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ABSTRACT

In this thesis we show that CBR systems can be constructed from numerical models, so as to 

improve their usability. It is shown that CBR models may be queried in a flexible manner, 

and that the user may formulate queries consisting of constraints over both "input" and 

"output" variables of the numerical model. It is also shown that the constraints may be 

formulated using either nominal or continuous variables. A generalization of the CBR 

retrieval process to include constraints over unified "input-output" space is formulated as a 

framework for the method.

The method is illustrated with practical engineering models: the pneumatic conveyor 

problem and the projectile problem. Comparisons are made on usability of CBR and 

numerical models for specific problems. It is shown that CBR models can answer questions 

difficult or impossible to formulate using numerical models, and that CBR models can be 

faster.

The thesis also addresses a latent problem with the general method, which is of importance 

generally. This is to do with interpolation over nominal values in unified space. A novel 

method is proposed for interpolation over nominal values, termed Generalised Shepard 

Nearest Neighbour method (GSNN). GSNN can utilise distance metrics defined on the 

solution space of a CBR system.

The properties and advantages of GSNN are examined in the thesis. A comparison is made 

with other CBR retrieval methods, using several examples, including the travel domain case 

base. It is shown that GSNN can out-perform conventional nearest neighbour methods. It is 

shown that GSNN has advantages in that it can find solutions not in the case base and it can 

find solutions not in the retrieval set. It is also shown that the performance of GSNN can be 

improved further by using it in conjunction with a diversity algorithm. The merit of using 

GSNN as a case selection component is examined, and it is shown that it can give good 

results in sparse case bases.
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Finally the thesis concludes with a survey of numerical models where CBR construction can 

be useful, and where benefits can be expected.
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1.1 BACKGROUND

Numerical models of physical process are important tools used in engineering fields to 

predict the behaviour and the impact of physical elements, and hence improve their 

performance accordingly. Over the years, computational models have led to cost- 

effectiveness in the designs of physical systems. Various numerical models have been 

developed, for example, the simulation of a pneumatic conveyor, fire spread within 

buildings, evacuation in emergency, heat transfer, damage detection, etc. In particular, 

pneumatic conveying is an important transportation technology widely used in conveying 

solid bulk industry. Engineers of pneumatic conveying are concerned with the design of the 

conveyor [Kalman, 2000; Chapelle 2003] in order to reduce the damage to particles 

(e.g., sugar, rice, tea leaf).

These models calculate the output from the input parameters assigned by engineers. 

However, it is very often that engineers face problems that are queried in an inverse fashion. 

They may have a list of anticipated outputs and seek the right input parameters that will yield 

the expected outputs. To solve these inverse problems without solving the original problems 

directly will require a different computational model and often proves to be extremely 

difficult, if not impossible, to construct. Time and again, the only option left for the engineers 

to find the input parameters for anticipated outputs is the approach of trial and error based on 

their instinct or experiences.

In this study, the author investigates the feasibility of using Case-Based Reasoning 

techniques to improve the usability of numerical models, particularly in helping engineers to 

solve inverse and constraint problems.
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1.2 RESEARCH QUESTIONS

1.2.1 Primary Question

The main objective of this study is to answer the following research question:

"Can Case-Based Reasoning methods be used to improve the usability of

numerical models?"

Case-Based Reasoning (CBR) techniques have been proved to be an effective problems- 

solving tool over the recent decades. A number of researchers have used CBR and machine 

learning techniques to improve the usability of numerical models. These include: [Cheetham 

and Graf, 1997; Cheetham, 2001; Schwabacher 1998; Kalapanidas and Nikolaos, 

2001]. Cheetham gives an account of a CBR tool developed to help users to select a subset of 

the allowable colourants for colour matching in plastics. The CBR tool was shown to be cost 

saving and to increase the colour matcher productivity. There may be advantages in using 

CBR to support engineers in the decision-making process, particularly for solving inverse 

and constraint problems in the numerical domains. This primary objective of this study arose 

from discussions with numerical modelers who found that mathematical models are often not 

very user-friendly in terms of obtaining the input parameters of a mathematical model to 

produce its expected outputs. Unlike database models, there is no equivalent of Structured 

Query Language (SQL) for querying numerical models, and this result in need of skilled 

programming in order to adapt a model for a particular use. Due to the characteristics and 

easy use of a CBR system, an intuitive idea was proposed in this study that a CBR system 

could be produced from a numerical model and that this system could be queried in a more 

flexible way to help engineers who endeavor to solve an inverse engineering application.

The question was taken as the main driver for the research in this study. The main impetus 

was to construct a general method for deriving useful CBR systems from numerical models, 

and to assess their usefulness as engineering aids. Although the methods are of general 

significance, they were developed with reference to two specific complete examples, to try to 

ensure that the important detail was not overlooked.
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In the course of this study derived by the primary objective stated at the very beginning of 

this section, some interesting subsidiary problems were encountered. One of these (the 

nominal values interpolation problem) blossomed into a substantial question in its own right, 

and its solution occupies a major part of the thesis. Indeed the solution of the nominal values 

interpolation problem also gave rise to a new method of case base reduction, described in 

Chapter 7.

1.2.2 Subsidiary Questions

Some subsidiary research questions arose in the course of this investigation. These were:

1.2.2.1 Can the standard CBR models be generalized to a unified (problemsolution) 

space to allow flexible query modes?

This question arises from the need of engineers to define constraints dynamically during a 

consultation with the model of interest. In many cases they need to define a constraint over 

both "inputs" and "outputs". The usability of a numerical model is intimately connected with 

its queryability. The database model can be queried with SQL by selecting any set of 

variables to be inputs. Comparatively, in the standard CBR models, a case is represented as a 

<problem, solution> pair. The problem space and the solution space are treated as separate. 

To solve inverse or constraint problems faced by engineers such as the projectile model 

problem and the pneumatic conveyor problem described in Section 2.2 and 2.3, it is essential 

to investigate whether the standard CBR models can be generalized to a unified 

(problem:solution) space to allow flexible query modes so that engineers can define 

constraints in both spaces. In order to discuss the usability of CBR systems regarding 

engineering constraints we first need to formalize the concept of a unified space.

The answer to this question is presented in Chapter 4, Unified Problem:Solution Space in 

Case-Based Reasoning, in which a generalization of the standard CBR retrieval method that 

integrates the problem space and the solution space into a single query space is proposed. 

The retrieval method is proposed by means of the concept of nearest neighbours to a
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constraint region. In the method, a target may be expressed as a constraint region, 

specified by means of constraints over the unified space. It is shown that the standard CBR 

retrieval is a special case of this more general model. Its advantages are demonstrated by a 

variety of illustrative examples.

1.2.2.2 Can distance weighted interpolation be generalized to a unified space, 

particularly with regard to nominal values?

Interpolation is generally a good adaptation method, particularly in the real domain. 

However, in the case of mixed domains where there are continuous and nominal values such 

as discrete bend types and bend angles in the pneumatic conveyor problem [Woon 

2005], it is doubtful if the same method can be applied to nominal values. Wilson and 

Martinez (1997) use Stanfill and Waltz's Value Difference Metric (1986) as the basis for 

interpolation. However, their method is not able to cope with solutions not in the case base. 

Therefore, further study is required to contrive a method for case based adaptation using 

interpolation over nominal values for inverse or mixed-constraint problems, where often a 

solution is not present in the case base.

Shepard's interpolation method [Shepard, 1968] is the basis of many interpolation methods 

[Mitchell, 1997; Franke and Nielson, 1980]. We take this as a starting point for research into 

the possibility of an interpolation method for nominal values. 

presents a generalization of the Shepard's method for the inclusion of a 

distance metric defined in the solution space. The method is termed as Generalized Shepard 

Nearest Neighbour (GSNN) [Knight and Woon, 2003b, Knight and Woon, 2004b]. GSNN 

has been shown to out-perform conventional nearest neighbour methods on the Iris data set 

[Fisher, 1936], a simulated nominal value test problem and a benchmark case base from the 

travel domain [Lenz 1996]. The predictive power is shown to improve in efficiency 

when used in conjunction with a diverse retrieval algorithm.
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1.2.2.3 Can the error function developed in the nominal value interpolation be useful in 

case selection?

This question arose as an outcome of the work on nominal values, and is not wholly pertinent 

to the core of this study. The generation of a case base from a numerical model raises an 

interesting question as to how many and which cases need to be generated. This is intimately 

connected with case selection techniques, which address the same problem. The error 

function developed for the nominal value interpolation has several potential advantages for 

case selection. Question 1.2.2.3 was a by-product of an investigation into how effective the 

error function is in case selection.

High dimensionality may make the CBR solution infeasible. In the pneumatic conveyor 

problem example (see Section 2.3) there are 7 degrees of freedom, and in order to cover the 

domain in reasonable detail, say 10 points in each dimension, it would require 107 cases in 

total. One approach to this problem is to use case selection techniques such as [Salamo and 

Golobardes, 2002; Wilson and Martinez, 2000; Kibler and Aha, 1987; Yang and Zhu, 2001; 

Symth and McKenna, 1998, 1999] to keep the case base small while trying to maintain the 

level of solution prediction accuracy.

In the domain of numerical models, there is a great deal of regularity in the model. One 

would expect fine detail to be well represented by some adaptive process such as 

interpolation. Interpolation has been proven effective in the real domain, also in nominal and 

mixed domains (based on the results obtained from using GSNN). There is the possibility to 

produce a relatively small efficient case base by using case selection techniques and 

interpolation techniques.

With this reasoning, a case selection method with the inclusion of a solution space metric is 

proposed. The method embedded GSNN in decremental reduction algorithms such as the 

Shrink algorithm [Kibler and Aha, 1987]. Results [Woon 2003a] show that the method 

can produce a sparse case base with good predictive power in the Iris data set and the 

pneumatic conveyor problem.
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1.2.2.4 What sort of models can the method be used on ?

The number of areas where numerical models are used is huge. The focus in this research is 

on the queryability of numerical models. Therefore, both the inputs and outputs of a 

numerical model play a significant role. The input and output data types and the degree of 

freedom have a strong effect on the performance of a CBR model. In general, these inputs 

and outputs can be real-valued and nominal-valued attributes. In this study, a survey of the 

scope of the method is presented in the concluding chapter. This points to engineering 

domains where the method can be deployed.

1.3 OBJECTIVES

The following is a list of objectives of this research work:

  To present a basis for the generalized version of CBR model based on a unified 

(problem: solution) space to allow flexible query mode

  To present a basis for the generalization of distance-weighted interpolation 

method to unified space, particularly with regard to nominal values

  To propose a case selection method to produce a relatively small efficient case 

base

  To implement and assess the proposed CBR approach in two specific numerical 

problems:

(i) The Projectile model 

(ii) The Pneumatic Conveyor Problem

  To survey scope of the method

1 -8



1.4 RESEARCH METHODOLOGY

This section is devoted to a delineation of the research methodology taken by this study. The 

rationale for each part of the research work is outlined, and its role in supporting the core of 

the study is explained. Fig. 1-1 shows a graphic of the research story, breaking it down into 4 

stages.

STAGE I
Understand the research 

problem

STAGE II
Core Idea of the Research

STAGE III
Case Study I, II 

Chapter 8, 9

Part I - Primary question:
Can CBR improve the usability 
of numerical models? 
Chapter 1,2, 3

Part II - Answers to subsidiary 
questions:
  Chapter 4 - Unified space 

for flexi-query mode?
  Chapter 5,6- Interpolation 

over nominal values?
  Chapter 7 - Case Selection 

Scheme?

J7

STAGE IV
Conclusion of the thesis,

Survey scope of the method
and Future Work

Figure 1-1. Outline of the Research Methodology
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At the outset of this study, a brief outline of the research problem based on the subject area 

and the primary question (i.e., Section 1.2.1) were proposed. The project was divided into 

four stages as follows (Fig 1-1 is produced as a guide to this study.):

1. Stage I: Understanding the Research Problem

2. Stage II: Core Idea of the Research

3. Stage III: Case Studies

4. Stage IV: Conclusion of the Thesis and Future Work

1.4.1 Stage I

The first task was to find out the primary concern of this research and then to go through past 

research relevant to this research. The objective was to gather useful background information 

and to ensure that this project is not repeating the work of others but a contribution to 

knowledge.

In the meantime, it was useful to look at some examples of numerical models for more 

concrete definitions of the research problem. The objectives were to identify the advantages 

of using CBR for numerical models and to consider the problems that needed to be dealt with 

in the CBR approach. The project began by studying a simple projectile problem. In the 

course of investigation, it was discovered that in order to answer the primary question it was 

essential to break down the primary problem (i.e., Section 1.2.1) into several sub-problems. 

Consequently, a few subsidiary questions vital to this project had been identified.

1.4.2 Stage II

Once the main and side problems had been briefly defined, the next step was to tackle each 

of the sub-problems individually and then to examine if they could be integrated to solve the 

whole problem. To do this, it was essential to review relevant literature to ensure that the 

methods proposed to solve these sub-problems are original and to search possible existing 

research that might shed lights on these problems.



________________________________

In the engineering domains, there may be a number of solutions to a given query where 

outputs are specified. Cases with close outputs may have very different inputs. Hence, 

retrieved solutions may not necessarily be adaptable. This may cause difficulties in 

adaptation as these cases are not One of the major tasks of 

this study was to investigate the feasibility of extending standard CBR models to a unified 

(problem:solution) space to allow flexible query modes. This will affect the case 

representation and the metric defined on the query space. The idea was to generalize standard 

CBR models to a unified space so that engineers could specify inverse or constraint problems 

in a flexible manner, when necessary adaptation is then performed on cases that are close in 

the unified space. The generalized method has been examined in the projectile model and the 

pneumatic conveyor problem for illustration.

Another task was to identify a way to handle nominal values in constraints and interpolation. 

In the pneumatic conveyor problem (see Chapter 2) nominal values may appear in a physical 

system and it was doubtful that interpolation methods could be useful and effective for 

handling nominal values in adaptation [Chatterjee and Campbell, 1993; Wilson and Martinez 

1997]. This shortcoming may cause difficulties in an engineering application in which such a 

constraint over the outputs is imposed that the inputs (e.g., bend type) of the application is 

not yet present in the case base or in the retrieved set.

We took Shepard's interpolation method [Shepard, 1968] to be the starting point for the 

possibility of an interpolation method for nominal values. Shepard's method was first 

expressed as a minimization problem. The interpolation equations are the conditions for an 

error function to be minimized. It was noticed that in this form the error function is only 

dependent on the (Euclidean) distances. Hence it was easy to generalize the error function to 

depend on distance metrics. In this way the minimization of the generalized error function 

gives generalized interpolation formulae. It is termed as Generalized Shepard Nearest 

Neighbour (GSNN) method. The method was first tested by the author [Knight and Woon, 

2003b] on the Iris data set [Fisher, 1936] and a simulated nominal value test problem. The 

simulated test problem consists of two simulated case bases. These case bases were generated 

with node sets regularly spaced and randomly spaced respectively using a function adapted
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from the one previously used by Ramos and Enright (2001) to test out the Shepard method. 

We [Knight and Woon, 2004b] then tested the method on a benchmark case base from the 

travel domain [Lenz «/., 1996]. Results from both of the two tests have shown that the 

method out-performs conventional nearest neighbour methods on these data sets.

However, we suspected that GSNN's performance suffers from the "extrapolation trap" as all 

other interpolation methods normally do. Analysis was therefore carried out on the false 

predictions of GSNN in the travel problem. The analysis has shown that GSNN does indeed 

not perform well when the members of the retrieved set clump together. In an attempt to find 

out a way to mitigate this problem, more tests were then conducted to examine the GSNN 

performance on diverse retrieval sets. Diverse sets are normally considered less likely to 

suffer from the "extrapolation trap". Again the travel problem was selected to test the GSNN 

performance on a retrieval set generated by a diversity algorithm. Results [Knight and Woon, 

2004b] have shown that GSNN's performance is in fact improved considerably. The 

improvement is nearly twice as good as conventional nearest neighbour methods.

The analysis along this line was further performed both on the random simulated case bases 

and the regular case bases. It has once again been shown that a diverse retrieval set can 

improve GSNN performance. These two tests have proven that the diversity algorithm 

improves results from a random simulated case bases more than from a regular case bases. 

This is because regular case bases give rise to retrieval sets that are already quite diverse.

One of the by-products of the work on nominal values is the third subsidiary question stated 

in Section 1.2.2.3. In the numerical domains, in order to cover the domain in reasonable 

detail, a large number of cases might need to reside in the case base. The bigger the case 

base, the more solutions it can contain. But, high dimensionality may cripple the CBR 

approach. It is often not advisable to generate a dense case base because it may lead to a 

substantial increase of the searching time. However it is not advisable either to keep too 

small a case base, which is incapable of representing the domain. The error function 

developed for the GSNN nominal value interpolation has several possible advantages for 

case selection: (i) it relies on distance metrics defined in the problem and solution space, (ii)

1-12
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it can predict solutions not yet present in the case base and (iii) it can predict solutions not in 

the retrieval set. It was furthermore envisioned that there might be another advantage. 

Because the error function gives an estimate of how well a given case is predicted by its 

neighbours, it could be useful in case selection. The question was consequently raised: 

Other case selection methods also use an estimate, but it is often just a binary 

estimate "selected" or "not selected". The error function gives more information than a 

binary value does and might therefore be a better determiner in case selection. To examine 

this conjecture, GSNN was embedded as a case selection component in a decremental 

reduction algorithm called "Shrink" [Kibler and Aha, 1987]. Then the revised Shrink 

Algorithm [Woon 2003a] was tested on the Iris data set and an engineering application 

case - pneumatic conveying particles problem.

The Shrink algorithm reduces a case base with one less case in each iteration. The case to be 

removed is taken from a candidate set. The candidate set is usually taken to be the set of
A

cases such that estimated solution ( ) = true solution (y,). If the candidate set is empty, the 

algorithm will halt.

We first implemented a new removal strategy such that a case with minimum error

) is to be removed in each iteration and this would mean that the candidate

set is never empty. In fact is also a measure of how important is to the

case base's predictive power. In fact a better measure can be derived from the GSNN error
A

function. We proposed to be the removal condition. It is a measure of 

the deviation between the estimated value and its neighbours prediction. is a 

measure of the deviation between the true value and its ^-neighbour prediction.

is a measure of how near is to be selected as the estimated value. If

o , then will definitely be selected 0, then 

would be a long way from being selected. 
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Results [Woon 2003a] from the running of the three test cases have shown that the use 

of the error function of the GSNN nominal value interpolation as a measure of case selection 

can produce a sparse case base with good predictive power in the Iris data set and the 

benchmark case base from the travel domain.

1.4.3 Stage III

With each of the sub-problems solved individually, it came to examine if the approaches 

developed for these problems could be combined to answer the primary question stated in 

Section 1.2.1: Can CBR improve the usability of numerical models?

The CBR approach was tested for its capability in two specific engineering applications - the 

pneumatic conveyor and the projectile problem, and has been shown to produce answers 

immediately to several real design problems, which would otherwise have required 

considerable engineering expertise and time.

1.4.4 Stage IV

With the success of the CBR approach in the two specific engineering applications, it is 

worthwhile to explore the potential application scope of the CBR approach as a general tool 

for engineers. Interviews were carried out with individual experts to examine the feasibility 

of using CBR in other areas of mathematical model application. Such potential areas are 

discussed in Chapter 10.

The concluding chapter presents the work completed with respect to the project scope and the 

contribution of this study to knowledge. Although this study has answered all the questions 

raised in Section 1.2, there is still room for future work, which is discussed in depth in 

Chapter 10.
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1.5 MAJOR ACHIEVEMENTS

In this thesis there are several original contributions to knowledge in the fields of CBR. 

These are:

1. A method for creating useful CBR models from numerical models to assist engineers in 

searching for solutions of engineering problems.

2. A CBR framework allowing constraints to be defined over unified problem:solution 

space.

3. A novel method for interpolation over nominal values termed as Generalized Shepard 

Nearest Neighbour (GSNN) method.

4. The use of GSNN in conjunction with the diversity algorithm - an approach, which is 

capable of improving predictive performance.

5. Investigations of the use of the GSNN error function as an error measure in case 

selection.

Some of these have already been published in the following publications: [Knight and Woon, 

2003a, 2003b, 2004a, 2004b]; [Woon 2003a, 2003b, 2003c, 2004, 2005].
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1.6 OVERVIEW OF THE THESIS

The thesis is divided into five parts - 

and finally 

1.6.1 Part I: The Research Problem

The objective is to establish the fundamental question of this study and the motivation that 

drives this research.

1.6A.I Chapter 1: Introduction

Chapter 1 gives an overview of the background information of this study. It follows by the 

main research problem and subsidiary questions. The objectives of this study and the 

methodology used in this research are also presented together with the major contribution of 

this work to knowledge.

1.6.1.2 Chapter 2: Motivation

Chapter 2 explains the motivation of this research. The general architecture of a CBR - 

Numerical model system is defined and discussed. This collaborative combination has 

application in engineering domains where numerical models are used. The domain is termed 

as To discuss the advantages and characteristics of this general 

architecture, two illustrative examples: (1) the projectile model and (2) the pneumatic 

conveyor problem are used.

1.6.1.3 Chapter 3: Literature Review

Chapter 3 gives a summary of what has been done and what has not, in the relevant fields 

with respect to this study.
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1.6.2 Part II: Core Idea of the Research

In Part II, the core idea of the research is discussed. The four chapters describe in turn the 

methods proposed to answer the subsidiary questions in Section 1.2.2.

1.6.2.1 Chapter 4: Unified Problem:Solution Space in Case-Based Reasoning

In this chapter, a generalization of the standard CBR retrieval method, which integrates 

problem space and solution space into a single query space, is presented. The retrieval 

method is proposed by means of the concept of nearest neighbours to a constraint region. It is 

shown that the standard CBR retrieval is a special case of this general model. The advantages 

of the general model are explained in connection with its more general query modes by 

means of a variety of illustrative examples.

1.6.2.2 Chapter 5: Interpolation over Nominal Values in the Unified Space

In this chapter, a generalization of distance-weighted interpolation method to unified 

space, particularly with regard to nominal values, is presented. The method relies on the 

definition of an error function in terms of distance metrics in the unified spaces. The 

retrieved solution is taken to minimize this error function. The algorithm is shown to out- 

perform conventional nearest neighbour methods on sparse problems.

1.6.2.3 Chapter 6: Interpolation on a Diverse Retrieval Set

Chapter 6 shows that the Generalization Shepard Nearest Neighbour (GSNN) interpolation 

method gives good prediction with interpolation on a diverse retrieval set. This is connected 

to the general property that interpolation methods normally perform better at interpolation 

than extrapolation. Interpolating on a diverse retrieval set usually include distant neighbours 

making sure that a target case is within a set of interpolation points.
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1.6.2.4 Chapter 7: Case Selection Techniques

In this chapter, a case base reduction method, which uses a metric defined on the solution 

space, is presented. The reduction method is given for case bases in terms of a measure of the 

importance of each case to the predictive power of the case base. It is shown that the method 

can produce sparse case base with good predictive power demonstrated in some example 

problems.

1.6.3 Part III: Case Studies

Part III shows the realisation of the methods proposed in Part II, in two studies: (1) The 

Projectile Model and (2) The Pneumatic Conveyor Problem. These studies show how CBR 

can be used to improve the usability of numerical models.

1.6.3.1 Chapter 8: Case Study I: CBE-Projectile

In this chapter, the same projectile model that has been discussed in Chapter 4 Section 4.4 

and 4.5, is re-presented. However, this chapter discusses the implementation of a CBR model 

used for the Projectile model. The objective is to show that CBR can be used as an intelligent 

assistant to help engineers to search for a solution of an inverse problem of a physical 

system. Results obtained have shown that the CBR model is capable of producing answers 

immediately to the Projectile problems, which would otherwise have required considerable 

efforts and time.

1.6.3.2 Chapter 9: Case Study II: CBE-Conveyor

This chapter discusses the implementation of a CBR model used for an engineering practice 

problem: the Pneumatic Conveyor Problem, a simulation model for the degradation of 

particles, developed by Chapelle (2003). The discussion presented in this chapter is a 

further demonstration of the use of the CBR approach to improve the usability of numerical 

models.
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1.6.4 Part IV: Conclusion and Future Work

Part IV sums up the study described in this thesis and points to the possible directions of 

future work.

1.6.4.1 Chapter 10: Conclusion and Future Work

Chapter 10 gives a summary of what has been done in this study and the major contribution 

of this research to knowledge. It also discusses the limitations of this work and possible 

future enhancement. The chapter leads to the discussion of potential future research interests. 

This includes a list of numerical applications for testing.

1.6.5 Part V: References and Appendices

Part V is a collection of references and appendices. A list of references is presented. The 

appendices include a list of figures and tables, a list of refereed publications of this work and 

selected papers, and a selection of screenshots from the general Case-Based Engineering 

(CBE) model.
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2.1 INTRODUCTION

Numerical models of physical processes can provide useful advice to engineers in many 

fields. They are often designed to simulate the evolution of systems over time, and operate in 

a forward time direction. Generally, engineers will specify inputs / = ..., and the 

model will calculate output 02,    , where is a function of/.

While a model of this type is of great help for engineers to gain insight into the real physical 

system represented by the model and both effectively and efficiently assist them in designing 

a better system, time and again engineers are caught up with an inverse problem of the 

original model. In fact, in many cases where the original model is derived to represent a 

system in the real world, the primary concern of the designer is to seek ideal inputs of the 

model that will produce given outputs. In addition, engineers often want to add constraints 

dynamically to outputs while searching for the right inputs. To solve these inverse and 

constraint problems directly will require a different computational model, often difficult or 

impossible to construct. For many practical systems where it is very logical and easy to 

develop the model to represent the real system of interest, it would be extremely difficult, if 

not impossible, to derive the corresponding inverse problem in an explicit or analytical way. 

Engineers find themselves with no option but to resort to an iterative search method: running 

the original model, looking at the results and changing the inputs accordingly for another run. 

In effect, the engineer is judiciously generating cases from the numerical model.

Experimental data collected by engineers are often used to assist in their design tasks. It is 

not rare that this data is more detailed and reliable than modeled data; covering all possible 

experiments scenario. On the other hand, in some circumstances [Kalman, 2000; 

2003; Simcox 1992] where experimental data are expensive to produce; it is desirable 

to utilize numerical models to generate a database, which may then be tested for accuracy of 

prediction. A database model of a process of this type may be represented by a set of stored 

predicates:
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Such a model can be queried quite flexibly using SQL by specifying either inputs or outputs, 

and constraints. However, such a model also suffers from some disadvantages:

  It can be a very large database, particularly if and / are large, or if high accuracy 

is required.

  Queries using SQL can often give null results if the database is kept small.

The idea under examination in this research is to use a CBR system generated using a 

numerical model as a flexible query engine for engineers. The question we want to ask is 

this: 

The 

answer to this question requires the use of CBR in collaboration with numerical models in 

problem solving. This collaborative combination has particular application in engineering 

domains where numerical models are used. We term this domain 

(CBE).

In this chapter, we study the illustrative examples of a projectile model and a pneumatic 

conveyor model in Section 2.2 and 2.3. The problems with the database approach are 

discussed in Section 2.4. In Section 2.5 we define and discuss the general characteristics of 

the CBE architecture. We look at the advantages of this architecture in the engineering 

domain and discuss the problems, which we encounter in attempting to set up a generally 

flexible query tool. We conclude in Section 2.6 with a summary of this chapter.
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2.2 ILLUSTRATIVE EXAMPLE I: THE PROJECTILE MODEL

A simple projectile model is used to illustrate how a CBR tool can be used to help engineers 

in finding right input parameters for given outputs. The projectile model simulates the flight 

of a cannonball shot over flat ground in a given time interval, T. The model receives two 

inputs; v = velocity, angle of gun. To plot the trajectory, each point is represented by 

where and where e 

50

02

\ /
0 200 250

Figure 2-1. Visualization of the trajectory of a cannonball shot over flat ground aiming a target 
at 250 m

2.2.1 Example Problem

Consider the problem that a gunner tries to hit the target at 5 Om on level ground, and also 

to clear a wall of height = 50m, at =200m (see Fig. 2-1). From the gunner's point of view 

the problem is this: Can the right angle of gun and initial velocity be determined so that the 

cannonball will clear the wall at height = 50m? In this example, a range of possible velocity 

values and angle of gun are available, where ve and What is the best 

set-up to use?

The problem can be formulated as follows, representing the model in the form of a predicate, 

where is the angle of the gun, v the initial velocity. The inputs and outputs for the model 

can be represented as a set of predicates:
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Where // = 

With this notation, the gunner's problem can be posed as a query:

As an SQL query this is (for example):

Select/;, FROMP,

Where AND 

AND ( /; is BETWEEN AND )

AND is BETWEEN AND 
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2.3 ILLUSTRATIVE EXAMPLE II: THE PNEUMATIC 

CONVEYOR PROBLEM

The second illustrative problem is derived from a practical engineering application: the 

pneumatic conveyor problem. Pneumatic conveying is an important transportation 

technology in conveying solid bulks in industry. Attrition of powders and granules during 

pneumatic conveying is a problem that has existed for a long time. One of the major industry 

concerns is to investigate how parameters such as air velocity, loading ratio, the angle of the 

bend, etc. affect degradation. For example, Hilbert (1984) studied different bend structures. 

Marcus (1985) have investigated the pressure loss of different bends. Agarwal 

(1985) considered acceleration length due to bends and the effects of phase density, etc. 

Weinberger and Shu (1986) examined the effects of the curvature radius of a bend on the 

transition velocity (the gas velocity at which minimum pressure drop occurs). Bell in 

their studies (1996) discovered that air velocity has the prime effect on the attrition rate. Such 

knowledge is of great use in the design of conveyors. Often, engineers are more concerned 

with what input parameters will produce a desirable size distribution of particles. Fig. 2-2 

shows the schematic diagram of a sample pneumatic conveyor. Particles are fed into a hopper 

and are transported to a receiver using a pneumatic conveyor.

This engineering application represents a typical scenario in which extreme difficulties arise 

to construct the inverse or constraint problem from the original model. It is almost impossible 

to find a mathematical expression for the inverse problem and hence we are not able to seek 

its solutions by solving a mathematical system either analytically or numerically. It is a 

typical scenario that engineers are left with few options but the inefficient trial and error 

approach. It is for a system of this type that the CBE approach is expected to make a 

significant difference in helping engineers to design the system of interest both efficiently 

and effectively.
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Feed hopper

Air
Fan I

Inlet

Receiver

Bend 1

Figure 2-2. The schematic diagram of a sample pneumatic conveyor

Weight 
Fraction (%) Waght 

Fraction (%)

40- 
30- 

20

Size Class 0.

42

Size Class

Fig. 2-3. Particle size distribution at the inlet Fig. 2-4. Particle size distribution at the outlet

2.3.1 Example Problem

From a designer's point of view the problem is this: Can the right bend type, angle of bend, 

and air velocity for a given particulate, e.g., sugar or tea., be determined so that there is not 

too much dust formed (i.e., very small particles) particles in the output receiver? Take for 

example: there are 4 types of bend, 3 angles of bend and three pipe diameters available. 

There may be only low power fans available sometimes, so the air velocity may be 

constrained. What is the best set-up to use?
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Again, the engineering problem can be formulated as follows, representing the model in the 

form of a predicate, where are the types of bend, is the 

air velocity, are size distributions of particles going in, and 

are size distributions of particles coming out of the conveyor (i.e., 

Fig.2-2, Fig.2-3, Fig.2-4).

How can I get 
<io% and

s-in

{solutions}

Engineer

Target query

Particles
Degradation

Database

Figure 2-5. An engineer makes a query to the Particles Degradation Database

The inputs and outputs for the model can be represented as a set of predicates:

Where /; = = 

The designer's problem can be posed as a query (Fig. 2-5):

/7, 

/5<25%,/5 >20%,0¥ <10% . 

As a SQL query this is (for example):

Select /;, FROM 

Where ( // = OR = 

OR /; = // = 

AND 

AND Z,<25AND/4>20

AND 10;
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2.4 THE DATABASE APPROACH

Given a large enough database, the database approach should give a range of possible 

solutions. However, there are a number of problems associated with the database method. 

These include the following:

  The database may be expensive to produce.

  High dimensionality may make the database solution infeasible. In the conveyor 

problem, there are 7 degrees of freedom, and in order to cover the domain in 

reasonable detail, say, 10 points are needed in each dimension, it would give 107 

records altogether.

  The solution set could be very large and hence unhelpful in decision making.

  Equality constraints might mean there are no solutions at all to the SQL query.

Some of these problems can be addressed by means of a CBR model. The problem of 

database size may be reduced somewhat by means of a sparse database of important cases. 

Although at first sight the dimensional catastrophe is still present, there is still the possibility 

to produce a relatively small efficient case base to replace a large database. One reason for 

suspecting this is that the focus in this study is the domain of numerical models. In this field, 

there is a great deal of regularity in the model, and one would expect fine detail to be well 

represented by some adaptive process such as interpolation. This should allow a great 

reduction in storage. Interpolative CBR systems have been studied by Chatterjee and 

Campbell (1993), and by Knight and Woon (2003b), who propose a generalization of 

Shepard's method [Shepard, 1968] known as GSNN (details can be found in Chapter 5).

Other problems associated with the simple database model such as the large solution set 

problem and the equality constraints problem may also be alleviated in the CBR approach. 

CBR retrieval is on the whole more amenable to usability questions than SQL does, giving 

cases ordered by closeness to input criteria. It will always give answers, and they might be 

ordered according to user needs.
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2.5 THE CASE-BASED REASONING (CBR) APPROACH

In this section, we show how CBR can be used as a flexible query engine to assist engineers 

to solve inverse or constraint problems. Ideally engineers would like to be able to express 

their problem constraints without worrying whether the variables are inputs or outputs. 

Sometimes they need the right inputs for given outputs; sometimes they know some inputs 

and some outputs. For example, in the conveyor problem the engineer may only have certain 

bend types available for a design. This is expressed as a constraint on inputs. They may also 

need to be certain that not too much small particle dust appears in the output receiver: this is 

a constraint on outputs. The CBE architecture proposed here is designed to handle constraints 

of this type, allowing the engineer to define any constraints over the unified input and output 

space.

2.5.1 The General Case Based Engineering (CBE) Architecture

Before examining the special problems we encounter in CBE, we first describe the 

collaborative CBE architecture, between the engineer, CBR system and numerical model. We 

also include the case base maintainer as a separate agent in the overall architecture. These 

agents work together by sharing individual knowledge and expertise to solve inverse and 

constraint problems.
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3.1.1 CheckNumerical Results

Engineer

SelectlnterpolationCases
SetTargetConstraints
CheckModelResults

A

3.1 RunModel

1.1 SetConstraints
1.2 Retrieve

1.3 Solutions

2 Interpolate

CBR Model

Case

Retrieve
SetConstraints
Interpolate
CheckSolution
AddCase
Reduction

4.1 Reduction

4.2 AddCase

3 CheckSolution

Figure 2-7. The UML collaboration diagram of the general CBE architecture

Fig. 2-7 is a UML collaboration diagram showing the interactions between these agents. The 

sequence of steps in a typical query session is as follows:

1.1 The engineer defines a set of constraints over input-output space defining the 

problem.

1.2 The CBR model retrieves cases near to the problem definition.

1.3 The CBR model presents a list of useful cases to the engineer. The engineer can 

examine these cases, and possibly redefine the problem if the initial definition was 

not complete, or was incorrect in some way. There is also an opportunity for the 

engineer to select some of the retrieved cases manually for the next phase 

(adaptation). This would be useful in situations where the engineer needs to have 

more 'hands-on' control of the whole retrieval process

2. The engineer requests the CBR model to perform interpolation on a retrieved set of 

cases. The retrieved set may be that selected by the engineer, or simply the nearest 

neighbours. It has also been shown in [Knight & Woon, 2004b] that interpolation can 

work better on diverse sets. The interpolation phase needs often to be able to deal 

with nominal values, and to handle a variety of constraints. It also has to make sure 

that the interpolation set is conformable for interpolation; sometimes two solutions,
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though close in the problem space, are not at all close in the solution space and should 

not be used for interpolation. We examine these problems of interpolation later in 

Section 2.5.2.2 

3.1 The adapted solution produced by the CBR system has values for all inputs and

outputs. It is now possible to run the model against the inputs, and verify the outputs. 

3.1.1 The simulation results are then presented to the engineer who can decide whether the 

solution is acceptable. It may well be that they may need to return to Step 1.3 and 

select a different set for adaptation. In situations where there is a large difference 

between the modelled and adapted solution, we have the possibility to add the new 

modelled case to the case base. The addition of a new case will give reason to return 

to Step 1, and the session can continue with the new case base.

There are also two interactions shown in the collaboration diagram separate from those

described above, which involve the case base maintainer. These are:

4.1 Generation of the initial case base. This must depend upon the dimensionality of the 

problem space, and the cost of model generation. For fast models and low 

dimensionality, we can simply produce a regular dense database. Regular here means 

that we simply divide each dimension into equal steps and impose a Cartesian grid of 

points on the domain. However, for high cost, long run time models of high 

dimensionality (e.g., computational fluid dynamics models), the case base would of 

necessity be sparse, and we would have to rely on the effectiveness of the 

interpolation scheme. It is often not simple to cover the case base uniformly. Some 

regions of the case dimensions are not practical, i.e., not naturally 

occurring.

4.2 Subsequent maintenance of the case base such as adding and removing cases is 

managed by the Case Base Maintainer, which may utilize case reduction schemes co- 

operating with the numerical model.

In fact, we can gain some insight of the collaborative architecture in the scenario of how fire 

investigators try to solve inverse problems (i.e., determine the fire origin and the exact fire 

development process). Often fire investigators are acting on previous cases from experience 

in order to find the location of a fire source and interpret how the fire has developed. They
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either carried out real fire tests or run numerical model to confirm their findings. However, 

such experimental data can be expensive to produce. In this case, a case base can be 

generated using a numerical model in addition to real fire data. By acting inversely, the 

engineer can input a list of expected outputs obtained from the post-fire evidence and query 

the case base to find the possible locations of a fire source. When necessary the CBR model 

performs additional simulations to confirm the fire investigator findings.

For the numerical model to be queried in a flexible manner (i.e., with no distinction between 

inputs and outputs), it would be desirable to preserve the convenient property of databases in 

the CBE architecture so that the inverse problem becomes just another query. However, there 

are a number of problems need to be dealt with. These problems are discussed in Section 

2.5.2.

2.5.2 Elements of the CBE Architecture

In this section we examine in detail some of the special issues that arise in the design of a 

working CBE system. These are mainly due to the need of the engineer to search and 

interpolate over the whole input - output space. This entails four main problems, which we 

discuss here. The first problem is the handling of constraints. The second problem is that 

when querying numerical models in an inverse manner, one cannot assume single-valued 

solutions. The third problem is to do with interpolation over nominal values. The fourth 

problem is the definition of metrics on the query space.

2.5.2.1 Constraints

Both the projectile model and the conveyor problem are constraint problems. For instance, 

the SQL example given in Section 2.3.1 shows two types of constraints: continuous 

constraints of the type "Where and nominal constraints like 

Both constraints will involve inputs and outputs. One approach to dealing with constraints is 

to run the SQL query given above on the case base itself, beforehand, thus retrieving the
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nearest neighbour solution that satisfies the constraint. However, for sparse case bases this 

may not be desirable; it may give poor solutions when adaptation is required.

Numerical models are generally deterministic in nature, so that O is given as a single valued 

function of I. The inverse problem cannot be assumed as single valued. As in Fig. 2-8, there 

may be several solutions to a given query where outputs are specified. For 1-NN retrieval 

(i.e., A>Nearest Neighbour (fc-NN) where k=l, [Cover and Hart, 1967]), this gives little 

problem, since the multiple nearest cases may be ordered as equal for the user to select. For 

&-NN, it is not desirable to interpolate between cases which are not close in the input domain 

because outputs, which are close in the output domain may have diverse inputs. Bergmann 

(2001) address a problem that the similarity of cases in the problem space does not always 

correspond to the usefulness of the cases in solving the problem. Fig. 2-9 shows an 

inappropriate interpolation (adaptation using Q and C2) and that there is a much more 

relevant case (i.e., Cs - in the input space) to a given target constraint, which may be a better 

candidate case than C2 in adaptation. This problem is related to the constraint problem in 

Section 2.5.2.1. Although Cs may be a better candidate case than  2 in adaptation,  3 does 

not satisfy the target constraint. As a result,  3 will not be retrieved. One approach to this 

problem could be to perform adaptation on the cases that are close in the unified 

(problem:solution) space. This would require standard CBR models to be extended to a 

unified space so that engineers can define their problem constraints without worrying 

whether the variables are inputs or outputs.
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Inputs Outputs Inputs Outputs

Target 
constraint

Inappropriate interpolation

Fig. 2-8. Direct problem (single-valued solutions) Fig. 2-9. Inverse problem (multiple solutions)

Nominal Values

The third problem is the handling of nominal values in constraints and interpolation. The 

inputs of numerical models are often nominal values, and not ordered linearly. In the 

conveyor example discussed in Section 2.3.1, there are two attributes that are nominal in 

nature: the bend type (e.g., long radius, short radius elbow, turbulence drum, circular, box 

bend, blinded tee, etc.) and the angle of the bend (e.g., 30 degree, 45 degree, 90 degree). 

These also happen to be values the engineer is searching for in a typical query. For example, 

they may want to know what bend type is best for a given output size distribution of 

particles. According to Step 2 of the scenario in Section 2.5.1, this means we should 

interpolate to find the bend type from a set of cases. This requires interpolation over nominal 

values. In addition, the engineer will often want to express the fact that she/he only has 

certain bend types available. Such a constraint should be taken into account when it comes to 

interpolation. Chatterjee and Campbell (1993) propose a method for interpolation, which 

assumes natural ordering of nominal values. The ranking of nominal values is based on the 

linear distance. Wilson and Martinez (1997) extend value difference metric [Stanfill and 

Waltz, 1986] for defining metrics over nominal values. Their method however, is not capable 

of coping with solutions not in the case base. &-NN and Distance-Weighted Nearest 

Neighbour (DWNN) [Mitchell, 1997] uses a voting function for classification in nominal
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domains. However, these methods do not produce intermediate values (i.e., values not in the 

case base or not in the retrieval set) [Knight and Woon, 2004b].

Definition of Metrics on the Query Space

Standard CBR models assume that the problem space and the solution space of a CBR model 

are separate. In the direct problem (e.g., Fig. 2-8) these will correspond to the inputs and 

outputs of a numerical model. However, in the inverse problem (e.g., Fig. 2-9), the inputs of 

the numerical model are the problem space, and the outputs are the solution space.

Ideally, the database model should allow engineers to query with SQL by selecting any set of 

variables (i.e., inputs/outputs of the numerical models or both) to be the problem space. The 

solution (query) space can be any subset of the entire space of inputs and outputs of the 

numerical models. To apply this equally to the case-based model, a similarity metric between 

a target query and the cases in the case base must be defined over the entire space of inputs 

and outputs. One question, which arose in this study, is: 

2.6 CONCLUDING REMARKS
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3.1 INTRODUCTION

This chapter presents an overview of literature relevant to this research. The objective is to 

ensure that this research is not repeating the work of others. It is intended that this chapter 

will provide readers with a broad view of the research problem and with useful background 

information.

First, a summary of existing research with respect to the primary question: "Can Case-Based 

Reasoning methods be used to improve the usability of numerical models?" (stated in Section 

1.2.1), is reported in Section 3.2 and 3.3. Section 3.2 presents a number of inverse problems 

and describes a selection of approaches used to solve different types of inverse problems. 

Section 3.3 presents a brief overview of Case-Based Reasoning (CBR), and existing work of 

CBR applications for numerical models.

In what follows, this chapter reports the literature relating to the sub-problems defined in 

Section 1.2.2. Section 3.4 describes various case base retrieval methods for filtering database 

records, which allow flexible query modes in relational databases (see Section 1.2.2.1). 

Section 3.5 presents an overview of existing interpolation methods for nominal values (see 

Section 1.2.2.2) and in Section 3.6 definitions of metrics defined on the query space are 

investigated. In Section 3.7 we discuss a selection of existing case selection techniques (see 

Section 1.2.2.3).

However, the topics that are related to each particular technical aspect of this research will be 

discussed in more detail in later relevant chapters.
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3.2 THE INVERSE PROBLEMS (IP)

Prof. Oleg Mikailivitch Alifanov, the great Russian proponent of Inverse Methods, states: 

"Solution of an inverse problem entails determining unknown based on observation of 

their In contrast, a direct problem involves rinding effects based on a complete 

description of their causes.

In most industries, scientists often attempt to solve problems (i.e., finding unknown 

based on observation of its A review of IP applications shows that IP methods can be 

applied to a wide range of scientific and industrial fields.. This includes biological tissues [Ji 

and McLaughlin, 2003], signal processing and image recognition [Byrne, 2003; 

2004], statistical estimation [Evans and Stark, 2002], damage detection [Banks 2002], 

estuarine system [Bertino et al., 2002], etc.

In engineering fields where numerical models are used, engineers often are caught up with 

inverse problems with respect to the model of interest. Although the numerical model was 

designed to represent a system in the real world, the primary concern of the engineer is in 

certain circumstances to search for the right inputs of the model for given outputs. The 

following presents some examples of inverse problems faced by engineers:

A scenario of this kind might most be illustrated in the simple projectile problem. In the 

projectile problem, the trajectory of a cannon ball shot over flat ground depends on the initial 

angle and velocity of the gun. The physical description of the process, and the 

corresponding initial conditions, /= (angle G and velocity V) constitute the causes of the 

problem, where/* / > If these causes are known, the trajectory of a cannon ball (i.e., O) 

can be found. Hence, is the Suppose we know the range of the projectile target 

and/and there is a constraint defined such that the trajectory must clear a wall at certain 

height. The searching for the initial conditions that satisfy the suppositions constitutes an IP 

problem.
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Another inverse problem taken from the example provided by Palansuriya (2000) is the metal 

cutting problem. In the metal cutting problem, the temperature of the cutting blade has a 

great effect on its life and on the cutting quality. A model with the speed of cutting as an 

input can generate the temperature distribution within the plate being cut. We can measure 

these temperatures at various points, but not the temperature of the blade directly. Hence the 

problem is: given the temperatures at these points, can we find the temperature distribution 

within the blade? This is an IP with respect to the model, which works the other way: given 

the temperature of the blade, find the distribution in the metal sheet. If we can solve the IP 

here, we can work out a control scheme for the cutter speed.

In fire investigation, one of the key objectives is to establish the cause of a fire accident and 

the process of the fire development. Based on the post-fire evidence collected at the fire 

scene, fire investigators will try to find out where the fire started and how the fire spread 

during the course of the fire development. It is not uncommon in fire investigation that 

investigators rely on their experience of previous work and intuitively follow basic laws of 

fire dynamics. However, fire is complicated and complex phenomena that a wide range of 

factors influence its process. This working practice may lead to misinterpretation of the post- 

fire evidence and the drawing of wrong conclusions from them. With the advance of 

computer technology and fire science, fire modelling, particularly CFD (computational fluid 

dynamic) fire modelling, has increasingly been used as a useful tool to aid fire investigation 

[Simcox 1992; Jia 2003]. While the searching of the fire origin and its progress 

course of a fire based on the observations from the fire scene is a typical problem of 

determining unknown causes based on observation of their effects, it is unlikely that we can 

construct an inverse problem mathematically for a particular fire case due to the complexity 

of fire phenomena and CFD fire modelling in its own nature.

3.2.1 Methods for Solving the Inverse Problems

There are a multitude of inverse problems. Palansuriya (2000) cites several approaches to 

solve inverse problems such as domain decompositions [Kunisch and Tai, 1996], graphical 

[Stolz, 1960], polynomial [Frank, 1963], Laplace transform [Krzysztof 1981], dynamic
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programming [Trujillo, 1978], finite difference [D'Souza, 1975], finite elements [Krutz 

1978], least square method [Chow 1999] and regularization methods [Beck and 

Murio, 1986; McMasters and Beck, 2000]. However, there is no one best inverse method that 

can solve all IPs. We present here some to serve only as a representative selection of some 

general methods used for solving the inverse problems.

3.2.1.1 The 'Trial and Error' method and the Heuristic Approach

According to Pearl (1984), "Heuristics are criteria, methods, or principles for deciding which 

among several alternative courses of action promises to be the most effective in order to 

achieve some goal. They represent compromises between two requirements: the need to 

make such criteria simple and, at the same time, the desire to see them discriminate correctly 

between good and bad choices." . A heuristic may be a rule of thumb, which can be used to 

guide one's decision.

The method requires running a numerical model in a repetitive manner: 

looking at the output, adjusting the input parameters accordingly until the expected output is 

attained. The degree of adjustment on the parameters may depend on the intuitive judgement 

of engineers. Sometimes, this can be achieved by using an evaluation function to estimate the 

prediction accuracy. The 'Trial and Error' method [Barrett 1994] is a form of heuristic 

approach.

These methods are usually effective however not guaranteeing a solution or correct 

judgement. The following shows a possible approach to search for the solution of an inverse 

problem:

1. Set one of the setup parameters to maximum value and the others to minimum 

value

2. Gradually increase or decrease either one of the parameters

3. The judgment of the parameter variation should be based on the known effect of the 

parameter.
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4. The judgment of the parameter variation should be based on the relative importance

of the parameter.

The 'Trial and Error' method [Mahnken, 2004] has the following advantages: (i) it does not 

require additional programming for solving inverse problems; (ii) it can be used for all types 

of inverse problems; (iii) it can effectively exploit the knowledge of experts. The 

disadvantages are: (i) it is time-consuming; (ii) it does not guarantee accurate solutions; (iii) 

it does not have a specific objective criterion.

3.2.1.2 Neural Networks

A neural network is built out of a densely interconnected set of biologic nerves, the neurons. 

It simulates the information flow between neurons. Neurons are arranged in layers. A neural 

network may comprise an input layer, an output layer and others such as intermediate layer 

for hidden units (outputs of hidden units only available within the network). Each node (i.e., 

neuron) in the network has weights, which are determined by the training process. It uses the 

back propagation algorithm that relies on an error function to optimize the prediction of 

material parameters. The Neural Networks method [Mahnken, 2004] has the following 

advantages: (i) it can predict the material parameters simultaneously; (ii) it can be used for 

direct and inverse problems.

3.2.1.3 The Least-squares method

According to the least squares method, the best-fit curve has the property such that it has the 

minimal sum of the deviations from a given set of data. By minimizing the discrepancies 

between the simulated data and the experimental data, the best-fit curve can be determined 

and subsequently an estimate of parameters for a given problem. If the objective function 

involves dimensions that are less reliable or less relevant, a weighted least-squares estimate 

[Norton, 1986] can be used. The least-squares method has the advantage [Mahnken, 2004] 

that it can be used to determine input parameters of a given inverse problem simultaneously.
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3.3 CASE-BASED REASONING (CBR) AND NUMERICAL 

MODELS

3.3.1 What is CBR and how does CBR Work?

Riesbeck and Schank (1989)

CBR assumes the world remains regular, consistent and predictable so that we can apply 

what we have learned in the past in similar circumstances in the future [Kolodner, 1996]:

  Regularity. The world is essentially a regular and predictable place. The same 

actions performed under the same conditions will normally have the same (or very 

similar) outcomes.

  Typicality. Events tend to repeat. Thus, a CBR system's experiences are likely to 

be useful in the future

  Consistency. Small changes in the world only require small changes to our 

reasoning and need correspondingly small changes to our solutions.

A typical CBR system consists of four phases: (1) Retrieve, (2) Reuse, (3) Adapt, and (4) 

Retain. When a new problem (Target case) is presented to a CBR system, the target case is 

then matched against source cases in the case base to retrieve the most similar case(s). Once 

the best match (i.e., the most similar case(s)) has been identified, it would be used/adapted (if 

necessary) to solve the new problem. If adaptation is required, the new case will be stored in 

the case base for future use. How much adaptation needs to be done varies depending on the 

differences between the best match and target case. The CBR cycle is illustrated in Fig. 3-1.
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Figure 3-1. The Case-Based Reasoning cycle

3.3.2 Using CBR for Numerical Models

In this section, a selection of examples where CBR is used in specific numerical domain is 

presented. This includes the prediction of air quality problem, the colour matching problem, 

optimization setup of engineering designs and model generation in numerical solution. These 

examples show various approaches of using CBR for numerical models. They are discussed 

as follows:

3.3.2.1 The Air Quality Prediction Problem

Kalapanidas and Avouris (2001) give an account of a prototype, NEMO, built using a CBR 

approach combining heuristic and statistical techniques to support short-term prediction of 

NO2 maximum concentration levels in Athens, Greece. The prototype consists of three main 

modules: (i) Retrieving cases, (ii) Filtering cases and (iii) Adaptation. In their model all the 

attributes involved are continuous and they have used the standard weighted sum method 

[Kolodner, 1993] for retrieval. Besides, they use heuristic knowledge to reduce the search
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space. Adaptation is achieved by parameter adjustment (similar to the one used in 

PERSUADER [Sycara, 1988]) corresponding to differences between a target problem and a 

retrieved case. In their approach, they use a statistical formula. They claim that the NEMO 

classifier can give fast prediction for the likelihood of an occurrence. It is robust to noisy 

data. The prototype is also shown to have an advantage over Artificial Neural Network 

(ANN) and Decision Tree (DT) in that it can be adapted to time-evolving problems without 

the need of frequent changes in the prototype itself.

5.5.2.2 The Colour Matching Problem

Cheetham and Graf (1997) describe a CBR tool called FormTool to help users to select a 

subset of the allowable colourants for colour matching in the General Electric(GE) Plastics. 

In the case base, each case is represented by a reflectance curve and a list of pigments and 

loadings used to create that color. During the colour matching process, FormTool searches 

for the best match and adapts it to get a closer match to the customer's colour standard when 

necessary. In the case selection process, a fuzzy preference function is used to calculate the 

similarity for each attribute of the case. Adaptation is done by iterative change of loading of 

the colourants and the evaluation of the new similarity. In this approach, Kubelka-Munk 

theory is used. The Kubelka-Munk theory provides a formula for predicting the colour 

change from modifying the loadings of the colourants. FormTool [Cheetham, 2001] has 

proved to be cost savings and increase of colour matcher productivity. The technology of 

FormTool is later used to create a web-based colour selection tool, ColorXpress Select. 

ColorXpress Select is one of the first web-based customer service tools implemented by GE 

Plastics. It has been around since 1999.

3.3.2.3 Numerical Optimization Setup of Engineering Designs

Schwabacher (1998) have constructed a case-based system based on induction learning 

for the numerical optimization setup of engineering designs. They state that when setting up 

a numerical optimization, there are several factors that may affect the reliability of numerical 

optimization of complex engineering designs. These factors include the selection of a starting 

prototype, the selection of a formulation search space, etc. They argue that machine learning
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techniques can help in setting up an optimization based on the results of previous 

optimizations. It has been shown in their study that inductive learning such as C4.5 [Quinlan, 

1993] and CART [Breiman, 1984] improves the speed and the reliability of design 

optimization. When designing a new artifact, the inductive learner generates or learns a 

decision tree from the design library. The decision tree is then used to map the new design 

goal into a starting prototype selected from the design library or selected formulation of 

search space. They have evaluated the various prototype-selection methods efficiency based 

on the capability of using the starting prototype to produce optimal design. The focus in their 

study is how inductive learning can be used in the retrieval phase (by comparing various 

prototype-selection methods with inductive learning) and that the Rutgers Hill-climber 

[Schwabacher 1998] is used as optimizer.

3.3.2.4 Model Generation in Numerical Simulation

Solution reuse for model generation in numerical simulation via the CBR approach has been 

studied extensively by Finn and Cunningham (1998). In their study, they propose an 

interactive knowledge-based system called CoBRA (CBR Assistant) that assists engineers in 

the task of mathematical modelling for heat transfer simulation problems. The CoBRA 

system is designed to assist engineers in formulating and evaluating spatial modelling 

decisions. In CoBRA, there are two key CBR processes: (1) case retrieval, and (2) case 

adaptation. Prior to the retrieval phase, the target case is decomposed into a number of 

smaller target cases, where each case is based on a single feature of the physical system. 

Retrieval phase involve two stages: (1) Matching of cases to the target case and (2) One-to- 

one mapping between the features of the target case and source cases in the case base. The 

adaptation phase is carried out using the derivational analogy method.
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3.4 CASE RETRIEVAL TECHNIQUES IN RELATIONAL 

DATABASES

One of the objectives in this research is to build a CBR model that allows engineers to query 

the case base in a flexible manner. This section presents a study of a selection of case 

retrieval techniques used by researchers in filtering database records.

3.4.1 Fuzzy-based Retrieval with SQL

Portinale and Montani (2002) propose a fuzzy case retrieval approach based on SQL as a 

flexible product search engine for implementing an electronic catalogue. They focus on 

classification and prediction via fuzzy weighting. In their study, they address the problem of 

equality constraints in querying database records and argue that imprecise information can be 

more adequately modeled via a standard fuzzy-based approach. In their approach, the usual 

SQL query is extended to a much wider use by setting a similarity threshold so that those 

cases having similarity degree greater than the specified threshold will be retrieved. Each 

case is defined as a collection of <feature, value> pairs where each feature can only take 

values defined for that attribute domain. However, a target query can be defined by using 

linguistic (fuzzy) abstractions on such attribute values. This means each feature defined in 

the query can be described in one of these expressions: (1) linguistic value, (2) crisp value 

(i.e., is) and (3) a fuzzified crisp value.

3.4.2 Similarity-based Retrieval with SQL

A case retrieval engine built on top of a relational database in the context of intelligent 

product recommendation agents is presented by Schumacher and Bergmann (2000). First, by 

"retrieval on top of the database" they mean that the retrieval engine is a separate module that 

interfaces with the database. This approach differs from the "retrieval inside the database" in 

that the latter refers to integrating the retrieval function into the database itself. They argue 

that the need for building a retrieval engine as a separate module is that there is no 

standardized language for a similarity-base query formulation that is widely accepted by the

3-11



_____________________________

database community. In general their idea is to approximate a similarity-based retrieval with 

SQL-queries. A user can assign weights (i.e., importance of an attribute), filters (i.e., hard 

constraints for the attribute values of the case) and the number of cases to retrieve. In their 

approach a query relaxation technique is used for retrieving cases when more cases are 

needed to determine the retrieval result. The method is implemented in a commercial CBR 

toolbox, ORENGE. It is shown in their study that speed of the relaxation technique is crucial 

in determining the number of cases that will be retrieved in each cycle. However, the 

retrieval efficiency suffers from the distribution of the cases on the representation space. If 

distribution of the cases is not uniform the retrieval efficiency will decrease resulting too 

many cases will be retrieved and too many SQL queries are generated.

3.4.3 Similarity between SQL Specifications

Shimazu (1993) state that a relational database was essential for CBR systems to be 

used as part of a corporate-wide information system. They argue that computing similarity 

for individual cases is time-consuming, hence, in their approach, database query form 

similarities are computed instead. They use Neighbour Value Set (NVS) combinations to 

generate SQL specifications. NVS is a set of values neighbouring the target value specified 

by the user. Each NVS combination is translated into a SQL specification to calculate the 

similarity between a target specification and SQL specifications. The method has been 

implemented in the Case Retrieval Tool (CARET) and evaluated by a corporate-wide case- 

based system for a software quality control domain. It was shown in their study that the 

method provides retrieval results equivalent to those of non-relational database 

implementation at fast response time.

3.4.4 Predictor Restrictions and Goal Restrictions

Stanfill and Waltz (1986) state that the aim of memory-based reasoning is to predict the goal 

fields of a target record by retrieving records from a database. They present two restriction 

techniques called predictor restriction and goal restriction for restricting database records. 

Predictor restriction operates by finding the most important predictor and restricting that
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same predictor field of other database records containing the same value as the target record. 

Goal restriction is accomplished by finding plausible values for the goal field, and then 

filtering the database record so that their goal fields contain one of those values. Once the 

reduced set of records is determined, one can then apply dissimilarity measure to this subset. 

When retrieving the database records that most closely match the target, one can either set a 

dissimilarity threshold to retrieve records with smaller dissimilarity ratings or retrieve 

closest matches where is an integer. The prediction of a target's goal fields is given by the 

goal fields' values of retrieved database records, weighted according to their dissimilarity.

3.5 INTERPOLATION METHODS

Interpolative methods are well studied in the real domain, and can give good results from 

relatively sparse datasets. For many CBR systems, case bases are often sparse, being hard or 

expensive to obtain. When the solution space for such systems is real, interpolative methods 

can be used to increase the accuracy of solution. This section discusses several approaches to 

interpolation.

3.5.1 Chatterjee and Campbell

Chatterjee and Campbell (1993) advocate an interpolative approach that can serve as a 

domain-independent basis for quick and efficient time-critical CBR. They treat nominal 

values as linearly ordered (i.e., with a restricted class of similarity metrics). Their approach 

assumes a prior ordering of any nominal domains being present in the application so that 

there exists a mapping from solution points onto the real line. They cite several existing 

systems that have come close to the idea of interpolation, though without mentioning it 

explicitly. These include the model based meal planner CHEF [Hammond, 1987; 1990], the 

route planning systems TRUCKER and RUNNER [Converse 1989; Hammond 

1993; 1988], the problem mediator system PERSUADER [Sycara, 1988], and the menu 

designer JULIA [Hinrichs and Kolodner, 1991]. They give the example of CHEF, which 
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However, their methods cannot cope with nominal values where 

there is no natural ordering.

3.5.2 Instance-Based Learning Retrieval Algorithms

3.5.2.1 k-Nearest Neighbours 

The ^-Nearest Neighbours (&-NN) algorithm [Cover and Hart, 1967; Mitchell, 1997] has 

been a primary method used in classification. It predicts the solution for a given target query 

based on the output classification of its ̂ -nearest neighbours assuming that the output class of 

the target query be most similar to the output class of its nearby instances in (possibly 

weighted) Euclidean distance. This algorithm can be used for approximating both discrete- 

valued target functions and continuous-valued target functions. In discrete-valued domain, 

the output class that has the most common vote among its ^-nearest neighbours determines 

the output classification of the target query (see E(3-l).). For continuous-valued target 

functions, the mean value of its nearest neighbours is taken as the solution rather than their 

most common class. The discrete-valued target functions and continuous-valued target 

functions are given as follows:

k - Nearest Neighbour Algorithm (In discrete-valued domain)

arg max

where ') = ! if and where ) = 0 otherwise.

k - Nearest Neighbour Algorithm (In real-valued domain)

3-14



_____________________________

3.5.2.2 Distance Weighted Nearest Neighbours (D 

An alternative to &-NN is the Distance-Weighted Nearest Neighbour method (DWNN) 

[Mitchell, 1997]. In this algorithm, the contribution of each of the ^-nearest neighbours is 

weighted according to its distance to the target query. When this algorithm is used in real- 

valued target functions the weighted mean value of the nearest neighbours is taken (see 

E(3-4).), and it is thus a localized version of Shepard's method [Shepard, 1968]. However, 

for discrete solution spaces, a voting mechanism replaces the weighted mean. The Distance- 

Weighted Nearest Neighbour Algorithm for discrete solution spaces takes the solution value 

with the highest vote, where the vote for a particular solution is weighted by the inverse 

square of its distance from the target (see E(3-3).). The advantage of using this method is 

that it is robust to noisy training data. By weighting the contribution of each neighbour to the 

prediction of a target, it can smooth out the impact of distant noisy case. However for 

discrete-valued target functions, both the &-NN and DWNN methods assume that the 

predicted solution must exist in one of the nearest neighbours. It is not possible to produce 

intermediate values not present in the case base. The discrete-valued target functions and 

continuous-valued target functions are given as follows:

Distance Weighted Nearest Neighbour Algorithm (In discrete-valued domain)

arg max /(*/)) - E(3-3)

where        ; if and where otherwise. 
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Distance Weighted Nearest Neighbour Algorithm (In real-valued domain)

A

w / . E(3-4) 
1=1 1=1

where w, s .

3.5.3 Shepard's Method

Shepard's interpolation method [Shepard, 1968] is one of a variety of well-known algorithms 

available for multivariate scattered data interpolation [Franke and Nielson, 1980]). It is a 

global method, which means that it requires all points in the data set to estimate a function 

at the point Since Shepard's method is the main method that has been generalized to 

answer one of the subsidiary questions (see Section 1.2.2.2) in this research, we dedicate a 

special section in Chapter 5 to discuss the technical details of Shepard's method.

3.6 METRICS DEFINED ON THE QUERY SPACE

In Chapter 4, we propose to integrate the input space and output space as one unified space 

so that engineers are able to query inputs and outputs in the unified space. In many 

engineering applications, the unified space often involves nominal values and continuous 

values. One question arisen is that: "How do we define the metric on the query space 

particularly when the solution space is involved?" For the metric in the problem space, there 

is no problem. One approach is to use the standard weighted sum method [Kolodner, 1993]. 

For the unified space, a number of existing approaches to this problem are discussed below:
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3.6.1 Value Difference Metrics (VDM)

Stanfill and Waltz (1986) introduce a value difference metric for defining distance over 

nominal attribute values. The original VDM algorithm uses feature weights that reflect the 

strength (i.e., importance) of each feature to constrain the values of goal fields. Wilson and 

Martinez (1997) give an account of a simplified version of VDM, which does not make use 

of the weighting schemes. They state that the distance measure between two attribute values 

depends upon how similar their correlations are with the output class. Wilson and Martinez 

(1997) point out that there is a problem with the VDM algorithm that is: it will not be able to 

cope with a new instance not yet present in the case base. For nominal values (i.e., no 

inherent ordering), it is not clear what needs to be done to define the distance measure for the 

new instance, because there is no way to determine the probability for such a value. If VDM 

is used on continuous attributes, a new instance is likely to cause the same problem, resulting 

hi useless distance measures. One approach of using VDM on nominal values is to perform 

discretization to map the nominal values into continuous values e.g., [Cost & Salzberg, 

1993]. However, discretization can cause information loss when two values at the opposite 

ends of the band are considered equal.

3.6.2 Heterogeneous Distance Functions

Wilson and Martinez (1997) propose three heterogeneous distance functions as alternatives 

to VDM. These include the Heterogeneous Value Difference Metric (HVDM), the 

Interpolated Value Difference Metric (FVDM) and the Windowed Value Difference Metric 

(WVDM). Each of these functions has been tested on the 48 datasets from the UCI machine 

learning databases using 10-fold cross validation [Witten & Frank, 2000]. HVDM uses two 

functions: the Euclidean distance function for continuous attributes and the VDM function 

for nominal values. They point out that the use of normalization scheme has an effect on the 

generalization accuracy due to the different type of measurements used for the continuous 

values and nominal values. Results show that HVDM achieves higher generalization 

accuracy than the Euclidean distance function. In the IVDM distance function, VDM can be 

applied directly to continuous attributes without the need for a normalization scheme.
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Continuous values are discretized into a number of regular-spaced intervals. The IVDM 

approach is to use interpolation between the midpoints of two consecutive discretized ranges 

to alleviates the information loss problem caused by discretization (i.e., when two values at 

the opposite end of the range are considered equal). The WVDM interpolates probabilities 

from adjacent values rather than from range midpoints. Here adjacent values mean those 

values in the range of the attribute value where wa is the window width determined 

by the discretized range. Overall results show that IVDM achieves highest average 

classification accuracy followed by WVDM and subsequently HVDM and Euclidean 

distance.

3.6.3 Distance between Cluster Centres

The K-means method is an iterative process that assigns instances to a specified number of 

non-overlapping clusters according to their closest cluster centre in Euclidean distance. This 

process is repeated through the data until it successfully clusters all instances in the data set. 

[Woon 2003a] uses cluster centre distance to represent the distances between three 

distinct Iris class: {Ms-setosa, Iris-versicolour, Iris-virginica} in the Iris data set [Fisher, 

1936]. There are four attributes in the Ms data set: (sepal width, sepal length, petal width, 

petal length}. In their approach, the distance in the problem space between 2 instances is 

computed using the weighted sum method [Kolodner, 1993] with equal weights. The solution 

space metric is defined using the cluster centre distance.

3.6.4 Material Functions

Mejasson (2001) describe an intelligent design assistant (IDA) CBR system to assist 

engineers for materials selection in the submarine cable industry. They define the distance 

between two values of a component material search index based on the following methods: 

comparison on qualitative scale, comparison on quantitative scale and comparison based on 

placement in an abstraction hierarchy. In their project, comparison on qualitative scales uses 

a three-point or five-point scale (e.g., very low, low, medium, high and very high). 

Quantitative scales may be defined using a distance function over a two-dimensional space.
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Comparison based on placement in an abstraction hierarchy is for indices that inherit a 

natural hierarchy such as component material indices, which uses standard materials 

classification and component types (e.g., mechanical and electrical).

3.7 CASE SELECTION TECHNIQUES

Case selection techniques have been investigated in the guise of both case-base maintenance 

and instance-based learning (IBL). Mitchell (1997) states that IBL and CBR share some 

common properties: (1) they implement "lazy" learning, (2) they classify new instances by 

nearest neighbour methods.

3.7.1 Instance-Based Learning (IBL) Reduction Methods

A wide range of such algorithms have been developed for Instance-Based Learning: for 

example, CNN [Hart, 1968], RNN [Gates, 1972], Shrink [Kibler and Aha, 1987], IBL [Aha, 

1992; Aha 1991], DROP [Wilson and Martinez, 2000], Explore [Cameron-Jones, 

1995], etc. Generally, these reduction algorithms can be divided into three main categories: 

Incremental, Decremental and Batch [Wilson and Martinez, 2000]; and other growing and 

reducing reduction methods such as Explore, ELGROW [Cameron-Jones, 1995], etc. In this 

thesis, we concentrate on decremental methods to investigate the feasibility of using 

Generalized Shepard Nearest Neighbour (GSNN) (please see Chapter 5 for the detail of 

GSNN) in substitution for other nearest neighbour methods in case base reduction.

3.7.2 The Shrink algorithm

The Shrink algorithm [Kibler and Aha, 1987] is a decremental reduction method. The 

method finds an optimum sparse case base in a decremental manner. In the beginning, the 

case base is set to be the initial set of cases. A reduced case base is produced with one less 

case iteratively. The algorithm removing cases based on the contribution of each case to the 

predictive power of the case base. Whether a case is to be removed is decided upon by first 

obtaining a candidate set from the current reduced case base. The reduction mechanism can
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be implemented by using a nearest neighbour algorithm such as &-NN and DWNN to obtain 

an estimated solution for each case in the reduced set. Cases that are correctly predicted will 

be removed. In the case where more than one case in the reduced set is correctly predicted, a 

case is removed at random for that iteration. The technical details of how the Shrink 

algorithm works is discussed in Chapter 7.

3.7.3 A Reduction Method based on Rough Set Theory

Salamo and Golobardes (2002) have invented a competence model that uses deletion and 

building techniques based on rough set theory in classification tasks, hi their work, a set of 

equivalence relations are used to determine the core and reduct of knowledge (i.e. a set of 

cases) that can then be used for filtering unwanted cases. They propose a set of frameworks 

that work on different domains to examine whether to keep the boundary cases or create new 

cases in order to produce an optimum case base. Many results have been published in their 

work in comparison with other reduction methods such as the IBL2-4 algorithms [Aha, 1992; 

Aha 1991], CNN [Hart, 1968], DROPl-5 [Wilson and Martinez, 2000], etc. on some 

data sets.

3.7.4 Case Base Maintenance Methods

Yang and Zhu (2001) address the problem by proposing a method that selects an optimal 

case base from a given set of cases, based on nearest neighbour retrieval. In their paper, no 

adaptation is considered and hence the nearest neighbour solution is applied to the target 

problem. Smyth [Smyth and Keane, 1995; Smyth and McKenna, 1998, 1999] have also 

addressed similar problems by means of an algorithm based on a calculation of 'relative 

competence' of cases. Relative competence is used to measure the importance of cases, and 

consequently provides a means to optimize case base performance. Smyth and Keane point 

out that the relative competence of cases depends upon both retrieval and adaptation.

3_2o



PART II

CORE IDEA OF THE RESEARCH

Chapter 4

Unified Problem: Solution Space in Case-Based Reasoning

Chapter 5

Interpolation over Nominal Values

Chapter 6

Interpolation on a Diverse Retrieval Set

Chapter 7

Case Selection Techniques

4.



Chapter 4

Unified Problem: Solution Space in Case-Based 

Reasoning

4.1 INTRODUCTION.................................................................................................................................4-3
4.2 GENERALIZATION OF NEAREST NEIGHBOUR RETRIEVAL (GNNR) OVER THE N-

DIMENSIONAL UNIFIED SPACE.....................................................................................................4-5
4.2.1 Generalization of Nearest Neighbour Retrieval over the Unified Space 4-5
4.2.2 The Standard CBR Model as a Special Case 4-6

4.3 DEFINITION OF METRICS ON THE QUERY SPACE ....................................................................4-7
4.4 GNNR APPLICATION FOR AN INVERSE PROBLEM ...................................................................4-8
4.5 GNNR APPLICATION FOR CONSTRAINT PROBLEMS .............................................................4-10

4.5.1 Constrained on Inputs and Outputs 4-10
4.5.2 Constrained on Derived Attributes 4-11

4.6 THE MULTI-VALUED CASE MAPPING AND INTERPOLATION PROBLEM..........................4-13
4.7 CONCLUDING REMARKS..............................................................................................................4-14

4_2



_________

4.1 INTRODUCTION

This chapter aims to answer the following subsidiary research question (see Section 1.2.2.1): 

Can the standard CBR models be generalized to a unified (problem solution) space to allow

flexible query modes?

In the standard Case-Based Reasoning (CBR) model, a case is represented as a <problem, 

solution> pair. The problem space and solution space are treated as separate, and nearest 

neighbours are retrieved using a metric defined on the problem space. The standard method 

applies to domains where the similarity assumption is valid: that cases which are near in the 

problem space are also near in the solution space. This presumes that a metric is also defined in 

the solution space although it is not explicitly stated, and that the problem solution space 

mapping is singled-valued. However, this assumption is not necessarily true for inverse 

problems, in which single-valued solution cannot be assumed. We have discussed in Section 

2.5.2 that the constraint problem and the multi-valued solutions mapping problem can cause 

poor prediction when adaptation is performed on retrieved cases that are not close in the 

unified problem: solution space. Cases far apart are likely to give poor prediction in 

interpolation. To fully exploit the interpolation scheme we require a nearest neighbour method 

that retrieves cases that are close in the unified space. (Note: this is different to the idea 

conveyed in Chapter 6, which claims that a diversity algorithm can improve interpolation 

systems. In Chapter 6, the diversity algorithm is implemented to avoid the extrapolation trap in 

which retrieved cases are close together and yet the target is outside the interpolation points. 

Extrapolation is less likely to give good prediction as interpolation.)

In this chapter a generalization of the standard CBR retrieval method, which integrates solution 

space and problem space into a single query space is proposed. The retrieval method is 

proposed by means of the concept of nearest neighbours to a constraint region, which can be 

any subset of the unified space. Under this retrieval scheme, cases are treated as data points in 

the unified space so that a query can take the general flexible form of a database predicate. 

Engineers can query on any subset of the unified space and add constraints dynamically to the 

predicate. Query predicate on the unified space corresponds to a constraint region. Nearest
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neighbours to the predicated region are defined as those with the minimum distance to the 

region.

In fact, the standard CBR retrieval is a special case of this more general model. The advantages 

of the general model are associated with the nature of its more general query modes. In contrast 

to the standard model, which can only be queried by specification of problem "inputs", the 

general model is capable of retrieving general queries on the unified problem-solution space. 

The advantages of this flexible query form are explained in this chapter, by means of a variety 

of illustrative examples.

We have introduced the main idea of the method in this section. In Section 4.2 we present the 

theoretical basis for the method and show that the standard nearest neighbour method is a 

special case of the unified general method. Section 4.3 provides a short discussion on 

definition of metrics on the query space. Section 4.4 we give an illustrative example of the 

method as applied to a simple "inverse" problem. In Section 4.5.1 we continue to examine the 

method further with constraints over both inputs and outputs and in Section 4.5.2 we examine 

the method with additional constraints such as derived attributes added by engineers. In 

Section 4.6 we discuss the importance of such a general retrieval method and that it would 

benefits the adaptation scheme discussed in the CBE architecture (see Section 2.5.1). We 

conclude in Section 4.7 with a summary of the advantages of the generalisation of the nearest 

neighbour retrieval developed in this chapter.
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4.2 GENERALIZATION OF NEAREST NEIGHBOUR RETRIEVAL 

(GNNR) OVER THE N-DIMENSIONAL UNIFIED SPACE

4.2.1 Generalization of Nearest Neighbour Retrieval over the Unified 

Space

In this section, we present the basis for retrieval of nearest neighbours to a constrained region 

over a unified n-dimensional space. We take the space to be formed from one-dimensional 

domains: , each with a distance function defined. If a/ and we take 

to be the distance between elements and 6,-. We let denote the n-dimensional space 

Z>2 , and let ..., represent a point in where Z>2 

, ..., etc.

If we assume represents a distance function defined over such that

V E(4-l)

= V E(4-2)

V E(4-3)

V E(4-4)

The existence of a metric on the unified space, which satisfies E(4-4) implies that the usual 

similarity assumption [Kolodner, 1996] holds true. 

Normally we take to be the pseudo-Euclidean metric:

1 = 1,..., 

where w/>0, 1,2, ..., n, > 0. In many cases a user needs to specify a region and we need 

to find its nearest neighbours within a given case base d We first extend the definition of 

metric to include the distance between a point and a region. Let be a region in the n- 

dimensional space. We define:

E(4-5)
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Now we apply the definition E(4-5) to cases in C. For a given region we define the nearest 

neighbour in C as

E(4-6)

(Notice there is symmetry here between and Q. Combining E(4-5) and E(4-6) we get:

E(4-7)

for the nearest neighbour in C to the region 

4.2.2 The Standard CBR Model as a Special Case

The above analysis treats the problem space and the solution space equally. However, in 

standard case base analysis, it is usual to divide the space into two parts: the problem space, 

which is completely known and specified as a target ..., and the solution space 

which is unknown. To apply the general theory of the previous section, we consider 

the n dimensional space ..., where and

..., 

The user specifies the target region by the constraints (see Fig. 4-1):

iff = = 

X'

Figure 4-1. Visualization of a target case, darget as a constrained region R
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For a given point c in C and an element in by taking as the pseudo-Euclidean metric, 

we have

I 4"! ' l | ~>~ n 2 ~*~ |n ~ | / ' / .. i J
1=1,..., n

For «, there is no constraint on so we can choose r/ = c,-, whereupon |c,-r/ 

for a minimum d(c,r). For / = ..., ^, E(4-7) gives

/=!,..., 

which is the standard nearest neighbour formula, relying on a distance metric defined only on 

the problem space.

4.3 DEFINITION OF METRICS ON THE QUERY SPACE

The similarity assumption applies to standard CBR models such that similar problems give 

similar solutions. Such assumption presumes that a metric is defined in the solution space as it 

is in the problem space although nobody has explicitly stated that a distance metric must exist. 

The old solution is retrieved based on the retrieved case that is close to the target query in the 

problem space. In order to use the general method proposed in this chapter, we need a 

definition for metric on the unified query space. One question arisen is that: "How do we 

define the metric on the query space particularly when the solution space is involved?". One 

approach is to use the standard weighted sum method [Kolodner, 1993]. However, it is not 

straight forward because often the solution space involves nominal values. Section 3.6 reports 

several approaches (e.g., [Stanfill and Waltz, 1986], [Wilson and Martinez, 1997] and [Woon 

«/., 2003a]) to define metrics on the query space especially when nominal values are 

involved.

In this chapter, to demonstrate how GNNR works over the unified space, we use the weighted 

sum method to compute the distance between cases to a target query for the illustrative 

example: the projectile model in Section 4.4 and 4.5.
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4.4 GNNR APPLICATION FOR AN INVERSE PROBLEM

The approach discussed in Section 4.2.1 is obviously symmetric between and i.e., problem 

and solution domain have no significance in this generalized approach. If the user specifies the 

target region by the constraints:
iff ..., 

The problem reduces to the nearest neighbour problem with a metric defined over the 

domain. To illustrate how the method works for an inverse problem, we refer to the projectile 

problem described in Section 2.2.

Consider a gunner tries to hit the target at jc=450m on the level ground (see Fig. 4-2). We want 

to decide on the right angle of gun and the initial velocity to achieve that goal. Assume that 

there are various guns available, each with known muzzle velocity. Using GNNR, we can 

formulate the problem as follows: take to be the space of points where 

the value of the point where the cannon ball hits the level ground. is the region 

subject to the constraint: 

50 r3

\. /
X

200 450

Figure 4-2. Visualization of the trajectory of a cannonball shot over flat ground
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In the generalized approach, each case in the case base is represented by 

and the metric is:

- r i 1 / 2

As there are no constraints on and ̂ 2, £/*e c/, so that 

r/| = 0 . Similarly, |c2-r2| = 0. Hence E(4-7) reduces to

We are searching for cases with cj near to Table 4-1 shows examples of cases, i.e., 

generated in a case base with e and velocity e 

Table 4-1. Example cases presented in the case base and the distance calculated between each case 
and the target region R

Case ID
29
51
19
38
56
35

Ci

1
0.4
1.2
0.8
0.2
0.8

c2 (m/s)
70
80
80
70
100
60

c3 (m)
445.556
459.108
432.296
489.791
389.418
359.847

d (c,R)
0.00451
0.00924

0.018
0.0403
0.0614
0.0914

With this approach, the retrieved cases for nearest neighbours are:

Case 29: (1,70, 445.556),

Case 51: (0.4, 80, 459.108), and

Case 19: (1.2, 80,432.296).

As case 29 gives minimum according to E(4-7), the best match to the target 

region is case 29. This analysis shows how the generalized approach can be used to retrieve 

solutions, which may then be adapted to solve an inverse problem. In fact, GNNR can also be 

used for a direct problem: given and v, what is the value of ;c? Here we show that such a 

general query mode is indeed very powerful because it allows engineers to query the numerical 

model in any direction without concerning whether the variables are inputs or outputs. In 

addition, engineers can use the CBR model to explore alternative combinations of inputs that
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will give the same or similar output. In this example, the other alternative for the engineer to 

derive a near output of is Case 51. In the next section, we show examples of query 

constrained by both inputs and outputs, and query constrained by additional derived values.

4.5 GNNR APPLICATION FOR CONSTRAINT PROBLEMS

Following the inverse problem example in Section 4.4, we now examine how GNNR behaves 

by adding more constraints on inputs and outputs.

4.5.1 Constrained on Inputs and Outputs

Consider the gunner who tries to hit the target at 450m on the level ground may want to 

restrict the choice of gun with initial velocity = 80m/s. The problem is now represented by a 

target region involving constraints on input and output As 

there are no constraints on r/, the minimum will occur when so that 

Hence E(4-7) reduces to

-80|2 + w3 |c3 -450|2 )/

-80| + w3 |c3 -450| )/
!=2,3

Now we are searching for cases with near to and near to In this problem we 

take equal weights for H>2 and vvj assuming that 7*2 and r? are equally important. Table 4-2 shows 

examples of cases, i.e., generated in the case base with angle e and 

velocity v e 
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Table 4-2. Example cases presented in the case base and the distance calculated between each case 
and the target region R - constrained on inputs and outputs

Case ID
51
19
29
30
46
38

Ci

0.4
1.2

1
1

0.6
0.8

c2 (m/s)
80
80
70
80
80
70

c3 (m)
459.108
432.296
445.556
581.950
596.505
489.791

d (c,R)
0.00462
0.00898
0.0648
0.0669
0.0743
0.0827

Using GNNR, the best match to the constraint problem for fc=3 nearest neighbours can be 

determined as follows:

Case 51: (0.4, 80,459.108),

Case 19: (1.2, 80, 432.296), and

Case 29: (1,70, 445.556).

As case 51 gives minimum according to E(4-7) , the best match to the target 

region is case 51. Because GNNR is a general method that treats inputs as no difference to 

outputs, it allows engineers to query the projectile model with input and output constraints.

4.5.2 Constrained on Derived Attributes

We now introduce a new constraint to the example in Section 4.5.1. Suppose that there is an 

obstacle at distance 200m, which must be cleared by the cannon ball. The gunner tries to hit the 

target at 450m on level ground with no constraint on the initial velocity of the cannon ball 

and the new constraint of the obstacle with height 50m at distance 200m. To handle this newly 

added constraint, we augment the space to include a derived dimension, the height of the 

cannon ball at the obstacle, when 200m.

By introducing this new constraint, the target region is defined by: 450m, and 50m. 

We take the distance metric on the new dimension associated with the new constraint to be:
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With the generalized approach we reformulate the problem so that the metric bears a penalty 

term for cases outside the constraint region:

C + c3 -r3 1/2

For e C and 50 and since no constraint is imposed on 

[(W3 |c3 -450|2 +w4 |c4 -50|2 )/

For ce C and 50 and since no constraint is imposed on 

[(w3 |c3 -450|2 /
( = 1,..., 4

Hence for e C,

= [(w3 |c3 - 45012 + w4 (50 - c4 )max( 0,50 - c4 )) /

Following E(4-7) we have 

[(w3 |c3 - 45012 + w4 (50 - c4 )max(0,50 - c4 ))/ il/2

Here, we are searching for cases with near to and Q greater than For this 

problem, we take equal weights for all constraints. Table 4-3 shows examples of cases, i.e., 

generated in the case base with e and velocity v e 

Table 4-3. Example cases presented in the case base and the distance calculated between each case 
and the target region R - constrained on derived attributes

Case ID
29
51
19
38
56
35

Ci

1
0.4
1.2
0.8
0.2
0.8

c2(m/s)
70
80
80
70
100
60

c3 (m)
445.556
459.108
432.296
489.791
389.418
359.846

c4 (m)
171.664

47.72
276.431
121.840
19.720
91.475

d (c,R)
0.00225
0.00469
0.00898
0.0202
0.0316
0.0457
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Using GNNR, the retrieved cases for nearest neighbours are:

Case 29: (1,70, 445.6, 171.7),

Case 51: (0.4, 80, 459.108, 47.72), and

Case 19: (1.2, 80, 432.296, 276.431).

Although Case 29, Case 51 and Case 19 do not fully satisfy the constraints they may be useful 

for adaptation. The retrieved cases need not be an exact match to the target. It would be 

helpful for the case base to provide an indicator that guides the engineer to find an optimum 

solution. Using the GNNR method, engineers can add derived attributes to the query predicate 

easily. Without this flexible approach, it might take considerable time and effort for engineers 

to reconstruct the projectile model for the inclusion of new constraints. In the next section, we 

consider how GNNR benefits the adaptation scheme discussed in the CBE architecture (see 

Section 2.5.1).

4.6 THE MULTI-VALUED CASE MAPPING AND 

INTERPOLATION PROBLEM

Another motivation for the GNNR method actually comes from the multi-valued case mapping 

and interpolation problem discussed in Section 2.5.2.2. For inverse problems, there are often 

many solutions to the problem. Sometimes these solutions are far apart from each other in their 

input space. Cases far apart in a case base may produce poor prediction when these cases are 

used in an interpolation scheme. To make sure that we take advantage of the interpolation 

scheme, it is desirable to impose restriction over cases that are used for interpolation. For 

example, cases that are reasonably close together may preferably be chosen among the 

qualified candidates in the case base. We here call good candidate cases for interpolation 

conformable. Ideally when adaptation is required, the CBR model would provide useful advice 

in selecting good candidates for interpolation. Without taking precaution against poor 

candidates, interpolation methods may not be fully exploited for prediction accuracy.

To illustrate this further, we can take the inverse example in Section 4.4. There are two cases - 

Case 29 and Case 51 that produce near to the target 450m). Nevertheless, Case 29 and 

Case 51 are not close in the input space. We note that Case 38, which however is far apart from
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the target, could be a good interpolation candidate paired with Case 29. To highlight this 

interpolation dilemma and show how the unified space can benefit the adaptation scheme in the 

CBE architecture (see Section 2.5.1 Step 2), we provide two case study examples each in 

Chapter 8 - CBE-Projectile and Chapter 9 - CBE-Conveyor.

4.7 CONCLUDING REMARKS
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5.1 INTRODUCTION

"Can distance weighted interpolation be generalized to the unified problem solution 

space, particularly with regard to nominal values?",

we present in this chapter a Case-Based Reasoning (CBR) adaptation method that utilizes a 

generalized interpolation method   Generalized Shepard Nearest Neighbour (GSNN)   

applying equally to nominal and continuous values. The motivation for such a method is that 

we would like to extend a powerful interpolative method, already proven in the real domain, 

so that it is equally efficient in the domain of nominal values. Interpolative methods are well 

studied in the real domain, and can give good results from relatively sparse datasets. Case 

bases of many CBR systems are often sparse as they are difficult or expensive to obtain. 

When the solution space for such systems is continuous, interpolative methods can be used to 

increase the accuracy of the solutions. However, no general interpolative method exists for 

nominal (discrete) solution domains.

Charter)ee and Campbell (1993, 1999) have considered adaptation through interpolation in 

the context of the efficiency and timeliness of CBR. They consider three primary tasks for 

efficient implementation of case adaptation which arises when nominal (symbolic) values are 

present. These are:

  Interpolation in the domain of nominal values in the problem domain

  Ordering of nominal values in the solution domain

  Interpolation in the domain of nominal values in the solution domain

The second of these tasks is really connected with the approach to interpolation adopted by 

Chatterjee and Campbell which depends upon a prior ordering of any nominal domains 

present in the application. The assumption is that a distance metric is defined on the 

problem domain and on the solution domain 7. Interpolation assumes a linear 

distance metric in the solution domain, by which there exists a mapping from 

solution points onto the real line, such that (see Fig. 5-1). Fig. 5-1 

shows each value on the real line is mapped to a discrete band: {Band A, Band B, Band C,
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Band D}. The interpolation estimates for a target value, and is mapped to Band C.

Chatterjee and Campbell give a variety of ways to calculate the mapping One such is to 

order the space somehow, and take to be the mapping to the rank order. Although most 

real valued interpolation methods (such as the Shepard's method [Shepard, 1968]) also make 

the assumption of a linear distance metric in the solution domain when the solution domain is 

continuous, is usually the identity mapping, so that 

Interpolation

estimate 

X}

Figure 5-1. Chatterjee and Campbell's interpolation method

One problem with this approach is that it is not always easy to identify a natural ordering of 

the space. In many cases, CBR applications have more complex solution spaces, showing 

higher dimensionality, or indeed no embedding space at all. In some CBR systems, symbols 

are naturally mapped to taxonomic hierarchies. In other CBR systems, such as in the casting 

design system CASTAID [Knight 1995; 2000] solutions are represented by shape- 

graphs. Also there may be nominal solution values where there is no natural ordering of such 

space. These cases are not amenable to the methods proposed by Chatterjee and Campbell, 

but can be dealt with by the GSNN method proposed in this chapter.
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The fc-Nearest Neighbours (fc-NN) algorithm [Cover and Hart, 1967; Mitchell, 1997] and 

Distance-Weighted Nearest Neighbour method (DWNN) have been the primary methods 

used in classification. For nominal domains, &-NN predicts the solution for a given target 

query based on the output classification of its ^-nearest neighbours under the assumption that 

the output class of the target query is most similar to the output class of its nearby instances 

in Euclidean distance. Comparatively, DWNN weights the contribution of each of the 

nearest neighbours to the prediction according to its distance to the target query.

Both &-NN and DWNN operates on a voting mechanism (see Section 3.5.2.1 and Section 

3.5.2.2). Under this mechanism, the predicted solution must exist in one of the nearest 

neighbours in the retrieval set. It is not possible for these methods to return intermediate 

values not present in the retrieved set Y. This property is not shared by most interpolation 

formulae over a continuous real domain, which typically return real values NOT in the 

retrieved set; for example, interpolating as the average of the retrieved set Y ={1,2} produces 

the solution 1.5 which isn't in the set Y.

This characteristic of &-NN and DWNN over nominal solution domains has a number of 

disadvantages for CBR applications. The first of these relates to the performance of CBR 

systems in predictive classification. For many retrieval situations the retrieved set may not 

contain the target nominal value at all; particularly if the target is in a region of the case base 

where cases are sparse. This can in fact degrade the predictive performance of the retrieved 

set, as we see in the examples given in sections 5.5 and 5.7.1 of this chapter.

There is also a problem involved when new solutions are added to a case base. When a new 

solution is first added, there may be very few cases, or even no cases at all present in the case 

base. In this situation the new solution will rarely, if ever, be retrieved into the set for 

interpolation. In the example of the travel case base discussed in Section 5.7, a new hotel 

may be added for which there are no extant holidays. This hotel will never be retrieved by 

NN or DWNN as a solution for a target holiday.
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The importance of interpolation over nominal domains has been discussed by Wilson and 

Martinez (1997). They provide an account of approaches to defining metrics over nominal 

domains, and propose the use of an extension to Stanfill and Waltz's Value Difference 

Metric (1986) as the basis for interpolation. There is a problem with their method too, that is: 

it is not capable of coping with solutions not in the case base.

In this chapter, we propose a generalization of Shepard's method [Shepard, 1968] which is 

somewhat similar to DWNN, but which depends upon the minimization of a distance 

weighted error function, rather than the usual maximization of a voting function. We show 

that this approach has advantages over existing interpolative methods such as k-Nearest 

Neighbours (&-NN) and Distance Weighted Nearest Neighbours (DWNN). We term the 

retrieval algorithm the Generalised Shepard Nearest Neighbour (GSNN) method. GSNN 

applies in exactly the same way to nominal and real value domains. As such, in contrast to 

NN and DWNN, it does not require the solution value to be contained in the retrieved set, or 

indeed within the case base at all.

In Section 5.2 we describe Shepard's interpolation method, and in Section 5.3 explain the 

generalization to nominal values. In Section 5.4 we discuss the general properties of GSNN, 

and in Section 5.5 illustrate the procedure of the use of GSNN with reference to the well- 

known Irises classification problem [Fisher, 1936]. The Irises problem is good for illustration 

purposes, since it demonstrates how 28/50 instances of iris-setosa can be correctly predicted 

by GSNN from a case base of just 2 cases: 1 of iris-virginica and 1 of iris-versicolor. This 

illustrates clearly how solutions not in the case base can be correctly interpolated. In Section 

5.6 we give a simulated example, taken from a benchmark used by Ramos & Enright [Ramos 

and Enright, 2001]. This is used to measure the performance improvement by GSNN on 

random and regular case bases. In Section 5.7, we use the travel benchmark case base [Lenz 

1996] to test both the improvement in performance effected by GSNN and its ability to 

deal with the addition of new solutions to a case base. We conclude in Section 5.8, with a 

summary and indications of future work.
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5.2 SHEPARD'S METHOD

Shepard's interpolation method [Shepard, 1968] is one of a variety of well-known algorithms 

available for multivariate scattered data interpolation, where the independent variable e 

and the dependent variable e (see e.g., [Franke and Nielson, 1980]). We choose 

Shepard's method, since, as noted by Mitchell (1997), in the case of continuous domains it is 

the global form of the DWNN. Shepard's method is global, requiring all points in a dataset 

to estimate a function/(*,) at the point The interpolation function is given by:

ir||*-*. ir. E^-1)

where the interpolation is over the set of points ..., and | denotes 

the Euclidean distance in 

Lazzaro and Montefusco (2002) have pointed out that this scheme has the advantage of full 

independence from the space dimension but disadvantages of low reproduction quality and 

high computational cost. By independence from the space dimension we mean that the 

dimensional values of the point do not enter into E(5-l) themselves, but only the 

distances between points and jc,-. This independence from the space dimension makes the 

scheme of interest in CBR applications and we show in Section 5.3 that we can generalize 

the method to operate only on distances. Often in CBR, we do not necessarily have 

embedding dimensions, as we shall show in Section 5.5.

The global nature of the function and its concomitant high computational cost make a local 

form of the method more suitable. Franke and Nielson (1980) have proposed a modification 

of the Shepard's method which presents improved reproduction quality and reduced 

complexity. In their method, known as the modified quadratic Shepard's method, the 

influence of each data point in the data set is confined to interpolation points within a radius 

of the data point.

However, for case based reasoning, the global nature of the Shepard's method does not 

present a problem since interpolation is only conducted over a small set of retrieved data
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points. The retrieval phase of the cycle has effected the localization of the method. In effect 

the retrieval phase ensures that only data points within a radius of the interpolation point will 

influence the interpolation value.

5.3 GENERALISED SHEPARD NEAREST NEIGHBOUR (GSNN) 

METHOD

The objective of this chapter is to present an adaptation method which will apply to a general 

class of both problem and solution domains. The assumption here is that a distance metric 

is defined on the problem domain and on the solution domain 

As discussed earlier, Shepard's method applies to domains where and We 

would like to apply it to more general domains, wherever a distance metric may be defined. 

Fortunately, the method is already independent of the space inheriting only the Euclidean 

distance 11 from This is generalized to over 

We first need to express Shepard's interpolation in the problem space Fin terms of 

Let and Z,"|| jjr/Zi'H It is 

noted that

And

2 2 oV"1 !! /'V~"! n ii-o= - ~

is positive definite.

These indicate that in E(5-l) is the value of which minimizes the error function 
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The function depends only upon the Euclidean distance over and In order 

to generalize the Shepard's interpolation method completely, we propose the error function:

If /If <//*,*,/' . E(5-2)

defined in terms of the generalized distance definitions over the problem and solution space. 

Here, the set *,, are the A: nearest neighbours in the problem space to the point

and are distance (or dissimilarity coefficients) on domains 

e e . Then by the discussion above over Shepherd's interpolation, it is natural to

propose that the interpolant value is defined as the value which minimizes the error 

function /. We term this interpolation approach as the Generalised Shepard Nearest 

Neighbour (GSNN) method.

This method is different from the Distance-Weighted Nearest Neighbour method. Although 

both of them are local forms of Shepard's method in continuous solution domains, DWNN is 

not such a local form in discrete domains. In these domains DWNN relies on a voting 

function (i.e., = 1 if = and where 0 otherwise). However, by 

introducing a distance metric, defined on the solution domain 7, GSNN searches 

for the interpolation value e that minimises the error function /.

The Generalised Shepard Nearest Neighbour Algorithm (GSNN) is given as follows:

Generalised Shepard Nearest Neighbour Algorithm

f(x q )<- arg min ( y , f ( x . )) . E(5-3)

where 

Although E(5-3) is somewhat similar in appearance to the formula E(3-3) of DWNN (see 

Section 3.5.2.2), we should notice that the set in this algorithm is the set of all possible y- 

values, whereas in the formula for DWNN, Y is the set of ^-values in the retrieved set.
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5.4 GENERAL PROPERTIES OF GSNN

We can get an idea of how the method works by first examining a simple case as 

illustrated in Fig. 5-1. Here and are absolute distances in 

We take 1, and consider two retrieved cases in the neighbourhood of point

x.

Interpolation 
estimate of 

Figure 5-2. Interpolation using the function I(y) fory =f(x)

For , we have:

>"2) 2 ] /(* 2 ~ *i)  

The minimum value of / occurs when lies on the straight line:

Therefore, for this simple case the interpolation curve of GSNN is a straight line between the 

points and For smooth curves such as the one illustrated in Fig. 5-2, we 

expect good estimation by interpolation between the two retrieved cases.

In a more general case, where and we can also expect good estimation 

for interpolated within a neighbourhood of the retrieved cases, and rather worse for 

extrapolated values of In the numerical field, Shepard's method takes a weighted average 

of the retrieved values, where weights are determined by the inverse distance from the 

cases. This gives good results near and within the retrieved set. However, it can never give a
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value outside the range of retrieved;; values. For this reason alone, it is unlikely to be useful 

for extrapolation. The implications of this for CBR are that the method is likely to require 

boundary cases to be included in the case base, since it will not necessarily be capable of 

extrapolating them.

To compare the method with &-NN, we should first note that if =7, then GSNN actually 

reduces to the nearest neighbour method. If then for smooth functions it should be able 

to achieve the same performance as for = but with a smaller case base. We expect that 

the interpolation will do worst in bumpy chaotic domains, for instance where nominal values 

change rapidly as changes. However, in these domains the &-NN will also do badly, and 

require a dense set of cases to cover the variation in For these dense case bases the 

interpolative method (GSNN or &-NN) with should give equivalent performance. This 

intuitive argument is confirmed by the tests in section 5.6.

The optimum value of for a given problem is related to both the dimensionality, of the 

problem space and to the sparseness of the case base. The interpolation surface has 

dimension in the dimensional space. Ideally we would like points to fix 

this surface. However, if we retrieve points from a sparse data set, some of them may be 

very remote from our target set, and may not be relevant to the local problem. The inverse 

distance weighting will compensate for the remoteness of retrieved cases to some extent, but 

how effective this is must be determined by experimentation.

The effect of the parameter on the function is generally to decrease the influence of 

more remote cases. The tests in Sections 5.6.1 and 5.6.2 will show that increasing/? from 1 

to 2 does not greatly influence the quality of estimation.
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5.5 ILLUSTRATIVE EXAMPLE: INTERPOLATION OVER 

UNORDERED NOMINAL VALUES

In this example we illustrate how GSNN works in detail. We choose the well known irises 

dataset [Fisher, 1936]. Although the iris data set contains only continuous variables in the 

problem domain, the solution space is a set of 3 nominal values, which is sufficient to 

illustrate how the method works.

The data set contains 3 classes of 50 instances each, where each class refers to a type of iris 

plant. We take the problem space to be so that is a point in problem 

space, where ;cy = sepal width, sepal length, petal width, petal length. The 

solution space For this problem, we need to define 

distance metric in both problem space and solution space 7. For the problem space we 

define distance according to a weighted sum of attributes. For convenience, we assign equal 

weight = % for each attribute, so that:

dx(x, X ') = J/4 ( | X] - X] ' | +

For the space, we need to construct This is the equivalent to Chatterjee and 

Campbell 's second primary task, discussed in Section 5.1. In this test, we have used the 

distances between cluster centres (see Fig. 5-3) to represent the distance between the classes. 

These distances are shown in the Table 5-1:

Table 5-1. Distance between Iris classes
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Figure 5-3. Principal component plot of the Iris dataset

To demonstrate how the method works, we take two cases, one from and one from 

We take as target the iris:

Taking and 2, the function is:

Using the values for in Table 5-1, we have the following values for 

Since is minimum, we take as the estimated value.
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This example shows an advantage of the interpolation method in situations in which it can 

correctly predict nominal values not represented in the case base itself. As discussed later in 

Section 5.8, this can be a benefit when new solutions need to be added to a case base. In fact, 

from an extreme case base with just two cases used in this example the method correctly 

predicts 128 of the 150 irises in the dataset. The DWNN method can only predict the 100 

setosa and virginica targets correctly.

5.6 TEST OF GSNN ON A SIMULATED CASE BASE

We have conjectured that GSNN performs better for interpolation than extrapolation and due 

to this nature it may not do well like other nearest neighbour methods in bumpy chaotic 

domains. To demonstrate this characteristic of GSNN, we simulated case bases of varying 

density and structure and used the method to estimate simulated target sets. As a basis for the 

simulation, we adapted the smoothly varying function:

) sin * sin E(5-4)

used by Ramos and Enright (2001) to test out Shepard's method for interpolation over 

scattered data. This is a good test function to take because it allows us to compare results 

with those given by Ramos and Enright. We adapted E(5-4) by discretising the function to 

give 21 nominal values, These are the 21 integral values of the function:

where is the integer function that always return an integer value.

Although these values are in fact numeric, we have treated them as nominal 

throughout this experiment, and inherited a distance metric from the numeric values:

In this way, we have treated the 21 values as symbols, with no intrinsic order but 

with an externally imposed metric . Ramos and Enright tested Shepard's method on 

E(5-4) with both regularly spaced node sets and randomly spaced, and we have followed this 

example in two tests. Test I in Section 5.6.1 uses regularly spaced cases at various case 

densities. This might represent a well organized case base, where these cases had been
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selected from a large available pool. Test II in Section 5.6.2 uses randomly selected cases, 

and is intended to represent disorganized sparse case bases. Cases are constructed 

as: 0 < 1

5.6.1 Test I: Regularly Spaced Node Sets

In Test I, cases were constructed over a regular square lattice, with 72, 102, 202, 252, 302 

points. Fig. 5-4, 5-5, 5-6 and 5-7 show the result of Test I with 1, 2, 3 and 4.

100

0 200 

Case Base Size with k=1

1000

Figure 5-4. Correct Predictions in estimating a test set of 1000 targets, for regular case bases 
with k=l
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0)

0 200 

Case Base Size with k=2

1000

Figure 5-5. Correct Predictions in estimating a test set of 1000 targets, for regular case bases 
with k=2

0 200 

Case Base Size with k=3

1000

Figure 5-6. Correct Predictions in estimating a test set of 1000 targets, for regular case bases 
with k=3
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100

Case Base Size with k=4

1000

Figure 5-7. Correct Predictions in estimating a test set of 1000 targets, for regular case bases 
with k=4

These results confirm that GSNN can out-perform both &-NN and DWNN for case bases with 

regular structure. In fact, the optimum value of A: is 3 (see Fig. 5-6) for GSNN. In the general 

discussion of Section 5.4, it is argued that might be optimal for an dimensional 

space. In this test, so the result does confirm the argument. We see that in 

fact GSNN reached a performance of 80 % correct predictions for a case base of only 400 

cases, as against 50% and 30 % for DWNN and &-NN respectively for the same case base.

5.6.2 Test II: Randomly Spaced Node Sets

In Test II, we took case bases of the same size as those in Test I, but this time generated 

randomly within the unit square 0 < 1. Fig. 5-8, 5-9, 5-10 and 5-11 show the results 

of this test with 1, 2, 3 and 4.
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Figure 5-8. Correct Predictions in estimating a test set of 1000 targets, for random case bases 
with k=l

Case Base Size with k=2

1000

Figure 5-9. Correct Predictions in estimating a test set of 1000 targets, for random case bases 
with k=2
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Case Base Size with k=3

1000

Figure 5-10. Correct Predictions in estimating a test set of 1000 targets, for random case bases 
with k=3

1000

Case Base Size with k=4

Figure 5-11 Correct Predictions in estimating a test set of 1000 targets, for random case bases 
with k=4

In Section 5.4, we mentioned that the interpolation will do worst in bumpy chaotic domains, 

and in these domains the nearest neighbour method requires a dense set of cases to cover the 

variation in Fig. 5-9 show that for these dense case bases the interpolate method with 

give at least equivalent performance as The results show that more errors are 

recorded for random case bases than for regular case bases of equivalent size, whatever the
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value of A:, although once again, is optimal for GSNN. However, the improvement is not 

so marked as in the regular case base test in Section 5.6.1. The reason for this is that 

interpolation methods do not work well for extrapolation (see Section 5.4). In Test I, because 

of the regularity of the case base, all estimates are in fact interpolations, whereas in Test II, 

we expect some extrapolations as well. Once again, the results show that GSNN out- 

performed the other nearest neighbour methods.

As the case base size increases, the number of errors diminishes no matter what the value of 

takes. For dense case bases, there is no particular advantage in choosing >7, in view of the 

extra computation involved in finding minima of the function Finally, the same tests 

were repeated for/? = 2. In all trials the number of errors for/? = are nearly the same as/? = 

Fig. 5-12 and 5-13 show the correct predictions of GSNN with/?=7 and/?=2 in estimating 

a test set of 1000 targets for both regular and random case bases. In these tests we use 

Figure 5-12 Correct Predictions in estimating a test set of 1000 targets, for regular case bases 
with k=3, p=l, 2
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Figure 5-13 Correct Predictions in estimating a test set of 1000 targets, for random case bases 
with k=4, p=l, 2

5.7 TEST OF GSNN ON THE TRAVEL CASE BASE

We have pointed out that the capability of GSNN for predicting nominal values not in the 

retrieval set can be advantageous in improving performance. To examine how this applies in 

practice, in this section, GSNN is tested on a benchmark case base from the travel domain 

[Lenz et al., 1996]. The problem investigated here is that of predicting a hotel for a given 

package holiday. We divide the domain attributes into the problem domain: X = (holiday 

type, price, number of persons, duration, season, destination region, accommodation type, 

transportation}, and the solution domain Y = {Hotel}. The case base consists of 1024 

package holidays. For the problem space we define distance according to a weighted sum of 

attributes with equal weight. For the Y space, we derive a metric on Y defined by its region 

and class of accommodation.

From the original case base we have chosen 1000 cases for experiments. 300 cases among 

the 1000 cases are chosen randomly as target problems. These cases are unseen target 

problems, not in the case base. The remaining 700 cases are used to form experimental case 

bases. We divide 700 cases into 7 independent case bases ranging with size from 100, 200,
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300 to 700. This enables us to examine the predictive power of each retrieval method using 

various case base sizes on the 300 unseen target problems. Following Smyth & McKenna 

(1998), we use a similarity threshold as the criterion for correct prediction. If the predicted 

value is within the similarity threshold, that counts as correct prediction. In the experiments 

below, we take the threshold as 100% which means the predicted value has zero distance 

from the expected value.

No of Cases

Figure 5-14 Comparing the correct prediction accuracy (%) of retrieval methods on 300 unseen 
target problems

Fig. 5-14 shows the comparison of correct prediction accuracy (%) of GSNN, DWNN and 

NN on the 300 unseen target problems. The experiment shows clearly that GSNN out- 

performs both DWNN and £-NN, due chiefly to its ability as shown in the Irises example in 

Section 5.5 to correctly predict nominal values not in the retrieval set, or even in the case 

base. This will be illustrated later in Sections 5.7.1 and 5.7.2.

Analysis of the results shows that GSNN has two advantages. The first is that it can predict 

solutions that are not in the case base. In this example, GSNN managed to predict correctly 

hotels for which there were no holiday packages in the case base. In column 3 (i.e., 
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Table 5-2, we see the statistics on new hotel predictions produced by GSNN. In 

contrast, DWNN cannot predict any of these correctly. Notice that these decrease as the case 

base size increases. This is because the number of new hotels in the test set decreases as the 

case base size increases.

Table 5-2. Comparing the number of correct predictions of old hotels and new hotels for GSNN 
and DWNN, on 300 unseen target problems

No of
Cases

100
200
300
400
500
600
700

No of Correct
Predictions by

GSNN, not
DWNN

Old
Hotels

7
14
12
19
25
24
26

New
Hotels

23
14
17
15
17
14
14

No of Correct
Predictions by
DWNN, not

GSNN
Old Hotels

14
10
7
8
10
11
10

No of Correct
Predictions by

both GSNN and
DWNN

Old Hotels

38
55
53
60
61
70
78

GSNN

Total

68
83
82
94
103
108
118

DWNN

Total

52
65
60
68
71
81
88

The second advantage is that GSNN can correctly predict "old" hotels which are not in the 

retrieval set. Once again DWNN cannot predict these. Table 5-2, Column 2 (i.e., 

shows the number of "old" hotels correctly predicted by GSNN which were incorrectly 

predicted by DWNN. Contrast this against column 4 shows the number of "old" hotels that 

are correctly predicted by DWNN but incorrectly by GSNN. Column 5 shows the number of 

"old" hotels that are correctly predicted by both GSNN and DWNN. Table 5-3 gives similar 

analysis on the correct prediction of GSNN and &-NN. The examples in Section 5.7.1 and 

5.7.2 illustrate the advantages of GSNN over DWNN and fc-NN.
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Table 5-3. Comparing the number of correct predictions of old hotels and new hotels for GSNN 
and KNN, on 300 unseen target problems

No of
Cases

100
200
300
400
500
600
700

No of Correct
Predictions by

GSNN, not KNN

Old
Hotels

19
25
25
32
39
41
50

New
Hotels

29
25
23
22
23
19
18

No of Correct
Predictions by

KNN, not
GSNN

Old Hotels

15
27
24
18
19
24
26

No of Correct
Predictions by

both GSNN and
KNN

Old Hotels

20
33
34
40
41
48
50

GSNN

Total

68
83
82
94
103
108
118

&-NN

Total

35
60
58
58
60
72
76
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5.7.1 Illustrative Problem I: Solution Not in the Retrieval Set

Given case definition:

(JourneyCode, HolidayType, Price, NumberOfPersons, Duration, Season, Region,

Accommodation, Transportation)

We take as target the "Acces Hotel Mercure, Belgium." hotel:

(23, Recreation, 978, 3, 7, July, Belgium, Three stars, Car)

For 3 nearest neighbours, we get:

(133, Bathing, 1047, 3, 7, July, BalticSea, Three stars, Car),

Hotel: "Hotel Baltic, Usedom.", distance = 0.2512. 

= (781, Recreation, 849, 3, 7, February, Belgium, Holiday Flat, Car),

Hotel: "SunParks Groendyk, Belgium.", distance = 0.2523. 

;c3 = (895, Active, 998, 3, 7, December, Bavaria, Three stars, Car),

Hotel: "Sporthotel Rosenberger, Bavaria.", distance =0.3753.

Prediction from GSNN gives: "Acces Hotel Mercure, Belgium." 

Prediction from DWNN gives: "Hotel Baltic, Usedom." 

Prediction from KNN gives: "Hotel Baltic, Usedom."

This example shows that GSNN can correctly predict the hotel for package holiday (i.e., 

JourneyCode = 23). It is noted that the solution given by GSNN "Acces Hotel Mercure, 

Belgium." is an old hotel and that it is distinct from the solutions, which appear in the 

retrieval set (i.e., "Hotel Baltic, Usedom.", "SunParks Groendyk, Belgium.", "Sporthotel 

Rosenberger, Bavaria.").
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5.7.2 Illustrative Problem II: Solution Not in the Case Base

We take as target the "Hotel Zur Post, Upper Bavaria." hotel:

(71, Recreation, 3135, 3, 14, August, Alps, FourStars, Car)

For 3 nearest neighbours, we get, we get:

(462, Recreation, 2322, 3, 14, July, SalzbergerLand, FourStars, Car),

Hotel: "Hotel Eschbacher, Salzb. Land.", distance = 0.2642. 

(586, Recreation, 1958, 6, 14, August, Alps, HolidayFlat, Car),

Hotel: "H.Flat Switzerland.", distance = 0.2705. 

;c3 = (495, Wandering,, 2322, 3, 14, August, Tyrol, TwoStars,, Car),

Hotel: "Pension Tannenhof, Tyrol.", distance =0.3892.

Prediction from GSNN gives: "Hotel Zur Post, Upper Bavaria." 

Prediction from DWNN gives: "Hotel Eschbacher, Salzb. Land." 

Prediction from KNN gives: "H.Flat Switzerland."

This example shows that GSNN can correctly predict the hotel for package holiday (i.e., 

JourneyCode = 71). It is noted that the solution given by GSNN "Hotel Zur Post, Upper 

Bavaria." is distinct from the solutions, which appear in the retrieval set (i.e., "Hotel 

Eschbacher, Salzb. Land", "H.Flat Switzerland", "Pension Tannenhof, Tyrol."). In addition, 

"Hotel Zur Post, Upper Bavaria." is a new hotel, which is not yet present in the case base.
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5.8 CONCLUDING REMARKS
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6.1 INTRODUCTION

The experimental results presented in Chapter 5 are derived using nearest neighbours 

retrieval set for interpolation. We have shown that in Chapter 5, GSNN works better in 

simulated case bases with regularly spaced node sets than with randomly spaced node sets, 

and that this is connected with the general property that the algorithm performs better at 

interpolation than extrapolation. We suspect that the GSNN results of the Travel example in 

Section 5.7 may suffer from the same problem although the method out-performed the 

predictive performance of DWNN and &-NN. If this is the case, the requirement for a target 

to be always interpolated by a set of retrieved cases that surround it should improve the 

predictive performance of GSNN and other interpolation methods.

Analysis of false predictions from GSNN shows that it may not perform well when the 

members of the retrieved set are close together since it is highly likely that in this scenario it 

falls into the extrapolation trap (See Section 5.4 in Chapter 5) with the target being outside 

the interpolation points. This points to the importance of performing interpolation rather than 

extrapolation with the retrieval set.

In this chapter, we propose the use of a diversity algorithm to generate a diverse retrieval set 

used for interpolation. This will increase the chances that all targets are interpolated within a 

set of interpolation points. Smyth & McGinty (2003) and Smyth & McClave (2001) have 

shown that selecting a more diverse set can improve the efficiency of recommendation 

systems. Here, we show that use of a diversity algorithm can also improve the efficiency of 

the interpolation system. In this chapter, we use the Bounded-Greedy diversity technique in 

[Smyth & McGinty, 2003] to evaluate the performance of GSNN and other nearest neighbour 

methods. In Section 6.2 we describe the Bounded-Greedy diversity technique, and in Section 

6.3 examine the predictive performance of GSNN, DWNN and fc-NN on the travel case base 

using a diverse retrieval set. Section 6.4 and 6.5 present results obtained from tests on the 

simulated random case bases and regular case bases used in Section 5.6. We conclude in 

Section 6.6 on the findings and the advantages of using GSNN and the diversity technique 

together, with a summary and indications of future work.
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6.2 BOUNDED-GREEDY DIVERSITY TECHNIQUE

The Bounded-Greedy diversity technique in [Smyth McGinty, 2003] is one of a variety of 

well-known diversity techniques available for improving the efficiency of recommendation 

systems. Diversity of a set of cases is a measure of how far apart they are from one another. 

Diversity techniques [Shimazu, 2001; Bridge, 2001; McSherry, 2002] play an important role 

in recommendation systems. Smyth & McClave (2001) argue that often diversity can be as 

important as similarity particularly in case-based recommender systems. This is due chiefly 

to the fact that a case appearing to be similar to a target problem does not necessarily mean 

that it can be successfully adapted for this target. Comparatively, the same reason can cause 

GSNN to give poor prediction. This is because in nature GSNN is an interpolation method, 

which would produce good performance with a set of interpolation points that surround a 

target.

The bounded-greedy technique actually has two phases: (i) it selects the best is the 

bound (in this case it is a constant >1); is the number of cases in a retrieval set) cases most 

similar to the target query; (ii) it then builds up the retrieval set out of the selected cases 

incrementally. During each step the remaining cases are ordered according to their quality. 

The highest quality case is added to The position of a case / in the sequence of the 

remaining cases is proportional to the similarity between case and the current query and 

to the diversity of case relative to those cases that have been selected so far, ..., 

The equations of the quality (see E(6-l)) and diversity (see E(6-2)) of a case are given as 

follows:

E(6-l)

E(6-2)(1 - 
             .
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where _______ is a measure of the similarity between a case and the

target query is a constant that is used for balancing the similarity and diversity. 

The procedure of the Bounded Greedy Selection Technique is given as follows:

Bounded Greedy Selection Technique

:= cases in that are most similar to 

Fory:= to 

Sort by for each case in 

EndFor 

return./?

Figure 6-1. Pseudo code for Bounded Greedy Selection technique

6.3 THE TRAVEL CASE BASE

In this experiment, we perform the same test as in Section 5.7 except that we use the 

bounded-greedy diversity technique to generate a diverse set of candidate cases. The diverse 

set is then used for interpolation, using DWNN and GSNN. The results for various case base 

sizes are given in Fig. 6-2, which contrasts the two methods using both diverse retrieval sets 

and nearest neighbour retrieval sets. We set the parameters in the bounded-greedy diversity 

technique as follows: 0.5, and fc=3.
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No of Cases

Figure 6-2. Comparing the correct prediction accuracy (%) of GSNN and DWNN using both 
diverse retrieval sets and nearest neighbour retrieval sets, on 300 unseen target problems

Here we see that GSNN benefits considerably from the use of a diverse retrieval algorithm. 

DWNN however improves only marginally. This is because DWNN operates using distance 

weighted voting that is usually dominated by the nearer neighbours. Diverse sets will 

naturally include more distant neighbours, which will play little part in the voting. GSNN on 

the other hand does not suffer from this disadvantage.

For a smaller case base (E.g. 300 cases) GSNN shows a better performance on a diverse set 

than ordinary DWNN. This is due chiefly to the fact that GSNN can predict new hotels not in 

the case base. For a larger case base (E.g. 700 cases) GSNN also gives good prediction 

mainly because it can predict old hotels not in the retrieval set. Results show significant 

improvement in GSNN prediction with the use of a diverse retrieval set. The joint use of 

GSNN and the diverse retrieval algorithm is nearly twice as good as DWNN prediction in a 

large case base (E.g. 700 cases). We also note that as the case base size increases, the higher 

density in the case base does not degrade GSNN prediction. This shows that GSNN is able to 

give good approximation on a diverse retrieval set.
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Once again, the analysis of the results shows that GSNN has two advantages. The first is that 

it can predict solutions that are not in the case base. In this example, GSNN managed to 

predict correctly hotels for which there were no holiday packages in the case base. In column 

3 (i.e., Table 6-1, we see the statistics on new hotel predictions. DWNN cannot 

predict any of these correctly. Notice that these decrease as the case base size increases. This 

is because the number of new hotels in the test set decreases as the case base size increases 

(see Fig. 6-2).

The second advantage is that GSNN can correctly predict "old" hotels, which are not in the 

retrieval set. Once again DWNN cannot predict these. Table 6-1, Column 2 (i.e., 

shows the number of "old" hotels correctly predicted by GSNN, which were incorrectly 

predicted by DWNN. The number of old hotels in the test set increases as the case base size 

increases (see Fig. 6-2). Contrast this against column 4 shows the number of "old" hotels that 

are correctly predicted by DWNN but incorrectly by GSNN. Column 5 shows the number of 

"old" hotels that are correctly predicted by both GSNN and DWNN.

Table 6-1. Comparing the number of correct predictions of old hotels and new hotels for GSNN 
and DWNN using diverse retrieval sets, on 300 unseen target problems

No of
Cases

100
200
300
400
500
600
700

No of Correct
Predictions by

GSNN, not
DWNN

Old
Hotels

5
21
28
44
60
61
63

New
Hotels

35
28
22
24
27
22
16

No of Correct
Predictions by
DWNN, not

GSNN
Old Hotels

16
15
9
12
12
12
14

No of Correct
Predictions by

both GSNN and
DWNN

Old Hotels

38
50
54
59
60
71
76

GSNN

Total

78
99
104
127
147
154
155

DWNN

Total

54
65
63
71
72
83
90
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In addition, we also performed the same test as above for &-NN and use the same values 

fora , and The results for various case base sizes are given in Fig. 6-3. Table 6-2 shows 

that GSNN out-performed &-NN for the smaller case base because it can predict new hotels 

not in the case base. For a larger case base GSNN also gives good prediction because it can 

predict old hotels not in the retrieval set. The combination of GSNN and the diverse retrieval 

set is nearly 1.5 to 2 times as good as all A>NNs prediction in all case bases. Results show 

that &-NN when interpolating on the diverse set gives better prediction than on the nearest 

neighbour retrieval set. The reason for this is that the contribution of its nearest neighbours in 

the retrieval set to the prediction of a new instance is not distance-weighted (see Section 5.1). 

For votes that are unevenly distributed, the winner is the classification that has the most 

common vote among the nearest neighbours. It is possible that the result obtained from &-NN 

on the diverse set is biased to the random selection of classification if votes are equally 

distributed for each distinct classification in the retrieval set. Also the nearest neighbours in 

the diverse retrieval set is likely to be different from those in the nearest neighbour retrieval 

set because they are selected from among the cases and are sorted according to its quality 

and diversity (see Section 6.2) to the new instance. Hence it is possible that cases, which are 

far apart from the target are treated as equal with other nearer cases to the target. 

Consequently, they may be selected at random as the classification of the new instance.
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100

No of Cases

Figure 6-3. Comparing the correct prediction accuracy (%) of GSNN and £-NN using both 
diverse retrieval sets and nearest neighbour retrieval sets, on 300 unseen target problems

Table 6-2. Comparing the number of correct predictions of old hotels and new hotels for GSNN 
and &-NN using diverse retrieval sets, on 300 unseen target problems

No of 
Cases

100
200
300
400
500
600
700

No of Correct 
Predictions by

GSNN, not Jfc-NN

Old 
Hotels

20
35
38
47
66
75
69

New 
Hotels

43
39
38
42
38
32
23

No of Correct 
Predictions by

£-NN, not 
GSNN

Old Hotels

15
36
37
29
36
39
40

No of Correct 
Predictions by 

both GSNN and 
fc-NN

Old Hotels

15
25
28
38
43
47
63

GSNN

Total

78
99
104
127
147
154
155

*-NN

Total

30
61
65
67
79
86
103
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On the other hand, it is also noted in Fig. 6-4 that &-NN with the diversity technique in some 

cases (e.g., case base size = 500 or 700) performs better than DWNN. This is due to the fact 

that DWNN's prediction is distance-weighted. Consequently, its prediction is dominated by 

the nearest neighbour in the retrieval set (see Section 5.1). Also, because of this DWNN is 

regarded as more robust to noisy training data (see Section 3.5.2.2.).

100 200 300 400 500

No of Cases

600 700 800

Figure 6-4. Comparing the correct prediction accuracy (%) of DWNN and &-NN using both 
diverse retrieval sets and nearest neighbour retrieval sets, on 300 unseen target problems
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6.3.1 Illustrative Problem: Nearest Neighbour Retrieval Set versus 

Diverse Retrieval Set

Given the same case definition:

(JourneyCode, HolidayType, Price, NumberOfPersons, Duration, Season, Region,

Accommodation, Transportation)

We take as target the "H.Flat Black Forest." hotel:

(152, Wandering, 449, 2, 7, May, BlackForest, HolidayFlat, Train)

For 3 nearest neighbours using the nearest neighbour retrieval set, we get: 

= (112, Wandering, 719, 4, 7, July, Harz, HolidayFlat, Train),

Hotel: "H.Flat Harz.", distance = 0.3797. 

(912, Skiing, 449, 2, 7, January, Bavaria, HolidayFlat, Car),

Hotel: "H.Flat Wildgatter, Bavaria.", distance = 0.5. 

jc3 = (975, Active, 514, 6, 7, February, BlackForest, HolidayFlat, Car),

Hotel: "H.Flat Ferienpark Black Forest.", distance = 0.5011. 

Prediction from GSNN gives: "H.Flat Ferienpark, Harz."

This example shows that GSNN failed to predict the hotel for package holiday (i.e., 

JourneyCode = 152) correctly. The following shows that using a diverse retrieval set, GSNN 

can predict the same instance correctly.

For 3 nearest neighbours using the diverse retrieval set., we get 

(112, Wandering,, 719, 4, 7, July, Harz,, HolidayFlat,, Train),

Hotel: "H.Flat Harz.", distance = 0.3797. 

(973, Wandering, 688, 2, 6, December, BlackForest,, Two stars, Car),

Hotel: "Landgasthof Schuetzen, Black Forest.", distance = 0.5042. 

* 3 = (50, Recreation, 789, 5, 7, May, Fano,, HolidayFlat,, Car),

Hotel: "H.Flat Romo.", distance - 0.5059.
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Prediction from GSNN gives: "H.Flat Black Forest." This example shows that GSNN can 

correctly predict the hotel for package holiday jc (i.e., JourneyCode = 152). Note that the 

"H.Flat Black Forest." is a new hotel and is not in the retrieval set.

6.4 SIMULATED CASE BASE: RANDOMLY SPACED NODE SETS

According to the analysis in Section 5.6, we note that GSNN performs better in regularly 

spaced node sets than randomly spaced node sets because of the extrapolation trap. Here, we 

perform the same test as in Section 5.6.2 except that we use a diverse retrieval set for 

interpolation, using fc-NN, DWNN and GSNN, to see if GSNN would give improved 

predictive performance. The results for various case base sizes are given in Fig. 6-5, which 

contrasts three methods using both diverse retrieval sets and nearest neighbour retrieval sets. 

We use 0.5, and to generate diverse retrieval sets. Here we see that GSNN 

when using in conjunction with a diverse retrieval algorithm shows improved predictive 

performance. DWNN however again improves only marginally because its prediction is 

dominated by the nearest neighbour. fc-NN performs better than &-NN & Diversity because 

the latter's prediction is biased to the random selection of classification when votes are 

equally distributed for each distinct classification in the retrieval set (see Section 6.3).
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1000

Figure 6-5. Comparing the correct prediction accuracy (%) of retrieval methods using both 
diverse retrieval sets and nearest neighbour retrieval sets, in estimating a test set of 1000 
targets, for random case bases

6.5 SIMULATED CASE BASE: REGULARLY SPACED NODE 

SETS

We perform the similar test (see Section 6.4 with 0.5, and &=3) on the simulated 

regular case base. Since the case base is made up of regularly spaced nodes, the distribution 

of the cases is already quite diverse. We hence expect that GSNN performs better using a 

nearest neighbour retrieval set than a diverse retrieval set. Fig. 6-6 shows that GSNN when 

performed on a nearest neighbour retrieval set show better predictive performance compared 

to GSNN with the diversity method. Once again DWNN improves only marginally.
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Figure 6-6. Comparing the correct prediction accuracy (%) of retrieval methods using both 
diverse retrieval sets and nearest neighbour retrieval sets, in estimating a test set of 1000 
targets, for regular case bases



6.6 CONCLUDING REMARKS



Chapter 7



7.1 INTRODUCTION







7.2 USING GSNN AS CASE SELECTION CRITERION

7-5



Function 

Begin

While CandidateSet(tf) * Null 

Select(CandidateSet

loop 

End





Function 

Begin

While CandidateSet q 

<- Select(CandidateSet )

loop 

End

7.3 EXPERIMENTAL RESULTS



7.3.1 Test I: The Iris Classification Problem



Table 7-1. Average Correct Predictions in estimating the Iris dataset using 10-fold cross 
validation



7.3.2 Test II: Pneumatic Conveying Particles Degradation



Table Average Correct Predictions obtained from several different retrieval methods using 
a classifier based on the average error with a tolerance, £ = 0.163



7.4 THE CANDIDATE SET CONDITION



7.4.1 Test I with Alternative Candidate Set Conditions

Table 7-3. Average Correct Predictions in estimating the Iris dataset for -Shrink 
algorithm with different removal strategies using 10-fold cross validation



Table 7-4. Average Correct Predictions in estimating the Iris dataset for -Shrink 
algorithm with removal strategy: E(7-6) and different retrieval methods using 10-fold cross 
validation

7.4.2 Test II with Alternative Candidate Set Conditions

Table Average Correct Predictions in estimating the Pneumatic conveying particles dataset 
for -Shrink algorithm with different removal strategies using 10-fold cross validation



Table 7-6. Average Correct Predictions in estimating the Pneumatic conveying particles dataset 
for -Shrink algorithm with removal strategy: E(7-6) and different retrieval methods 
using 10-fold cross validation

CONCLUDING REMARKS



PART III 

CASE STUDIES

Chapter 8
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Chapter 8



8.1 INTRODUCTION



THE PROJECTILE MODEL

Figure 8-1. Visualization of the trajectory of a cannonball shot over flat ground



8.3 DEVELOPMENT OF CBE-PROJECTILE

8.3.1 Metrics Defined on the Unified Query Space

8.3.2 The Gunner's Problem: ?0, ?v, x=450m



Table 8-1. List of cases retrieved ordered by minimum distance for the gunner's problem

Case ID
29
51
19
38
56
35

Cl = e
i

0.4
1.2
0.8
0.2
0.8

C2 =V

70
80
80
70
100
60

C3 = X

445.556
459.108
432.296
489.791
389.418
359.847

Distance
0.00451
0.00924

0.018
0.0403
0.0614
0.0914



8.3.2.1 Interpolation over a Non-Conforming Set

Table 8-2. Interpolated value and projectile model solution obtained from a non-conforming 
set: Case 29 and Case 51

Non-conforming set
Case Id

29
51

Cl = e
i
0.4

C2 =V

70
80

c3 = x
445.556
459.108

Interpolated value
- 0.8846 71.92 448.163

Model solution
- 0.8846 71.92 507.166

8.3.2.2 Interpolation over a Conforming Set



Table 8-3. Interpolated value and projectile model solution obtained from a conforming set: 
Case 29 and Case 38

Conforming set
Case Id

29
38

Cl = e
i
0.8

C2 =V

70
70

c3 = x
445.556
489.791

Interpolated value
- 0.9975 |70 446.103

Model solution
- 0.9975 70 446.559

8.4 CBE-PROJECTILE VERSUS HUMAN EXPERT



8.4.1 The Gunner's Problem

Table 8-4. Results of iterative runs by expert to solve the gunner's problem



Table 8-1. List of cases retrieved ordered by minimum distance for the gunner's problem

Case ID
29
51
19
38
56
35

Cl = e
i

0.4
1.2
0.8
0.2
0.8

C2 =V

70
80
80
70
100
60

C3 =X

445.556
459.108
432.296
489.791
389.418
359.847

Distance
0.00451
0.00924

0.018
0.0403
0.0614
0.0914

Table 8-3. Interpolated value and projectile model solution obtained from a conforming set: 
Case 29 and Case 38

Conforming set
Case Id

29
38

Cl = e
i
0.8

C2 =V

70
70

c3 = x
445.556
489.791

Interpolated value
- 0.9975 70 446.103

Model solution
- 0.9975 70 446.559



Table 8-5. CBE-Projectile's model solution and human expert's solution for Test Case I

CBE-Projectile's Model solution
Cl

0.9975
c2 (m/s)

70
c3 (m)

446.559
Human expert's solution

0.4 79.25 450.540

Table 8-6. (CBE-Projectile model solution + Human Intervention) and human expert's solution 
for Test Case I



8.5 DISCUSSION ON THE EXPERIMENTAL RESULTS

8.6 CONCLUDING REMARKS
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9.1 INTRODUCTION





Class

UpperBound (jim)

LowerBound (jim)

1

850

600

2

600

500

3

500

425

4

425

355

5

355

250

6

250

0





Out_l Out_6 = 



Out_l Out_6= 

Out_l = 24 Out_6 = 



Out_l/Out_6 = 



9.3.4.1 Interpolation over a Non-Conforming Set

9.3.4.2 Interpolation over a Conforming Set
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