has been motivated by tech-

niques used in communication systems and digital signal processing. Namely, there

are many control loops that have a similar goal: to track a given reference value, such

as time (time synchronizers), phase (phase locked loops), etc and most notably in adap-

tive gain control, where the goal is to maintain a certain reference power level. A good

overview of these techniques can be found in the works of Meyr et al [128]. In this

research context, the reference value needed to be maintained is the measured failure

rate representing jobs missing their deadlines.
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FIGURE 4.2: Adaptive threshold algorithm reflecting the flow of the activation pro-
cess as implemented and adapted for this thesis: xThreshi - previous x threshold value,
xThreshi+1

- new x threshold value, D - delay element in updating the threshold, adap-
tive filter to apply new threshold on job deadlines, ∆ - delta x step, Ftarget target
failure rate, Fmeasured - measured failure rate and blackbox - to represent rest of the

system which takes in XThresh and output Fmeasured.

The implementation is based on a threshold update algorithm that is trying to keep

the measured failure rate close to a selected target failure rate. The threshold value for

job acceptance is relaxed if the failure rate increases and vice versa. The update step

has been quantized to a small value ∆x in order to avoid fast threshold changes if the

difference between the measured and targeted failure rate is large. The optimal value

for the step ∆x has been determined through experimentation and results are discussed

in section 6.2.1.2.

During the experimentation, it has been observed that the failure rate control loop used

in this algorithm can sometimes become unstable. So as a safeguard, threshold values

can be varied only within a certain range Xmin ≤ XThresh ≤Xmax. If this condition is

satisfied, then the XThresh values are updated as described in the following equation:

XThreshi
= XThreshi−1

±∆x (4.7)

It has to be noted that the updated value of XThresh is only applied to the next iteration

once the Fmeasured have exceeded the Ftarget, and this introduced the delay factor D

as referred to in figure 4.2. Delay factor is needed to not to introduce volatility in the
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system to make sure new threshold value only gets applied the new jobs but not to the

existing running jobs.

Continuing with the earlier example, let’s assume that a job with duration-deadline

ratio xi=0.35 appears in the system when XThresh=0.45. This job is allowed to con-

tinue but eventually it fails. When it fails, since the algorithm has a delay mechanism

built it, this failure triggers the system to recalculate its failure rate which happens to

be at Fmeasured=0.35 where as the hard limit for the target failure rate has been set to

Ftarget=0.25 to force the system to converge to lower measured failure rate. Now since

the system is under performing (by having a larger failure rate then the limit set), this

triggers the algorithm to update XThresh value. The reason to update a new XThresh is

that the present value is making the system under perform rather, and with an updated

value of XThresh the system continues in an iterative process to bring down measured

failure rate.

As a result, the adaptive threshold update mechanism, as described in equation 4.7,

increments the XThresh by 0.1 (∆x) to 0.55. ∆x=0.1 is used here for the sake of exam-

ple. And this cycle continues until and unless measured failure rate is reduced or else

XThresh will get further incremented by 0.1 (new XThresh will become 0.65). If it hap-

pens that there is a certain batch of jobs in the system that are all cpu intensive, long

running and can’t meet their deadlines; then either XThresh will be incremented up to

maximum value of 0.9 and while terminating some jobs which can’t be completed and

introducing new jobs that has the potential to be completed. This way it is always try-

ing to favor a mixed workload types to make sure no particular job suffers execution

deprivation.

A second approach taken to calculate XThresh is by using the Cumulative Distribution

Function (CDF) D(v) to determine the probablity of the success rate for the jobs that

have succeeded in meeting their deadlines as shown in figure 4.3.

The distribution function D(v) is described the probability that a real-valued random

variable V with a given probability distribution will be found at a value less than or

equal to v [129]. It is related to discrete probability P(v) by:

D(v) = P (V ≤ v) =
∑
V≤v

P (v) (4.8)
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FIGURE 4.3: Adaptive threshold algorithm reflecting the flow of the activation pro-
cess as implemented and adapted for this thesis: xThreshi - previous x threshold value,
xThreshi+1

- new x threshold value, D - delay element in updating the threshold, adap-
tive filter to apply new threshold on job deadlines, CDF function, Ftarget target failure
rate, Fmeasured - measured failure rate and blackbox - to represent rest of the system

which takes in XThresh and output Fmeasured.

CDF function is used to select the XThresh dynamically in such a way that XThresh

corresponds to the probability P of job duration-deadline ratio which is less than ac-

ceptance threshold and also less then probability threshold PThresh. It can be described

as P [x < XThresh] < PThresh.

PThresh is a pre-selected target probability for jobs that succeeded in recent past . For

example, a sample space of job duration-deadline ratios of last 100 successful jobs is

collected and then CDF function is used to select a value that has a probability of 50%

or higher chance of success. This selected value becomes the new XThresh and applied

as the updated acceptance criteria.

It is possible to use the CDF curve of the failure rate to drive the adaptive algorithm,

but the number of successfully completed jobs is larger than the number of failed jobs,

which results in more meaningful statistics. Several PThresh values were tested to de-

termine the best value (see section 6.2.2).

4.2.5 Real-Time Failure Rate

Failure rate is the representation of the jobs missing their deadlines in a given win-

dow of time, independent of the global system performance, and derives the adaptive
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XThresh values for both delta-based adaptations and for probability based value se-

lection. In delta based adaptation, XThresh is incremented or decremented by a fixed

value to reduce measured failure rate. In probabilistic approach, probability of success

is calculated for recent successful jobs and XThresh is selected based on the probability

of 50% or higher success rate.

Let us denote Fmeasured as the failure rate1 at any given time which we intend to keep as

low as possible than the target failure rate denoted as Ftarget and shouldn’t be greater

then 0.25. This value of 0.25 represents 75% of the base line value, and the objective of

this research is to achieve more than 85% of the physical baseline performance for vir-

tual machine based execution. To calculate Fmeasured, first success rate for last iteration,

denoted as Smeasured, have to be calculated. Fmeasured is then derived by 1 - Smeasured.

To determine Smeasured, there are number approaches that could be used. One is weighted-

alpha method based on leaky-bucket algorithm2 for rate limiter systems or also known

as exponential smoothing technique3. The second approach is using a simple division

of total number of jobs succeeded by total number of jobs in the system at any moment,

and also known as simple moving average4. We have used weighted-alpha method

to calculate the success rate due to its smoothening feature and faster calculation sim-

ilar to leaky-bucket’s traffic shaping function. In this case, the weight-alpha is used to

shape the success rate from jittery state to smooth state.

The exponential smoothing technique uses two factors; weight constant alpha α and

a boolean success constant S. In this particular system, we multiply the success ratio

with the weight factor. Success ratio ( n
N ) is derived by dividing the set of n number of

jobs succeeding in meeting their deadline with number of N jobs executed since the last

calculation of Fmeasured. This is shown in equation 4.9.

1Failure rate and Fmeasured terms are used interchangeably in this chapter. They refer and mean the
same parameter.

2The leaky bucket algorithm has several uses, it is best understood in the context of net-
work traffic shaping or rate limiting. Typically, the algorithm is used to control the rate at
which data is injected into a network, smoothing out ”burstiness” in the data rate. See also
http://en.wikipedia.org/wiki/Leaky bucket

3Exponential smoothing is a technique that can be applied to time series data, either to produce
smoothed data for presentation, or to make forecasts. The time series data themselves are a sequence of
observations. The observed phenomenon may be an essentially random process, or it may be an orderly,
but noisy, process. See also http://en.wikipedia.org/wiki/Exponential smoothing

4In the simple moving average the past observations are weighted equally, ex-
ponential smoothing assigns exponentially decreasing weights over time. See also
http://en.wikipedia.org/wiki/Simple moving average
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Smeasured =

(
n

N
(1− α) + Sα

)
(4.9)

The idea behind the formula above is that an updated success rate at iteration t is

heavily weighted towards its previous value (at iteration t-1), and the new success/-

failure value adds a small contribution (weight is alpha). The reason why we introduce

a weighted update of the success rate (where weight is a constant alpha) is to filter out

any burst of failures which would cause the failure rate control loop to oscillate too

much. By adopting a small step alpha, it smoothes out the estimate for the value of the

success rate, which in turn determines the current Fmeasured which is a main parameter

in the system.

This method avoids having to keep track of an ever-increasing number of jobs, and

to avoid the computational overhead of dividing a large number (e.g. 50k jobs suc-

ceeded) by a second large number (e.g. total number of 100k jobs) as compared to sim-

ple division method as shown in equation 4.10. Secondly, by not using moving average

method we avoid giving equal weight to all jobs executed where it is more beneficial to

give higher weight to more recent jobs. This way we utilize a more optimal mechanism

with lower computational overhead and a smaller set of data.

Smeasured =

(
JobsSucceeded
TotalJobs

)
(4.10)

Another disadvantage of the moving average based method is that it distorts the results

under certain circumstances e.g. if there is a sudden burst of some additional cpu-

bound jobs in the system, this will result in a spike in the virtualization overhead. At

that time, there could be some long-running jobs executing in the system. Based on the

higher overhead, when the scheduler will re-estimate the deadlines, the longer running

existing jobs will appear to miss their deadlines and if their deadline ratio happens

to be less then XThresh, then these jobs will be terminated. This will result in lower

resource utilization since the terminated jobs have to be resubmitted and re-executed

in the grid. It also prevents the system to quickly respond if the given workload profile

changes completely.
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4.2.6 Scheduling Strategies

Based on the above discussion, following scheduling strategies were implemented in

the simulator software to compare and contrast the job success rate, deadline miss rate

and job termination rate:

1. No Overhead (NO): represents the workload being executed on physical ma-

chines with no virtualization overhead. This forms the baseline for performance

metric to compare against later strategies.

2. Static Overhead (SO): represents when a single virtualization overhead value

was applied to all jobs with out considering the diversity of workloads executing

at different times.

3. Dynamic Overhead (DO): algorithm updates the virtualization overhead dy-

namically by analyzing the resource requirements of the executing workloads in

real time.

4. Delta Alpha Adaptation (DA): algorithm runs with dynamic overhead (DO) and

with learning mode enabled to observe real-time measured failure rate. Using ∆x

and α parameters, it dynamically adapts XThresh as discussed in equation 4.9.

1: Calculate Fmeasured

2: if Fmeasured > Ftarget then

3: XThresh + = ∆ x

4: else

5: XThresh − = ∆ x

6: end if
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5. Probabilistic x Adaptation (PA): algorithm runs with dynamic overhead (DO)

but rather then using small changes to XThresh with ∆x parameter; it uses cumu-

lative distribution functions to analyze the pattern of recent successful jobs and

adapts the XThresh for the executing work loads accordingly.

1: Calculate Fmeasured

2: if Fmeasured > Ftarget then

3: XThresh← Cumulative Distribution Function (PThresh > 0.5)

4: end if

4.3 Summary

This chapter has discussed the rationale behind the development of a simulation sys-

tem to validate optimization techniques. All the theoretical concepts related to assump-

tions made, hypothesis developed and the design and architecture of the simulator are

described. Then the discussion was expanded to the deadline constraints, virtual exe-

cution time that is dependent on virtualization overhead and the performance metrics

which were used in later experiments to validate optimization strategies. This is in line

to answer research question number 3 and is evaluated empirically in chapter 6.

An overview of two key optimization strategies has been presented; delta adaptive and

probability based adaptive algorithms. These technique were further evaluated against

a physical baseline, virtual baseline, static and dynamic adaptation of virtualization

overhead. A detailed discussion was included in this chapter about the workings of

the adaptive algorithms with a block diagram that described that how the adaptive al-

gorithms function and links various parameters such as measured failure rate, XThresh

and its lower and upper limits.

The next chapter provides the results related to the preliminary experimentation which

was done to show the feasibility of virtualization technology for HPC grid jobs and

applications.
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Chapter 5

ATLAS Job Performance

Experiments

“The question is not what you look at, but what you see.”

Henry David Thoreau

Virtualization technology has a performance overhead, as discussed in chapter 1 and

chapter 3; it is an objective of this thesis to evaluate the feasibility of running HPC

grid jobs in virtual machines. As a result, preliminary experiments were designed and

conducted based on real tasks to evaluate the performance of ATLAS jobs1 in virtual

machines.

This chapter first describes the existing PanDA pilot job submission system and the

modifications made to integrate virtualization into the grid in section 5.1. This was

necessary to have a feasible deployment scenario based on a real grid application. This

implementation approach is applicable to other grid applications as well. In section 5.2,

experimental setup to conduct preliminary studies is defined, and then the empirical

results are presented in section 5.3.

This chapter answers research questions 1 and 2 (see section 1.1). The results presented

in this chapter have also been published in a peer-reviewed conference [4].

1see appendix B
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5.1 Existing ATLAS System

This section describes the present ATLAS system for deploying pilot jobs in the grid,

and the modification made to it to integrate virtualization in to the grid infrastructure.

A brief overview of pilot job framework in the context of ATLAS system is also de-

scribed in section 2.2.3. Basically, its a job leasing framework that sends dummy jobs to

the grid to reserve job execution slots at worker nodes.

5.1.1 PanDA Architecture

As shown in figure 5.1, PanDA pilot server sends dummy jobs to the workload man-

agement system (WMS) in the grid middleware which schedules it to a particular grid

site, and the local batch system at the grid site schedules the job on to one of the avail-

able worker nodes and assigns an execution slot. At this point, PanDA pilot establishes

a direct network connection with PanDA pilot server which is external to the grid in-

frastructure. PanDA pilot server manages it’s job queues independent of the grid, and

based on the resource available at the job slot, it selects the job from the server which

fits that criteria and sends it to the remote pilot process.

PanDA
Pilot 

Server
Grid WMS

User Job

Job

Worker Nodes

Job

network
connectionproduction

automated
system

Job

FIGURE 5.1: Grid Pilot jobs overview and the steps it goes through. PanDA server
sends empty jobs to the grid WMS to reserve a job slot at a worker node. Once an
execution slot is reserved, then it directly downloads the job to the worker node from
the server to continue with the job execution, and thus bypasses the grid middleware
through peer-to-peer connectivity between the PanDA server and pilot job running in

the worker node.
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Once the pilot process finishes downloading the job from the server, it goes through the

following steps to execute the job as shown in figure 5.2:

1. Environment Preparation: After downloading the job, pilot process daemon

prepares the environment and sets the necessary variables on the worker node so

that the job execution can proceed.

2. Data Stage-in: After setting up the environment, the pilot job daemon downloads

the necessary data required to complete the job from the grid storage element.

The network latency to connect to grid storage element and time to download the

data will vary for each job.

3. Job Execution: Once all data is downloaded on the worker node, the pilot job

daemon triggers it’s runJob script to commence job execution. During the lifetime

of the job execution, the runJob script periodically sends the status updates to

the pilot daemon, which then in turn updates the PanDA pilot server with the

progress of the job.

4. Data Stage-out: In this phase, the pilot job daemon updates the final output re-

sults of the job to the grid storage element if the job completed successfully oth-

erwise it sends the error logs to the PanDA server so that it could be debugged

by the user.

5.1.2 Virtualization in PanDA Pilot

5.1.2.1 vGrid Deployment Engine

In this study, vGrid2 tool [1] was used as primary deployment engine which is based

on the Representative State Transfer (REST)3 protocol for inter-node communications.

It deals with tasks such as setting up logical volume partitions, decompressing an op-

erating system image in it, and starting/stopping virtual machines. It provides both

2vGrid tool was developed by the author and is the technical contribution in this thesis. It was modified
by T. Koeckerbauer to use it to satisfy the use cases of a local project in our team. But this was built and
expanded on the earlier work done by the author of this thesis, and original vGrid was used for the PanDA
virtualization.

3REST-style architectures consist of clients and servers where clients initiate requests to
servers; servers process requests and return appropriate responses. For more information, see:
http://en.wikipedia.org/wiki/Representational State Transfer
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2. Prepare Environment

1. Start Job

3. Execute Job

4. Progress Update
5. Cleanup

Panda 
Server

Internet

FIGURE 5.2: PanDA pilot job submission and stages it goes through to execute a grid
job. Once the pilot job daemon has downloaded the input job data, then runJob scripts
prepares the environment and start executing the job. During execution, periodic up-

date is sent to the pilot job daemon which are further sent to the PanDA server.

web interface for users to deploy virtual machines on demand on pre-configured clus-

ter and REST based interfaces so that it could be integrated into another software, such

as PanDA pilot, to utilize it’s virtualization capabilities.

As shown in the figure 5.3, clients interact with the server through well defined web or

REST interfaces which is responsible to gather all the requirements for virtual machine

such as disk size, operating system for the virtual machine, memory and networking

interface. This information is passed to the vGrid server daemon which then selects the

node through Node Scheduler component which matches these requirements and for-

wards it to Request Forwarder to transmit the information to the selected node through

a peer-to-peer connection. Each node in turn runs a vGrid daemon service where node

Request Handler receive these input parameters and deploys the virtual machines.

Once the virtual machine is deployed and ready to use, server is updated about it sta-

tus and the control of the virtual machine is handed over to the requesting application

which in this case is PanDA pilot daemon.

There are additional components in vGrid server daemon such as Configuration Man-

ager to read configuration files to select which nodes are participating in the virtual

cluster. Similarly, vGrid node daemon have Xen Monitor component that gathers in-

formation for the running virtual machines on each node using LibVirt API [130]. It has
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a few megabytes of memory footprint on the node.This information is forwarded to the

server and is used to select appropriate node by the Node Scheduler component.
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FIGURE 5.3: vGrid Deployment agent to deploy virtual machines on demand in the
grid. It has server daemon acts as a central node to redirect incoming requests to the
worker nodes which run the node daemon to setup virtual machines for execution. It
provides both a web interface for human interaction and REST interface for integration

into other applications.

5.1.2.2 Virtualization Interfaces

To enable vGrid to be integrated in to the PanDA pilot framework, or for any other ap-

plication, the key services of the the vGrid deployment tool was abstracted into generic

interfaces. A proof of concept Application Programming Interface (API) was imple-

mented that enables a guest application, such as pilot jobs, to request virtual machine

on a worker/compute node. It is referred to as VIRM (VIrtualization Resource Manage-

ment) API4. This approach differs from prior techniques such as VM sandboxing [131]

where virtualization approach is managed through the batch server. It proposes a dif-

ferent abstraction of services that any VM deployment engine (e.g. Virtual Workspaces
4VIRM API was developed by the author of this thesis and is his technical contribution.
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[132], OpenNebula [133]) must provide in the context of Grid application by using lo-

cally available command line linux tools to avoid 3rd party dependencies.

The VIRM API is the abstraction of interaction between external application (i.e. batch

system or PanDA pilot) and the vGrid server daemon. This API have identified key

set of actions that has to be taken by a virtual machine deployment engine to setup

virtual machines. These actions could be implemented in any technology as long as

the external application can execute them via a service end-point, and therefore leads

to standarisation of these actions. These service end-points are following:

• request diskspace: to request a writeable disk partition for the application to

execute its job with a specified operating system.

• mount/unmount diskspace: to have access to the workspace so that application

could customize it and then unmount it a.k.a Contextualization

• start/stop virtual machine: to start and stop virtual machine.

• remove diskspace: to remove the physical disk partition once the job has been

executed.

• send heartbeat: the guest application sends a periodic heartbeat message to the

daemon to keep the virtual machine alive.

From the architectural point of view, VIRM interfaces sit between the deployment

agents and the applications as shown in figure 5.4. The key advantage of having such

an interface is that it enables very many deployment agents, irrespective of their tech-

nology and underlying hypervisor, to interface with grid applications thus pushing

towards the standardization process of communication between grid and virtual ma-

chine deployment tools.

5.1.2.3 Modification to PanDA Pilot

To achieve research objective 1 (see section 1.2 for more details), the PanDA pilot frame-

work was modified to add interface end points for VIRM API, as shown in figure 5.4,

which led to its architectural change [2]. At the deployment phase once the pilot job
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FIGURE 5.4: Architectural deployment of VIRM API relative to client applications, de-
ployment agents and the hypervisor. VIRM interface enables grid applications to uti-
lize number of virtual machine deployment engines such as Workspace, OpenNebula
and vGrid which in turn could utilize any virtualization hypervisor to setup virtual

machines. This hides local deployment details from higher grid applications.

has acquired a resource slot, it verifies if VIRM service end-point is present over the

loopback interface (for security reasons to restrict interface access to local node only),

and upon valid response, it assumes that the job will be executed in the VM and follows

the steps as shown in figure 5.5. Pilot stages 3 and 4 were modified so that runJob script

runs the job in a virtual machine rather then in the physical host, and pilot daemon

finally uploads the results to server prior to requesting the removal of virtual machine

disk partition.

5.2 Preliminary Evaluation Studies

Once the virtualization is enabled in the grid, next key issue was to investigate the

implications of virtualization on application performance. To achieve this, a series of

control experiments were designed and run where ATLAS jobs were executed to bench-

mark their performance. This section describes the experimental method, evaluation

metrics and experimental setup that are applicable to the results of virtualization over

head studies presented in section 5.3.
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FIGURE 5.5: Once the pilot job has started, it launches the runjob script, which requests
the virtual machine container from the VIRM agent and starts the job execution. Once
started, the virtual machine updates the main pilot job of its status and upon job fail-

ing/termination; the runjob script requests the shutdown of the virtual machine.

5.2.1 Evaluation Metric

First of all, the key issue is to design the measurement metric based on which a quan-

titative observations could be made and qualitative analysis could be derived. Since

the primary factor involved here is the slowing down of the task execution when virtu-

alized, thus the evaluation metric used for CPU and memory related experimentation

concerned with how much time it took to complete the tasks under different system

loads and memory configurations.

Second important metric in this experimentation is networking throughput in virtual

machines. This is critical since each job requires data input that have to be downloaded

from the grid. Thus, for networking related experiments; rate of data throughput was

the key measurement value as performance metric.
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5.2.2 Approach and Method

There are three key resource utilization characteristics of ATLAS jobs; CPU intensive-

ness, memory size and network throughput. The experiments were divided based on

these requirements so that the impact of virtualization on them could be evaluated sep-

arately with minimum error and interference from other system conditions. They are

described as following:

1. Network Throughput: ATLAS reconstruction jobs, see table B.1, require large

amount of data to be downloaded over the network. Thus to evaluate network

throughput, a specified data set was downloaded both from physical and vir-

tual source to a virtual machine within the local network to benchmark network

throughput.

2. CPU Evaluations: Xen hypervisor schedules and shares CPU resources among

parallel running virtual machines; as the number of virtual machines increases,

the processing time available for each virtual machine reduces. Since LCG grid

is designed to maximize resource utilization by running as many jobs as possible

in parallel, there by in virtualized environment it would be critical to understand

the impact once the system is run at full capacity. Thus job execution time was

measured by systematically and progressively increasing the number of parallel

virtual machines each running an ATLAS job. The time taken for job execution

when run in a physical machine was set as baseline against which time taken for

job execution in virtual machines was measured.

Once the virtual performance was benchmarked, it was important to optimize

each evaluation metric to improve performance. Therefore, CPU evaluation ex-

periments were ran with two different scheduling techniques namely work con-

serving (WC) and non-work conserving (NWC) (see section 3.4 for more details).

WC is referred to as ”fair-share” and NWC as ”pinned” CPU approach with dif-

ferent weight ratios. The results are presented in section 5.3.2.

3. Memory Evaluations: Memory is another important resource for ATLAS jobs

since some of its detector related algorithms require complex memory operations.

The methodology followed to measure the impact on the size of virtual memory

was that each job running in virtual machine were first executed with maximum
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available memory to determine virtual baseline, and then memory size for each

virtual machine was reduced to bare minimum requirement of the job. The ex-

periments were conducted with both high and low system load. The results are

presented in section 5.3.3.

This methodology provides an understanding about how ATLAS jobs will perform in

a virtual machine when run with optimized resources and high utilization rate of the

physical machine resources. All the above experiments and the parameters used are

further elaborated upon in appendix C.

5.2.3 Experiment Design

5.2.3.1 Setup

The test bed used for these experiments consisted of two servers; each with SMP dual-

core Intel CPUs running at 3 GHz, 8 GB Random Access Memory (RAM) and 1 Gbit/s

Network Interface Card (NIC) and running Xen 3.1 [25] hypervisor on Scientific Linux

CERN (SLC) 4.

5.2.3.2 Xen Parameters

There are number of configuration parameters available in Xen5 hypervisor which al-

low fine grained control over its behavior and enables optimized configuration of the

resources available for each virtual machine. The following parameters were adjusted

to measure the above mentioned evaluation metrics:

1. Scheduling Algorithm: There are two scheduling techniques fairshare and pinned

in credit scheduler. Fairshare scheduling is of work conserving mode that allocates

CPU among running VM’s, and additional CPU if its available and no other VM

is competing for it. Xen’s pinned scheduling algorithm, which works in non work

conserving mode, is based on an approach that strictly allocates CPU resources

to a given VM based on CPU capping and weight ratios, and never provides

5The complete reference guide for Xen parameters is available from here:
http://bits.xensource.com/Xen/docs/user.pdf
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additional resources even if the CPU is running idle. This is discussed in detail in

section 3.4. For CPU metrics, for all the experiments; both scheduling techniques

were used one by one and their performance impact were compared in the context

of ATLAS jobs.

2. CPU Weight: Each VM can be given a weight ratio which is relevant to Xen’s

admin domain calledDom0. Based on weight ratio, Xen credit scheduler allocates

CPU time slot to that particular VM accordingly. Weight ratio 0 means that a VM

gets the same priority asDom0, where as for higher ratios the credit scheduler will

allocate more CPU to a particular VM as a multiple of 256 (a weighting system

used by Xen hypervisor internally to allocate weight) relative to Dom0. In these

experiments, each VM was pinned to a physical CPU and it’s performance was

bench marked with different weight ratios.

3. CPU Capping: If weight ratio is not used to determine the allocation of the CPU,

then credit scheduler can be used to limit it through CPU capping. Each physical

CPU is accessed via a logical abstraction of virtual CPU in the hypervisor. Each

VM then could be pinned to a particular virtual CPU. Then each virtual CPU

could be configured to either use all available physical CPU, only one CPU or half

of the physical CPU for a selected VM. For ATLAS performance studies, virtual

jobs were executed with different CPU capping to arrive at optimal CPU capping

factor where performance loss is minimal and resource utilization is highest.

4. Memory Size: Each megabyte of available system memory could be allocated to

each VM through Xen’s memory ballon driver which is responsible for increasing

or decreasing the size of virtual machine memory.

5.3 Results

This section presents the results from the performance evaluation studies done for AT-

LAS jobs. Primarily reconstruction jobs were used for the experiments since they have

the most demanding resource requirement profile for CPU, memory and networking

resources. See Table B.1 for more details. It is to be noted that Dom0 represents the

virtual machine control domain and doesn’t execute any jobs where as Domi refers to

virtual machine executing an ATLAS job.

91



Chapter 5 ATLAS Job Performance Experiments

These results provide empirical evidence that optimization of Xen scheduling parame-

ters have significant impact on the job performance. In these experiments, as described

in detail in appendix C, 10 different test configurations were used for job execution

measurements and 5 different configurations were evaluated for networking through-

put. Each configuration has different number of allocated CPU (weight and capping

relative to Dom0 - to limit on percentage of CPU available for the VM), memory, and

parallel running Domi.

5.3.1 Network I/O Performance

One of the sources of largest virtualization overhead comes from the network I/O as

Xen hypervisor uses CPU cycles to process network packets as well, and this leads

to additional loss of performance. This is due to Xens virtual network device driver

architecture, which resides in Dom0. See section 3.2.1.2 for more details on this.

The next step was to benchmark the virtual network throughput in Dom0 since in the

bridged configuration all VM’s network packets passes through the Dom0. To bench-

mark this, first network throughput was measured for a data set of 3GB as transfered

from a physical host on the same network with average utilization . This was to ex-

clude the possibility of discrepancy emerging due to reduced traffic during off-peak

hours, and the transfer was restricted to local LAN to prevent external factors of other

network influencing the result. Then, Dom0 memory was progressively halved to 2GB,

1GB and finally 0.5GB for the same data transfer. The tests were ran using Linux scp
6 (secure copy) utility on the LAN to avoid external network latencies interfering with

the measurements.

It was observed, as shown in figure 5.6, that Dom0 network throughput dropped sig-

nificantly if constrained to 0.5 GB, but Dom0 I/O throughput improved to ≈50 Mb/s

for the memory range greater than one GB while the average throughput achieved on

physical network was ≈62.5 Mb/s for peak times. The lack of any significant increase

from 1GB to 2GB memory size for Dom0 shows that 1GB is the minimum memory re-

quired by Xen hypervisor to optimally process network packets. After 1GB of memory,

network processing by the hypervisor is not memory-bound any more.

6Linux secure copy command: http://en.wikipedia.org/wiki/Secure copy
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This is a very significant factor especially for workloads which require large sets of

input and output data files to be moved across the network as the job is executed espe-

cially for interactive jobs in Domi where lower network latency and high throughput

is required for optimal performance.
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FIGURE 5.6: Evaluating the impact of memory availability on the network throughput
of Dom0. The above results show that a minimum of 1GB of memory is required by
Dom0 to process networking I/O traffic to other VM’s. Memory allocated less than

that leads to serious degradation in networking throughput at Dom0.

Then the test suite was modified and ran again Linux scp utility to transfer another

dataset of 3GB, on the LAN, for various configurations on Domi. These configurations

were differentiated for the following factors:

1. Number of parallel virtual machines running at the same time.

2. Whether the source of data transfer is a physical machine or virtual?

3. If the source of data transfer is virtual, whether it was co-located on the same

server as of destination virtual machine or on a different server?

The results are presented in table 5.1. It shows that when virtualized, the physical

network performance drops from 62.5 Mb/s to ± 8.8 Mb/sec and decreased slightly

when the number of parallel Domi was increased to three from one. This is a very
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Parallel Domi Data Source - Data Destination Throughput (Mb/sec)
0 Physical-to-Physical 62.8
1 Physical-to-Virtual 8.8
3 Physical-to-Virtual 8.3
3 Virtual-to-Virtual (two different servers) 6.8
3 Virtual-to-Virtual (on the same server) 6.4

TABLE 5.1: Evaluation of network throughput for physical and parallel runningDomi

by transferring 3GB dataset.

significant reduction in network throughput. The throughput further drops to 6.8 Mb/s

when both source and destination of data are virtualized but deployed on different

servers. And co-locating them on the same server reduces the throughput by further

0.4 Mb/s due to the fact that since their network packets are using the same underlying

CPU for processing, and this introduces additional latency.

These scenarios is important for Grid Storage Element (SE) since if they are virtualized

as well along side of virtualizing job execution, then this further impeds the throughput

for data transfers for various job requests.

The above results provide empirical evidence to show that networking architectures

of the underlying virtualization hypervisor have a significant impact on the available

network throughput for virtual machines. The experiments conducted were to validate

the optimal place to do network transfers when pilot jobs are virtualized. The empiri-

cal results show that all data upload and download in Dom0 rather than Domi for the

HPC workloads provides a significant boost to performance by removing network re-

lated virtualization over head involved for each VM. This study also highlighted that

reduced network throughput in Domi poses a considerable challenge for deploying

grid services on the virtual machines, and have to be further researched to fully under-

stand its impact before grid storage services can be completely virtualized.

5.3.2 Impact of CPU Parameters

In performance studies, phyBase and virtBase represents the physical and virtual base-

lines against which all configuration results are compared. In phyBase, ATLAS jobs were

executed on a physical machine to benchmark highest possible performance baseline.
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Configuration Num of
VM

Pi (Num of
CPU cores)

Ti (sec) Relative Overhead (%)

phyBase 0 4 7080 0
virtBase 1 4 7130 1

fsLargeVM 2 2 7193 2
fsMedVM 3 1 7970 13
withCPUCap 3 0.5 12926 83

TABLE 5.2: Performance results for Xen CPU capping parameters when applied to
parallel executing virtual machines.

In virtBase, ATLAS jobs were executed in a virtual machine with highest available re-

sources to benchmark maximum performance achievable while incurring some perfor-

mance loss due to virtualization overhead.

A job’s estimated time of completion depends on the number of CPU cores allocated

(denoted as Pi i.e. Pi=1 is one CPU core) to it; so it’s the most important factor in deter-

mining the job performance in these experiments. As seen in table 5.2, fsLargeVM had

a 2% performance overhead with two CPU cores available for it. Where as, when each

VM was pinned to a single core for fsMedVM, then the performance drops by 13% as

compared to the physical baseline of phyBase. Additionally, there were 3 parallel Domi

running in fsMedVM to represent a higher system load where each VM was pinned to

a single core. This could be taken as minimum performance available for ATLAS jobs

when run in virtual machines and pinned to a single CPU core.

On the other hand, to achieve further decline in performance when Pi was capped to

0.5 (restricted to half of one CPU core), the time to complete the job almost increased

by 83% which shows that the relationship between Ti (job execution time) and Pi is

non-linear. Reduction of Pi to below one CPU core could be useful in situations where

a virtual machine could be either paused (saved state that could be restarted later) or

with reduce allocation of CPU to accommodate additional virtual machines.

The above results show that it is important to consider Pi for more complex situa-

tions where diverse set of workloads may run in parallel VM each with different set of

memory and CPU requirements. This may pose a significant challenge for optimally

allocating machine resources to competing Domi, and must be analyzed for a given

application before hand.
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One the other hand, if a single CPU is pinned to eachDomi then the overhead (%) stays

below 15%. This is very promising especially in case of fsMedVM where 3 parallelDomi

were run as compared to phyBase physical baseline. Such a performance penalty could

be acceptable given the gains made through virtualization to achieve fine-grained and

portable virtual machine execution environments for large scale distributed systems

which are prone to misconfigurations.

When a different CPU scheduling technique was applied, it was also observed that

fair-share scheduling technique leads to a slightly better performance as compared to

when CPU was pinned for eachDomi as shown in figure 5.7 where larger set of physics

events for workload got processed between the range of 30s-50s. This may be due to

the fact that pinning the CPU for each Domi constrains it even further if other Domi

may not be fully utilizing available CPU cycles. Xen’s credit scheduler gives a slice of

10ms to each Domi while slices for each Domi are re-computed every 30ms [120].
!"#U$%&'()*'+U,'%&-./)'

0
)
1
2
'
+U
3
4U
5
6
'
-
78

s

hs

!s

"s

#s

$s

%s

&s

's

U

s

hs

!s

"s

#s

$s

%s

&s

's

!"#U,.1'Ul8r
s #s 's h!s h%s !ss

U
s #s 's h!s h%s !ss

2()**+,

2-.)/01./+

FIGURE 5.7: Evaluating CPU scheduling parameters: Pinned vs Fairshare strategy for
Domi. Fairshare strategy appears to process higher number of events in the VM with
in 30-60 seconds as compared to pinned approach since it always allocates additional

CPU shares to a VM when no other VM is competing for it.

Similarly, Xen weight ratios, Wi, for CPU allows to influence CPU availability for each

VM by giving them different weights for fairshare scheduling. When 2 parallel Domi

were ran with Wi of 2 and 4 respectively as compared to Dom0, it was observed that
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FIGURE 5.8: Evaluating CPU scheduling parameters: Weight ratio strategy for Domi.
Both weight ratio reflects similar performance as they are both operating in non work

conserving mode, and only allocates CPU shares according to the weight ratios.

varying Wi among Domi only had a limited impact on the job performance where

higher Wi led to a slightly better performance as shown in figure 5.8. This might be

useful for other workloads, but in case of ATLAS workloads both Fairshare and Pinned

scheduling techniques yield comparable performance.

5.3.3 Impact of Memory

The last important factor influencing ATLAS job performance is the available memory

and how fast the application could access the memory from the system. This is impor-

tant as for every additional memory request, it has to first go through underlying vir-

tualization hypervisor and could introduce some delay between memory request and

allocation. The ATLAS workloads, in particular reconstruction jobs, are highly memory

intensive.

In the experiments, memory available in the system, denoted as Mi, was progressively

reduced for each Domi from memory size 8GB to 2GB to observe the resulting perfor-

mance response for the job. Table 5.3 shows that reducing the Domi memory has a

lesser performance impact when compared to number of parallel Domi each running
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Configuration Number of VM Memory (GB) Ti (sec)
virtBase 1 8 7130

pinCPULargeVM 1 3 7192
fsMedVM 3 2 7970

TABLE 5.3: Evaluating the impact of memory (RAM) size on overall job completion
time

CPU hungry tasks as long as the VM have more memory allocated to it then needed

by the job to continue to execute. Firstly, Mi was reduced from 8GB to 3GB, and this

had only a variance of 162 sec in terms of job execution with only one Domi running in

the system. On the other hand, when three Domi were executed each with 2GB mem-

ory for fsMedVM, as explained in section 5.3.2, this added additional 800 sec to the job

completion time.

It also shows that for ATLAS jobs 2GB of memory is sufficient to continue to run, thus

allowing more VM’s to be run in a system with larger physical memory. This hypothe-

sis is further re-inforced from observing memory request and allocation patterns both

for physical resident memory and virtual memory for each Domi as shown in figure

5.9 and 5.10. This is particularly important for reconstruction jobs of ATLAS experiment

as they process large number of physics events with higher memory requirements. If

the Dom0 could not allocate these memory requests at a faster rate then this could po-

tentially terminate the job pre-maturely resulting in wastage of CPU resources which

already have been consumed by the job.

Figure 5.9 and 5.10 provide an overview of the physical and virtual memory requests.

(It has to be noted that due to large number of data points, the lines on these figures

becomes very dense). Each job starts with an initialization phase, and as the events

are processed the overall memory acquired-so-far increases to 1.6GB but stay well be-

low the limit of 2GB which is the maximum allocated memory for each VM in these

experiments.

One important difference to note is that memory pattern studies were conducted both

for fairshare approach in work conserving mode (noCPUCap - with no CPU capping)

and pinned scheduling (withCPUCap - with CPU cap set to 0.5) with non work con-

serving mode. See appendix C for detailed data results for noCPUCap and withCPU-

Cap. Setting the CPU cap results in slower release of memory to Domi by the Dom0 for
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Physical Memory Profile
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FIGURE 5.9: Evaluating the impact of parallel running Domi on physical memory
requests. It shows that CPU capping (non work conserving mode) slows down the
memory allocation process due to strict allocation of CPU availability to the VM as

compared to non CPU capping (work conserving).

both physical and virtual memory since it receives lesser CPU cycles to process these re-

quests. As a result, memory requests get queued up and processed only when theDomi

becomes active. Nevertheless both configurations were eventually able to acquire the

memory resources they needed, and the workloads were executed successfully.

Another observation was made that of the incremental increase in the memory alloca-

tion for each job during the course of it’s execution. This is due to a memory-leak bug

in the ATLAS analysis software that leads to memory being not fully released from pre-

vious events while more memory is acquired for next events. This bug was reported

to the ATLAS software developers, and fixing it is beyond the scope and focus of this

study.

These experiments provide further insight into ways that are useful to optimize mem-

ory allocation for ATLAS workloads without large performance penalty.
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Virtual Memory Profile
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FIGURE 5.10: Evaluating the impact of parallel running Domi on virtual memory re-
quests. Virtual memory profile is similar to physical memory allocation profile and
follows the same trend where work conserving mode without CPU capping performs

better.

5.4 Summary

This chapter has presented the design and results of preliminary experiments con-

ducted to prove the feasibility of HPC workloads in virtual machines using real-world

tasks and applications, and has addressed two research question number 1 and 2 (see

section 1.1). ATLAS tasks and a job submission application called PanDA pilot were

used in this experiments as a case-study.

In section 5.1, first an overview of the architecture and functionality of PanDA pilot

job framework was given that shows how it deploys ATLAS jobs on the grid. Then

using a virtualization deployment engine, PanDA pilot framework was modified to

deploy the jobs in virtual machines. All the architectural changes required to do this

were described in detail. This has answered research question 1 by providing one of

the ways to integrate virtualization into the grid infrastructure. This model could be

adapted and integrated into other infrastructures as well.
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Furthermore, this implementation was influenced by the networking throughput re-

sults which have been presented in section 5.3.1. These results show that it was opti-

mal to use virtualization hypervisor’s administrative domain for networking I/O due

to higher throughput achieve when compared against networking I/O throughput in

virtual machines. This resulted in PanDA implementation downloading and upload-

ing all data in the virtualization administrative domain and using virtual machines

only as execution containers.

In sections 5.3.2 and 5.3.3, results related to execution performance of the tasks were

presented. The results show that ATLAS tasks performance is more sensitive to amount

of CPU cores allocated to them, and if not done optimally, the performance penalty

could go up to 80%. But by optimally using CPU capping and weight parameters in

credit scheduler, the performance overhead could be brought into the range of 5% -

15%.

Similar experimentation related to size and rate of memory allocation showed that de-

spite virtualization overhead, the physics algorithms in ATLAS jobs were able to per-

form well as long as 2GB of memory was available to the virtual machine.

These results have provided answers to research question number 2 by showing that

the workload execution is highly influenced if less then one CPU core per VM is allo-

cated, and if administrative domain runs with less then 1GB of memory that signifi-

cantly reduces network throughput. And the study of the Xen’s credit scheduler pa-

rameters to optimize the performance has shown tangible results that could be applied

to other HPC workloads running in different cloud and grid infrastructures.

This chapter concludes with a demonstration of the feasibility of grid applications and

jobs in virtual machines. The next chapter presents the results related to more advance

optimization techniques evaluated in this thesis to reduce the impact of virtualization

overhead at job scheduling level.
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Chapter 6

Optimization Experiments for

Deadline Miss Rate

“Who looks outside, dreams.; who looks inside, awakes.”

Carl Gustav Jung

This chapter presents the results of the experiments conducted to empirically evaluate

optimization strategies based on dynamic and adaptive algorithms which were dis-

cussed earlier in chapter 4. Readers of this chapter are suggested to read chapter 4

prior to going through this chapter to make sure that the reader is fully aware of the

theoretical background that led to this experimentation. The empirical data presented

in this chapter provides an understanding to answer research question number 3 re-

lated to optimization of deadline miss rate (see section 1.1).

The flow of the chapter is as follows: section 6.1 describes the experimental design and

an overview of simulation parameters that were necessary for the simulation system

to function. The results section 6.2 is sub-divided into two parts; training phase and

steady phase. In the training phase, different values of simulation parameters were

adjusted and their impact and system response was measured. Then the simulation

were run in steady phase and for longer periods to evaluate the performance of the

adaptive algorithms.
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6.1 Experimental Design and Rational

The results discussed in this chapter are based on simulated jobs. As explained earlier

in chapter 4, it wasn’t feasible to change or modify the existing grid system at CERN

to test the algorithms since its is being used as a production system. The performance

and preliminary experiments to evaluate virtualization technology for HPC grids jobs

were based on real tasks from CERN’s ATLAS experiment where job execution, cpu

and memory impact and network throughput were studied (see chapter 5). The data

provided by those experiments were sufficient to build the simulator to simulate key

requirements of a worker node in the grid system with a global job queue, and to be

able to apply optimization algorithms to validate them against virtualization overhead

and it’s impact on job throughput and deadlines.

6.1.1 Understanding the Results

The results presented in this chapter are of three different kinds. The first set of results is

related to the overall performance measurements such as system success rate (overall

job throughput), termination rate and deadline miss rate. These results are applica-

ble for both training and steady phases of the simulation. They represent the global

view of the system and are used to differentiate the performance of the optimization

algorithms. An example chart is later shown to familiarize the reader with the results

presented in later sections. The data is separated in three sequential parts; simulation

start-up period, learning period and continuous run period. During simulation start

up period, the simulator begins to gather data and results are very volatile during this

period. Once the system goes to learning period, then it starts collecting data for the

algorithms which would be later used during the continuous run period.

In figure 6.1(a), the performance metric is always plotted on y-axis. This could be suc-

cess rate, termination rate or deadline miss rate depending the nature of the test and

evaluation. On the x-axis, Simulation Time Unit is plotted. Simulation time unit (STU)

metric represents the periodic tick of the scheduler when new schedules are calculated

each time and deadline evaluations are done. It is internal to the simulation engine

and is not directly influenced by the clock speed of the CPU; thus making simulator

executable on different processors of varying speed without affecting the integrity of
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the results. Higher CPU frequency of the machine where simulations could be run will

only speed up the overall completion time of the simulations. This will not affect sim-

ulated time unit or any other data in that matter. The STU value is set to the average

time of the shortest job life in the queue, which is event generation in ATLAS exper-

iment (see C.1), to make sure all job deadline calculations falls under or within each

scheduling cycle.

In the example chart, the success rate line shows the overall job throughput at any

given moment representing total number of jobs that has successfully completed their

deadlines. The aim is to achieve highest possible value to reflect the positive impact

of algorithmic optimizations. The termination rate line shows the jobs that were termi-

nated either because there weren’t any physical resources available on the system or if

their duration-deadline ratio was less than XThresh acceptance at that time. As a result,

algorithm terminates such jobs which will eventually get resubmitted in the system.

This value should be as low as possible for the optimization algorithms. The last met-

ric is deadline miss rate which shows number of jobs not meeting their deadline at any

given moment. The goal is to keep the value as low as possible.

The second set of results are relevant to two delta adaption and probabilistic optimiza-

tion algorithms only. An example of these results are shown in figure 6.1(b). These

results help understanding how these algorithms operate in determining both real-

time failure rate and XThresh. Real-time failure rate is calculated by using exponential

smoothing technique and only shows the snapshot of the system at a given time. This

failure rate metric helps the system to continuously attempt to converge to lower fail-

ure rates and in the process algorithm’s XThresh values are changed. This is described

in detail in section 4.2.5.

The third set of results are also related to delta adaptation and probabilistic optimiza-

tion algorithms. The graphs, as seen in figure 6.9, shows how long each algorithm takes

to execute and determine new XThresh values. The time measurements for execution is

in real-time (y-axis) and plotted for execution count (x-axis).
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FIGURE 6.1: In first graph, an example of performance curve related to success rate,
termination rate and deadline miss rate is shown. This shows the general behavior.
The second chart presents the evolution of internal parameters of the algorithms and

their inter-dependent relationship (namely real-time failure rate and XThresh.

105



Chapter 6 Optimization Experiments for Deadline Miss Rate

6.1.2 Experimental Design

While simulating the worker node, machine configuration similar to those of previous

experiments (physical servers) were fed into the simulator. These configurations are

4 CPU cores and 8GB RAM for each simulated server. First simulations were run in

training phase to derive some initial parameters. In this phase, job queue length of

10,000 hours of workloads (1000 jobs) was executed and results were gathered. This

provided sufficient information to tune the initial parameters. Once this was achieved,

then the simulations were run with derived parameters for longer periods and large

job queue length of 100,000 hours of workloads (10,000 jobs). This phase is referred

to as the steady phase for the experiments. The tuning of initial parameters which

were needed for execution and control purposes has direct relevance to the scheduling

strategies. These parameters are explained below:

1. Execution mode: Physical or Virtual - To determine whether to add overhead on

to the job duration. No overhead for physical mode.

2. Overhead mode: Dynamic or Static - To calculate virtualization overhead dy-

namically based on type of executing workload or to keep it static to a single

value. The overhead has been measured from previous experiments, see section

5.3, and it ranges between 5-15% for dynamic scheduling strategies. For static

virtualization, a single value of 15% was used as overhead.

3. CPU Core: Number of CPU’s to be simulated (multiples of 1).

4. Memory Units: Amount of physical memory available in the system (multiples

of 1GB).

5. Alpha α value: The amount of weight added as a smoothing coefficient to calcu-

late success rate which is needed to derive real-time failure rate in the system (see

equation 4.9).

6. Delta Step value: The amount of x threshold to be incremented or decremented

when failure rate is higher or lower than target failure respectively.

7. Target Failure rate: The acceptable failure rate at any given moment in the sys-

tem; beyond which relevant scheduling algorithm 4.2.6 will activate.
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8. x Threshold: The initial value of x threshold set to during training phase, see

section 6.2.

9. Probability Threshold (PThresh): The initial probability threshold set for the sta-

tistical adaptive algorithm.

6.2 Results

The results for the simulation studies are discussed in detail in this section. As de-

scribed earlier, scheduling simulator have to be trained for auxiliary parameters before

core algorithms, section 4.2.6, to be evaluated. Thus, first the results of the training

phase of these parameters are presented followed by results from the steady phase of

the experimentation.

6.2.1 Training Phase

As mentioned earlier, there are many different input parameters in the simulation such

as memory and CPU, frequency of the scheduler, deadline buffer (set to 5% of the job

duration to represent tight deadlines), alpha α and delta ∆x values for the delta adap-

tive algorithm.The simulator was first run in the training mode to measure optimal

values for the above-mentioned parameters before running the actual simulation. In

this section, results of this training phase are presented.

6.2.1.1 Resource Optimization

ATLAS experiments have a policy to allocate one CPU core for each job [134]. This

is to prevent job starvation as its workloads are of mixed type with different require-

ments for machine resources and has different execution times. Broadly they could be

categorized into short (2 - 6 hrs), medium (6 - 12 hrs) and long (12 - 24 hrs) durations.

In pervious ATLAS experiments, see chapter 5, the impact of amount of CPU and mem-

ory allocation on the job execution was studied with real jobs. Therefore, it was deemed

appropriate to study their impact on overall job throughput and termination rate of the

simulator especially to validate the perviously determined resource allocation for each
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job. ATLAS job performance studies have shown that 2GB of memory for each CPU

core, when executed in a VM, results in near-optimal performance that tilts the balance

in favor of virtual machine based execution. Secondly, it is important to keep overall

termination rate of jobs low in the system to make sure overall system utilization rate

also stays high.

For the resource allocation related experiments presented in this section, four resource

ratio are defined; res1, res2, res3, res4. These resource ratio represents amount of mem-

ory (GByte) allocated for one CPU core. These ratios were set to 1GByte per CPU core,

1.5GByte per CPU core, 2 and 3 GByte per CPU core respectively. Resource ratio can

also be expressed as resi =
M

C
where M denotes memory (GByte) and C donates num-

ber of CPU core on the compute node.

Training simulations were ran for these four different resource ratio configurations.

Figure 6.2 shows the results for these experiments. In these graphs, success rate and

job termination rate is plotted on y-axis as a ratio, therefore the maximum possible

value is 1.0 which represent the highest possible success rate or termination rate. The

data points were collected periodically for every scheduler cycle which is measured in

simulation time and plotted on x-axis. For these experiments, termination rate only

included jobs that were cancelled due to lack of availability of machine resources.

In the first graph, res3 and res4 achieves highest over all success rate. res1 has lowest

success rate which shows that most of the time limited machine resources were busy

and any new jobs keep on getting terminated prematurely. Similarly, termination rate

is lowest for res3 and res4 (not clearly seen on the graph as it hovers around 0.0 on y-

axis). Additional results related to overall resource utilization rate are further discussed

in appendix F.

For all other experiments, res3 (2 GByte of memory per CPU core allocated to each VM)

was used as a golden middle for resource ratio with highest success rate and lowest ter-

mination rate. This also matches the configuration of physical servers used in ATLAS

performance experiments which is necessary to make sure simulated conditions are

closer to the real system as discussed in chapter 5.
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FIGURE 6.2: Job Success and Termination rates for different resource ratios. The first
graph shows success rate results where res3 has one of the highest success rate and
res1 has the lowest. The second graph plots termination rate for all four configurations

where both res3 and res4 has the lowest job termination rate.

6.2.1.2 Alpha and Delta x Optimization

The next step was to train the algorithm to select initial alpha α and ∆x values1 which

could be then used for the steady phase. These parameters are linked to how fast delta

adaptation algorithm should react whenever real-time failure rate exceeds the set tar-

get. This is explained in more detail in section 4.2.4.

Alpha α represents the weight that is added to the success rate when real-time failure

rate is calculated (see also section 4.2.5). A very high value of alpha α will result in

triggering the algorithm to take action when it might not be necessary, and too low

alpha α can result in very slow response from the algorithm. Similarly, a very high

value of ∆x will result in the acceptance criteria to be changed too much that defeats

the purpose of closely following the behavior of jobs failure rate in the system, and a

1Marked as alpha 1, alpha 2 and alpha 3 for alpha αi and marked as delta 1, delta 2 and delta 3 for
∆x values on the graph.
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very low value of ∆x will cause a very slow change in acceptance threshold leading

to lower job throughput since more jobs will get prematurely terminated. Therefore, a

suitable ratio has to be determined for these two parameters. This is further described

in equation 4.7 and 4.9.

Due to the interlink between these parameters, various trials were made and it was ob-

served during training phase that as long as their inter-ratio was some where between

a factor of 5 to 10 then it keeps the two control loops separate (alpha α to calculate

Fmeasured and ∆x to update XThresh). It was noted that their effective values resided

some where around the range of 0.05 - 0.1.

Therefore, first training phase experiments were run with a constant ∆x value of 0.1

while three different values of alpha α(0.01, 0.05, 0.1) were tested. These three config-

urations for alpha α are labelled as α1, α2, α3. Then the experiments were run in the

reverse order with one value of alpha α=0.05 for three different ∆x values (0.05, 0.1 and

0.2) labelled as configurations ∆x1, ∆x2, ∆x3.

The final and summarized results, as seen in figure 6.3, show the evolution of overall

deadline miss rate for both sets of experiments. Both charts in the figure shows that af-

ter initial simulation start up noise; deadline miss rate begins to converge in the range

of 0.14 - 0.18 for all values of alpha α and ∆x. This is expected behavior since the algo-

rithm is supposed to converge to a value beyond which it can’t optimize. That limit in

optimization is due to the fact that some jobs will be terminated to allow those jobs that

could succeed despite being missing their deadline due to underlying virtualization

overhead. That’s why the aim is to select near-optimal values so that this convergence

takes place as fast and as smoothly as possible.

The system is not influenced by the job arrival rate as new jobs are only introduced into

the worker node once a slot is available, otherwise the job is kept in waiting stage. This

approach is similar to the one deployed on production grids.

The mean values of α and ∆x for overall success rate and deadline miss rate are shown

in table 6.1. These results shows that α2=0.05 and ∆2=0.1 achieved the highest success

rate of 0.93 with lowest deadline miss rate of 0.14. This confirms that these are the best

values for success rate, deadline miss rate and overall convergence rate; therefore these

values were selected as initial values for the steady phase of the experimentation.
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FIGURE 6.3: Deadline miss rate results for three configurations of Alpha α and Delta
∆x values. Both graphs show that deadline miss rate converges to the point beyond
which the algorithm can’t optimize. This convergence value is in the range of 0.14 -

0.18.

Configuration 1 Configuration 2 Success Rate Deadline Miss Rate
α1=0.01 ∆x2=0.1 0.92 0.17
α2=0.05 ∆x2=0.1 0.93 0.14
α3=0.1 ∆x2=0.1 0.90 0.18

∆x1=0.05 α2=0.05 0.92 0.16
∆x2=0.1 α2=0.05 0.93 0.14
∆x3=0.2 α2=0.05 0.93 0.15

TABLE 6.1: Performance results for α and ∆x training configurations. The results
shows that both α2 and ∆x2 achieved highest success rate and lowest deadline miss

rate.

This is further confirmed that for α2=0.05, ∆x3=0.2 begins to show the affects of fast

convergence and for ∆x2=0.1, α3=0.1 results in a stable data line. Therefore, α2=0.05

and ∆x2=0.1 were selected as they begin to affect each other’s performance positively,

and thus are adequate for steady phase.

111



Chapter 6 Optimization Experiments for Deadline Miss Rate

6.2.2 Threshold Determination

Similar tests were run to train the algorithms for initial values for XThresh since this is

one of the most important parameter in the system. It is used by both delta adaptation

and probability algorithms although each of them determines the value in a different

way. XThresh acts as an acceptance criteria for these two algorithms.

If the acceptance is too high or too low then algorithms efficiency is reduced since

there is no room for it to optimize. A very lenient acceptance threshold will result in

increased job submission/acceptance by the scheduler which will increase job deadline

miss rate as some jobs cannot be optimized. A very strict acceptance rate will result

in more jobs being prematurely terminated, and hence decreasing the overall system

success rate.

The threshold level is learnt and adapted by the algorithms automatically in real-time

as deadline miss rate goes up or down. Therefore, a maximum and minimum value are

also set for XThresh to make sure that algorithms don’t go out of valid XThresh range

incase of a sudden rise or fall in deadline miss rate. The maximum limit for XThresh is

0.9 and minimum value is 0.1, and both algorithms try to select best performing values

with in this range during their execution.

The results presented in this section are to determine initial value of XThresh for each

of the algorithms. An appropriate initial value will result in faster convergence to the

steady phase and near optimal performance. The results for these experiments are

discussed in the following sub-sections.

6.2.2.1 Delta Adaptation Algorithm

Delta adaptation (DA) algorithm ((see section 4.2.6, algorithm 4) selects the value by

making smaller increments or decrements to XThresh. The increment or decrement

step is ∆x and set to 0.1 as derived from previous experiments. Five sets of initial

XThresh values were identified; 0.3, 0.4, 0.5, 0.6 and 0.7. The objective here was not

to test all possible values since the algorithm will learn the appropriate value during

runtime, that is why 0.2 and 0.8 were excluded as they are too close to the minimum

and maximum limits. These values were then tested during the training phase.
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The results from the experiments are presented in 6.4 showing only overall success rate

and termination rate. Deadline miss rate data is not relevant in the selection of initial

XThresh as the aim here is to select a value that enables the system to learn and converge

quicker at the start up of the simulations between 0 - 200 Simulation Time Unit (STU).

The first chart 6.4(a) shows the success rate profile for different XThresh configurations.

XThresh values of 0.3 and 0.4 were slower to increase their initial success rate and went

up to 0.85. This shows that perhaps the initial values were too low and algorithm

responded slowly to optimize success rate. On the other hand, XThresh values of 0.5,

0.6 and 0.7 shows similar success rate profile. They manage to converge to a success

rate value of higher than 0.8 by 50 simulation time units.

This provides one half of the information that an initial XThresh value lies some where

between 0.5 - 0.7. To further tune the XThresh value between 0.5 - 0.7, let’s look at

termination rate data in chart 6.4(b). It shows that 0.7 value for XThresh converges

slower than other values between 0 - 200 simulation time units. This implies that this

value is higher than the near-optimal value of XThresh, and therefore algorithm tried

to reduce it using delta function as seen from the descending stair-like behavior. This

leaves XThresh values of 0.5 and 0.6 where former shows a smooth convergence and

latter has lowest termination rate during initial phase.

Based on these results, XThresh value of 0.6 was selected as initial value for delta adap-

tion algorithm as its flexible (slightly higher than 0.5) and performs well for overall

success rate and termination rate.
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(a) Success rate evolution for XThresh values ranging between 0.3 - 0.7. The initial values of 0.5 - 0.7 appears
to achieve a higher success rate much faster than the other values between 50 - 200 simulation time unit.
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(b) Termination rate evolution for XThresh values ranging between 0.3 - 0.7. All values shows a value low
termination rate and converges to a value less than 0.02 by the end of the simulations.

FIGURE 6.4: Job success rate and termination rate for five configurations of XThresh to
determine the starting value during the steady phase.
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Probability
Threshold

Overall Success
Rate

Deadline Miss
Rate

0.5 0.87 0.18
0.6 0.85 0.19
0.7 0.85 0.19
0.8 0.84 0.20
0.9 0.83 0.21

TABLE 6.2: Performance results for Probabilistic Adaptation (5) optimization algo-
rithm to determine probability threshold.

6.2.2.2 Probabilistic Adaption Algorithm

Probabilistic Adaptation algorithm (algorithm 5 in section 4.2.6) uses cumulative dis-

tribution function to determine XThresh. To achieve this it requires to build a sample

space first, and then execute the functions on the collected data. To achieve this one has

to filter the date set based on a probability value.

This probability value is referred to as Probability threshold (PThresh). It represents the

probability of success of a job for a given XThresh at any given time. e.g. 0.5 PThresh

represents that CDF function should select a XThresh value which has 50% or higher

probability of success based on the collected sample space; this will vary over time as

the rate of job success and failure changes during the course of simulation.

The training phase for PA algorithm was run with initial XThresh value of 0.6 as se-

lected in the previous experiments and five different sets of PThresh were tested against

it. The set of values of PThresh were: 0.5, 0.6, 0.7, 0.8 and 0.9. Values less then 50%

probability (PThresh<0.5) were excluded from testing. The rational behind this is that

the jobs with a lower probability of success than 50% will be terminated, resulting in

lower utilization.

Table 6.2 shows the performance comparison for these values. Experimental results

suggest that by increasing the success probability threshold from 0.5 to 0.9; reduces

overall system success rate and increases deadline miss rate. This is primarily because

it reduces the range of value of job duration-deadline ratios that succeeded, and as a

result PA algorithm selects higher XThresh which causes more jobs to be terminated -

hence higher deadline miss rate. Based on these results, 0.5 success probability thresh-

old appears to a good starting point for this algorithm.
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For these experiments, initial value XThresh was set to 0.6. During experimentation

with PThresh = 0.5, it was observed that the algorithm selected a value of 0.25 for

XThresh once it was activated (shown in figure 6.5). This value was held constant as

compared to the DA algorithm (see section 6.2.2) which has to adapt XThresh step by

step as failure rate fluctuates. In this case, the failure rate didn’t go beyond the target

failure rate and therefore the algorithm kept the XThresh constant. Based on the above

experiments, the initial values of PThresh=0.5 and XThresh=0.25 were selected for PA

algorithm in the steady phase of the simulations.

FIGURE 6.5: XThresh and real-time failure rate evolution for PA algorithm. It shows
that PA algorithm process of selecting XThresh is much more stable and less volatile.

The initial value of XThresh for PA algorithm seems to be around 0.25.
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6.2.3 Steady Phase

6.2.3.1 System Performance

Once the key initial values for the simulation parameters were determined during the

training phase, then the experiments were run for a longer period of time to evaluate

the performance of the algorithms. To achieve this, simulated job queue was extended

to have more than 10k job (100,000 execution hours) for each of the five sets of schedul-

ing strategies, as described in section 4.2.6, to simulate ATLAS workloads running on

virtual machines.

Standard strategies

The five strategies are divided into two groups to provide a comparison between the

results. The first group consisted of the following:

1. No Overhead (NO) for physical baseline.

2. Static Overhead (SO) based execution with fixed value of overhead of 15%.

3. Dynamic Overhead (DO) based execution where overhead is set to either 5%, 10%

or 15% depending on the profile of the jobs. If only memory intensive jobs are

running, then the overhead drops to the lowest. If mixed workload are running

the overhead is set to 10%. If CPU intensive overhead’s are running, then 15% of

overhead is set.

The results for the simulation related to the first group are shown in figure 6.6 with

separate results for overall success rate and deadline miss rate. It shows that physical

baseline (NO) has highest success rate as expected since theoretically no job will miss

their deadline in absence of virtualization overhead for these experiments. For the

second strategy when overhead is applied statically (SO) irrespective of the nature of

the jobs running, then success rate drops to around 0.45 and deadline miss rate reaches

to highest level of value 0.55. This helps in defining an optimization space for overall

system success rate and deadline miss rate which lies between the boundaries of NO

and SO upper and lower bounds respectively.
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Now theoretically speaking, if the virtualization overhead is to be applied dynamically

(DO) depending on the nature of jobs being executed (CPU intensive or memory in-

tensive); then the results should be between NO and SO strategies. The results for DO

strategy shows that success rate improves by 30% and deadline miss rate is reduced to

25% as compared to 55% in SO. This result is not surprising as the jobs in the global

queue are of mixed types and randomized; therefore virtualization overhead in DO

strategy hovers between 5% and 15%.

The interesting aspect in these results is that deadline limit is set to 5% for all jobs

meaning that their deadlines are only +5% in addition to their required duration. Now

with dynamic overhead range up to 15%, the results shows that 75% of the physical

performance is achievable. This was also shown by the experiments conducted for real

ATLAS tasks running in Xen virtual machines (see chapter 5 for more details).
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FIGURE 6.6: Job Success and Deadline miss rates for NO, SO and DO algorithms.
Physical baseline (NO) has the highest success rate. By applying virtualization over-
head statically (SO) reduces success rate and increases deadline miss rate. For dy-
namically adjusted overhead (DO), the system performance is improved by 30% for
success rate and deadline miss rate is brought down to 25% when compared against

static overhead.
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Algorithm Overall Success
Rate

Deadline Miss
Rate

Delta Adaptation 0.83 0.20
Probabilistic
Adaptation

0.87 0.17

TABLE 6.3: Performance results for Delta Adaptation (4) and Probabilistic Adaptation
(5) optimization algorithms

It has to be noted that so far no optimization algorithm has been applied. This is to

make sure that simulator is able to reproduce results which are aligned with previous

studies to reduce margin of error in simulations. Once the performance results of 75%

are achieved with the simpler approach of DO, it opens up a window of optimization

between 75% and 99%.

Optimization strategies

The second set of strategies consist of two optimization techniques described in chapter

4. They both use dynamic adaptation of virtualization overhead (DO) and are grouped

together to compare them against each other:

1. Optimization algorithm based on Delta ∆x adaptation of XThresh (DA).

2. Optimization algorithm based on probabilistic threshold to select XThresh (PA).

An overview of the final averaged results for success rate and deadline miss rate is

shown for these techniques in table 6.3. Both algorithms have managed to increase

success rate from 0.75 of DO strategy to 0.83 for DA and 0.87 for PA algorithms. The

average of DA and PA success rate is 0.84 which is 7.7% higher then DO. For deadline

miss rate, PA algorithm has performed better than DA. This is primarily because it

uses a more accurate mechanism to select appropriate XThresh value using cumulative

distribution function which results in lower termination rate.

On the other hand, DA algorithm employs different mechanism which takes longer

time to select an appropriate XThresh value and during this period results in termina-

tion of some jobs. The average of DA and PA deadline miss rate is 0.185 which is 20%

less then simpler dynamic adaptation strategy.
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FIGURE 6.7: Job Success and Deadline miss rates for DA and PA algorithms. Both
algorithms follows similar trajectories for success rate. For deadline miss rate, PA
algorithm adapts slowly and smoothly where as DA algorithm is more reactive and

volatile.

Figure 6.7 shows the evolution of success rate and deadline miss rate for DA and PA

strategies. It has to be noted that deadline miss rate shown in this figure is cumulative

figure of aggregated deadline missed during the whole simulation, and therefore has

an upward trend. As shown in the second chart, PA data line maintains a more smooth

transition while deadline miss rate rises between 1000 and 5000 simulation time units.

On the other hand, DA algorithm is faster to respond due to small incremental changes

made to XThresh to reduce real-time failure rate but that makes the algorithm slightly

more reactive for deadline miss rate profile between 0 - 500 simulation time units.

After seeing how deadline miss rate evolves for either of the strategies, it’s quite re-

vealing that how both algorithms differ internally while selecting XThresh as shown in

figure 6.8. It shows the evolution of real-time failure which is calculated dynamically

using exponential smoothing technique and is the triggering point for both algorithms.

This results in adaptation of XThresh to reduce the measured failure rate.
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(a) DA x threshold and failure rate evolution

(b) PA x threshold and failure rate evolution

FIGURE 6.8: XThresh and failure rate evolution results for Delta Adaptation (4) and
Probabilistic Adaptation (5) optimization algorithms. Delta Adaptation algorithm re-
sulted in a very volatile XThresh value as compared to Probabilistic Adaptation algo-

rithm.
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Figure 6.8(a) shows that DA algorithm is very reactive and it’s XThresh goes up and

down between maximum and minimum ranges many times whenever it is unable to

reduce real-time failure rate. Contrarily, PA algorithm selects the threshold using a

probabilistic approach from a sample space and makes it more accurate and stable. As

seen from figure 6.8(b), it slowly changesXThresh from 0.25 to 0.15 in response to failure

rate fluctuations. Eventually both algorithms deliver similar performance results. In

both figures, real-time failure rate is very volatile as it is set to change quickly so that

adaptive algorithm gets activated.

6.2.3.2 Algorithmic Execution Performance

The performance results from the previous section have shown that PA is slightly better

than DA algorithm in achieving higher success rate, lower deadline miss rate and stable

evolution of XThresh. There is another aspect to these algorithms that require attention,

and that is their execution time; how fast they execute. Along side performance results,

their execution time was measured in real time to evaluate what sort of algorithmic

overhead footprint they might have.

By looking at the execution of the two algorithms over the course of the experimenta-

tion reveals that DA algorithm takes far less time than PA algorithm as shown in figure

6.9. This is due to the fact that DA algorithm uses a delta step to update XThresh and

this process is very fast as it requires few CPU cycles. On the other hand, PA algorithm

first updates its sample space; then apply cumulative distribution function to select the

next value for XThresh which consumes far more CPU time.

Now by looking at the data presented in figure 6.9(a), it shows on average DA algo-

rithm takes less than 0.015 sec and never goes beyond 0.04 seconds. For PA algorithm,

as the results shown in figure 6.9(b), in some instances the time it takes to execute can

reach up to 3 sec. This represents the delay in getting appropriate XThresh by proba-

bilistic function when there is a larger divergence in the sample space (wide range of

XThresh with large variance between two consecutive values) . When the divergence in

the sample space of collected ratio’s for succeeded jobs is smaller, then PA algorithm

also executes well below of 0.1 sec on average.
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This implies that DA would be a better candidate for those systems where scheduling

overhead is of critical importance especially when the system is running short time-

spanned jobs. PA algorithm is much better suited for systems where scheduling over-

head would have less impact on over all system performance, and accuracy of deter-

mining a threshold is more important factor.
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(a) DA execution time
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FIGURE 6.9: Execution time measured in real-time (seconds) for Delta Adaptation (4)
and Probabilistic Adaptation (5) algorithms is shown in this figure. Delta Adaptation
algorithm appears to determine XThresh value much faster. Probabilistic Adaptation
algorithm takes longer to execute when there is large divergence in sample space but

it determines XThresh value more accurately.
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6.3 Summary

This chapter has presented the empirical results related to optimization algorithms and

the measurements made to evaluate their performance related to overall job through-

put, deadline miss rate of the jobs and the systematic behavior of the simulator. The

simulator engine has to be first trained to determine initial values for certain parame-

ters such as; deriving optimal weighted alpha α of value 0.05 that is applied to the real-

time failure or success rate; delta ∆x of value 0.1 to increment or decrement XThresh

values and initial XThresh. This was achieved by training the algorithms for 10,000

simulated hours of workload execution.

Similarly for probabilistic algorithms, the probability threshold (PThresh) for acceptance

criteria was set to around 50%. It has to be noted that probability threshold only plays

the role to select acceptance threshold to whether to allow a job to run or to termi-

nate it when it first appears to miss it’s deadline. The same rule applies to weighted-

alpha based adaptive algorithm where XThresh acts only as acceptance threshold for

jobs when they first appear to miss their deadlines.

The steady phase of the simulator was run for 100,000 simulated hours of workload

execution where all strategies were evaluated to benchmark physical baseline and vir-

tual baseline with maximum available resources. Next step was to run the simulator

with randomized workloads at full system capacity set by available memory and cpu

cores, and with deadline limit set at 5% of the job execution. First, static virtualization

overhead of 15% was introduced in the system. The system performance was reduced

by more than 50%. Then by applying virtualization overhead dynamically according

to the job types (memory intensive, cpu intensive, network intensive) which was learnt

from preliminary studies presented in chapter 5, system performance was improved

by 30% when compared against static overhead.

With system success at 75% of the physical baseline with dynamic virtualization over-

head, this opened the space for introducing more advanced algorithmic techniques

that provided further optimizations. Two adaptive algorithms has been evaluated for

system success rate (job throughput) and job deadline miss rate. The first adaptive ap-

proach is based on weighted-alpha (Delta adaptation algorithm) where a incremental

delta function is used to adjust the acceptance value of XThresh.
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The second adaptive algorithm is based on cumulative distributed function (Proba-

bilistic Adaptation) showed similar gains in performance of about 11% in system per-

formance when compared to dynamic application of virtualization overhead. Though

both weighted-alpha and statistical technique showed similar performance gains but

they behaved slightly differently. Weighted-alpha algorithm was faster to react and

took less time to execute where as probabilistic approach took longer to determine ac-

ceptance criteria but did so in more stable manner (less fluctuations for real-time failure

rate).

Thus, both DA and PA algorithms were able to provide more than 85% of the perfor-

mance (in terms of job throughput) when compared against physical baseline and helps

answering the final research questions of this thesis.

This chapter has answered the last remaining research question number 3 (see section

1.1) to determine optimization techniques. The results presented in this chapter has

shown that both delta adaptation and probabilistic approaches to reduce the impact of

virtualization overhead on job deadlines are promising with the advantage that they

are applicable to other type of jobs or systems.

This is due to the fact these techniques are not specific to CERN’s ATLAS jobs but

rather underlying system conditions which are similar for other HPC workloads. If

some other workloads were to be used instead of ATLAS, then the only change could

be the virtualization overhead range. This could be easily determined by running the

workload in real virtual machines, and getting the corresponding overhead ranges for

low, medium and high overhead. These values will have to be updated in the simu-

lator, and the optimization algorithms will optimize the deadlines based on the new

overhead range. If the upper limit of the range is higher then 15% then the overall

deadline miss rate could increase due to the larger overhead value.

One limitation of these approaches is that the simulator has to be trained prior to run-

ning to optimize some parameters. It is aimed to over come this limitation in future

research, and has been highlighted in the future works chapter as well.
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Conclusion

“No great discovery was ever made without a bold guess.”

Isaac Newton

Scientific grids have to cater for the needs of different user communities such as high

energy physics, biotechnology, protein folding research, astrophysics and other HPC

applications. The workloads from these domains often differ in resource requirements

and policy constraints. Executing these workloads on physical machines puts enor-

mous administrative burden on managers of the grid to maintain computational nodes

in consistent state all the time while going through ever increasing software upgrades.

It has been increasingly shown in the vast body of research conducted by other re-

searchers that running these workloads in portable and self-encapsulating execution

environments (virtual machines) could be one of the answers to overcome these chal-

lenges.

As a result, more and more focus and attention has been given in the past few years

to the issue of how to integrate virtualization in the grid infrastructure while overlook-

ing its overhead impact. Systems where tasks have imperfect execution estimates leads

to the serious problem of unpredictability in scheduling those tasks according to their

initial deadlines which increases due to underlying virtualization overhead. This chal-

lenge is further compounded by the grid and cloud computing utility model where

underlying infrastructure properties are hidden from the applications and users, and
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making it harder to empirically benchmark the performance penalty on HPC work-

loads incurred due to virtualization overhead.

This thesis has attempted to address this challenge, and developed innovative ways to

overcome it. Question 1 (see section 1.1) is related to integrate virtualization into scien-

tific grids that are already in production use and heavily used by scientific application.

Building upon a real world scientific grid such as LCG of CERN’s LHC experiment,

see chapter 2, it has been demonstrated that an existing job deployment framework,

PanDA pilot job framework in this case, can be modified in an non-invasive way to

achieve both virtualization at the worker node level while achieving transparency for

the end user and grid applications.

This work builds upon the integration of virtualization hypervisor, using a custom de-

veloped virtual machine deployment engine, into the grid to enable pilot job frame-

works to deploy their jobs in virtual machines with out modifying either the grid ser-

vices or the local batch system. This approach limits the amount of changes required to

higher software layers in the grid middleware.

A detailed discussion on the factors contributing to virtualization overhead due to the

scheduling and I/O architectural of virtualization technology has been presented in

chapter 3. To reduce the network I/O overhead, an alternative data transfer mecha-

nism was investigated by using administrative domain of the hypervisor as discussed

in chapter 5. This provides 10x better network throughput for downloading and up-

loading data to the grid for each job as compared to when done in the virtual machine.

This study has shown that memory size allocated to the administrative domain of the

hypervisor is also an important factor to look at and should not be allocated less than

one gigabyte of memory. This is very important for those grid sites which deploy their

grid storage elements in virtual machines since lower available memory could lead to

network throughput dropping by one-sixth of the original bandwidth on the local net-

work. The primary reason for this drop in network throughput is due to the scheduling

overhead related to buffering and forwarding of the network packets from hypervisor’s

administrative domain to the virtual machine. This process consumes some of CPU cy-

cles allocated to a given VM.
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Another important contribution of this research has been to provide a deeper insight

into the performance of ATLAS jobs when executed in virtual machines. Empirical

data from the experiments, see chapter 5, shows that virtualization layer can lead to

a performance loss of more than 50% in some cases. The resulting performance is an

important factor to be considered by grid sites that have virtualized or plan to virtualize

their worker nodes. This addressed research question number 2 of this thesis.

To improve this performance penalty at the hypervisor, number of optimization config-

urations based on Xen hypervisor’s schedulers and CPU parameters such as capping

and weight ratios has been investigated. Results have shown that minimum CPU cap-

ping cannot be set to less than the factor of 1. And non-work conserving (NWC) mode

performs better then work conserving (WC) in Xen’s credit scheduler when memory in-

tensive, cpu intensive and network intensive applications are mixed and executed in

parallel in virtual machines on the same physical host. The resulting performance was

brought within range of 5-15% of overhead penalty when CPU-bound and memory-

bound are mixed and dynamically managed.

Despite the advantages of fault and performance isolation of virtualization, the virtual-

ization overhead still poses a significant challenge for HPC workloads to achieve both

a reasonable execution performance with out forfeiting their deadlines. Experimen-

tal studies conducted in this thesis and empirical results gathered shows that this is

achievable.

Since some jobs are more CPU or memory intensive than the others and vice versa, and

depending on what type of job is running in the virtual machine can either increase

or decrease virtualization overhead. For example, if one VM is extensively using the

network bandwidth while another VM is executing CPU bound physics algorithms on

the same host machine, then the overhead is going to be much higher since all VMs

require additional CPU cycles to complete their tasks which are shared among them.

In another instance, the overhead can be very low if VM’s are executing less CPU inten-

sive tasks. This varying degree of overhead can create fluctuations in the grid system

for jobs to complete within their initial deadline estimates. And if these estimates are

imprecise, then virtualization layer could significantly influence grid efficiency by re-

ducing number of jobs completing within their deadline estimates.
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The traditional approach of just throwing more resources to a virtual machine does not

solve this research problem, but rather leads to lower resource utilization when avail-

able CPU core in the physical machine is equal to number of simultaneously running

virtual machines. This highlights the need to employ optimization techniques that are

adaptive and responsive to job deadline constraints when virtualization overhead fluc-

tuates and takes corrective action in real-time. In this thesis, two different optimization

techniques are evaluated, and are discussed in chapter 4.

The empirical results shows, see chapter 6, that by dynamic adaptation of virtualization

overhead when combined with statistical and signal processing methods to manage

job deadline miss rate is most effective in delivering higher job throughput. Both op-

timization techniques reduced job deadline miss rate by 10% when compared against

dynamic adjustment of virtualization overhead, and increased job success rate by 40%

in comparison to static overhead based evaluations. Development of these optimiza-

tion techniques is the primary contribution of this thesis to the body of knowledge in

the context of virtualization and grid computing, and address the final research ques-

tion number 3 of this thesis.

Finally, it has been empirically demonstrated that virtualization technology can be de-

ployed on grid computing to execute HPC workloads albeit performance overhead.

The performance overhead is manageable and can be optimized to reap the benefits of

flexibility, portability and customization provided by virtualization technology. These

technologies will further evolve and influence the future direction of grid and cloud

computing for HPC workloads in years to come.

129



Chapter 8

Future Work

“For tomorrow belongs to the people who prepare for it today.”

African proverb

Virtualization technology and emerging cloud computing model is remarkably shap-

ing up the future directions of how computations will be done both for personal and

HPC needs. Faster networks, multi-core processors and accelerated developments in

graphical processing units (GPU) combined with virtualization are bringing about a

paradigm shift. This thesis has looked into integration of virtualization technology

into the scientific grids, evaluated its performance impact and developed innovative

techniques to improve both system performance and job deadline miss rate.

The work related to optimization algorithms has been based on simulations of the grid

worker node. In future work, application of the optimization algorithms to the real grid

environment at CERN can provide valuable insights and can help to further improve

their results.

In the mean while, simulation engine can be further extended as well to explore ad-

ditional issues related to job deadline miss rate and overall job throughput. The opti-

mization algorithms used in the simulations were restricted to a single computer node

in the cluster. This led to premature termination of some jobs which either appeared

to miss their deadline due to higher overhead or whenever there were less physical

resources available on the machine. This could be improved by extending the scope of
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the optimization algorithms to many nodes in the cluster. All jobs that were terminated

can essentially be migrated to another node in the cluster where they can complete their

execution if live-migration of virtual machines concept is integrated into the simulator.

This would also require consideration of factors such as available network bandwidth

required for migration and migration time of the VM. A large ATLAS VM could create

increase network traffic, and if multiple VM have to be migrated, then the network

link could get saturated. This will affect other network applications. Furthermore, if

the migration of the VM takes too long even if the destination host meets job deadline

requirements. A job might still miss it’s deadline due to increased migration time as

well.

Thus, the scheduling algorithm must consider the available network bandwidth for the

migration and compensate for it to make sure it fits with in the job deadline timescale

when allocating resources on another node in the cluster. These new parameters would

have to be incorporated in to the simulator. The empirical results from such experimen-

tation will provide further data to evaluate the effectiveness of the algorithms for many

node as compared to present results for single node.

Another approach to reduce job termination rate is to suspend a VM but not migrate

it if migration time is too high. All VMMs provide dynamic reduction and ballooning

of virtual machine resources at run time (technique a.k.a sliver resizing), and even to

pause a VM and saving it’s persistent memory state to be restarted later on the same

machine. Currently, the adaptive deadline-aware algorithms presented in this thesis

doesn’t utilize this mechanism into the simulation process. Theoretically speaking, this

should also improve job success rate but it has yet to be evaluated.

Reducing energy footprint of the data centers is also becoming an active area of research

where number of temperature-aware and energy-aware job allocations mechanism are

being studied by the academics and industry (see section 3.3.3). Recently, European

Network and Information Security Agency released a report on the security of cloud

computing, data protection and energy efficiency to move towards low carbon com-

puting [135]. It proposes that data center must consider micro-generation of energy at

their sites to support their computing infrastructure [136]. The provisioning matrix for

the adaptive algorithm could be further expanded to incorporate hotspot management

for worker nodes.
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CERN and LHC Machine

A.1 CERN

CERN1 is an European Organization for Nuclear Research and worlds biggest parti-

cle physics laboratory. After the devastation of WWII, European countries lacked re-

sources as individual countries to compete with United States of America and Soviet

Union in the field of particle physics research. As a result, CERN was established in

1950s as a joint research organization where all of its member states would pool in re-

sources to have a centre of excellence for Particle Physics. For historic reasons, it was

built in Switzerland and has later expanded in to neighboring France.

CERN have been building one of world’s largest, to this day, particle physics collider

called Large Hadron Collider (LHC) in a 27 km long underground tunnel where sub-

atomic nuclear particles such as proton (which is extracted from Hydrogen atom, from

the family of hadron, hence the name of the machine) will be accelerated to near speed

of light and smashed into an incoming proton particle beam to create new exotic par-

ticles and conditions of matter similar to ones found at the birth of the universe. This

very machine is built on two major discoveries made a century ago: ability to liquify

helium at 2.17 Kelvin (K) and cooling of magnets with it to lower their electrical resis-

tance or ”superconductivity”. These two technologies are the corner stone of the LHC

machine which bends circulating proton beam using superconductive magnets cooled

1Homepage: http://www.cern.ch
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by liquid helium. The observation and study of nuclear interactions in LHC will help

physicists to answer few of the following questions in the Standard Model of Physics:

• Why matter have mass?

• Why the visible universe is only made up of matter and not of anti-matter?

• What was the sub-atomic state of material plasma at the birth of the universe?

A.2 Large Hadron Collider

To study the colliding particles, there are four major experiments in LHC, which are

also built underground. These experiments are ATLAS, CMS, ALICE and LHCb. The

actual collisions of the particles takes place and their silicon detectors captures the phe-

nomenon. The LHC tunnel and its experiments are shown in the following figure A.1.

FIGURE A.1: Aerial view of CERN and the surrounding region of Switzerland and
France. Three rings are visible, the smaller (at lower right) shows the underground
position of the Proton Synchrotron, the middle ring is the Super Proton Synchrotron
(SPS) with a circumference of 7 km and the largest ring (27 km) is that of the former
Large Electron and Positron collider (LEP) accelerator with part of Lake Geneva in the

background. (©CERN)
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The technological details of the LHC machine and its experiments, despite being very

interesting, are beyond the scope of this thesis and the readers are encouraged to read

further in a book written by LHC’s project director Lyndon Evans [137].

These High Energy Physics (HEP) experiments are built in underground caverns and

are very sensitive to minor movements in the detectors and sensors could lead to wrong

results, and in the extreme cases cause damage to machine and detectors. Thus, they

have to be constantly calibrated and it must be done in an automated fashion to achieve

a self-regulating and self-calibrating experiments.

These experiments would also be generating large sums of data in the scale of Peta

bytes and all the generated data does not necessarily have real physics value. Thus the

generated data or physics events have to be filtered on the real time in the dedicated

computing farms also known as Offline Computing (see glossary for information). The

filtered data is than further packed to reduce the number of the data packets sent to the

permanent storage on tape drives.

Later on, the data from the tape drives is made available to the physicist and researchers

around the globe through another computing facility known as Online Computing

such as Grid, see section 2.2.
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ATLAS Experiment

B.1 Background

ATLAS is one of the four experiments of LHC machine at CERN (see appendix A)

build under ground. It’s a general-purpose experiment to detect widest possible of

existing and new phenomena appearing as proton-proton particles collides at very high

energies. One of it’s main goals is to detect newer particles such as Higgs particle which

is theorised to be responsible for determining mass of the matter [138].

All the incoming data from ATLAS detectors would gets stored in the LCG (see section

2.2.2 and is available to ATLAS physicist to use it for further analysis. This data could

be used for mainly two types of purposes and each of this is broken down in to smaller

batch jobs:

• Calibration: Since ATLAS detectors are very sensitive to micro-meter level physi-

cal movements, therefore these detectors have to be constantly calibrated to make

sure that adjustments could be made to the live data being recorded and later fil-

tered accurately. The resulting calibration jobs run on the grid are referred as

Production Jobs. . These jobs constitute a large part of the ATLAS jobs run on the

grid, and PanDA pilot is the automated system to deploy these jobs on the grid

(see section 5.1.1.
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FIGURE B.1: The first ATLAS Inner Detector End-Cap after complete insertion within
the Liquid Argon Cryostat. (©CERN)

• User Analysis: On the other hand, computational jobs doing physics related anal-

ysis have varying resource requirements and duration. These jobs are referred to

as Analysis Jobs.

Since production jobs have a very clear resource requirement model, execution times

and are largest in quantity; thus they have been used as for the experiments presented

in this thesis.

B.2 Job Types

ATLAS production jobs are basically made of 3 steps: event generation, simulation,

and reconstruction. Each step produces an output, which is the input of the subsequent

phase. The time needed for each job depends on the kind of events being generated,

therefore can vary by a factor of two. Following are the technical details for each job

type:
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Job Type Mode Duration
(hours)

CPU
Inten-
sive

Memory
Inten-
sive

I/O
Bound

Input
Data
Set Size
(MB)

Output
Data
Set Size
(MB)

Event Gener-
ation

Serial 2 - 6 Yes No No ≤ 0.1 ≤ 100

Simulation &
Digitilization

Serial 12 - 24 Yes Yes No ≤ 10 ≤ 2

Reconstruction Serial 6 - 12 Yes Yes Yes ≤ 50 ≥ 500

TABLE B.1: Resource requirements and properties of ATLAS Production job

1. Event generation: produces 4 vectors with the particles kinematics. One output

file contains 5000 to 10000 events (depending on the event type) and is produced

generally in less than 2 hours. File size is generally small (100MB).

2. Simulation and digitization: first the detector response is simulated. This pro-

duces a HITS file of size. Every HIT event is approx 1.8MB. The file contains 25

events. This means one file from phase 1) (containing 5000 events) is used as in-

put for many simulation jobs. The HITS file is then processed (by the same job) to

produce RDO files, again of a size approx 1.8 MB for per event and 25 events. The

Simulation and digitization phase is the most CPU and takes from 12 to 24 hours

depending on event type and obviously CPU model. The memory required is

800MB per job of this kind

3. Reconstruction: one reconstruction job reads 20 RDO files and produces 1 Analy-

sis Object Data (AOD) file with 500 events of size 250KB per event and 1 ESD file

with 500 Events of 600Kb per event. The job takes less than 4 hour, but its very

memory consuming requiring around 4 GB of physical memory. The challenge

for this type of job is the data access, since every job needs to read in 20 input

files.

Every job (of each type) generates also a log file, tiny in dimension, but still has to be

uploaded in a storage element, and a comparison of the Atlas jobs is illustrated in table

B.1.

137



Appendix C

ATLAS Feasibility Results

C.1 Experimental Setup

C.1.1 Specification

Performance metrics

Real time elapsed for the execution of the job from start to finish

Machine Specification

Intel(R) Xeon(R) CPU 5160 @ 3.00GHz (4 Cores) 64 bits, 8GB Ram, 4 MB Cache, 1 Gb

Ethernet

Software Specification

OS: SLC4 Linux 2.6.9-78.0.1.EL.cernsmp

Xen Version: 3.1.0-53.1.19.slc4

Xen Kernel: xen.gz-2.6.18-53.1.19.slc4

Atlas Athena: 14.2.20

C.1.2 Test Definition

All test configuration parameters are listed in table C.1. Some of these configurations

are referenced with a label in chapter 5 for clarity purposes, but in the following sec-

tions they are numerically labelled to organize them due to large number of tests.
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C.1.2.1 Physical Baseline

The objective of this test 1 was to set a baseline for Atlas benchmark results against

which all other results would be compared. No other services were running on the

machine except core Linux services and the Atlas software. This test configuration is

labelled as phyBase.

C.1.2.2 Virtual Baseline

The objective of this test 2 was to measure a baseline performance for the Atlas recon-

struction benchmark with nearly the same machine resources available to the virtual

machine as tested for physical base line earlier. This test configuration is labelled as

virtBase.

C.1.2.3 Memory Optimization

The objective of these tests is to verify whether increase in the memory available to a

virtual machine affects the performance of the job or not. In both test 3a.1 and test

3a.2 virtual machines were pinned to use only one CPU. Memory was the only pa-

rameter that was changed. This test configuration are labelled as pinCPULargeVM and

pinCPUXLargeVM respectively.

C.1.2.4 CPU Core Optimization

The objective of the tests 4 - 7 is to benchmark Atlas workload in two virtual machines

running parallel on the same physical host. With the increase of load (two virtual ma-

chines), impact of scheduling technique such as single core pinned vs fair shared (see

section C.1.2.5) is measured. When ever fair-share scheduling algorithm was used, dif-

ferent weight ratio were tried for the domUs to differentiate between the performance.

Test 5 configuration is labelled as fsLargeVM.
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C.1.2.5 CPU Scheduling Optimization

The objective of these tests 8 - 10 is to further increase the load on the system varying it

from two to three domUs running in parallel. To accommodate three domUs, memory

per domU was reduced to 2GB. This will give further insight into impact of memory

reduction on the job performance.

Furthermore, pinned and fair-share scheduling techniques are used with same weight

while changin CPU cap limits to distinguish their impact on the job execution. Test 8 is

labelled as noCPUCap, test 9 is labelled as fsMedVM and test 10 is labelled as withCPU-

Cap.

C.1.2.6 Network Optimization

The objective of this test is to measure the I/O overhead of virtualization and the mean

throughput of the virtual machines. The baseline test 11 were carried out in peak and

off-peak conditions to remove any bias due to network contingency under higher load

conditions. All machines were connected to 10Gbit/sec LAN.

In all remaining tests 12 - 15, three domUs were deployed on each host server to put

the system under heavy CPU utilization. This is to measure the minimum networking

throughput of the virtual machines under peak load rather then maximum throughput

with less system load.

Linux program scp1 (secure copy) was used to transfer the data set between the nodes.s

1Linux command http://linux.die.net/man/1/scp
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C.2 Summarized Data

The data set represented in table C.2 the mean values of the each test run, which was

run 3 times. The numbers (n) for test 4 - 10 represents the data for each parallel virtual

machine running.

Legend

CPU = CPU Usage

VCS = Voluntary Context Switching

iVCS = Involuntary Context Switching

P=Performance Execution Relative to Physical Baseline

Test Real
Mean
Time
(s)

Real
Time
Std.
Dev (s)

System
Time
(s)

User
Time
(s)

CPU
(%)

VCS
(count)

iVCS
(count)

P (%)

1 7080 26 58.19 6942 99 13354 12134 100
2 7130 41 58.13 7013 98 15000 35 99
3 7180 27 59.56 7018 98 33154 34 98
4 7230 74 60.04 7016 98 32395 36 99
5 7280 37 59.62 6999 96 38425 40 97
6 7330 90 60.35 7004 97 38477 41 97
7 7380 33 57.81 7003 98 27020 31 98
8 7430 13 59.56 6995 98 26954 35 98
9 7480 34 56.91 6982 97 38402 34 98

10 7530 54 60.31 6976 97 38341 36 98
11 7580 7 57.48 6968 98 32502 39 99

7 (2) 7163 11 58.24 6982 98 26150 33 99
8 (1) 7808 120 68.47 7358 95 98848 36 90
8 (2) 7616 112 62.26 6991 94 88448 33 92
8 (3) 8105 110 70 7387 94 96987 42 86
9 (1) 7956 114 62.7 7297 93 99028 34 89
9 (2) 7967 138 64.58 7291 92 100047 31 89
9 (3) 7991 157 63.78 7295 93 101004 45 90
10 (1) 12926 616 25.35 7157 49 94072 53 50
10 (2) 7292 106 62.67 7017 94 92992 44 94
10 (3) 7236 109 66.69 7030 96 66175 33 96

TABLE C.2: Summarized performance results for ATLAS jobs
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C.3 Raw Data

The table C.3 provides the detailed raw data collected for the experiments ran earlier

before taking the mean values. Each test is presented as Test.N where N is run number.

Legend

CPU = CPU Usage

VCS = Voluntary Context Switching

iVCS = Involuntary Context Switching

Test Real

Time (s)

System

Time (s)

User

Time (s)

CPU (%) VCS

(count)

iVCS

(count)

1.1 7109 56.8 6963 98 20481 11782

1.2 7073 57.06 6939 99 10103 12274

1.3 7059 60.71 6921 99 10079 12346

2.1 7153 63.25 7018 99 14835 29

2.2 7217 53.14 7008 97 49730 49

2.3 7141 56.9 7014 99 14937 28

3a.1.1 7216 58.45 6997 97 51345 37

3a.1.2 7162 65.38 7024 98 15791 31

3a.1.3 7196 54.86 7033 98 32325 34

3a.2.1 7072 64.47 7178 97 49910 54

3a.2.2 7042 60.8 7153 98 33329 30

3a.2.3 6932 54.86 7029 98 13946 24

4 (1.1) 7290 65.24 6985 95 51057 43

4 (1.2) 7243 59.01 7011 97 32188 37

4 (1.3) 7217 56.79 7017 98 32185 42

4 (2.1) 7380 57.49 7002 95 50832 49

4 (2.2) 7227 58.38 6992 97 32242 39

4 (2.3) 7223 62.98 7003 97 32201 31

5 (1.1) 7231 56.52 7022 97 32813 30

5 (1.2) 7174 59.49 7012 98 15906 33

5 (1.3) 7173 57.41 6975 98 32343 29

Continued on next page
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continued from previous page

Test Real

Time (s)

System

Time (s)

User

Time (s)

CPU (%) VCS

(count)

iVCS

(count)

5 (2.1) 7180 56.58 6981 98 32708 39

5 (2.2) 7197 56.77 6992 98 15799 31

5 (2.3) 7206 57.52 7011 98 32355 35

6 (1.1) 7259 63.77 6953 97 50518 43

6 (1.2) 7196 53.68 6991 97 32322 25

6 (1.3) 7206 53.29 7002 97 32367 33

6 (2.1) 7284 54.48 6977 96 50213 41

6 (2.2) 7187 64.72 6966 97 32369 28

6 (2.3) 7196 61.73 6986 97 32441 40

7 (1.1) 7151 56.26 6948 97 32243 39

7 (1.2) 7144 58.95 6966 98 32537 39

7 (1.3) 7138 56.25 6989 98 32727 38

7 (2.1) 7175 63.21 7008 98 15768 33

7 (2.2) 7153 54.3 6965 98 29876 32

7 (2.3) 7161 57.22 6982 98 32806 35

8 (1.1) 8093 69.76 7602 94 95869 31

8 (1.2) 8097 69.04 7572 94 99222 33

8 (1.3) 7234 66.61 6901 96 101452 43

8 (2.1) 7627 59.3 6990 93 99769 37

8 (2.2) 7499 60.89 7010 95 65850 26

8 (2.3) 7723 67.66 6974 93 99724 35

8 (3.1) 8116 71 7604 94 94664 41

8 (3.2) 8103 68.75 7583 93 99310 44

8 (3.3) 8095 67.66 7583 94 96987 42

9 (1.1) 8002 66.16 7345 92 103603 47

9 (1.2) 7962 67.69 7370 93 98914 30

9 (1.3) 7905 69.61 7373 93 99244 39

9 (2.1) 8012 63.5 7339 92 103323 28

Continued on next page
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continued from previous page

Test Real

Time (s)

System

Time (s)

User

Time (s)

CPU (%) VCS

(count)

iVCS

(count)

9 (2.2) 7890 69.66 7354 93 98770 41

9 (2.3) 7995 71.7 7376 93 98896 28

9 (3.1) 8043 64.87 7364 92 103304 59

9 (3.2) 7975 64.47 7391 93 98850 40

9 (3.3) 7956 64.34 7387 93 99040 30

10 (1.1) 14244 24.91 7034 49 98732 44

10 (1.2) 14105 21.76 7028 49 99290 42

10 (1.3) 10428 17.72 7020 50 99592 38

10 (2.1) 7324 59.73 6920 95 100670 31

10 (2.2) 7316 59.07 6925 95 100393 43

10 (2.3) 7286 57.55 6915 95 100580 33

10 (3.1) 7236 60.36 6911 96 101513 33

10 (3.2) 7214 55.91 6907 96 101489 28

10 (3.3) 7259 55.41 6946 96 101319 31

TABLE C.3: Raw Results for ATLAS Job Performance
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C.4 Network Throughput Data

This data set represented in table C.4 are for each test configurations shown in table C.1.

Each test was run three times. Some tests were run in parallel virtual machines, thus

are represented in the following format Test (n) where n is the run number. For test

15 (1) and 15 (3), the transfer was done between two parallel virtual machines while in

test 15 (2), the data set was transfered from a physical machine.

Test Throughput (Mb/s) Time (s) Overhead (times X)
11 62.8 66 0

12 (1) 8.8 349.1 2.9
12 (2) 8.4 365.7 2.9
12 (3) 7.9 379.3 3
13 (1) 8.3 370.1 3
13 (2) 8.4 65.7 2.9
13 (3) 8.3 370.1 3
14 (1) 7.8 94 3.2
14 (2) 8.4 64.3 2.8
14 (3) 9.3 329.1 2.7

15 (1.V) 6.4 480 3.9
15 (2) 15.8 194.4 1.7

15 (3.V) 6.6 467.8 3.8

TABLE C.4: Network throughput for ATLAS jobs running in virtual machines
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PanDA Pilot Code

This appendix lists the code snippets from the selected sections of the PanDA pilot

code discussed in chapter 5, and which are relevant to the work done in this thesis. The

complete code base for the PanDA pilot is more than 100,000 lines. The PanDA pilot

application was developed in Python1 programming language by ATLAS experiment

collaboration.

D.1 Core Pilot Application

As described in section 5.1, PanDA pilot application have two major execution com-

ponents; pilotJob daemon script that initializes job, prepare the environment and is

responsible for cleanup operation, and runJob script that actually executes the job. In

this section, parts of pilotJob are elaborated which have been expanded to integrate

virtualization in to it.

D.1.1 Status Parameters

Panda pilot daemon, or more technically speaking pilotJob script, has number of

initial configuration parameters to enable proper execution of the job. To enable vir-

tualization, new parameters has to be added so that logical volume manager (LVM)

1Python Project, http://www.python.org
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could create, mount, and remove partitions in the disk. In the modified version, job is

executed in the logical volume partitions.

These parameters include; virtualmachine - to boolean switch to determine the

mode of execution whether virtual or physical; vmstatus - to pass the job status infor-

mation back to the pilot job daemon from the runJob script; volumeGroup - where

the LVM partitions will be created; vmRoot - root partition for the job; vmSwap - the

swap partition needed for the virtual machine and finally jobMountWorkDir which

would be mount point used to configure the partition for each job in the initialization

phase.

1
2 # Will be set to True for virtual machine usage
3 virtualmachine = True
4 # To keep track of the virtual machine status
5 vmstatus = ""
6 volumeGroup = ""
7 vmRoot = ""
8 vmSwap = ""
9 jobMountWorkdir = ""

D.1.2 Input Parameters

During it’s standard execution in physical machine, pilot job daemon labels the execu-

tion disk path as workdir along side other parameters to manage the debug level, site

information and proxy access check for authorization. To redirect the execution to the

virtual machine, additional parameters such as virtualmachine switch, jobMountWorkDir

mount point and insideVmWorkDir path needed for runJob script is added (see line

14 and 15).

1
2 """input arguments for the runJob script when executing
3 in the virtual machine."""
4
5 jobargs = [pyexe, "%s/runJob.py" % (jobDic["prod"][1].workdir),
6 "-a", thisSite.appdir, "-d", jobDic["prod"][1].workdir,
7 "-l", pilot_initdir, "-q", thisSite.dq2url,
8 "-p", str(monthread.port),
9 "-s", thisSite.sitename, "-o", thisSite.workdir,

10 "-m", str(multiTaskFlag),
11 "-i", jobDic["prod"][1].tarFileGuid, "-b", str(debugLevel),
12 "-t", str(proxycheckFlag),"-k", pUtil.getPilotlogFilename(),
13 "-x", str(stageinTries), "-v", str(testLevel),
14 "-c", str(virtualmachine), "-f", aJob.insideVmWorkdir,
15 "-e", jobMountWorkdir]
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D.1.3 Staging-In

During the staging-in phase when all the job configuration and initial data needed to

start the job is downloaded, a check was introduced to determine whether the execution

is going to follow in physical machine or virtual machine. Since virtualmachine

switch already redirected initial setup of the job directories in the LVM partition, a

simple check (at line 4) such as whether standard work directories path are created or

not was sufficient. If they are not present, then it’s assumed by the daemon that the

job will be running in the virtual machine and internal configuration parameters are

configured accordingly (see line 14).

Work directory paths are created using job ID name in the pre-defined disk space in the

worker node.

1 """if the job is running in the physical node, then follow
2 the standard work directory path. """
3
4 if os.path.isdir(jobDic["prod"][1].workdir):
5 # copy all python files to workdir
6 tolog("Staging in python modules to:
7 %s" % (jobDic["prod"][1].workdir))
8 pUtil.stageInPyModules(thisSite.workdir,
9 jobDic["prod"][1].workdir)

10 else:
11
12 """ if the job is to be executed in the virtual machine,
13 then use the virtual partition. """
14 tolog("Staging in python modules to: %s" % (jobMountWorkdir))
15 pUtil.stageInPyModules(thisSite.workdir, jobMountWorkdir)

D.1.4 Clean-up Phase

Once the job execution have either finished executing the job or the job has failed, then

it sends the message to the pilot daemon to trigger the cleanup operation. The pilot

daemon first follows it standard procedure to upload any logs or results to the grid,

then removes the LVM partition (line 3) and continues with removing all the pilot’s

own python scripts downloaded on the worker node host machine during the start-up

phase (line 5- 12).

1 def cleanup(job, rf=None):
2 """ cleanup function """
3 vmRemoveMountPoint(jobMountWorkdir)
4
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5 # clean up the pilot wrapper modules
6 pUtil.removePyModules(job.workdir)
7
8 if os.path.isdir(job.workdir):
9 os.chdir(job.workdir)

10 # remove input files from the job workdir
11 remFiles = job.inFiles
12 tolog("Payload cleanup has finished")

D.2 RunJob Pilot Application

The runJob script is the main execution engine that executes the job, and in this section

the modification made to its code are highlighted.

D.2.1 Job Execution Phase

Pilot job daemon starts the execution engine by invoking a separate python interpreter

and passes in the input variables via the shell. But to start the execution engine in the

virtual machine once it starts up, this process has to be modified. The adopted solution

was to dump the input parameters into a data file which will be loaded by the execution

engine at the start up (see line 8).

If the execution is physical (line 10), then standard execution path will be followed.

If the execution is virtual machine based (line 21), then execution engine forks a child

process to send period TCP message to the pilot daemon and subsequently to the server

(line 25-36).

1 # main process starts here
2 if __name__ == "__main__":
3
4 # argument parsing phase begins to start job execution
5 jobSite = Site.Site()
6 jobSite.setSiteInfo(argParser(sys.argv[1:]))
7
8 filename = "%s/vmRunJobDataFile.dat" % (jobSite.workdir)
9

10 if not virtualmachine and os.path.exists(filename):
11 from pickle import load
12
13 try:
14 tolog("Trying to open %s" % (filename))
15 vmRunJobDataFile = open("%s" % (filename), "r")
16 jobargs = load(vmRunJobDataFile)
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17
18 except Exception, e:
19 tolog("!!FAILED!!2999!! Could not import jobargs from:
20 %s, %s" % (filename, str(e)))
21 else:
22 tolog("Got: %s" % (jobargs))
23 pid_1 = os.fork()
24
25 if pid_1: # parent
26 tolog("Parent process")
27 else: # child
28 tolog("Child process")
29 _i = 0
30 while _i < 5:
31 tolog("Updating pilot server:
32 %s:%d" % (pilotserver, pilotport))
33 job.result[0] = 'vmrunning'
34 rt, rv = RunJobUtilities.updatePilotServer
35 (job, pilotserver, pilotport)
36 time.sleep(60)

D.2.2 Status Update

During the course of it’s execution, pilot daemon monitors certain file paths to see

whether the execution have finished or not. Since this long was feasible in the virtual

machine, because during the virtual machine based execution LVM partition is not

accessible by the host OS where the pilot daemon resides. Therefore, a TCP based

status update system was added where job execution engine update the pilot daemon

about the job progress.

This code provides one example where if the job fails, then the execution sends a TCP

message using utilities function to update the pilot server and daemon (see line 11-12).

1 def failJob(transExitCode, pilotExitCode, job, pilotserver,
2 pilotport, ins=None, pilotErrorDiag=None, docleanup=True):
3
4 """ set the fail code and exit """
5 job.setState(["failed", transExitCode, pilotExitCode])
6
7 if pilotErrorDiag:
8 job.pilotErrorDiag = pilotErrorDiag
9 tolog("Will now update pilot server")

10 #virtualization code block
11 rt, rv = RunJobUtilities.updatePilotServer(job,
12 pilotserver, pilotport, final=True)
13
14 if docleanup:
15 sysExit(job)
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Scheduling Algorithms Code

This appendix lists the code snippets from the selected sections of the simulator dis-

cussed in chapter 6. The actual code base for the simulator is more than 3000 lines. The

simulator was developed in Python1 programming language.

This simulation engine was developed by the author of this thesis to conduct the re-

search for this project.

E.1 Dynamic Virtualization

E.1.1 Overhead Prediction

This function determines the new virtualization overhead when a job arrives at the

compute node by looking into the running job queue (JOBDICT) and based on their

profile i.e. event generation, simulation or reconstruction, it determines the system

load and the available capacity (see line 10-22). Once the load is determined, then the

next step is to set the overhead for the jobs to be executed.

There are predefined categories of load and based on those categories; system load is

set to either low, medium or high (see line 24 - 33) depending on the overhead mode,

see also section 6.1.

1Python Project, http://www.python.org
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1 def getNextVO():
2 try:
3 if MODE ==VIRTUAL:
4 eve=0
5 rec=0
6 sim=0
7 getcontext().prec =3
8 # gather running job distribution
9 iter = JOBDICT.__iter__()

10 for each in iter:
11 if each['type'] == EVE and each['status'] == "running":
12 eve +=0.5
13 elif each ['type'] == SIM and each['status'] == "running":
14 sim +=1
15 elif each['type'] == REC and each['status'] == "running":
16 rec += 1.5
17 #total number of jobs
18 numVM = len(JOBDICT)
19 capacity = MEMORY + CPU
20 vmLoadSum = eve + sim + rec
21 # load = vmLoadSum / numVM
22 LOAD=load = vmLoadSum * numVM / capacity
23
24 if VO_MODE == VO_DYNAMIC:
25 # set the VO dynamically
26 if load < 1 :
27 return VO_LOW
28 elif load == 1:
29 return VO_MED
30 elif load > 1:
31 return VO_HIGH
32 elif VO_MODE==VO_FLAT:
33 return VO_HIGH
34 except Exception, e:
35 msg = "ERROR: getNextVO() -> [Exception: %s]" % (e)
36 printMessage(msg, B_SYSTEM_MSG)
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E.1.2 Real Job Progress

In each cycle of the virtualization, there is a generated overhead either low, medium

and high. If the execution mode is set to virtual (line 4-6), then a real progress offset

is calculated which is then deduced from the job duration to represent job progressing

over time.

1 def updateDynamicVO():
2 # update the VO OFFSET
3 try:
4 if MODE == VIRTUAL:
5 FREQ_VO = VO * FREQ / 100
6 FREQ_OFFSET = FREQ - FREQ_VO
7 else:
8 FREQ_OFFSET = FREQ
9 FREQ_VO = 0

10 except Exception, e:
11 msg = "ERROR: FREQ_OFFSET calculation failed > [%s]" % (e)
12 printMessage(msg, B_BASE_MSG)

E.1.3 Job Deadline Validation

Once a new job arrives, before it’s started; the job duration for running jobs have to be

updated to reflect the new overhead impact. This function first get the new overhead

(line 9) and if it’s greater than the previous one (which could be highest), than it checks

the duration remaining of all the jobs in the running queue (line 15-22 ). If any job

appears to miss their deadline because of this new job (line 29-42) then the new job

is terminated prematurely. This is to increase system performance by minimizing the

impact on the existing jobs which might have been running for longer and to give them

higher chance of success.

1 def getNextVOImpact():
2 #this function should validate all current deadline
3 #commitment and if existing commitments could
4 #not be fullfilled, then don't next job so return
5 #False(no next job)/True(yes, next job)
6
7 boolDecision = False
8 try:
9 VO_NEXT = getNextVO()

10 newOverhead = VO_NEXT * FREQ / 100
11 # this is the real progress per slot for the job duration
12 #by removing the virtualization's slow rate
13 realProgressPerSlot = FREQ - newOverhead
14
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15 if VO_NEXT > VO:
16 jobDuration = []
17 iter = JOBDICT.__iter__()
18 for each in iter:
19 # check against the jobs whose status is
20 #finished so not to measure against their deadlines
21 if each['status'] != "finished":
22 jobDuration.append(each['duration'])
23 #sort the durations
24 jobDuration.sort()
25
26 #since we can only sort on single values not
27 #duration:deadline, so we need to re-iterate
28 #over JOBDICTIONARY to get the deadline
29 iter = JOBDICT.__iter__()
30 for each in iter:
31 # check against the shortest job as this
32 #is the determining factor because upon
33 #it's completion another job slot would
34 #be available and there would be a different
35 #VO_NEXT
36 if each['status'] != "finished":
37 newJobDuration =
38 each['duration'] * newOverhead
39 if newJobDuration > each['deadline']:
40 boolDecision=False
41 else:
42 boolDecision=True
43 except Exception, e:
44 msg= "ERROR: getNextVOImpact() -> [Exception: %s]" % (e)
45 printMessage(msg, B_BASE_MSG)
46 return boolDecision

E.2 Adaptive Algorithms

The computational code used in the scheduling algorithms is discussed in this section.

E.2.1 Failure Rate Calculation

As discussed in section 4.2, the failure rate is calculated using exponential smoothening

method where parameter α is used to determine the success rate. In the simulator, each

job could either finish successfully (success boolean set to true) or fail (success boolean

set to false). At the end of each job, calculate success rate function is called and based on

the input boolean, a local variable is either set to 1 or -1 (line 9-12). Once the system
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have gone through the first 1000 jobs to warm up, then success rate is calculated using

equation 4.9 (line 19-24).

Finally, failure rate is calculated (line 32-35).

1 def calculate_success_rate(success):
2 # one time alpha and success rate is already
3 #defined at the initialization of the script
4 #x_mode_value is to use one of success_rate calculation mechanisms
5
6 try:
7 if X_Mode_Value==1:
8 # recalculate alpha if it could be done
9 if success:

10 success_var=1
11 else:
12 success_var=-1
13
14 # training switch added for first 1000 iterations,
15 #the code calculate division method to calculate
16 #the success rate and after it
17 # uses digital integrator using alpha as division
18 #operation of large numbers becomes a computational issue
19 if stage_1_count > 1000:
20 # inegrating and calculating the success rate
21 success_rate = success_rate*(1-ALPHA) + success_var*ALPHA
22 else:
23 stage_1_count +=1
24 success_rate = TOTAL_LEASE_SUC/TOTAL_LEASED_JOBS
25 except Exception, e:
26 msg="ERROR: calculate_success_rate() -> Exception: [%s]" %(e)
27 printMessage(msg, B_BASE_MSG)
28
29 def get_failure_rate():
30 calculate_success_rate()
31 failure_rate = 1 - success_rate
32 return failure_rate

E.2.2 x Threshold Adaptation

Once the failure rate have been calculated (line 18), the next step is to update the

XThresh. To avoid prematurely changing the threshold or changing it too fast, there

is delay mechanism built in. If the failed numbers of jobs are greater than failed job

threshold since the last time XThresh was altered, only then adaptive algorithm gets ac-

tivated (line 23-26). Once the algorithm is in this part of code (line 31 -35), then XThresh

is either incremented or decremented using ∆x parameter (see section 4.2.4). Once the

adaptation have taken place, then minimum and maximum x values are checked to
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make sure that newly XThresh value is with in its range (line 45). Finally, the time taken

for the algorithm is calculated to record its performance (line 47-54).

1 def update_threshold():
2
3 # time starting to measure the performance of the algorithm
4 before = time.time()
5
6 # add the failure rate to history dictionary
7 SUCCESS_RATE_HIST.append(success_rate)
8
9 # add the failure rate to history dictionary

10 FAILURE_RATE_HIST.append(failure_rate)
11
12 # add the X_Thresh to x thresh history dictionary
13 X_THRESH_HIST.append(X_THRESH)
14
15 # get the failure rate
16 failure_rate = get_failure_rate()
17
18 # calculate the X_THRESH dynamically over here
19
20 # lets add a delay before calculating the failure rate
21 jobFailCount = int(JOBS*F_JOB_THRESH)
22
23 if jobFailCount >= failed_job_count:
24 # reset the failed job counter
25 failed_job_count =0
26
27 # Let's make small adjustments on the threshold,
28 #depending on how well we are doing
29 if failure_rate > TARGET_F_RATE:
30 X_THRESH += DELTA_THRESH
31 else:
32 X_THRESH -= DELTA_THRESH
33 # end of added code
34
35 else:
36 failed_job_count +=1
37
38 # this is a fail safe mechanism to make sure that
39 #X does not go beyond a certain range
40 check_x_range()
41
42 # time ending to measure the performance
43 #of the algorithm
44 after = time.time()
45
46 timeDiff = after - before
47
48 # algorithm mean time
49 alg_mean_time_hist.append(timeDiff)
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E.2.3 Statistical Determination

The probabilistic algorithm uses cumulative distribution functions. In our results,XThresh

values which succeeded after they first appeared to have missed their deadline are

recorded in an array named X SUC HIST. This array which is our sample space is

passed to a python function histogram from the Scipy2 and gets a discreet data dis-

tribution of the data points in a histogram (line 2). This histogram is then normalized

and used by the Scipy cumsum function to return a cumulative distribution (line 8-9).

Then the XThresh value for probability higher than 0.5 is determined (line 11).

In get xi function, line 16-18 are standard methods to get to value of XThresh which

corresponds to the input probability. For more details, see Scipy documentation. Once

a value for XThresh is available, then if it falls out side the range of 50 then its sets to

minimum XThresh value otherwise its set to XThresh and used as a validation condition

either to let the job continue or not.

It should be noted that the value 50 passed to histogram function (line 2) and 49 (line 19)

represents the maximum number of probability data points. Generally, this value was

around 25 in the simulated system which is just in the range, and thus arrived through

experimentation.

1 def get_cdf():
2 px,xe = histogram(X_SUC_HIST, 50, normed=True)
3
4 x1=xe[0:-1] # left edges
5 x2=xe[1:] # right edges
6 x=0.5*(x1+x2)
7
8 px=px/sum(px) # normalize, so that sum(px)=1
9 PX = cumsum(px) # CDF

10
11 x_i = get_xi(PX, x, 0.5)
12 print 'x_i=%g' % x_i
13
14 def get_xi(PX, x, prob):
15 global X_THRESH
16 indx = where(PX<prob)
17 index = max(indx[0]+1)
18 x_thr = x[index]
19 if index > 49 or indx < 0:
20 X_THRESH=0.1
21 else:
22 X_THRESH=x_thr
23 return X_THRESH

2Scipy Libraryhttp://www.scipy.org
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E.2.4 Probabilistic x Adaptation

To determine the XThresh using the statistical techniques is identical to function de-

scribed in section E.2.2 except that rather than using ∆x and alpha α values, it call get

cdf function (line 32).

1 def update_threshold_prob():
2
3 # time the performance of the algorithm
4 before = time.time()
5
6 # added code
7
8 # add the failure rate to history dictionary
9 SUCCESS_RATE_HIST.append(success_rate)

10
11 # add the failure rate to history dictionary
12 FAILURE_RATE_HIST.append(failure_rate)
13
14 # add the X_Thresh to x thresh history dictionary
15 X_THRESH_HIST.append(X_THRESH)
16
17 # get the failure rate
18 failure_rate = get_failure_rate()
19
20 # calculate the X_THRESH dynamically over here
21
22 # lets add a delay before calculating the failure rate
23 jobFailCount = int(JOBS*F_JOB_THRESH)
24
25 if jobFailCount >= failed_job_count:
26 # reset the failed job counter
27 failed_job_count =0
28
29 # Let's make small adjustments on the threshold,
30 #depending on how well we are doing
31 if failure_rate > TARGET_F_RATE:
32 get_cdf()
33 else:
34 failed_job_count +=1
35
36 # this is a fail safe mechanism to make sure
37 #that X does not go beyond a certain range
38 check_x_range()
39
40 # time ending to measure the performance
41 #of the algorithm
42 after = time.time()
43
44 timeDiff = after - before
45
46 # algorithm mean time
47 alg_mean_time_hist.append(timeDiff)
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Resource Utilization

F.1 Results

This section provides more detailed results gathered during the training phase to fur-

ther study the impact of various configuration of resource ratio (primarily number of

GB memory per CPU core) in the system. The results are discussed in the following

subsections for each resource ratio.

F.1.1 CPU to Memory ratio: 1 to 1

In this configuration, the job success rate was around 70% with job termination rate

fluctuating between 25%-43% with dead line miss rate to be around 5% as show in

F.1. The higher rate of job termination is due to the fact that there are more jobs with

higher resource requirements than the available on the machine. This is key factor in

determining what should be the optimal resource configuration for compute node to

avoid jobs being terminated for ATLAS experiment.

Where as memory and CPU utilization rate is concerned, as shown in figure F.2(a) and

F.2(b), the utilization is not optimal either since a significantly large number of jobs gets

terminated even before starting.
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FIGURE F.2: CPU and Memory utilization rate for CPU:Memory ratio 1:1
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F.1.2 CPU to Memory ratio: 1 to 1.5

When the resource configuration was set to 1:1.5, we observe that job termination rate

drops significantly to 5% from previous configuration, and showing an improvement

of around 20%to 30% while job success rate reaches an average of 85% with no visible

impact on job deadline rate.
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FIGURE F.3: Job Success, Termination and Deadline failure rate for CPU:Memory ratio
1:1.5

Increasing the available memory in the system also increases over all system utilization

rate where CPU 2 and 3 showing higher utilization rate, as compared to figure F.2(a),

since more jobs get a chance to run rather being terminated. The same principal applies

to memory utilization rate as show in figure F.4(b).
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FIGURE F.4: CPU and Memory utilization rate for CPU:Memory ratio 1:1.5
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F.1.3 CPU to Memory ratio: 1 to 2

With ratio set to 2, it was observed that job termination almost disappears suggesting

that this might be perhaps the optimal resource configuration ATLAS, and LHC jobs in

general since no job is deprived of available resources with job success rate higher than

80%.
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FIGURE F.5: Job Success, Termination and Deadline failure rate for CPU:Memory ratio
1:2

Interestingly, the resource utilization rate slightly decrease from previous average of

70% for both CPU and Memory. In our view, this is a trade-off between slightly under

utilized resources with minimum and unnecessary job termination rate.
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FIGURE F.6: CPU and Memory utilization rate for CPU:Memory ratio 1:2
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F.1.4 CPU to Memory ratio: 1 to 3

The results for ratio 1:3 are similar to ratio 1:2 for job success rate and termination rate.

The resource utilization rate further decreases as compared to resource ratio of 1:2. As

a result, resource ratio for CPU to Memory was set to 1:12 for all experiments in the

steady phase.
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FIGURE F.7: Job Success, Termination and Deadline failure rate for CPU:Memory ratio
1:3
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FIGURE F.8: CPU and Memory utilization rate for CPU:Memory ratio 1:3
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Appendix G

Alpha and Delta x Training

G.1 Training Results

G.1.1 α1=0.01

Since alpha α value is very small, the deadline miss rate increases initially and it takes

a while before adaptive algorithm responds. As shown in figure G.1(a) and G.1(b),

failure rate peaks between 20-40 simulation time units, and the XThresh value hits it

floor of 0.1 before being incremented to it’s upper ceiling value of 0.9.

G.1.2 α2=0.05

In this case, a higher alpha α value activates the algorithm faster and failure rate, as

seen in figure G.2(b), is brought down from 0.5 peak value to 0.2 with in 0-25 simulation

time units. The system better for over all global success rate and lower deadline miss

rate, see figure G.2(a).

G.1.3 α3=0.1

The results of alpha α value for 0.05 and 0.1 are very similar in terms of overall system

performance with slightly lower failure rate for the later configure but since the dead-

line miss rate is approximately the same, see figure G.3(a) and G.3(b), we selected 0.05
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as optimal value since under higher failure rate it will prevent x threshold to step up

or down slower to make sure that system doesn’t change its long term behavior due to

short-term and temporary execution conditions e.g. lots of similar jobs suddenly start

to fail for reasons external to system such as unable to access the grid storage sites.
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FIGURE G.3: Training Results for α3=0.1
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G.1.4 ∆x1=0.05

Experimentation showed that ∆x1=0.05 has the least performance and highest failure

rate among the three different ∆x configurations. This is due to the fact that a small

delta leads to smaller step incremental or decremental changes in XThresh value when

the failure rate goes up and down, and thus always lagging behind the failure rate

curve. See figure G.4.
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FIGURE G.4: Training Results for ∆x=0.05
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G.1.5 ∆x2=0.1

This outperformed all the other test configurations with the highest global success rate

and lowest failure rate, see figure G.5. This proves our hypothesis that any successful

∆x and alpha α combination be apart by a factor of [5 -10].
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FIGURE G.5: Training Results for ∆x=0.1
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G.1.6 ∆x3=0.2

This configuration performed slightly better than ∆x1 while the failure rate evolution

is very similar of that ∆x2 configuration. This may be because ∆x3 is perhaps too large

and it starts getting of failure rate curve.
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Analysis Jobs

Computational jobs doing physics related analysis on the data received from AT-

LAS experiment.

Batch System

It is a local resource manager to group individual machines into cluster and pro-

vides facilities such as partitioning, advance reservation, backfilling and job schedul-

ing on the cluster.

Binary Translation

This is a virtualization technique where hypervisor receives external interrupts

and replace the binary instructions matching kernel calls on the fly originating

from either guest-OS or a virtual machine application. The advantage is the abil-

ity to run legacy and proprietary operating systems without any modifications

but at the cost of the performance loss due to additional overhead for live patch-

ing of interrupts at binary level.

Cloud

A Cloud is a type of parallel and distributed system consisting of a collection

of inter-connected and virtualized computers that are dynamically provisioned

and presented as one or more unified computing resource(s) based on service-

level agreements establish through negotiation between the service provider and

consumers.
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Cluster

A cluster is a type of parallel and distributed system, which consists of a collection

of inter-connected stand-alone computers working together as a single integrated

computing resources.

Code Injection

It’s a type of binary attack where a malicious machine code is injected into a tar-

get program, using techniques such as buffer overflow, and then to persuade the

program to execute that code.

Containers

This virtualization approach implements operating system level virtual machine

by encapsulating and isolating kernel processes. The host operating system ker-

nel is shared among all the running virtual machines.

Contextualization

Contextualization refers to adaptation of virtual machine parameters such as disk

size, software installation, setting up network interfaces to match the needs of a

given application.

Domain0 / dom0

It’s an administrative domain (virtual machine) that is created at boot time and

permitted to use control interface to create and terminate other domains (virtual

machines), control the CPU scheduling parameters and resource allocation poli-

cies, host un-modified device drivers and play the role of driver domain.

Emulation

A virtualization technique to emulates the raw hardware into virtual interfaces

allowing any operating system supporting those virtual interfaces could, in prin-

cipal, be deployed as virtual machine.

Fault Isolation

Encapsulating different applications in self-contained execution environments so

that a failure in on virtual machine does not affect other virtual machines hosted

on the same physical hardware.
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Grid

A Grid is a type of parallel and distributed system that enables the sharing, se-

lection, and aggregation of geographically distributed ’autonomous’ resources

dynamically at runtime depending on their availability, capability, performance,

cost, and user’s quality-of-service requirements.

Grid Middleware

It’s a software stack that connects distributed computing clusters to provide uni-

form resource access and flexible sharing model to support diverse usage model

to enable grid computing.

Hardware Virtual Machine

It is a virtualization approach that enables efficient full virtualization using help

from hardware capabilities, primarily from the host processors. Full virtualiza-

tion is used to simulate a complete hardware environment, or virtual machine, in

which an unmodified guest operating system (using the same instruction set as

the host machine) executes in complete isolation.

Intrusion Detection System

It is a security mechanisms of a system to prevent unauthorized access to system

resources and data by detecting intrusion attempts so that action may be taken to

repair the damage later.

Non Work Conserving

It’s a scheduling technique where CPU shares are hard-limits, and a VM is not

allocated additional CPU even if it’s idle.

Offline Computing

A computer system which is not directly connected to the LHC experiments, and

only processes stored data on the grid for Physics analysis.

Online Computing

Each LHC experiment have a computer farm that receives the incoming data from

detectors, and apply various filters to sort out the data and pack it before sending

it to the grid for permanent storage.
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Page Flipping

It’s a technique used by Xen hypervisor to transfer I/O data to a guest VM where

the memory page containing the I/O data is exchanged with an unused page

provided by the guest VM.

Para-Virtualization

A operating system virtualization technique which modifies a guest operating

system kernel to replace system calls, directed at the underlying H/W, with vir-

tual calls to virtual registers and memory page tables maintained by the VMM.

It offers highest performance among the available techniques since minimum

amount of interrupt handling would have to be done. It is only suitable for those

guest-OS system whose source code is available such as Linux®.

Performance Isolation

Isolating and accurate accounting of resource consumption by a virtual machine

so that it does not impact the promised guarantees to other virtual machines on

the same physical hardware.

Production Jobs

ATLAS detectors are very sensitive to micro-meter level physical movements,

and have to be constantly calibrated. This calibration process is broken down

in smaller chunks of jobs and called Production jobs.

Residual Dependencies

A set of dependencies which a migrating process retains on the machine from

which it migrated from.

Sliver Resizing

Its a resource allocation technique where cpu, memory, networking or any other

allocated resources of an already running virtual machine are changed dynami-

cally.

State Corruption

It’s a category of binary attack where the state of the program is modified, using

techniques such as integer overflow in order to persuade it to perform actions it

shouldn’t under normal conditions.
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Virtual Appliance

A a fully customized and configured virtual machine for a particular domain or

application which is ready to be deployed.

Virtual Organization

A set of individuals and/or institutions defined by sharing rules to directly ac-

cess computers, software, storage and other distributed resources that clearly set

limits on what is shared, who is allowed to share and what are the conditions to

share.

Virtualization Hypervisor

A software abstraction layer that runs between the hardware and the operating

system on a machine.

Virtualization Machine Monitor

See Virtualization Hypervisor.

Volunteer Computing

Volunteer Computing is a platform that utilizes volunteer computing resources

such as disk, cpu and network over the internet in a decentralized fashion.

Work Conserving

It’s a scheduling technique where CPU shares are mere guarantees. If there is an

idle CPU and a runnable VM in the run queue, then this mode allows allocation

of additional CPU time to the VM.
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Algorithm, 79

Adaptive

Delta Step, 106

Code, 155

Dynamic Virtualization, 152

X Threshold, 156

Execution Flow, 72

Execution Performance, 122

Failure rate, 155

Probabilistic

Adaptation, 159

Probability, 115

CDF, 158

PDF, 158

Threshold, 107

X Threshold, 112

Applications

interactive, 58

low-latency, 58

real-time, 58

Approach

virtualization overhead, 89

Architecture

glite, 21

grid, 19

panda framework, 82

simulator, 67

Assumptions, 65

CERN, 90, 132

Alice, 133

ATLAS, 133, 135

evaluation studies, 87

Jobs Types, 136

CMS, 133

LHC, 133

LHCb, 133

Cloud

IaaS, 43

Cluster

batch system, 22

lrm, 22

worker node, 22

Component

computing element, 22

logging and bookkeeping, 22

user interface, 22

workload manager, 22

Computing

cloud infrastructure, 41

on-demand clusters, 35

High Performance, 4

HPC, 4

Configurations

xen parameters, 90

Constraints

Deadline, 70

197



Index

Consumption

cpu consumption, 47

Contribution, 9

Data

protocols, 23

Database

bdii, 22

ldap, 22

openldap, 22

Deadline

Validation, 154

Deployment

grid coordinator tools, 38

virtual batch systems, 39

vGrid, 83

Distributed

overlaying computing network, 29

Distributed Computing

clouds, 41

Experiment, 103

Scheduling Results, 107

Setup, 106

Failure Rate

α value, 106

Real Time, 76

Target, 106

gLite

information system, 22

bdii, 22

Grid, 4, 18, 134

data transfer, 23

direct job submission, 24

on-demand computing, 35

site constraints, 26

virtualization in the grid, 38

virtualizing resource manager, 39

architecture, 19

authentication, 21

authorization, 21

computing element, 22

gLite, 21

grid computing, 11

lcg, 21

middleware

gLite, 21

pilot jobs, 24

protocols, 23

user interface, 22

worker node, 22

workload manager, 22

Hardware

device drivers, 47

NIC, xiii, 90

High Performance

HPL, 44

linkpack, 44

Hypervisor

parameters, 90

Hypothesis, 65

Infrastrcuture

planetlab, 29

Interface

virm API, 85

Network, xiii, 90

virtual machine deployment, 85
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Job

Progress, 154

Deadline, 70, 154

Virtual Execution Time, 69

Jobs

direct submission, 24

Production, 135

redundant pilot jobs, 24

Event Generation, 136

pilot jobs, 24

Reconstruction, 136

scheduling, 25

Simulation, 136

submission mechanisms, 24

User Analysis, 136

virtual pilot jobs, 86

Leasing

resource leasing, 24

Libraries

high performance linpack, 44

Limitation

cpu-bound, 47

network-bound, 47

Load

peak load, 24

Mechanisms

pilot jobs, 24

Memory

RAM, xiii, 90

Units, 106

Method

performance measurement, 89

Scheduling, 72

Model

Theoretical, 68

Network

data transfer, 23

virtualized network throughput, 92

bandwidth, 47

Interface, xiii, 90

NIC, xiii, 90

Objective

Feasibility, 4

Objectives

Integration, 4

Optimization, 4

Operating System

Linux

SLC, 90

SLC4, xiii

Optimization

measuring cpu performance, 46

overhead improvements, 46

Overhead

diagnosing virutalization overhead, 46

Parameters

Simulator

α value, 106

CPU Cores, 106

Delta Step, 106

Execution Mode, 106

Memory Units, 106

Overhead Mode, 106

Probability Threshold, 107

Target Failure Rate, 106
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X Threshold, 107

Peformance

isolation, 46

Performance

network throughput under xen, 92

evaluation, 87

networking throughput, 47

Steady Phase

System performance, 117

Physics

Events, 137

Pilot Jobs, 24

alien, 24

dirac, 24

panda pilot, 24

code, 147

run job code, 150

Protocols

representational state transfer, xiii

file transfer, 23

grid ftp, 23

REST, xiii

Research

Method, 5

Objectives, 4

Questions, 3

Results, 107

Explaination, 103

Scheduler

Algorithms, 79

Code

CDF, 158

PDF, 158

Dynamic Virtualization, 152

Execution Flow, 72

Method, 72

Real Job Progress, 154

Real Time Failure Rate, 76

Results, 103, 107

Setup, 106

Steady Phase, 117

Strategies, 79

Target Failure rate, 106

Schedulers

xen credit scheduler, 59

borrowed virtual time, 58

bvt, 58

sedf, 59

simple deadline first, 59

virtual time, 58

Scheduling

cpu capping, 91

weight ratio, 91

cpu algorithm, 90

resource provisioning, 24

Service

IaaS, 43

logging, 22

book keeping, 22

infrastructure, 43

Services

grid installation, 21

monitoring, 21

Setup

performance measurement, 90

Simulator, 65

Code

200



Index

Probabilistic, 159

Software

batch system, 22

Simulator, 65

vGrid deployment engine, 83

Supercomputer

eniac, 18

Tianhe-1A, 18

System

data management system, 21

information system, 21

worker node, 22

workload management system, 21

Techniques

page flipping, 47

Thesis Structure, 7

Threshold, 112

Probability value, 115

X value, 112

X Threshold

Code, 156

Throughput

efficiency, 24

Tools

virtualizing batch, 39

virtualizing grid, 38

Training, 107

Memory Optimization, 107

Resource Optimization, 107

Alpha, 169

Alpha Optimization, 109

Delta, 169

Delta x Training, 109

Training CPU Optimization, 107

Virtual Machine

Live Migration, 51

Virtual Machines

enforcing isolation, 46

measuring overhead, 46

Virtualization, 11–17

advantages, 12

cluster management, 35

Execution Time, 69

Hardware, 17

Impact, 154

interfaces, 85

Overhead, 106, 152

overhead diagnosis, 46

overhead measurement studies, 87

overhead studies setup, 90

Prediction, 152

sandboxes, 12

Software, 16

Binary Translation, 16

Containers, 16

Emulation, 16

Para-virtualization, 16

virtual machine, 12

Xen, 90

X Threshold

Delta Step, 106

Xen

cpu capping, 91

scheduling, 90
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isolated device drivers, 47
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