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Abstract 
 

In this thesis, I explore the applications of optical tweezers and passive video particle tracking 

microrheology for bioanalytical applications. 

 

Microrheology is a branch of rheology that has the same principles as conventional bulk rheology, 

but which works on micron length scales. Microrheological techniques relate the free or the driven 

motion of micron-sized tracer particles suspended in the fluid under investigation to the ‘elastic’ 

and ‘viscous’ components of the material. These components can be related to the dynamics of the 

molecules that make up the fluid, and thus microrheology has the potential to reveal new 

information about the microscopic properties of complex materials.   

 

Optical tweezers are sensitive instruments that have been used to apply forces on the order of pN 

and to measure the displacements down to nm of objects ranging in size from 10 nm to over 

100μm, making them an essential tool for microrheology. Here, we have developed a new set of 

analytical methods for microrheological measurements of biological and bio-analytical systems. In 

particular, we have developed two new self-consistent procedures for measuring the linear 

viscoelastic properties of materials across the widest frequency range achievable with optical 

tweezers (Phys.Review E. (2010) 81:2, and J. Optics (2011) 13:4). Furthermore, we present a 

straightforward procedure for measuring the in vivo linear viscoelastic properties of single cells via 

passive video particle tracking microrheology of single beads attached to the cells’ exterior. 

Notably, the procedure presented here represents an alternative methodology that can be extended 

to many experimental formats and provides a simple addition to existing cellular physiology 

studies.   

 

In addition, we introduce new methodologies for deriving the concentration scaling laws of 

polymer and biopolymer solutions from microrheological measurements carried out with optical 

tweezers. These methods have been adopted to investigate the concentration scaling laws of in vitro 

reconstituted actin solutions and actin/myosin solutions.  
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List of Figures 
[p4] Figure 1.1: Flow diagram showing the ways in which video particle tracking can be 

used to obtain viscoelastic information by either passive or active means. 
 

[p9] Figure 1.2: Forces acting on a particle in an unfocused (left) and focused (right) laser 
beam (of Gaussian intensity profile). Laser paths are denoted by yellow lines; 
the stronger the beam, the thicker the line. In the unfocused beam the 
gradient force acts in the approximate same direction as the scattering force, 
pushing the beam forwards and towards the beam centre. In the focused trap, 
the gradient force acts towards the focal point of the laser beam, balancing 
out the scattering force and creating a stable trap. Image created by author.  

  
[p10] Figure 1.3: (A and B, taken from Ref. [70]) Animation showing a bead in two optical 

trap potential wells with (A) weak trap strength and (B) strong trap strength.. 
The vertical axis represents the potential energy and the horizontal axis 
represents the distance from the centre of the trap. The yellow rings represent 
the thermal energy TkB . With a lack of external forces the particle will be 
located below the thermal energy line. An example of a typical distribution 
of bead positions is shown in (C) (created from measurements from this 
thesis). 

 
[p11] Figure 1.4: Examples of a purely elastic material (rubber band), a purely viscous 

material (water), and viscoelastic materials (corn-flour custard, blood, and 
single cells). Images from [77,78].  

  
[p14] Figure 1.5: Example of the evolution of the MSD of a viscoelastic material over 

time. Image adapted from [120]. 
 

[p16] Figure 1.6: Geometrical representation of a linear semiflexible polymer. Image 
adapted from [120]. 

 
[p18] Figure 1.7: Process of muscle contraction in a sarcomere. The ‘thin’ actin filaments 

are pulled along the ‘thick’ myosin filaments to produce the contraction [93].  
 

[p20] Figure 1.8:  Structure of a myosin-II molecule. The myosin fragments are composed 
of two head domains, two pairs of light chains, and a section of tail, (HMM) 
and a single head domain and one pair of light chains (S1).Image created by 
author. 

 
[p20] Figure 1.9: Proteolytic digestion of myosin-II results in myosin-II fragments HMM 

and S1. The fragments are formed by digesting the myosin-II molecule with 
chymotrypsin (HMM) or papain (S1). Image created by author.  

 
[p21] Figure 1.10: ATP hydrolysis cycle of myosin and actin: (A) The myosin head is 

attached to the actin filament in a short lived rigour configuration. (B) A 
molecule of ATP binds to the myosin head, at a cleft on the side furthest 
from the actin filament, causing a slight conformational change, which 
weakens the affinity of the myosin for the actin, allowing it the freedom to 
move along the filament. (C) The myosin cleft closes around the ATP 
molecule, displacing it along the filament by around 5nm, whilst hydrolysing 
the ATP into ADP and inorganic phosphate (Pi). (D) The weak binding of 
myosin to the new site on the actin filament releases the phosphate molecule 
and triggers the power stroke that generates the shape change through which 
the head regains its original conformation. (E) The ADP molecule is lost and 
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the cycle begins anew.  Image created by author, but based upon an image 
from Ref. [89].  

 
[p26] Figure 2.1: (Image created by author, but based on an image from Ref. [120]). The 

motion of the black polymer chain is constrained by the surrounding blue 
chains, which cannot be crossed, as if the black chain were confined to a tube 
(pink dashed lines) of diameter eD  

 
[p28] Figure 2.2: (Taken from Ref. [87]) Schematic representation of a semiflexible chain 

within an entangled isotropic solution (with other chains represented by 
points) within (a) the loosely-entangled coil regime, in which pc LL >>  but 

ep DL <<  where eD is the tube diameter, (b) the tightly-entangled coil 
regime, where pc LL >>  and ep DL >> , (c) the loosely-entangled rod regime, 
where pc LL <<  and where rotation of the rod is impeded by entanglements 
but fluctuations of the bending modes are not, and (d) the tightly-entangled 
rod regime, in which pc LL <<  and in which both rotations and shape 
fluctuations are impeded by entanglements and relax only via reptation. 
Tightly-entangled solutions of coil-like and rod-like polymers have a similar 
local geometry. 

 
[p30]    Figure 2.3: (Image created by author, but based on an image from Ref. [117]. 

Schematic representation of the stress tensor contributions in Equation 2.3.  
 

[p34] Figure 2.4: (Taken from Ref. [87]) Schematic of )(' ωG  (solid line) and )('' ωG  
(dotted line) for a tightly-entangled solution of coil-like chains 
with pc LL >> . Slopes indicate regimes with a nontrivial power law 
dependence on frequency, (curvature) and (tension) indicate frequency 
regimes in which )(* ωG  is dominated by the curvature or tension 
contributions. Time scales are defined in the text. 

 
[p36] Figure 2.5: (Taken from Ref. [87]) Schematic diagram that shows the evolution of 

ρω /)('G  with ρ  for solutions of coil-like chains. The three lines are 
sketches of the behaviour predicted for dilute or unentangled solutions (D), 
loosely-entangled solutions (L), and tightly-entangled solutions (T), all of 
which exhibit a common asymptote for ρω /)('G  at high frequencies. 
Slopes represent regimes with a nontrivial power law dependence on 
frequency, and powers of ρ  indicate the predicted dependence of the plateau 
moduli on concentration. Time scales shown are those relevant to the dilute 
and loosely-entangled regime, so repτ  is the reptation time of the loosely-
entangled solution. 

 
[p39] Figure 2.6: (Taken from Ref. [87]) Schematic of the predicted evolution 

of ρω /)('G (solid lines) and ρω /)(''G  (dotted lines) with concentration for 
a solution of rod-like polymers. Of the three concentrations shown, one is in 
the dilute regime (D) and two are in the tightly-entangled  regime  (T), one for 

3/13/2
epc LLL > (which exhibits a high-frequency tension-dominated  plateau  but 

no low-frequency orientation-dominated plateau) and one for 
2/1)( epc LLL < (which exhibits no tension-dominated plateau but exhibits a 

narrow orientation-dominated plateau and a low-shear viscosity with a 
significant orientational contribution.) The time 1−

rodτ  refers to the 
orientational relaxation time of the tightly-entangled solution. The 
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corresponding relaxation time for the dilute solution is of order repτ  as 
described in the text. A loosely-entangled solution (not shown) would look 
similar to the dilute solution except for the appearance of a value of 1−

rodτ  
intermediate between those of dilute and tightly-entangled solutions. The 
overlapping lines for ρω /)(''G  at intermediate frequencies, between 1−

repτ  

and 1
||
−τ , where ωω ∝)(''G , all correspond to the behaviour obtained for the 

viscous (i.e. tension) contribution to the polymer stress of a solution of rigid 
rods. 

 
[p40] Figure 2.7: (Taken from Ref. [87]) Calculated moduli )(' ωG (solid line) and )('' ωG  

(dotted line) for monodisperse solutions with (a) 4/pc LL = , (b) pc LL =  
and (c) pc LL 10= . The remaining parameters are given values: pL = 17 µm, 
ρ = 39 µm -2, eD = 0.2 µm, eL =2.2 µm, sη  = 0.01 Poise, and d = 0.007 µm, 
which are believed to be representative of a 1 mg/mL solution of actin. The 
straight solid line in each figure has a slope of 3/4 and is the predicted high-
frequency asymptote of )('' ωG . 

 
[p41] Figure 2.8: (Taken from Ref. [87]) Calculated moduli )(' ωG (solid line) and 

)('' ωG (dotted line) for a polydisperse actin solution with mLc μ17= and an 
exponential distribution of chain lengths for the same values of pL , eD  etc. 
as in Figure 2.7.   

 
[p41] Figure 2.9: (Taken from Ref. [87]) Values of )(' ωG (solid line) and )('' ωG (dotted 

line) for a system approximating a lightly cross-linked gel. 
 

[p46] Figure 3.1: Cycle of ATP production from creatine phosphate and ADP. 
 

[p48] Figure 3.2: Optical tweezers configuration. From left to right; (LZ) Ti:sapphire laser 
system, (L1 and L2) beam telescope, (M1 and M2)  folding mirrors, (SLM)  
boulder fast SLM, (L3), (PBS) polarising beam splitter cube, (M3) mirror, 
(CAM) Prosilica fast camera, (O) objective lens, (CL) condensing optics, (B) 
250W halogen bulb. Image taken from [155].  

 
[p49] Figure 3.3: Spatial light modulator (SLM) holograms designed to create a single trap 

(left), two traps (centre) and three traps (right). Red circles indicate the 
approximate positions of where the first order traps would lie.      

 
[p52] Figure 4.1: Bead trapped in a stationary (‘static’) optical trap. 

 
[p56] Figure 4.2: Diagram of experimental procedure: Step I measures the bead trajectory 

in a static optical trap. Step II measures the displacement of the bead in 
response to a uniform fluid flow.      

 
[p59] Figure 4.3: The MSD vs. lag time of a 5μm diameter bead in water (with κ = 0.8 

μN/m) and in two water-based solutions of PAM at concentrations of 0.5% 
and 1% w/w (both with κ = 1.7 μN/m). The line is the Einstein prediction of 
the MSD for 5μm diameter bead in water at 25 °C. 

 
[p59] Figure 4.4:  The normalised MSD vs. lag time of a 5μm-diameter bead in water (with 

κ = 0.8 μN/m) and in two water-based solutions of PAM at concentrations of 
0.5% and 1% w/w (both with κ = 1.7 μN/m). 
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[p60] Figure 4.5: (A) The coordinates of a 5μm diameter bead vs time for two different 
solutions and for two uniform fluid flow fields of different magnitudes sV

r
 at 

25 °C. In both cases the data was averaged over three measurements and the 
x coordinate has been normalised by the steady-state displacement xΔ . In 
water κ = 1.7 μN/m, sV

r
= 20 μm/s, and xΔ = 0.523 μm. In 1% w/w of PAM 

κ = 8.6 μN/m, sV
r

= 3 μm/s, and xΔ = 1.115 μm. (B) The graph highlights the 

start-up behaviour of both the above systems. 
 

[p61] Figure 4.6: Storage (circles) and loss (squares) moduli vs. frequency of a solution of 
1% w/w of PAM in water measured by means of both Equation 4.6 (solid 
symbols at high frequencies) and Equation 4.11 (open symbols at low 
frequencies) applied directly to the experimental data presented in Figures. 
4.4 and 4.5 respectively. The dotted lines are guides to the gradients. 

. 
[p62] Figure 4.7: Storage (circles) and loss (squares) moduli vs. frequency of a solution of 

1% w/w of PAM in water measured by means of both Equation 4.4 (solid 
symbols at high frequencies) and Equation 4.9 (open symbols at low 
frequencies) applied directly to the experimental data presented in Figs. 4.4  
and 4.5 but smoothed. The dotted lines are guides to the gradients. 

 
[p64] Figure 4.8: Diagram of experimental procedure: Step I measures the bead trajectory 

in a static optical trap. Step II measures transient displacement of a bead 
flipping between two optical traps (spaced at fixed distance 0D ) that 
alternately switch on/off. 

 
[p68]   Figure 4.9: The normalised position autocorrelation function vs. lag-time of a 5µm 

diameter bead (squares) in water (with mN /7.2 μκ = ) and (circles) in a 
water-based solution of PAM at concentrations of 1 % w/w (with 

mN /2.2 μκ = ). The continuous and dotted lines represent Equation 4.16 for 
a 5µm diameter bead in water at T = 25ºC with mN /7.2 μκ =  and 

mN /2.2 μκ = , respectively. 
 

[p69] Figure 4.10: The trajectory of a 5µm diameter bead flipping between two optical 
traps 1κ  (bottom) and 2κ (top) repeatedly switching after a duration P = 20 s. 
The bead is suspended in (squares) water (with mN /7.21 μκ =  
and mN /5.22 μκ = ) and (circles) a water-based solution of PAM at 
concentrations of 1 % w/w (with mN /1.21 μκ =  and mN /2.22 μκ = ). 

 
[p70] Figure 4.11: The normalised mean position of all step-down data shown in Figure  

4.10, i.e. when simultaneously trap 2 (top) switches off and trap 1 (bottom) 
switches on. 

 
[p71] Figure 4.12: Storage ( 'G ) and loss ( ''G ) moduli of water vs. frequency, analysed using 

both Equation 4.18 (high frequencies) and Equation 4.22 (low frequencies) 
applied directly to the experimental data presented in Figure 4.9 and Figure 4.11, 
respectively. The lines represent the expected limiting behaviour of the moduli 
when the material reaches the terminal region: ω∝''G for a Newtonian fluid, 
and 2' ω∝G and ω∝''G for a viscoelastic fluid.   

 
[p71] Figure 4.13: Storage ( 'G ) and loss ( ''G ) moduli vs. frequency of a solution of 1% 

w/w of PAM in water measured by means of both Equation 4.18 (high 
frequencies) and Equation 4.22 (low frequencies) applied directly to the 



   

 

                                                                                                                                                                        

v

experimental data presented in Figure 4.9 and Figure 4.11, respectively. The 
lines represents the expected limiting behaviour of the moduli when the 
material reaches the terminal region: 2' ω∝G and ω∝''G . 

 
[p76] Figure 5.1:  MSD vs. lag time of a 5μm diameter bead for different optical trap 

strengths (κ) in water. The dotted line represents the Einstein prediction of 
the MSD of a freely diffusing 5μm bead in water at 25°C. 

 
[p77] Figure 5.2: )(τΠ  vs. lag time for a 5μm diameter bead at different optical trap 

strengths (κ) in water. For long timescales )(τΠ reaches a constant value of 
1. 

 
[p78] Figure 5.3: )(τΠ vs. normalised lag time ( saηπτκ 6 ) for a 5μm diameter bead at 

different optical trap strengths (κ) in water. After normalisation the curves 
collapse onto a master curve.  

 
[p79] Figure 5.4: Storage and loss moduli of an optically trapped 5μm bead in water 

analysed to show the elasticity arising from the optical trap. The cut-off 
frequency saηπκ 6 defines the lowest frequency at which meaningful 
information can be extracted about the material properties. It dictates the 
crossover point at which )(' ωG and )('' ωG intersect. 

 
[p80] Figure 5.5: Normalised storage and loss moduli of an optically trapped 5μm bead in 

water, analysed to show the elasticity arising from the optical trap. The data 
is seen to be normalised (i.e. the intersect occurs at [1,1]) by applying a factor 
of κηπ /6 sa to the frequency and a factor of κπ /6 a  to the moduli 

 
[p84] Figure 5.6: )(τΠ  vs. normalised lag time for a 5μm diameter bead in PAM 

(molecular weight 5-6 million Da) in concentrations ranging from 0.01-1.0% 
w/w. The normalised lag time uses the viscosity of the solvent, water.    

 
[p85] Figure 5.7: Reliance of MSD on concentration for two points on )(τΠ  (from Figure 

5.6) for PAM (molecular weight 5-6 million Da) in concentrations ranging 
from 0.01-1.0% w/w. The lines are a guide to the gradient. 

 
[p86] Figure 5.8: Relative viscosity, )(trelη , vs. normalised lag time for PAM (molecular 

weight 5-6 million Da) in concentrations ranging from 0.01-1.0% w/w. The 
dotted line is a slope of 1. 

 
[p87] Figure 5.9: Specific viscosity, )(tspη , vs. normalised lag time for PAM (molecular 

weight 5-6 million Da) in concentrations ranging from 0.01-1.0% w/w.. The 
dotted line is a slope of 1. 

 
[p87] Figure 5.10: Reduced viscosity, )(tredη , vs. normalised lag time for PAM 

(molecular weight 5-6 million Da) in concentrations ranging from 0.01-1.0% 
w/w. The dotted line is a slope of 1. 

 
[p88] Figure 5.11 Specific viscosity spη /c3/2 vs. normalised lag time (taking into account c3/2) 

for PAM (molecular weight 5-6 million Da) in concentrations ranging from 0.1-
1.0% w/w. The dotted line is a slope of 1. 

 
[p88] Figure 5.12: Specific viscosity spη /c vs. normalised lag time (taking into account c) 

for PAM (molecular weight 5-6 million Da) in concentrations ranging from 
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0.01 and 0.0464% w/w. The dotted line is a slope of 1. 
 

[p89] Figure 5.13: Specific viscosity/cα vs. normalised lag time/ cα for PAM (molecular 
weight 5-6 million Da) in concentrations ranging from 0.01-1.0% w/w. For 
concentrations 0.01-0.215% PAM α=1/2, and for concentrations 0.316-1.0% 
PAM α=3/2. The dotted line is a slope of 1. 

 
[p90] Figure 5.14: Normalised position autocorrelation function vs. lag-time of a 5µm 

diameter bead in water, 1 mg/ml actin and 1% [w/w] PAM, showing the 
exponential shape of the function. The solid line is Eq. 5.24 plotted for a 
bead in water experiencing the same trap strength ( mN /7.2 μκ = ) as the 
experimental water measurement. 

 
[p91] Figure 5.15: The relative viscosity, relη , at 0→t plotted against concentration for 

PAM (molecular weight 5-6 million Da) in concentrations ranging from 
0.01-1.0% w/w. The lines are a guide to the gradient. 

 
[p94] Figure 6.1: )(τΠ  vs. lag time for a 5μm diameter beads in actin solutions of 

concentrations ranging from 0.04-1 mg/ml.  
 

[p95] Figure 6.2: )(τΠ  vs. normalised lag time for a 5μm diameter bead in F- actin 
solutions in concentrations from (A) 0.04-0.25 mg/ml, and (B) 0.4-1.0 
mg/ml. The lines are added as guide for the gradients.   

 
[p96] Figure 6.3 [A,B]: (A) Relative viscosity, )(trelη , vs. normalised lag time and (B) 

specific viscosity, )(τspΩ , vs. normalised lag time for a 5μm diameter bead 
in solutions of actin in concentrations from 0.04-1.0 mg/ml.  The dotted lines 
are the lines of y=x (A and B) and y=1 (A).  

 
[p97] Figure 6.3 [C]: Reduced viscosity, )(tredη , vs. normalised lag time for a 5μm 

diameter bead in solutions of actin in concentrations from 0.04-1.0 mg/ml.   
 

[p97] Figure 6.4: Specific viscosity, )(tspη  divided by c4/3  vs. normalised lag time 
multiplied by c4/3 for a 5μm diameter bead in varying concentrations of actin. 
The dotted line is the slope of 1. 

 
[p98] Figure 6.5: The relative viscosity, relη , at 0→t plotted against concentration for 

actin in concentrations ranging from 0.04-1.0 mg/ml. The lines are a guide to 
the gradient. 

 
[p99] Figure 6.6: (Taken from Ref. [87]) Calculated moduli )(' ωG (solid line) and 

)('' ωG (dotted line) for a polydisperse actin solution with mLc μ17= and an 
exponential distribution of chain lengths. Morse’s model predicts a 
frequency-independent plateau caused by the curvature stress and a high 
frequency dependence of ∝ω3/4. 

 
[p101] Figure 6.7: Normalised position autocorrelation functions and resultant storage and 

loss moduli for 0.1 mg/ml actin. As the nPAF approaches zero a significant 
amount of noise becomes apparent in the measurement (top left). If this 
section of the data (i.e 0)( =τA ) is selected to compute the complex shear 
modulus this noise is carried over into )(* ωG  (bottom left). A typical nPAF 
selection containing no noise (i.e 1.0)( ≥τA ) (top right) produces moduli with 
much less noise (bottom right). 
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[p102] Figure 6.8: Loss and storage moduli vs. frequency for varying concentrations of actin 

(0.1-1.0 mg/ml). The solid lines are a guide for the gradients.   
 

[p103] Figure 6.9: The loss modulus )('' ωG vs. concentration extracted from the complex 
moduli of Figure 6.8, at frequency values of 5 rad/s and 400 rad/s. The lines 
are a guide for the gradient. 

 
[p104] Figure 6.10: (Taken from Ref. [87]) Morse’s prediction for )(' ωG  (solid line) and 

)('' ωG  (dotted line) for a monodisperse solution of actin pc LL = . The 
straight solid line in each figure has a slope of 3/4 and is the predicted high-
frequency asymptote of )('' ωG .The viscoelastic moduli (red circles: )(' ωG ; 
green squares: )('' ωG ) of 1 mg/ml actin from Figure 6.8 have been added as 
a comparison.  

 
[p105] Figure 6.11: The loss modulus )('' ωG vs. concentration at a frequency value of 5 

rad/s (extracted from the complex moduli of Figure 6.8) compared to the loss 
modulus vs. concentration at a frequency of 6.25 rad/s (from Ref. [117]). The 
lines are a guide for the gradient. 

 
[p106] Figure 6.12: The storage modulus )(' ωG vs. concentration extracted from the 

complex moduli of Figure 6.8, at frequency values of 2 rad/s and 50 rad/s. 
The dotted lines are a guide for the gradient. It has been shown 
experimentally [139] that the EMA is the most accurate scaling law for the 
macroscopic plateau modulus of semiflexible polymer solutions in the tightly 
entangled regime, although we provide slopes of both the EMA and BCA 
gradients. The slope of 3/4c is a better fit for the data than 5/7c , agreeing 
with the EMA scaling. 

 
[p108] Figure 6.13: The storage modulus )(' ωG vs. concentration at a frequency value of 2 

rad/s (extracted from the complex moduli of Figure 6.8) compared to the 
storage modulus vs. concentration at a frequency of 1 rad/s (from Ref. [120]). 
The lines are a guide for the gradient. 

 
[p109] Figure 6.14: )(' ωG (left) and normalised )(' ωG (right) for actin solutions in 

concentrations from 0.1-1.0mg/ml. The normalisation factor is a value of c4/3. 
 

[p109] Figure 6.15: Normalised )(' ωG for actin solutions in concentrations of 0.04 and 0.06 
mg/ml. The normalisation factor is a value of c1/4. 

 
[p110] Figure 6.16: )('' ωG (left) and normalised )('' ωG (right) for actin solutions in 

concentrations from 0.04-1.0mg/ml. The normalisation factor is a value of 
c5/8. 

 
[p112] Figure 6.17: The nPAF vs. lag-time of a 5µm diameter bead in actin at the two trap 

positions  mN /90.31 μκ =  and mN /70.42 μκ = . The dotted lines 
represent the prediction for a 5µm diameter bead in water at T = 25ºC with 

mN /90.31 μκ =  and mN /70.42 μκ = , respectively. 
 

[p112] Figure 6.18: The trajectory of a 5µm diameter bead flipping between two optical 
traps 1κ  (bottom) and 2κ  (top) repeatedly switching after a duration 

sP 12= . The bead is suspended in actin (with mN /90.31 μκ =  and 
mN /70.42 μκ = ).  
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[p113] Figure 6.19: The normalised mean position of all step-down data shown in Figure 

6.18 i.e.when simultaneously trap 2 (top) switches off and trap 1 (bottom) 
switches on. 

 
[p114] Figure 6.20: Storage (G′) and loss (G′′) moduli vs. frequency of a solution of 

0.04mg/ml actin; measured by means of both Equation 4.15 (high 
frequencies) and Equation 4.19 (low frequencies) applied directly to the 
experimental data presented in Figure 6.17 and Figure 6.19, respectively. 

 
[p118] Figure 7.1: (Taken from Ref. [194]) Elastic (solid symbols) and viscous (open 

symbols) response for actin-rigor-HMM networks as a function of frequency 
[cACTIN=19μM, Ratio of HMM/actin =0.0076 (upright triangles) up to R= 
0.143 (diamonds)]. The solid and dashed lines represent a global best fit of 
the model described in the study.  

 
[p121] Figure 7.2: )(τΠ  vs. normalised lag time for a 5μm diameter bead in (A) pure actin 

or actin with dead HMM, (B) actin with single (S1) or double (HMM) headed 
myosin fragments in the ration 1:1, and (C) actin with single (S1) or double 
(HMM) headed myosin fragments in the ration 4:1. 

 
[p122]   Figure 7.3:  )(τΠ  vs. normalised lag time (with error bars) for a 5μm diameter 

bead in (A) pure actin or actin with dead HMM, (B) actin with single (S1) or 
double (HMM) headed myosin fragments in the ration 1:1, and (C) actin with 
single (S1) or double (HMM) headed myosin fragments in the ration 4:1. 
Error bars represent the standard deviation. 

 
[p123] Figure 7.4: Relative viscosity, )(τη rel , vs. normalised lag time for actin 

(0.04mg/ml), and for actin with dead myosin, single headed (S1) myosin 
fragments (Ratio of myosin:actin of 1:1 and 4:1) or double headed (HMM) 
myosin fragments (Ratio of myosin:actin of 1:1 and 4:1). Inset is a magnified 
section of the graph (at short times). 

 
[p124] Figure 7.5: Specific viscosity, )(tspη ,  vs. normalised lag time for actin 

(0.04mg/ml), and for actin with dead myosin, single headed (S1) myosin 
fragments (Ratio of myosin:actin of 1:1 and 4:1) or double headed (HMM) 
myosin fragments (Ratio of myosin:actin of 1:1 and 4:1). Inset is a magnified 
section of the graph (at short times). 

  
[p125] Figure 7.6: Specific viscosity normalised by a factor of (no. of heads x cmyosin

1/2) vs. 
normalised lag time (no. of heads x cmyosin

1/2) for actin (0.04mg/ml) with 
single headed (S1) myosin fragments (Ratio of myosin:actin of 1:1 and 4:1) 
or double headed (HMM) myosin fragments  (Ratio of myosin:actin of 1:1 
and 4:1). 

 
[p126] Figure 7.7: Specific viscosity normalised by number of molecular heads vs. 

normalised lag time (taking into account number of molecular heads) for 
actin (0.04 mg/ml) and S1 or HMM in 1:1 ratio. 

 
[p127] Figure 7.8: The relative viscosity, relη , at 0→t plotted against actin/myosin ratio for 

actin/HMM (squares) and actin/S1 (circles). The lines are a guide to the 
gradient. 

 
[p128] Figure 7.9 [A-G]: Loss and storage moduli vs. frequency for (A) pure actin 

(0.04mg/ml) or actin with single head myosin fragment (S1) in ratios of: (B) 
S1/actin 1:1, (C) 2:1, (D) 3:1, (E) 4:1, (F) 8:1 and (G) 16.1. The solid and 
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dotted lines are a guide for the gradients.    
 

[p130] Figure 7.10: The normalised loss modulus )(''/)('' ωω ActinGG vs. ratio of 
myosin:actin (for data extracted from the complex moduli of Figure  7.9) for 
actin/S1 samples at a frequency of 80 and 400 rad/s, and at S1:actin ratios of 
1:1 16:1 .(A) Linear graph: The lines have been added to demonstrate the 
general trends of the concentration dependence. (B) Log-log graph: The 
dotted lines are a guide for the gradient. 

 
[p131] Figure 7.11 [A]: The normalised storage modulus )(''/)('' ωω ActinGG vs. ratio of 

myosin:actin (for data extracted from the complex moduli of Figure 7.19) for 
actin/S1 samples at a frequency of 50 rad/s, and at S1:actin ratios of 
1:1 16:1. The data is shown on a linear plot where the lines are added 
simply to illustrate the shape of the concentration dependence. 

 
[p132] Figure 7.11 [B]: The normalised storage modulus )(''/)('' ωω ActinGG vs. ratio of 

myosin:actin (for data extracted from the complex moduli of Figure 7.9) for 
actin/S1 samples at a frequency of 50 rad/s, and at S1:actin ratios of 
1:1 16:1. The data is shown on a log-log plot where the dotted lines are a 
guide for the gradient. 

 
[p139] Figure 8.1: (Taken from Ref. [218]). Distribution of actin in astrocyte cells under 

different osmotic conditions. Cells were incubated in Krebs-HEPES medium 
of different osmolarities and then fixed and stained with rhodamine-
phalloidin. Actin was visualised by fluorescence microscopy. (A): cells in 
iso-osmotic medium; (B): cells maintained in 50%  hypo-osmotic medium  
for 2 min; (C): cells maintained in 50% hypo-osmotic medium for 15 min; 
(D): cells maintained in 50%  hypo-osmotic medium for 2 hours.  

 
[p136] Figure 8.2: Normalised MSDs of optically trapped beads in water (blue) and actin 

(red) (left) and of a bead stuck to a cell (right). 
 

[p138] Figure 8.3: (Left) Top view of a 5μm diameter silica bead chemically bound to the 
surface of a Jurkat cell and (Right) Side view of left image. 

 
[p139] Figure 8.4: (Top) Change in volume measured for a single Jurkat cell, with left 

image showing the cell in the isotonic solution, and the right image showing 
the cell 7 minutes after the solution was made hypotonic. (Middle left) 
Volume change of a Jurkat cell plotted as a function of time in our 
experiment and in (Middle right) Ref. [227] for a human melanoma 
cell.(Bottom) The volume change plotted as a function of the radius.  

 
[p141] Figure 8.5: [A-F]: The )(τΠ  vs. lag-time of a 5µm diameter silica bead chemically 

bound to a Jurkat cell in iso-osmotic (PBS) solution (squares) and in hypo-
osmotic solution (circles) after addition of 10% v/v distilled water to the PBS 
buffer, and measured at time intervals (Δt) of (A) 2 min, (B) 7 min, (C) 12 
min, (D) 18 min, (E) 23 min and (F) 28 min respectively. 

 
[p145] Figure 8.6: The absolute value of )0('

cnn Gβ measured in PBS and in 10% hypotonic 
solution (squares) or in isotonic PBS solution (circles). The arrow indicates the 
time at which the PBS solution is made hypotonic by the addition of water. The 
single PBS measurement at 4.5 minutes was an average of three PBS 
measurements, and the standard deviation was used as the error in all readings. 
The dotted line is to compare later hypotonic measurements with the initial 
measurement in PBS.  
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[p147] Figure 8.7: The real (storage, )(' ωcG ) and the imaginary (loss, )('' ωcG ) parts of 
the complex modulus ( )(* ωcG ) scaled by 0'G vs. frequency, of a Jurkat cell 
in iso-osmotic (PBS) solution (A) and in hypo-osmotic solution (B-G) after 
the addition of 10% v/v distilled water to the PBS buffer and measured at 
time intervals  (Δt)  of (A) 2 min, (B) 7 min, (C) 12 min, (D) 18 min, (E) 23 
min and (F) 28 min, respectively. The moduli have been evaluated by using 
Equation 8.3 on the normalised MSD data shown in Figure 8.6. The lines are 
guides for the gradients. 
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Chapter 1 

 

INTRODUCTION 
 
Over the past decade an emerging trend in the field of biology has been the increasing application 

of more quantitative disciplines, such as physics and engineering, in solving problems associated 

with bio-materials and bio-mechanics. The convergence of these subjects arises from the fact that 

many biological systems pose questions best addressed, or indeed, exclusively answered, by 

mechanical or physical means. The field of rheology has wide ranging applications, but has 

developed into an extremely useful tool for probing the mechanics of cells and proteins.  

 

At heart, rheology is the study of how matter ‘flows’. It is predominantly concerned with the 

mechanical properties of complex (viscoelastic) fluids, which are substances other than elastic 

solids or Newtonian fluids (e.g water). Most materials, especially ones of interest to biology, can 

act both “solid-like” and “liquid-like”, depending upon the frequency at which they are studied. We 

define these behaviours as being either viscous (like water) or elastic (like a solid), the relative 

proportions of which are reliant upon the time scale upon which they are probed. Traditionally 

these viscoelastic properties were measured on a bulk scale, using a rheometer. With the advent of 

new techniques designed to probe matter at the intermediate level between bulk and molecular 

scale, microrheology has become increasingly popular as a means of providing mechanical 

information about biological systems.  

 

In general, microrheology tracks the Brownian trajectory of micron-sized probes with high 

temporal and spatial resolution in order to derive the mechanical properties of the material in

question. Although microrheology is considered to be a modern invention, it can trace its origins 

back to the biologist Robert Brown, who, in 1827, became intrigued by the random motion of 

pollen grains suspended in water [1]. His subsequent studies gave rise to the name ‘Brownian
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motion’ to describe this movement; thus, right from its first observation, microrheology and 

biology were intertwined. Einstein and Smoluchowshi later (independently) explained Brownian 

behaviour in terms of a statistical analysis of the collisions of pollen with the surrounding solvent 

molecules, laying in place the theory for modern-day microrheology [2, 3]. 

 

The technological developments obtained over the last decades and the commercialisation of “high-

tech” equipment at low prices has encouraged scientists to develop new micro and nano-scale 

investigative procedures. Microrheological techniques are powerful methods to characterise the 

mechanics and structure of novel and complex materials on length and time scales much shorter

than those measured with bulk techniques. Indeed, microrheology corresponds well with the range 

of sensitivity required to study a wide range of biological processes by possessing the ability to 

probe mechanical systems on the nm length scale, μs time scale and with pN forces. Another 

advantage is the necessary sample volume. A conventional rheometer requires a sample size of 

>1ml, which, whilst practical for the characterisation of food stuffs and industrial products, is not 

viable for the study of biological samples such as proteins and cells that exist mainly in small 

quantities. The size of sample required for microrheological techniques is on the order of ~μl, 

making these methods perfect for biological materials. Developing microrheological techniques 

further will allow the study of both new systems and different material properties than conventional 

methods, and bring about new possibilities for understanding the microscopic properties of 

complex materials.   

 

The elegance of microrheology becomes apparent when we consider that in order to obtain the 

viscoelastic properties of a substance, one need only measure the position of a tracer particle placed 

in the fluid of interest. In their pioneering paper, Mason & Weitz [4] proved that in an 

incompressible, homogeneous material the response of an individual micron-sized probe due to 

external forcing or thermal fluctuations is a reflection of the bulk viscoelastic properties of the 

surrounding medium. They demonstrated that the mean-square displacement (MSD) of a micron 

sized tracer particle can be directly related to the viscoelastic properties via a property known as the 

complex shear modulus (which encodes the elastic and viscous components).  

 

Microrheology has many applications within the field of biology. Its main purpose thus far has 

been to study the in vitro properties of the proteins that form the cytoskeleton of cells. The 

cytoskeleton is a hugely important structure that acts like a “scaffold” to the cell, providing 

structural stability and shape; but rather than being a static structure, it undergoes constant 

remodelling in order to adapt to different internal and external conditions. The filamentous proteins 

that comprise the cytoskeleton have interesting physical properties that determine their viscoelastic 

behaviour. Developing rigorous models of this behaviour in vitro will lead to a better 

understanding of how the cytoskeleton acts within the cell. This ‘bottom-up’ approach to cellular 
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mechanics is now a well-accepted form of experimental bio-analytical science, where models are 

built from a limited number of components [5]. Increasing numbers of ingredients are added until 

more cell-like structures are formed; for example, adding cross-linking proteins to networks of the 

cytoskeletal protein actin drastically increases the magnitude of the rheological response to that 

approximating the response of a cell.  

 

This thesis aims to explore various aspects of microrheology with optical tweezers and video 

particle tracking and to apply these methods towards biological samples, namely filamentous 

protein solutions and single cells.  Firstly we develop two new methods of using an optical tweezer 

setup to measure viscoelastic properties over the widest frequency range accessible with optical 

tweezers. Secondly, we develop a method of measuring the scaling laws that govern the 

concentration dependence of material linear viscoelastic properties. These scaling laws are applied 

to examples of Newtonian fluids, viscoelastic materials and biological samples. Optical tweezer 

measurements are used to analyse the viscoelastic moduli of protein solutions, specifically 

networks of actin and networks of actin and the motor protein myosin. Finally, a new video particle 

tracking technique for measuring the viscoelastic properties of single cells is presented.  

 

1.1 Microrheology 

Microrheology describes a collection of techniques designed to probe the viscoelastic properties of 

very small samples or objects such as cells. There are two ways in which microrheology can probe 

the viscoelastic properties of materials: (i) the active manipulation of probe particles by the local 

application of stress; and (ii) the passive measurement of probe diffusion due to thermal energy. 

Both methods require a means of accurately detecting the particle trajectory, the most common 

example of which is video-tracking, whereby the particle position is measured and then analysed so 

as to calculate the material’s viscoelastic properties. Figure 1.1 shows how video particle tracking 

(VPT) can be either used passively, or be actively when combined with either optical or magnetic 

tweezers.   

 

Passive microrheology deals with small thermal fluctuations, thus it uncovers the linear viscoelastic 

properties of a fluid. It reveals the viscoelasticity of the material at thermal equilibrium. Compared 

to active techniques, passive methods are more straightforward to perform and do not need 

calibration. All that is needed is a way of measuring the position of a tracer probe in the material of 

interest. In contrast, active microrheology, which needs to be calibrated, can be used to exert larger 

forces and deformations on the system, which can push the viscoelastic response into the non-linear 

regime where deformations in the system may be irreversible. The larger forces created with active 

methods are more comparable to the forces that would be experienced under physiological 

conditions i.e. blood cells are subjected to high shear stresses as they circulate the body.  
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Figure 1.1: Flow diagram showing the ways in which video particle tracking can be used 
to obtain viscoelastic information by either passive or active means.  

 

Microrheology can be approached with a toolkit of several diverse techniques. The decision of 

which one to use should depend upon a number of factors e.g. the required frequency range of 

interest, the magnitude of moduli to be measured, or whether an homogenous bulk measurement or 

a local measure of heterogeneity is the desired result. Table 1.1 provides a succinct diagram 

describing the typically accessible frequencies, moduli, forces and spatial resolution measurable 

with each microrheological technique. Note that in this thesis, two methods have been developed to 

remove the lower limitation of the frequency range accessible with optical tweezers.   

 

 Passive Video 
Particle 
Tracking 

Diffusing Wave 
Spectroscopy 

Atomic Force 
Microscopy 

Magnetic 
Tweezers 

Optical 
Tweezers 

Frequency [Hz] 0.01↔1x104 10↔1x106 0.1↔10,000 0.01↔1000 0.01↔106 

Moduli [Pa] 1x10-5↔1 0.001↔1000 0.1↔1x104 0.001↔1x104 0.001↔100

Forces  fN fN 10 pN-1nN 10fN-10nN 1-100pN 

Sample Volume ~ μl ~102 μl ~ 102 μl ~ μl ~ μl 

 
Table 1.1: Comparison of different microrheological techniques, showing accessible 
frequencies, moduli, forces and sample volume, based upon the use of a micron size tracer 
(where applicable) [6-8]. 

 

 

 
 

 Viscoelastic information 

   VPT Microrheology 

 Passive MR  Active MR 

 Free motion  Driven motion 

 Thermally excited   Optically/magnetically  
             excited 

Micron bead 
trajectory 
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1.1.1 Passive particle tracking microscopy  

The simplest of the microrheology methods involves measuring the thermal fluctuations of probe 

particles that are free to diffuse in a viscoelastic material. Typically this is done using high speed 

digital video-microscopy which allows the position of multiple tracers to be recorded at once [9]. 

The use of multiple probes enables a better statistical analysis of the rheological moduli, in addition 

to providing a detailed analysis of the sample heterogeneity [10]. The accessible frequency range of 

passive particle tracking microrheology (PPTM) is limited at the upper end by the acquisition rate 

of the recording device, and at the lower end by the time that the beads take to fall out of the plane 

of focus. This sedimentation rate of particles can be improved by more buoyant probes. The use of 

fluorescently labelled particles improves the resolution of the technique (i.e. so that tracer particles 

of size ~nm can be tracked) but introduces new challenges in the form of photobleaching, which 

can limit the lifetime of an experiment. Examples of systems measured using PPTM cover a wide 

range from complex fluids [11] to gel-forming amyloid fibril networks [12], actin networks [13] 

and whole single cells [14].   

 

1.1.2 Diffusing wave spectroscopy 

Diffusing wave spectroscopy (DWS) is an extension of the dynamic light scattering (DLS) 

technique, which itself measures the light scattering from small particles and uses the 

autocorrelation of the intensity fluctuations to provide information about the particle size. DWS is 

designed to consider the multiple scattering from numerous colloidal tracers dispersed throughout a 

transparent viscoelastic substance [4, 15, 16]. The frequency range accessible with DWS is the 

highest of all the microrheological techniques, up to 106 Hz. However, the overriding disadvantage 

is that the low-frequency response (i.e. ~10Hz) is limited by the size of the sample cuvette. This 

can be improved upon by using a back scattering geometry to obtain the frequency response down 

to 0.1Hz. DWS has been used in the rheology of many substances, including many of interest in 

biology such as the ubiquitous actin networks [15]. Additionally, by using a technique that 

monitors the scattering from red blood cell particles, the dynamics of blood [17] and tissue [18] 

have been studied. 

 

1.1.3 Atomic force microscopy  

Atomic force microscopy (AFM) was not designed with microrheology in mind; instead, its main 

applications lie in imaging and sensing. Indeed, it functions by either examining a surface with a 

cantilever, or by attaching a molecule of interest between the cantilever and surface. Usually a 

colloidal bead is attached to the cantilever in order to simplify the probe geometry and measure the 

mechanical interaction between the bead and the surface. Because the mechanical properties (i.e. 

the Young’s modulus, a measure of elastic stiffness) can be obtained this way, AFM can be 

considered to be part of the family of microrheological techniques. If a Hertzian approximation (i.e. 
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small strains between continuous frictionless surfaces) is applied then the viscoelasticity can be 

calculated with regard to the Young’s modulus. Although the moduli can be modelled with 

standard rheological theory, problems still exist in separating the viscoelasticity of the surface from 

the electrostatic interaction of the cantilever with the surface [6]. An advantage of AFM is the high 

moduli that can be measured (Table 1.1), and this has been utilised to study many biological 

systems such as cells [19, 20], viruses [21], biofilms [22] and single proteins [23].  

 

1.1.4 Magnetic tweezers 

One of the principal methods by which active microrheology is performed is with magnetic 

tweezers. Much larger forces are obtainable than with other techniques, up to around 10nN, which 

extends the accessible moduli values to far above those achievable with other methods. Magnetic 

microrheology combines strong electromagnets with video tracking in order to monitor the 

response of either superparamagnetic or ferromagnetic particles to driving forces (either 

translational or rotational). Strong magnetic fields are required to induce a magnetic dipole in the 

beads, and magnetic field gradients are applied in order to produce the force.  The force )(tF
r

on a 

particle is given by: 

 ))().(()( tBtmtF
rrr

∇=  (1.1)

 
where )(tmr is the induced magnetic moment of the particle and )(tB

r
is the imposed magnetic field 

[24, 25].  

 

In the past, a disadvantage of the magnetic manipulation technique was the lack of manoeuvrability 

of the tracer particles, but the more complex magnetic systems in use today have improved upon 

this issue. Magnetic tweezers are commonly employed in whole cell studies [26-28] where the high 

forces mean physiological conditions can be recreated more readily. 

 

1.1.5 Optical tweezers 

As the primary tool in this thesis, optical tweezers will be described in more detail than the other 

microrheological techniques.  

 

Optical tweezers are based on the pioneering work of Ashkin [29-31] who demonstrated that the 

forces exerted by a strongly focused beam of light could be used to trap and move a micron-sized 

object. Since then, they have been extensively developed and have proved to be an invaluable tool 

throughout the biological and physical sciences. Indeed, many of the early uses of optical tweezers 

were in biological systems, capturing and manipulating biological samples such as bacteria [32]. 

These versatile instruments have been used to apply forces on the order of pN and to measure 
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displacements, in the nm range, of objects ranging in size from 10 nm to over 100 μm [33, 34]. The 

fact that the mechanical stiffness of optical tweezers can be adjusted over a force range that covers 

those relevant to biological molecules makes them particularly suitable to perform studies that 

currently challenge other techniques, such as atomic force microscopy.  

 

Optical tweezers have found particular use in cell biology [35, 36] and have been successfully used 

as sensitive tools (i.e. as force transducers) for purposes such as measuring the compliance of 

bacterial tails [37], the forces exerted by single motor proteins [38], the stretching of single 

deoxyribonucleic acid (DNA) molecules [39], the mechanical properties of human red blood cells 

[40], and the ability to make high resolution mechanical measurements on individual biological 

molecules [32, 41-43].  

 

Beyond trapping a single particle, multiple optical traps can now be generated using holographic 

elements [44-48]. In conjunction with recent advances in camera technology [49, 50] this has 

meant that many particles can now be trapped simultaneously and their positions tracked at frame 

rates of kHz for indefinite periods of time [51]. This ability to trap, position and track many 

particles has found particular use in colloidal science [52-55] where the hydrodynamic interactions 

between particles are of great importance in understanding common colloid phenomena such as 

sedimentation and aggregation. Another advantage of high-speed cameras is the ability to study 

hydrodynamic interactions between particles trapped in much less viscous media, such as air [56, 

57] allowing investigation into aerosols. It also allows the observation of a parametrically excited 

resonance within a Brownian oscillator [56], and under-damped modes in periodic arrays of 

trapped particles [57].  

 

The inherent size scale of optical tweezers makes them readily applicable to microfluidic systems. 

These systems offer many advantages over conventional methods for biological and chemical 

measurements. The miniaturisation of micro-analytical devices results not only in a low fabrication 

cost and a reduction in the volume of potentially expensive reagents used, but also in an increased 

speed of analysis and the ability to run multiple analytical processes in parallel. In recent years 

there have been a number of applications using optical tweezers with microfluidics; for example to 

sort cells [58-60], or to manipulate and measure fluids within micro-devices [61-63]. One of the 

most prominent applications in microfluidics has been the work by Guck et al. with their ‘optical 

stretcher’ [64-66]. An object placed in a dual beam trap becomes stretched: while the total force 

acting on the object is zero there is a momentum transfer from the light to the surface as the light 

passes through the interface acting away from the beam propagation direction. Hence, a suitably 

elastic object will become stretched in a dual beam trap. The technique allows one to probe the 

viscoelastic properties of the trapped particles which is particularly useful for cellular material 

where the deformability provides information about the cytoskeleton. This has been shown to be 
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useful as a cell marker for detecting cancerous cells [67]. By integrating the device into a 

microfluidic system cells can be analysed in a high throughput manner [68, 69]. 

 

The physics describing the ability of a tightly focused beam of light to confine a microscopic 

particle in three dimensions can be simply explained by the difference in refractive index between 

the suspending medium and the probe particle, and by the principle of conservation of momentum. 

At the heart of trapping physics is the momentum change experienced by a photon of momentum: 

 
 λhp =

r
 (1.2)

 
(where h  is Planck’s constant, and λ  is the wavelength of light), when light is refracted by a 

transparent dielectric object; this results in an equal and opposite momentum change (and hence 

force) on the object.  

 

The force experienced by a dielectric particle in a laser beam can be separated into two 

components; the scattering force and the gradient force (see Figure. 1.2). The scattering force acts 

in the direction of light propagation and is due to the incident light being absorbed by the particle. 

This means that the net momentum transfer is in the forward direction because, for an isotropic 

scatter, all the other forces cancel each other out. The scattering force is dominant until the laser is 

tightly focused which produces a steep intensity gradient. A dipole in an inhomogeneous electric 

field will experience a force in the direction of the field gradient; thus when the focused laser 

induces dipoles in a dielectric particle, they will interact with the inhomogeneous field near the 

focus point and produce the gradient force. It is dependent upon the both the polarisability of the 

particle and the intensity gradient at the focus.  

 

For stable trapping to occur the axial component of the gradient force needs to be greater then the 

scattering force that pushes the particle forward. This is achieved by using a high numerical 

aperture lens to focus the beam to a diffraction limited spot, where the equilibrium position of the 

trapped particle is slightly beyond the focal point.  
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Figure 1.2: Forces acting on a particle in an unfocused (left) and focused (right) laser 
beam (of Gaussian intensity profile). Laser paths are denoted by yellow lines; the stronger 
the beam, the thicker the line. In the unfocused beam the gradient force acts in the 
approximate same direction as the scattering force, pushing the beam forwards and 
towards the beam centre. In the focused trap, the gradient force acts towards the focal 
point of the laser beam, balancing out the scattering force and creating a stable trap. 
Image created by author.  

 
 
 

The optical trap forms a potential well which in good approximation can be described as a 

harmonic potential with energy 22/1 kx in one dimension (as in Figure  1.3). For small 

displacements the restoring force is proportional to the offset from equilibrium position: 

 
 kxF −=  (1.3)

 
(where k  is the trap strength and x  is the displacement from equilibrium); so effectively the 

system acts as a Hookean spring where the characteristic trap stiffness is proportional to the 

intensity of light. 

 

Optical tweezers have the potential to measure the high frequency dynamic properties of a material 

to a high accuracy via the statistical mechanical analysis of the bead trajectory, as shown in this 

thesis. However, the low frequency viscoelasticity of a material is typically inaccessible with 

optical tweezers, hence tweezers are usually combined with other techniques such as rotational 

bulk rheometry [71] or passive video particle tracking [72].  

 

 

 

Intensity Profile 
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Figure 1.3: (A and B, taken from Ref. [70]) Animation showing a bead in two optical trap 
potential wells with (A) weak trap strength and (B) strong trap strength.. The vertical axis 
represents the potential energy and the horizontal axis represents the distance from the 
centre of the trap. The yellow rings represent the thermal energy TkB . With a lack of 
external forces the particle will be located below the thermal energy line. An example of a 
typical distribution of bead positions is shown in (C) (created from measurements from this 
thesis).  

 

The high degree of sensitivity shown by optical tweezers has encouraged many scientists to make 

use of them in the exploration of various biophysical systems, such as the dynamics of biopolymer 

solutions at different concentration regimes i.e. from highly concentrated biopolymer solutions, 

where the dynamics of the whole polymer-network are explored, down to the single molecule 

dynamics [73-76]. 

 

1.2 Theory of microrheology 

Microrheology, like rheology, is concerned with the relationship between the stress (applied force) 

and the strain (deformation) in a material. To understand this, let us introduce two behaviours that 

(A) (B) 

   (C) 
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identify how a material can store energy; the first of which is classed as purely elastic (solid-like) 

behaviour and second as purely viscous behaviour (e.g. the behaviour of water).  

 

Elasticity is the capacity to store energy, and manifests itself as the ability of a material to return to 

its original shape after being deformed by an external applied stress, σ . A purely elastic material 

can only deform under stress, it cannot flow, and the amount of deformation of the system is 

termed strain, γ . At small stress, simple elastic materials are characterised by a linear stress-strain 

relationship, written as: 

 γσ k=  (1.4)

 
where σ  is the applied stress, γ  is the strain and k  is the elastic (or Young’s)  modulus. 

 

At the other extreme, a purely viscous (Newtonian) fluid is characterised only by its viscosity and 

has no component of elasticity. Real materials, and especially soft materials (as in biology), are 

neither ideal solids nor ideal Newtonian fluids. Real soft materials exhibit both elastic and viscous 

responses, and are termed viscoelastic (e.g. custard, blood and single cells, Figure 1.4).  

 

 

 
 

Figure 1.4: Examples of a purely elastic material (rubber band), a purely viscous material 
(water), and viscoelastic materials (corn-flour custard, blood, and single cells). Images 
from [77,78]  
 

 

 

VISCOELASTIC 

ELASTIC VISCOUS 
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For a Newtonian fluid the stress is proportional to the strain rate via: 

 
 γησ &=  (1.5)

 
where η is the viscosity (Newton’s law for a viscous fluid). For a viscoelastic material, the stress-

strain relationship is more complicated, and is a function of time, direction, and the extent of 

deformation. It can be expressed in terms of the shear relaxation modulus, )(tG , which for a 

viscoelastic material is a time dependent parameter. )(tG is related to the stress and the strain by 

the convolution integral [79]: 

 
∫
∞−

⎟
⎠
⎞

⎜
⎝
⎛−=

t

d
d
dtG τ
τ
γτσ )(  

(1.6) 

 

The physical meaning of )(tG  becomes apparent if we consider that, for a perfectly elastic solid, 

)(tG  simplifies to a constant value proportional to γσ /  (specifically 1/3 E, where E is the 

Young’s modulus of the elastic solid). An alternative way to express the time dependency of the 

shear modulus is via the frequency-dependent complex shear modulus, )(* ωG , which is the 

Fourier transform of the time derivative of the time-dependent shear relaxation modulus, )(tG :  

 
 

⎥⎦
⎤

⎢⎣
⎡=

dt
tdGFG )()(* ω  

(1.7)

 
The conventional method of measuring the complex shear modulus in a bulk rheometer is based on 

the imposition of an oscillatory stress, ),( tωσ and the measurement of the resulting strain, ),( tωγ , 

or vice versa. If the strain can be expressed as )sin(0 tωγγ =  (where 0γ is the amplitude of the 

strain, and ω  is the frequency of oscillation), then the resulting strain rate will be )cos(0 tωωγγ =& . 

Substituting these values into Equation 1.6 and denoting )( τ−t as s gives: 

 
 [ ]
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∫
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(1.8)

 
It is clear that the term that includes )sin( tω is in phase with the strain, whereas the term that 

includes )cos( tω is 90º out of phase. The quantities in brackets are functions of frequency, but not 

of elapsed time, so Equation 1.8 can be conveniently written: 

 
 ( )tGtG ωωγσ cos''sin'0 +=  (1.9)
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which defines two frequency-dependent functions; the shear storage (elastic) modulus, )(' ωG , and 

the shear loss (viscous) modulus, )('' ωG .  

 

An alternative way to express the stress is to display the amplitude, )(0 ωσ , of the stress and the 

phase angle )(ωδ between the stress and the strain [77]: 

 
 ttt ωδσωδσδωσσ cossinsincos)sin( 000 +=+=  (1.10)  

                                                                                   
Comparing Equations 1.9 and 1.10 shows that:  

 ( )
( )

δ
δγσ
δγσ

tan'/''
sin/''
cos/'

00

00

=
=
=

GG
G
G

 
(1.11)

                                                                                               
It is usually convenient to express the sinusoidally varying stress as a complex quantity; hence the 

resulting modulus is also complex and can be written as: 

 
 

)('')(')(*
)(ˆ
)(ˆ

ωωω
ωγ
ωσ iGGG +==

(1.12) 

 
where  )(ˆ ωσ is the Fourier transform of the stress and )(ˆ ωγ is the Fourier transform of the strain. 

 

Whilst bulk rheology analyses the response of material to an imposed stress (or strain), 

microrheology obtains the material’s linear viscoelastic properties (i.e. )(* ωG ) via the analysis of 

the trajectory of tracer particles embedded in the material. Passive microrheology deals with 

thermally fluctuating particles, as originally demonstrated by Mason and Weitz in their pioneering 

paper [4].  

 

The analysis of the thermal fluctuations of a tracer particle is carried out by using the mean-square 

displacement (MSD) of that particle. This can be defined as:  

 
 

t
trtrr 22 )]()([)( rr

−+≡Δ ττ (1.13)

 
where t  is the absolute time and τ  is the lag time (i.e. the time interval). The average is taken over 

all initial times t . 

 

In a purely viscous fluid, the MSD, )(2 τrΔ , of a particle as it diffuses in d-dimensions grows 

linearly with the time interval, tΔ , as described in Eq. 1.14 (the Einstein Equation for the MSD, 

shown as the line with unity slope in Fig 1.5): 
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 tdDr Δ=Δ 2)(2 τ  (1.14)

  
The growth rate is given by the diffusion coefficient D, which obeys the Stokes-Einstein Relation: 
 
 

ηπa
Tk

D B

6
=  

(1.15) 

 
where Bk  is the Boltzmann constant, T  is the absolute temperature, a  is the particle radius, and η  

is the viscosity of the fluid. The denominator ηπa6 arises from Stokes’ Law for the drag force 

exerted on spherical objects in a continuous viscous fluid.  

 

For elastic solids an embedded particle will not diffuse and the MSD will be constant with time 

(dashed line with slope 0 on Figure 1.5). For viscoelastic materials therefore, the evolution of the 

MSD over time lies somewhere between the above limits for elastic and viscous cases (red dotted 

line, Figure 1.5) 

 

 
Figure 1.5: Example of the evolution of the MSD of a viscoelastic material over time. Image 

adapted from [120] 

 

Once the MSD of a probe particle is measured it can be related to the complex shear modulus by 

means of a generalised Langevin equation, as shown by Mason and Weitz [4]: 

 
 

∫ −−=
t

R dttftm
0

)()()()( ττντζν
rr

&r
(1.16)
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where m is the particle mass, )(tν
r

is the particle velocity, and )(tf R

r
 is the Gaussian white noise 

term, modelling stochastic thermal forces acting on the particle. The integral term represents the 

viscous damping force of the fluid, which incorporates a generalised time-dependent memory 

function )(tζ .  

 

By performing the Laplace transform of Equation 1.16, the viscoelastic memory function can be 

expressed as a function of the velocity autocorrelation function (VAF) in Laplace space, defined as 

)(~)0( sνν , as shown in the next steps; Firstly, the unilateral Laplace transform of Equation 1.16 

results in: 

 [ ] )(~)(~)(~)0()(~ sssfssm R νζνν −=− (1.17) 

 
where s  is the Laplace frequency. Expressed in terms of the VAF Equation 1.17 becomes: 

 
 [ ]

)(~
)0()(~

)(~
sms

mtfs R

ζ
νν

+
+

=  
(1.18)

 
Based on the same statistical mechanics assumptions adopted by Mason and Weitz [4], at thermal 

equilibrium where 0)()0( =tfRν  and Tkttm B3)()( =νν at any time, Equation 1.18 can be 

reorganised as:  

 
)(~

)(~
6)(~)0( 22 srs

sms
Tks B Δ≡

+
=

ζ
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(1.19)

 

where the identity of )(~
2

2
2

srs
Δ  links the VAF to the MSD [80, 81]. Moreover, by following 

Mason & Weitz [4] and assuming the validity of the assumption that the microscopic memory 

function is proportional to the bulk frequency-dependent viscosity of the fluid )(~6)(~ sas ηπζ = , 

Equation 1.19 can be written as:       
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(1.20)

 
where )(~ sG  is the complex modulus, )(* ωG , expressed in the Laplace domain. 

 

Note that the second term in the brackets is due to the inertia of the particle and it is easy to 

demonstrate that, for a micron-sized bead of density of order of 1g/cm3 (thus mass kg1510~ − ) 

suspended in water, the product ms  is negligible compared with the first term for the majority of 

the experimentally accessible frequencies (i.e. Hzs 610< ). 
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1.3 Definition of a semiflexible polymer 

To a first approximation a polymer that has an aspect ratio 1>>p  (where p is defined as the ratio 

between the polymer contour length, cL , and its diameter, d ) can be described as a homogeneous 

elastic filament with a constant circular cross-section and it can be characterised by its Young’s 

modulus, E . Once the Young’s modulus is known the deformation of that polymer (stretching, 

bending, and twisting) can be predicted. For sufficiently small amplitudes of excitation some 

simplifying assumptions can be applied: (i) it can be assumed that the cross section is constant 

during bending; (ii) the different types of deformations can be considered independent of each 

other; and (iii) the filament is inextensible. These collective assumptions form the basis of the 

worm-like chain (WLC) model [82]. In particular, since the energy per unit length required to 

change the length of such a filament by a specified fractional strain is proportional to 2Ed  and the 

energy per length required to bend it into an arc of radius R  is of the order 24 / REd , then the ratio 

between the arc bending energy and the strain energy is relative to 2)/( Rd ; thus, the WLC chain 

model is justified as long as  1/ <<Rd .  

 

The smallest excitations to which a polymer chain is subject are caused by thermal energy. These 

represent an important feature of the microscopic structures of semiflexible polymers solutions. 

The conventional measure for the degree of thermal flexing of a polymer is the persistence length, 

pL . The persistence length is defined, by the correlation function of Equation 1.21, as the 

characteristic distance along the polymer chain over which the directions of unit vectors, )(sur , 

drawn tangent to the polymer contour, become uncorrelated (Figure 1.6): 

 
 pLssesusu /'||)'()( −−=•

rr
 (1.21)

 
where the brackets denote the average over thermal fluctuations, and s  is the distance along the 

chain contour, measured from an arbitrary point 's . 

 

The persistence length increases with increasing filament ridigity and decreases with increasing 

temperature: 

 
;

Tk
EIL
B

p =
4

64
dI π

=  
(1.22)

 
where I is the moment of inertia of the filament cross section of diameter d, Bk  is Boltzman’s 

constant and T is the temperature. The product EI  is also defined as the ‘flexural rigidity’ or 

‘bending modulus’ (κ ).  
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Figure 1.6: Geometrical representation of a linear semiflexible polymer. Image adapted from 

[120]. 

 

 

Polymers for which the persistence length and contour length are comparable ( 1~/ pc LL ) are 

classified as semiflexible polymers .Examples include the cell cytoskeletal components actin [83] 

and microtubules [84], as well as DNA [85].  These long chain molecules possess mechanical 

properties that lie between those of flexible chains ( 0→pL ) and rigid rods ( ∞→pL ). Their 

viscoelastic properties are not fully understood and current models describing their behaviour draw 

from models of both flexible and rigid polymers. The model developed by Morse [86-88] (see 

Chapter 2) provides one of the most comprehensive descriptions of the viscoelastic behaviour of 

semiflexible polymer solutions. For this reason, it is referred to throughout this thesis.  

 

1.4 Actin and its role in the cell  

In order for cells to organise themselves in space and to interact mechanically with their 

environment, they have to be able to adapt their shape and internal structure [89]. The ability to 

rearrange their internal components to fit their circumstances enables them to grow, divide and 

migrate. The structure primarily responsible for regulating these mechanical properties is known as 

the cytoskeleton, a complex system of filaments. The building block of the most abundant of these 

filaments is the protein actin. At low salt concentrations actin exists as a globular ~43kDa protein 

(G-actin) with a diameter of approximately 5nm. As the ionic (K+ or Mg2+) strength increases to 

physiological levels G-actin self-assembles into filaments (F-actin), a double helical polymer with 

s = 0 
r(s)

u(s)

s = L 

u(s’)
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diameter ~7nm and a contour length of up to 20μm [87, 90]. This is the form which actin 

predominantly takes in vivo; thus, studying the dynamics of reconstituted actin in vitro has the 

potential to provide predictive models for the behaviour of cells. Note that throughout this thesis 

the term ‘actin’ refers to F-actin.  

 

Actin is one of the most abundant and conserved proteins in eukaryotes, comprising ~10% by 

weight of the total protein found in mammalian cells [91]. It was originally identified as a 

component of the protein complex acto-myosin that was found to be responsible for producing 

contractile forces in skeletal muscle [92] (Figure 1.7). There are numerous aspects of cell 

physiology that rely on actin in some way. Functions of actin include: forming the dynamic 

component of the cell cytoskeleton – ‘microfilaments’ – alongside intermediate filaments and 

microtubules; acting as a track for transporting non-conventional in non muscle cells; and cell 

motility.  

 
Figure 1.7: Process of muscle contraction in a sarcomere. The ‘thin’ actin filaments are pulled 

along the ‘thick’ myosin filaments to produce the contraction [93].  
 
 

The cell’s structural stability is determined by the network structures that actin forms in the cell 

cytoplasm, with the highest concentration of actin being found in the cortex, just beneath the 

plasma membrane. The shape of the cell is also influenced by these, which in term dictates how the 

cell interacts with its environment. Commonly this interaction may occur via long finger-like 

structures called microvilli formed from membrane tethered actin bundles. The relationship 

between cytoskeletal actin and the cell plasma membrane is an important one. Biochemical signals 

between actin and the membrane are sent either through proteins that bridge the membrane or by 

way of peripheral membrane proteins that act as adapter proteins. Cell migration is also a result of 

actin dynamics; lamellipodia and filopodia are both actin projections, formed during cell migration, 

relaxed 

contracted   

Myosin 

Thin filaments(actin)             Thick filament (myosin) 
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that allow directed movement of the cell. Additionally, actin and myosin-II are assembled into a 

contractile ring during cytokinesis, the process by which cells divide. Actin filaments are 

accumulated at the cell cortex and contraction forces generated by the myosin cause daughter cells 

to separate in order to complete the cell division [89].  

 

Actin is highly conserved, with the amino acid sequences from different species being around 90% 

identical [89].  Extracellular actin has been implicated in various human and animal diseases; for 

instance, it is thought to play a role in the development of e.coli infections [94], as well as 

contributing to fibrin clotting [95] and cystic fibrosis [96]. For such a ubiquitous protein, it is 

essential that we have an in-depth understanding of actin’s mechanical behaviour.  

 

In skeletal-muscle cells actin assembles into so called thin filaments, which, in tandem with the 

thick filaments of myosin, form the basis of the sarcomere. The sarcomere is the basic unit of 

myofibrils, which are the principle component of skeletal-muscle cells. It is the movement of 

myosin along the actin filaments that produce muscular contraction (Figure 1.7) via the intermittent 

movement of individual myosin heads. Cross-bridges between actin and myosin are formed by a 

specific part of the myosin molecules that protrudes from the myosin thick filament in order to 

interact with the actin filament. The fuel for this reaction is the hydrolysis of an adenosine 

triphosphate (ATP) molecule. 

 

Additionally, actin relies on a large number of other proteins to be able to carry out the actions 

described above. Over time genetic, immuno-chemical and biochemical studies have all identified 

numerous (>100) actin binding proteins (ABP) that interact with actin in order to form required 

structures. This means that the complex and dynamic mechanical properties of the actin 

cytoskeleton are regulated at multiple levels by a variety of ABPs. The function of some ABPs is to 

cross-link actin filaments or to promote the interaction of filaments with other elements of the 

cytoskeleton. Myosin is one of these proteins. As already mentioned myosin-II interacts with actin 

in skeletal-muscle cells, but other types of myosin are commonly found in virtually all eukaryotic 

cells. 

 

1.5 Myosin-II 

It is the interaction of actin with the motor protein myosin II, in the presence of ATP, that produces 

the forces required to contract striated muscle fibres. Myosins are a large family of proteins with at 

least 24 different classes identified [97]; all are responsible for actin based motility. One specific 

class of myosin-II is abundantly expressed in skeletal muscle cells, and has become one of the most 

commonly studied myosins.  
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Skeletal muscle myosin-II is a 500kDa protein formed of two heavy chains and two pairs of light 

chains (Figure 1.8) – the regulatory light chain (RLC) and the essential light chain (ELC). A 

myosin-II molecule is a homodimer comprised of two heavy chains wrapped around each other for 

around 80% of their length, forming a helix. The amino terminal of each heavy chain is referred to 

as the ‘head’ and is the section of the protein which encompasses the motor domain, the portion 

that interacts with actin.  

 

The heavy chain tails self associate to form filaments both in vivo and in vitro at low ionic 

strengths. In practice, these thick myosin filaments are problematic to work with experimentally. A 

common alternative is proteolytically produced fragments of myosin-II that are soluble and 

enzymatically active (Figure 1.8 and Figure 1.9). The S1 fragment is comprised of a single head 

domain attached to a part of the heavy chain. It retains its ability to bind to actin; indeed, if ATP is 

present the head domain alone can generate movement [98, 99]. Heavy meromyosin (HMM) is also 

soluble at low ionic strengths and contains two head domains, the two light chain pairs, and a 

portion of the heavy chain. S1 and HMM are commonly used to study the kinetic and biophysical 

characteristics of myosin-II. 

 

 
Figure 1.8:  Structure of a myosin-II molecule. The myosin fragments are composed of two 
head domains, two pairs of light chains, and a section of tail, (HMM) and a single head 
domain and one pair of light chains (S1).Image created by author.  
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Figure 1.9: Proteolytic digestion of myosin-II results in myosin-II fragments HMM and S1. 
The fragments are formed by digesting the myosin-II molecule with chymotrypsin (HMM) 
or papain (S1). Image created by author.  
 

 

The cycle of structural changes that myosin undergoes to walk along an actin filament begins with 

the myosin head being locked tightly onto actin in a rigor (fixed) configuration (Figure 1.10). In 

the presence of ATP this configuration is very short-lived, as the ATP molecule binds to a cleft on 

the myosin head thus slightly changing the conformation of the actin binding site. This causes the 

myosin to be released from the actin and leaves it free to move along the filament. The myosin cleft 

then closes around the ATP molecule, causing the head to be displaced along the filament by a 

distance of around 5nm [89]. The ATP is hydrolysed into adenosine diphosphate (ADP) and a 

phosphate, which both remain bound to the myosin. As the myosin head reaches a new actin 

binding site, it begins to weakly bind to the actin, causing the loss of the phosphate molecule, 

which in turn prompts the tight actin binding. This phosphate release produces the force generating 

power stroke, whereby the myosin head changes shape to regain the original rigor conformation, 

losing the bound ADP molecule in the process.  

 

CHYMOTRYPSIN PAPAIN

HMM 
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Figure 1.10: ATP hydrolysis cycle of myosin and actin: (A) The myosin head is attached to 
the actin filament in a short lived rigour configuration. (B) A molecule of ATP binds to the 
myosin head, at a cleft on the side furthest from the actin filament, causing a slight 
conformational change, which weakens the affinity of the myosin for the actin, allowing it 
the freedom to move along the filament. (C) The myosin cleft closes around the ATP 
molecule, displacing it along the filament by around 5nm, whilst hydrolysing the ATP into 
ADP and inorganic phosphate (Pi). (D) The weak binding of myosin to the new site on the 
actin filament releases the phosphate molecule and triggers the power stroke that generates 
the shape change through which the head regains its original conformation. (E) The ADP 
molecule is lost and the cycle begins anew.  Image created by author, but based upon an 
image from Ref. [89].  

 

 

The time scale at which the myosin head interacts with the actin filament is necessarily dependent 

up on the ATP concentration, and has been shown to be dependent upon load [100]. However, the 

release of the hydrolysis products (ADP and phosphate) is expected to occur within approximately 

30ms of myosin binding to actin. In physiological ATP conditions, it has been measured that the S1 

myosin fragment stays bound to the actin for a time scale on the order of tens of milliseconds 

[101].  

 

1.6 Single cell microrheology 

Eukaryotic cells have a highly complex mechanical structure that is stabilised by a contractile 

filamentous soft cytoskeleton spanning the entire cell body. This structure is in a constant state of 

flux in order to adapt the cell to both its internal and external environment. This ability to remodel 
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relies on the precise interplay between the main components of the cytoskeleton and the numerous 

proteins that bind them, which gives cells the ability to modulate their mechanical state over a 

surprisingly wide range from almost fluid to almost solid. When probed, the rheological behaviour 

of cells shares many features with those of semiflexible polymer networks, and this behaviour has 

been studied with various forms of microrheology, either passively [14, 102, 103], or in response to 

either an applied force [26, 102, 104-108] or an internally generated force, as in the case of acto-

myosin contractility [109].  

 

Typically cells are studied in one of two ways; either tracer probes (beads that have been ingested 

into the cell or biological vesicles that are components of the cell) are monitored passively, or 

beads stuck to the surface of the cell are manipulated actively, usually by magnetic tweezers [26, 

102, 105]. The passive method has the advantage of not perturbing the cell too greatly, and obtains 

the high frequency linear viscoelastic properties of the cell to high accuracy. Actively perturbing 

the cell via magnetically manipulated beads on the cell surface suffers from the same disadvantage 

of all active microrheological techniques; only a single frequency at a time can be analysed, thus 

measurements can take a long time. Any transient changes in cell physiology may be difficult to 

detect. With active microrheology care must be taken not to fall within the cells’ non-linear 

viscoelastic regime.  

  

1.9 Aims of this thesis 

This thesis aims to explore various aspects of using optical tweezers and video particle tracking 

microrheology for bioanalytical applications. Firstly we summarise the model developed by Morse 

[86-88, 110] in order to deal with the viscoelastic properties of semiflexible polymers. This is a 

comprehensive model that interpolates smoothly between flexible and rod-like polymers, and we 

use it as the basis for explaining the rheological behaviour of the biopolymers and cells studied 

throughout this thesis. The aims are therefore:  

 

(I) We describe an analytical method for analysing the mean-square displacements of micron-sized 

optically-trapped tracer probes embedded in a material of interest. This method relies on a static 

optical trap, and builds upon the method introduced by Mason and Weitz [4] by using a generalised 

Stokes-Einstein relation to relate the mean-square displacement of a particle to the complex shear 

modulus via the velocity autocorrelation function (VAF). Following this, two new wideband 

frequency methods (termed ‘flow-field’ and ‘two-trap’) are introduced; both of these techniques are 

a mixture of passive and active microrheology and extend the lower limit of the frequency range 

accessible with non-oscillating optical tweezers. These analytical methods are applied to a 

Newtonian system (water) and a viscoelastic system (polyacrylamide).  
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(II) We investigate the concentration scaling laws of polymer solutions. This is done in order to 

demonstrate that it may not be strictly necessary to derive these scaling laws from the frequency-

domain, thus bypassing the need to carry out a Fourier transform of experimental data. Instead, we 

derive concentration dependences from the time-dependent data (i.e. thermal fluctuations of tracer 

particles), in three steps: (i) we calculate the contribution to the time-dependent data from the 

system (i.e. the ensemble of laser, bead radius, and solvent viscosity), (ii) we relate the time-

dependent thermal fluctuations to the viscosity of the solution, then (iii) we show how the thermal 

fluctuations and solution viscosity are related to the concentration of the solution.  

 

(III) The concentration scaling laws and viscoelastic properties of a range of protein solutions are 

then explored. Initially we study pure actin solutions before moving onto the effect of myosin 

fragments (S1 and HMM) upon actin networks.  

 

(IV) We present a straightforward procedure for measuring the in vivo mechanics and linear 

viscoelastic properties of single cells via passive video particle tracking microrheology of single 

beads attached to the cells’ exterior. In particular, the procedure consists of measuring the thermal 

fluctuations of a bead chemically bound to the cell (Figure 1), for a sufficiently long time. Notably, 

the procedure presented here represents an alternative methodology that can be extended to many 

experimental formats and provides a simple addition to existing cellular physiology studies (e.g. 

those monitoring cell pharmacological response). Indeed, when compared to single cell 

viscoelasticity assays such as magnetic tweezers, atomic force microscopy and optical stretcher, 

our method has the advantage of revealing the changes of the cell’s viscoelastic properties over a 

wide range of frequencies (here from ~0.6 Hz up to ~600 Hz), to a high level of accuracy, whilst it 

experiences an induced physiological process. 
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Chapter 2 

 

THEORY OF SEMIFLEXIBLE POLYMERS 

 

2.1 Morse’s model of semiflexible polymer viscoelasticity 

The viscoelastic properties of semiflexible polymer solutions are still a matter of much debate, and 

an analytical model describing their behaviour has yet to be unanimously agreed upon. Edwards 

[111] first developed the ‘tube’ model as a mean field description of the topological confinement 

exerted on a given chain by the surrounding chain (Figure 2.1). De Gennes coined the phrase 

‘reptation’ to describe the diffusion of a chain along its own length [112]. Doi and Edwards [113-

118] combined these two theories to create models of entangled polymer states for two extremes; 

1) flexible (coil-like) and 2) rigid-rod. All current semiflexible polymer solution models are 

extrapolated from Doi and Edwards, including the model introduced by Morse [86-88, 110], which 

interpolates smoothly between flexible polymers (with a contour length much greater than the 

persistence length pc LL >> ) and rod-like polymers ( pc LL << ). This chapter will briefly 

summarise the main ideas introduced by Morse to deal with semiflexible polymer viscoelasticity.  

 

The majority of semiflexible polymers, in which the degree of backbone rigidity is intermediate 

between the flexible and rod-like extremes, possess a persistence length around 31010 −  times 

greater than the steric diameter, d , of the polymer. The degree to which the partial rigidity of a 

molecule will affect the viscoelastic behaviour of a solution depends upon the ratio pc LL / , the 

solution concentration, and the length and time scales probed by the experiment. In a dilute 

solution, Morse states that the fluctuation modes of the polymer with a wavelength pL>>λ  (where 

λ  is measured along the polymer backbone) are describable as Zimm modes [119] of a Gaussian 
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chain (but one with enormous statistical segment length), whilst modes with pL<<λ are better 

described as bending modes of a nearby rigid chain. The low-frequency viscoelastic behaviour of 

an entangled solution of long semiflexible chains, for which dLL pc >>>> , is expected to differ 

quantitatively from that of an entangled solution of flexible chains only if pL  exceeds the 

entanglement length of the solution, so that the relaxation of bending modes with wavelength 

pL≤λ is impeded by entanglement with neighbouring chains. The low-frequency behaviour of 

more rod-like chains, with dLL cp >>≥ , is expected to differ quantitatively from that of an 

entangled solution of completely rigid rods only when the root mean-square magnitude of the 

thermally excited transverse fluctuations of the chain (i.e transverse to its end-to-end vector) 

become larger than the radius of the tube formed by neighbouring chains, thus, again, impeding the 

relaxation of the bending modes. 

 

These regimes in which relaxation of the polymers bending modes is strongly impeded by the 

presence of other chains is reasonably described by a reptation model, in which the polymer is 

confined to a tube with a diameter eD , much less than its persistence length, and in which the 

conformation of the tube is itself described by a WLC model. Systems that fit this description are 

described as tightly-entangled as opposed to the loosely-entangled regimes described by the Doi-

Edwards models.  The geometry of the tubes in all of these regimes can be characterised by either 

the tube diameter, eD , or an entanglement length, eL , which defined as the contour distance 

between collisions of the polymer with walls of the tube.  

 
Figure 2.1: (Image created by author, but based on an image from Ref. [120]). The motion 
of the black polymer chain is constrained by the surrounding blue chains, which cannot be 
crossed, as if the black chain were confined to a tube (pink dashed lines) of diameter eD .  

De 
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By considering the WLC model Morse identifies all possible regimes of polymer concentration and 

chain length expected for solutions of semiflexible polymers, then characterises the regimes of 

dynamic behaviour of entangled solutions in terms of four different length scales: the contour 

length cL , the persistence length pL , the entanglement length eL  (dependent upon both PL  and 

the mesh size mL ) and the chain diameter d . 

 

The sections of Morse’s model relevant to the work carried out in this thesis will be described 

succinctly in this chapter. This can be summarised as follows; (I) the concentrations regimes and 

the chain length for semiflexible polymer solutions are introduced, (II) a general expression for the 

stress tensor is presented, (III) the time scales involved in stress relaxation are discussed and 

finally, (IV) a qualitative description of the viscoelastic response of the various concentration 

regimes is provided.  

 

2.1.1 Concentration regimes  

In the limit of coil-like polymer solutions ( pc LL >> ), by beginning from a dilute solution and 

increasing the polymer concentration ρ  (the contour length per unit volume) above the overlap 

concentration of 3* / gcoil RL=ρ  (where gR is the radius of gyration), there should be two distinct 

isotropic entangled regimes leading to a nematic liquid-crystalline phase at higher concentrations.  

 

Loosely-entangled regime: At relatively low concentrations (below the crossover concentration to 

the tightly-entangled regime, which is discussed below), where pe LL >> , the resulting confinement 

of the polymer chain within the tube is very loose. A polymer within an entangled solution may 

therefore execute a random walk between entanglements or collisions with the walls of surrounding 

tubes (Figure 2.2a).   

 

Tightly-entangled regime: The condition ep LL >>  is only satisfied at concentrations above the 

crossover concentration of the polymer 2** /1 pcoil L=ρ  (for which mep LLL ~~ ), at which 

concentration the solution becomes tightly entangled. This results in the polymer being confined to 

a weakly curved tube of diameter pe LD << . The polymer tangent )(sur  can, therefore, only 

meander slightly between entanglements (Figure 2.2b).   

 

Liquid-crystalline phase: This phase is induced by increasing the concentration further. Khoklov 

& Semonov [121, 122] predict that it will begin at )/(7.6 dLpnem ≅ρ where d is the effective steric 

chain diameter.  
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Figure 2.2: (Taken from Ref. [87]) Schematic representation of a semiflexible chain within 
an entangled isotropic solution (with other chains represented by points) within (a) the 
loosely-entangled coil regime, in which pc LL >>  but ep DL <<  where eD is the tube 
diameter, (b) the tightly-entangled coil regime, where pc LL >>  and ep DL >> , (c) the 
loosely-entangled rod regime, where pc LL <<  and where rotation of the rod is impeded by 
entanglements but fluctuations of the bending modes are not, and (d) the tightly-entangled 
rod regime, in which pc LL <<  and in which both rotations and shape fluctuations are 
impeded by entanglements and relax only via reptation. Tightly-entangled solutions of coil-
like and rod-like polymers have a similar local geometry. 

 

In the limit of rod-like polymer solutions ( pc LL << ), similar concentration regimes are indentified. 

Below the overlap concentration of 2* /1 crod L≈ρ  the solution is dilute, since rods can diffuse freely 

without colliding with other chains. As with the coil-like regime, there should exist at higher 

concentrations two possible isotropic concentration regimes leading to a nematic liquid-crystalline 

phase. 

 

Loosely-entangled regime: At concentrations greater than *
rodρ  but less than a cross-over 

concentration of ( ) *2/1** / rodcprod LL ρρ ≈  the rotation of each chain is hindered by the presence of 

other chains but the fluctuation of the polymers’ bending modes is unaffected (Figure 2.2c).  

 

Tightly-entangled regime: At concentrations above **
rodρ the overall orientation and shape of each 

chain is constrained by the presence of other chains (Figure 2.2d). Distortions of the polymers’ 

shapes can relax only via disengagement of the polymer by reptation.  

 

Liquid-crystalline phase: This phase is expected to occur at a concentration )/(3.4 dLcnem ≈ρ  as 

predicted by Onsager [123].  
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2.1.2 Stress tensor 

Morse calculates a general expression for the stress tensor of a solution of worm-like chains that 

can be applied to any concentration regime. In particular, the stress tensor of a solution subjected to 

a macroscopic fluid velocity v with a spatially homogeneous rate-of-deformation tensor 
Tt )v()( ∇≡κ is given in the Kramers-Kirkwood theory [124, 125] by a sum: 

 
 

p
T

s σκκησ ++= )(  (2.1)

 
where pσ is the polymer stress and sη  is the solvent viscosity.  

 

The polymer stress tensor can be divided into the intermolecular and intramolecular contributions. 

These arise from forces associated with Van der Waals or steric interactions respectively: 

 
 

intrainter σσσ +=p    (2.2)

 
The intermolecular stress contribution is negligible over all the frequency ranges for 

concentrations up to nemρ  for both the limit cases of coil-like and rod-like polymers. 

 

The intramolecular stress contribution is expected to play a much bigger role in determining the 

viscoelastic properties of systems of long semiflexible chains. It can be expressed as a sum: 

 
 δσσσσ TckBtensorientcurveintra −++= (2.3)

                                    

The physical basis of these contributions is described as follows (Figure 2.3); 

i) curveσ  is the curvature contribution arising from forces that oppose the transverse deformation or 

the rotation of chain segments.  

ii) orientσ  is the orientational contribution that reduces in the appropriate limit to the Brownian 

stress of a rigid-rod solution.  

iii) tensσ  is the tension contribution that arises from the tangential forces that resist the stretching or 

the compression of the chain.  

iv) δTckB  is the ideal solution osmotic pressure arising from the translational entropy of the 

molecule as a whole.  

 

To calculate the linear viscoelastic properties of a fluid Morse derived the relaxation of the 

intramolecular stress in a system that is subjected to an infinitesimal step strain δε  at time t=0. The 

relaxation modulus )(tG  is defined by expressing the resulting stress, )(tσ , as a product 

))(()( TtGt δεδεσ += . 
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Figure 2.3: (Image created by author, but based on an image from Ref. [117]. Schematic 
representation of the stress tensor contributions in Equation 2.3.  

 

The complex shear modulus is thereby expressed as the Fourier transform of the dynamic modulus: 

 
 

∫
∞

−≡+≡
0

)()('')(')(* dtetGiiGGG tiωωωωω  
(2.4) 

 
where )(' ωG is the storage modulus and )('' ωG is the loss modulus. The zero-frequency viscosity 

0η is given by the integral ∫
∞

0

)( dttG . It is possible to express the )(tG , )(* ωG   and 0η  in terms of 

the sums of the different stress contributions, such as: 

 
 )()()()(* ωωωω tensionorientcurve GGGG ++≡  (2.5)

 

2.1.3 Time scales 

Morse identifies a set of time scales relevant to the viscoelastic behaviour, by considering the 

characteristic time scales for the decay of )(tGcurve  , )(tGorient , and )(ωtensG . These relaxation times 

have been identified by simple physical arguments similar in kind to those used previously by 

Isambert and Maggs [126, 127]. Here, we will summarise the definition of each of Morse’s time 

scales.   

 

I) Reptation  

Morse states that the curvature and orientational stress both relax as a result of reptation. This 

σtension 

σcurve 

σorient 

Le 

De 
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curvilinear diffusion is characterised by a diffusivity given by the Einstein relation: 

 
 

cBrep LTkD ζ/=  (2.6)

 
where ζ  is the friction coefficient for motion of the chain parallel to its own contour and it is 

independent of cL . The contribution of a chain segment to the curvature stress relaxes immediately 

when the segment is carried by diffusion to the end of the tube and it is replaced by a segment 

whose curvature (but not orientation) is chosen randomly from an equilibrium probability 

distribution. Consequently the longest relaxation time for the curvature stress is given by the 

disengagement time (or reptation time): 

 
 322 )/( crepcrep LDL ∝≡ πτ  (2.7)

 
which is on the order of the time needed for the polymer to diffuse its own contour length.  

 

The orientational stress relaxes with a relaxation time determined by the time required to 

randomise the orientation of the ends of the chain. In the limit of coil-like chains, with pc LL >> , 

the polymer must diffuse only a distance pL  in order to randomize the orientation of the end, 

giving a relaxation time: 

 22 / pcreppend LLDL ∝≡τ    (2.8)

 
which in this limit is much less than repτ . In the limit of rod-like polymers, with pc LL <<  the 

relaxation of the orientation of the polymer (which in this limit rotates as an almost rigid body) has 

been found by Morse (in agreement with Refs.[128, 129]) to occur with a relaxation time: 

 
 

pcrepprod LLDLL 26/ ∝≡τ  (2.9)

 
This time is much longer than repτ , which stems from the fact that in this regime the chain must 

diffuse many times its own length before its overall orientation is randomised. 

 

II) Contour density fluctuations 

A non-zero value of the tension stress, tensσ , is produced when segments of the chain are stretched 

or compressed tangentially (Figure 2.3). In order to describe how tensσ  relaxes, Morse introduces 

(similarly to Refs. [126, 127]) a dimensionless contour length density ),( tsφ  which is defined as 

the length of polymer contour length per unit length of the tube, averaged over a segment of tube of 

length eL . The density ),( tsφ is always slightly greater than 1 as a result of the wrinkling of the 

polymer within the tube. By solving a differential equation describing the temporal evolution of 
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),( tsφ  on a specified polymer, Morse defines a diffusive coefficient for the contour length density 

as follows: 

 
3

2

e

pB

L
LTk

D
ζφ ∝  

  (2.10) 

 
The time needed for tension to relax to a small fraction of its initial value is thus given in the limit 

pc LL >>  of coil-like chains by: 

 32 9/ epp LDL ∝≡ φφτ  (2.11)

 
This is the time needed for the excess length to diffuse a distance equal to pL . In the rod-like limit, 

pc LL << , this time needed for the excess length to diffuse the full chain length is given by:          

 
 2232 // pecL LLLDL ∝≡ φφ πτ  (2.12) 

These relaxation times are expected to vary with ρ , cL  and pL  as: 

 
            5/35/6

pp L−∝ ρτφ  (2.13)

 25/75/6
cpL LL−−∝ ρτφ  (2.14)

 
These results are significantly different from those obtained by the authors of Refs. [126, 127] who 

obtained a scaling expression of the diffusive coefficient for the contour length density as 

2
e

pB

L
LTkD

ζφ ∝ by requiring that the frequency 2)( qDq φω ≈ of long wavelength tangential diffusion 

modes matches the frequency ζω /)( 4qTLkq pB≈ of short wavelength transverse undulations at a 

crossover frequency of eLq /1≈ . The authors of Refs. [126, 127] thus provided the time needed to 

relax fluctuations of a section of filament of length pL : 

 
 5754 /

p
/

p Lρτ −∝  (2.15)

 
and the time needed to relax the density fluctuations in the whole tube: 
 
 25/35/4

cprelax LL−−∝ ρτ  (2.16)

 
All the characteristic times introduced above are valid only to describe behaviour at time scales 

longer than an entanglement time: 

 
pBee TLkL /~ 4

⊥ζτ  (2.17)
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which is the relaxation time of an undulation mode of wavelength eL , and ⊥ζ is the friction 

coefficient of transverse undulations of the polymer within the tube. 

 

In the case of rods with length 2/1)( epc LLL ≤ , the tension can relax via tangential motion even 

before entanglement begins to hinder the relaxation of undulation modes with wavelength eLq >−1 . 

The relaxation time for tension in this case is given roughly by the time: 

 
 )(/ ||

2
|| ττ φDLc∝  (2.18)

 
which is the time required for tension to diffuse the length of the chain. 

 

III) Unentangled chains 

Finally, in order to describe unentangled and loosely-entangled chains, Morse introduces the 

following time scales: 

 TkL Bpp /~ 3
⊥ζτ  (2.19)

 
pBcL TLkL /~ 4

⊥ζτ  (2.20)

 
that give, respectively, the relaxation time for a bending mode of contour wavelength approaching 

pL  on a coil-like chain, of length pc LL >>  , and the relaxation time for the longest wavelength 

bending mode of a rod-like chain, of length pc LL << . In the case of unentangled coil-like chains, 

modes of contour wavelength pL>> are best described as modes of a coarse-grained Rouse or 

Zimm model of a flexible chain with a terminal relaxation time αττ )/(~ ppc LL given by the 

relaxation time for a mode with Lq /1~ . 

 

2.1.4 Viscoelastic response 

Based upon the above arguments, Morse provides a qualitative description of the frequency 

dependence of )(* ωG  in the various regimes of concentration and chain length. Here the model 

predictions for the two limits of coil-like and rod-like chains are presented separately. In each case 

the behaviour predicted in the tightly-entangled regime is introduced first and then the comparisons 

to the behaviour expected for loosely-entangled and unentangled solutions are discussed. 

 

In the limit of coil-like polymer solutions ( pc LL >> ), the decay times for the three stress 

contributions form a hierarchy: 

 
pendrep φτττ >>>>  (2.21)
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Because )(tGorient   is seen to decay with a time endτ , which is much smaller than the decay time repτ  

for )(tGcurve , whilst also having an initial value )0()0( curveorient GG << , the orientational 

contribution is expected to make a negligible contribution to )(tG at all times, and as such may be 

ignored in this limit. The total modulus )(tG  may thus be approximated as the sum of a large but 

rapidly decaying tension contribution )(tGtens  and a much smaller but more slowly decaying 

curvature contribution, )(tGcurve  , as pointed out by Maggs [124]. If the time scales repτ  , pφτ , and 

eτ  become sufficiently widely separated, this will lead to a complex modulus )(* ωG  of the form 

shown in Figure 2.4, which can in theory exhibit two distinct plateaus: a low-frequency, curvature-

dominated plateau within which )0()(' curveGG ≅ω , and a higher frequency tension-dominated 

plateau within which )0()(' tensGG ≅ω . 

 
Figure 2.4: (Taken from Ref. [87]) Schematic of )(' ωG  (solid line) and )('' ωG  (dotted 
line) for a tightly-entangled solution of coil-like chains with pc LL >> . Slopes indicate 
regimes with a nontrivial power law dependence on frequency, (curvature) and (tension) 
indicate frequency regimes in which )(* ωG  is dominated by the curvature or tension 
contributions. Time scales are defined in the text. 

 

The curvature stress, which dominates the low-frequency plateau, has a free energy scale of order 

TkB  per entanglement and is predicted to vary with ρ  , cL , and pL  as: 

 
 5/15/7/)0( −∝∝ peBcurve LLTkG ρρ (2.22)

where 5/22 )( −≈ ppe LLL ρ . 

 

The tension stress, which dominates the high-frequency behaviour of )(* ωG , exhibits a more 

complex frequency dependence. For frequencies 11 −− ≤≤ ep τωτφ , Morse’s model is found to lead to a 

plateau in )(' ωG with a predicted plateau value of: 
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 5/75/11)0( pBtens LTkG ρ∝  (2.23)

This plateau modulus, larger than )0(curveG by a factor of order 2)/( ep LL , is the same one predicted 

by MacKintosh  et al. [130], who focused exclusively on this contribution to the stress, but did not 

allow for any relaxation of the tension; an assumption that is more applicable to cross-linked gels. 

In addition, Morse found that )(* ωtensG varies with frequency as 2/1* )()( ωω iGtens ∝ for frequencies 

11 −− ≤≤ pL φφ τωτ  and exhibits fluid-like terminal behaviour with )()(* ωω iG ∝ at frequencies 

1−≤ Lφτω . 

 

At frequencies 1−≥ eτω  Morse calculates a universal high-frequency limiting form for the complex 

modulus as: 

 4/334/3
*

15
2)(lim

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≅ ⊥

≥ − Tk
L
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p

B
tens

e

ζ
ω

ρ
ω

τω
 

(2.24) 

 
which contains a precise numerical prefactor. In Figure 2.5, a schematic diagram is shown of the 

expected frequency dependence of the ratio ρω /)('G   (because this ratio approaches a 

concentration-independent limiting form at high frequencies) in each concentration regime. 

 

Dilute solutions of coils, with concentrations below the overlap concentration *ρ , are expected to 

exhibit three frequency regimes. For all 1−>> pτω , )(' ωG is expected to exhibit the high-frequency 

limiting behaviour of Equation 2.24. For all 1−<< pτω   the frequency dependence of )(* ωG can be 

described by a Rouse or Zimm model [119, 131], which yield complex moduli of the form: 

 

 αωτ
ρ

ω /1)(~)(* p
p

B i
L

TkG  
(2.25)

 
with 3/22/1 1 ≤≤ −α  , over the frequency range 11 −− ≤≤ pc τωτ , (where cτ is the terminal relaxation 

time) in which )(* ωG is dominated by modes of wavelengths between pL and cL , and yields  

fluid-like  terminal behaviour,  with ωω iG ∝)(* , for 1−<< cτω . 
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Figure 2.5: (Taken from Ref. [87]) Schematic diagram that shows the evolution of 

ρω /)('G  with ρ  for solutions of coil-like chains. The three lines are sketches of the 
behaviour predicted for dilute or unentangled solutions (D), loosely-entangled solutions 
(L), and tightly-entangled solutions (T), all of which exhibit a common asymptote for 

ρω /)('G  at high frequencies. Slopes represent regimes with a nontrivial power law 
dependence on frequency, and powers of ρ  indicate the predicted dependence of the 
plateau moduli on concentration. Time scales shown are those relevant to the dilute and 
loosely-entangled regime, so repτ  is the reptation time of the loosely-entangled solution. 

 

Loosely-entangled solutions of semiflexible coils, with concentrations *** ρρρ <<<< , are (by 

definition) characterised by an entanglement length pe LL >> , and exhibit viscoelastic behaviour 

identical to that of entangled solutions of flexible chains for all 1−<< pτω . In this regime 

)(* ωG develops an elastic plateau with a plateau modulus eB LTkG /)(' ρω ≈ that extends over a 

frequency range 11 −− <<<< erep τωτ . In this case repτ  refers to the disengagement time of a loosely-

entangled chain and eτ refers to the Rouse-Zimm relaxation time of a flexible sub-chain of contour 

length eL , with pe LL >> . In studies of entangled solution of semiflexible polymers, the plateau 

modulus has been found experimentally to vary with polymer concentration ( ρ ) roughly as 

3.2' ρ∝G , both in good solvents [132, 133] and in ϑ -solvents [134-136]. The disengagement time, 

repτ , is also found to increase with increasing polymer concentration in this regime. At frequencies 

1−>> eτω the behaviour of ρω /)('G  is expected to become identical to that of a dilute solution, 

giving αωω /1)()(* iG ∝  (where 3/2/1 ≅α ) for frequencies 11 −− <<<< pe τωτ  and )(* ωG  

4/3)( ωi∝  for frequencies 1−>> pτω . 
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Upon entering the tightly-entangled regime, one thus expects to see the following: (i) the 

disappearance of the remaining Rouse-Zimm regime in which αωω /1)()(* iG ∝ , (ii) a change in 

the concentration-dependence of the plateau modulus from 3.2' ρ∝G  for **ρρ <<  to 

4.1' ρ∝G for **ρρ >> ,(iii) a saturation in the value of repτ  with increasing polymer 

concentration, and (iv) the development at sufficiently high polymer concentrations of a second, 

tension-dominated plateau at frequencies 1−≥ pφτω . The predicted width of the tension-dominated 

plateau vanishes for **ρρ ≈  , so this feature is found in numerical calculations to first appear as a 

slight shoulder in )(' ωG  and to then widen only slowly with increasing concentration. 

 

In the limit of rod-like polymer solutions, pc LL <<  the orientational contribution )(tGorient cannot 

be neglected as in the case of coil-like polymers. It can make a significant contribution to the low-

frequency behaviour of )(* ωG  because, as explained before, for such types of polymers the time 

rodτ   is longer than the time repτ  for the relaxation of )(tGcurve . The time dependence of )(tGorient  

has been found by Morse to be, over all the concentration regimes, exponential, with a form: 

 
 

rodtB
orient e

L
Tk

tG τρ /

5
3)( −=  

(2.26)

 
where rodτ  is the time needed to re-randomise the rod orientations.  

 

In the dilute regime, rodτ   is independent of concentration and varies with cL  roughly as 

TkL Brod /3ζτ ≅ .In the loosely-entangled regime, rodτ  has been predicted to increase with 

increasing concentration as γρζτ ))(/( 23 LTkL Brod ≅ , where 2=γ  in the Doi and Edwards cage 

model of semidilute rigid rods [117, 118] and 1=γ  in a competing model introduced by Fixman 

[134, 135]. In the tightly-entangled regime, rodτ is given by Equation 2.9, which yields a value that 

is independent of polymer concentration, ρ , but that depends upon the persistence length, pL . 

 

The curvature modulus )(ωcurveG  in unentangled or loosely-entangled solutions is predicted by 

Morse to exhibit a power law behaviour: 
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for all 1−≥ Lτω , and is expected to exhibit fluid-like behaviour for 1−≤ Lτω . This contribution 
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becomes greater than )(ωorientG for all 1−≥ Lτω , leading to a curvature-dominated power law 

regime in which 4/1)()(* ωω iG ∝ as shown in Figure 2.6.  

 

The tension contribution to )(* ωG  in an unentangled or loosely-entangled solution of rods is 

expected to exhibit the limiting behaviour of Equation 2.24 for all 1
||
−>> τω  and to exhibit fluid-

like behaviour for 1
||
−<< τω . 

 

Upon entering the tightly-entangled regime, by increasing either the polymer concentration or 

chain length of a solution of semiflexible rods, one thus expects to see the following: (i) the 

orientational relaxation time rodτ  becomes almost concentration independent; (ii) the curvature-

dominated power law regime predicted for loosely-entangled chains, in which 4/1)()(* ωω iG ∝ ,  

evolves into a curvature-dominated plateau, with a plateau modulus 4/1' ρ∝G ; (iii) at higher 

polymer concentrations or chain lengths, for which  2/1)( epc LLL ≥ , the curvature stress begins to 

dominate 0η  and a high-frequency tension-dominated plateau begins to form at 

frequencies 11 −− ≤≤ eL τωτφ ; (iv) for 3/23/2
epc LLL ≥ , the disappearance of any orientation-dominated 

plateau in )(' ωG  , as a result of the growth of )(' ωcurveG . 

 

For the largest concentrations and/or chain lengths discussed above, the frequency dependence thus 

becomes rather similar to that predicted for coil-like chains, the only qualitative difference being 

the absence, in solutions of rod-like chains, of a power-law regime in which 2/1* )()( ωω iGtens ∝ , 

which is predicted to appear only for pc LL >> . 
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Figure 2.6: (Taken from Ref. [87]) Schematic of the predicted evolution of ρω /)('G (solid 
lines) and ρω /)(''G  (dotted lines) with concentration for a solution of rod-like polymers. 
Of the three concentrations shown, one is in the dilute regime (D) and two are in the 
tightly-entangled  regime  (T), one for 3/13/2

epc LLL > (which exhibits a high-frequency tension-
dominated  plateau  but no low-frequency orientation-dominated plateau) and one for 

2/1)( epc LLL < (which exhibits no tension-dominated plateau but exhibits a narrow 
orientation-dominated plateau and a low-shear viscosity with a significant orientational 
contribution.) The time 1−

rodτ  refers to the orientational relaxation time of the tightly-

entangled solution. The corresponding relaxation time for the dilute solution is of order repτ  
as described in the text. A loosely-entangled solution (not shown) would look similar to the 
dilute solution except for the appearance of a value of 1−

rodτ  intermediate between those of 
dilute and tightly-entangled solutions. The overlapping lines for ρω /)(''G  at intermediate 
frequencies, between 1−

repτ  and 1
||
−τ , where ωω ∝)(''G , all correspond to the behaviour 

obtained for the viscous (i.e. tension) contribution to the polymer stress of a solution of 
rigid rods. 

 

 

Finally, it is interesting to observe (see Figure 2.7) how Morse’s model, described so far, predicts 

the behaviour of )(* ωG  as a function of the contour length L for a series of monodisperse tightly-

entangled solutions with equal characteristic parameters (e.g. ρ , pL , d ) that are believed to be 

representative of a 1 mg/mL solution of actin.  A sample of actin with polydisperse filament 

lengths, mLc μ17= , would be expected to exhibit the moduli shape of Figure 2.8. 
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Figure 2.7: (Taken from Ref. [87]) Calculated moduli )(' ωG (solid line) and )('' ωG  
(dotted line) for monodisperse solutions with (a) 4/pc LL = , (b) pc LL =  and (c) 

pc LL 10= . The remaining parameters are given values: pL = 17 µm, ρ = 39 µm -2, eD = 
0.2 µm, eL =2.2 µm, sη  = 0.01 Poise, and d = 0.007 µm, which are believed to be 
representative of a 1 mg/mL solution of actin. The straight solid line in each figure has a 
slope of 3/4 and is the predicted high-frequency asymptote of )('' ωG . 

 

Morse briefly describes the behaviour that would be expected to occur in a chemically or 

physically cross-linked gel. The presence of cross-links between two chains would be expected to 

prevent the tangential motion of each chain along its own tube. Since this tangential motion is vital 

for the redistribution of excess length, by suppressing it the otherwise rapid relaxation of tension 

following a step deformation is also suppressed. This has the result that even a relatively low 
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density of cross-links can significantly affect the low-frequency behaviour of )(* ωG  by producing 

a broad elastic plateau in )(' ωtensG with a plateau modulus that can be orders of magnitude higher 

than that predicted for mobile chains (Figure 2.9).  

 

 
Figure 2.8: (Taken from Ref. [87]) Calculated moduli )(' ωG (solid line) and 

)('' ωG (dotted line) for a polydisperse actin solution with mLc μ17= and an exponential 
distribution of chain lengths for the same values of pL , eD  etc. as in Figure 2.7.  

 
 

 
Figure 2.9: (Taken from Ref. [87]) Values of )(' ωG (solid line) and )('' ωG (dotted line) for 
a system approximating a lightly cross-linked gel. 
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2.2 Tube diameter in the tightly-entangled regime 

In a later paper [110] Morse provides a quantitative description of the forces confining each 

polymer to a tube in tightly-entangled solutions, thereby predicting values for the tube diameter and 

plateau modulus in such regimes. In the tightly-entangled concentration regime the geometrical 

mesh size, 2/1−≡ ρmL , is much less than pL and the tube diameter, eD , and entanglement length, 

eL , are expected to be much less than pL . It is reasonable to assume that each chain in a tightly-

entangled solution is effectively confined to a tube like region over time scales much less than the 

reptation time, repτ . In the limit of very long chains, and correspondingly long reptation times, the 

topological structure of a network of uncrossable chains may be treated as if it were permanent for 

the purposes of describing averages of confirmations over shorter times. 

 

Morse developed two analytical approximations describing the confinement forces acting on a 

randomly chosen test chain embedded in a ‘‘thicket’’ of uncrossable chains: the binary collision 

approximation (BCA) and effective-medium approximation (EMA). The scaling relation resulting 

from the BCA had previously been obtained by several others authors [4, 126, 128], but Morse also 

estimated the prefactors. So, prior to the introduction of the EMA, there was broad agreement 

regarding the scaling law. The approximations are summarised as follows. 

 

The binary collision approximation gives a rather detailed description of the interaction of a test 

chain with individual nearby medium chains, but neglects any effects arising from the collective 

elastic relaxation of the network. It yields the following expression for the elastic modulus:  

 
 5/15/740.0 −≈ pB LTkG ρ     (2.28)

 
The effective-medium approximation starts from a very different point of view, by treating the 

network surrounding the test chain as an elastic continuum with a shear modulus equal to the self-

consistently determined plateau modulus of the solution, and the test chain as a thread embedded in 

this medium. The expression thus obtained is:   

 
 3/13/482.0 −≈ pB LTkG ρ  (2.29)

 
Experimental studies of actin by Tassieri et al. [139] focused on measuring the persistence length 

of actin in various buffers in order to show that the correct approximation is, in fact, the EMA 

prediction.  
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Chapter 3 
 

MATERIALS AND METHODS 

 

3.1 Actin extraction 

Actin and myosin were obtained directly from fresh rabbit muscle and prepared using standard 

preparatory techniques following the methods described by Pardee & Spudich [140]. Back and leg 

muscle was removed from a rabbit and placed on ice, before being minced in a Waring blender. 

300ml of Guba-Straub buffer [see Appendix] was added per 100g muscle. The solution was stirred 

for precisely 15 mins, in order to dissolve the myosin, then it was centrifuged at 9000 rpm for 30 

mins in a Sorvall GS3 rotor. The myosin supernatant and actin precipitate were then separated. 

 

The actin precipitate was mixed with 2L of actin extraction buffer [see Appendix] for 10 mins at 

4ºC then filtered through 4-ply cheesecloth. The residue remaining on the cheesecloth was scraped 

off into a beaker and extracted further with 1L of 1mM EDTA (pH 7.0) for 10 mins at 4ºC, before 

once more being filtered. This extraction procedure was repeated twice more using 2L of deionised 

water for 5 mins at 4ºC, followed by one more filtration through cheesecloth. 2X volume of cold 

acetone was added and the mixture stirred for 30 mins before another

cheesecloth filtration. The acetone step was repeated 4 times using 1X volume cold (4 ºC) acetone 

which was stirred for 15 mins. Finally the acetone was allowed to evaporate overnight in an 

evacuated jar and the actin stored at -20ºC. 
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3.2 G-actin preparation 

It was necessary to polymerise the actin so that it could be purified via the removal of tropomyosin. 

6g of acetone dried actin powder was stirred into 120ml ACEX [see Appendix] for 30 mins on ice 

in a cold room. The mixture was filtered through 4-ply cheesecloth and the exudate was collected 

in a beaker. The pellet was stirred in 80ml ACEX, for 10 mins, then once again squeezed through 

the cheesecloth and the exudate collected. A small sample was taken for optical density 

measurements. The total exudate was centrifuged at 20,000rpm for 15 mins in a Sorvall SS34 rotor. 

The resultant pellet was loose so the supernatant was pipetted out. The volume of supernatant was 

measured. 

 

In order to polymerise and purify the actin the supernatant was stirred and various stock solutions 

were added to bring it to concentrations of 5mM Tris-Cl, 50mM KCl, 2mM MgCl2 and 1mM ATP. 

The solution was left for 2 h at 4ºC. 

 

KCl was used to remove the tropomyosin. The actin solution was brought to a concentration of 

800mM KCl and a pH of 8.3-8.5.  It was ultracentrifuged in a Beckman Ti35 rotor at 32,000rpm 

for 3 h at 4ºC. The pellets were washed with ACEX buffer, and then left in a small volume of 

buffer to soften. They were transferred to a homogeniser tube on ice, and ACEX buffer was added 

in order to give a final actin concentration of 5mg/ml. The sample was homogenised gently for 30 

mins.  

 

The actin was depolymerised by dialysing in ACEX overnight, with three 660ml changes. The next 

day the actin was centrifuged at 13,000rpm for 15 mins in a Sorvall SM24 rotor to remove any 

precipitate. The volume of supernatant was measured, and a small sample taken for optical density 

measurements (see Appendix). The G-actin was aliquoted and frozen in liquid nitrogen. The final 

stock concentration was ~ 5mg/ml. 

 

3.3 Myosin extraction 

The myosin supernatant was initially extracted along with the actin as described in Section 3.1.2. 

Two sheets of Whatman #1 filter paper were mashed together with a small volume of buffer in 

order to form a 0.5” pad in a Buchner funnel, through which the myosin supernatant was filtered. 

10X volume of cold swirling water was then added to the supernatant in a large tub to induce 

precipitation and left overnight for the precipitated myosin to settle. The supernatant was removed 

and the slurry was centrifuged at 9000rpm for 15 mins. 20ml of 3M KCl was added per 100ml, 

followed by another centrifugation. The mixture was stirred until the myosin was in solution. 10X 

volume of cold water was added, before centrifugation at 5,000g for 16 mins in a Sorvall GS3 
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rotor. The resulting pellet had myosin prep solution [see Appendix] added to it in the volume 

calculated by: 

 

solutionprepmyosinofVolumemyosinofVolume
requiredstock

required
=

−
*

][][
][ (3.1)

 

A small volume was removed for optical density analysis. After a clarifying spin an equal amount 

of cold glycerol (analytical reagent grade) was added to the myosin and well mixed to prevent the 

myosin from freezing solid. Air bubbles were removed via centrifugation and then the mixture was 

stored at -20ºC.   

  

3.4 Myosin fragment preparation: S1 and HMM 

The S1 subfragment of myosin-II was prepared via a papain digestion. 3ml of the myosin II- 

glycerol mixture was added to 2.7ml of cold deionised water in order to precipitate the myosin. The 

mixture was centrifuged at 17,000rpm in the Sorvall SS34 for 15 mins, giving approximately 75mg 

myosin in the precipitant. The myosin pellet was redissolved into an equal volume of low salt 

buffer [see Appendix]. Activated papain stock solution [Sigma-Aldritch] was added to the myosin 

to a final concentration of 0.03 mg/ml and digestion was allowed to proceed for 10 mins at 23ºC, 

with thorough mixing throughout. The digestion was stopped by adding 2-fold molar excess of E64 

inhibitor [Sigma-Aldritch]. The digestion products were then dialysed against low salt buffer with 

2mM DTT added. The insoluble products were removed by centrifugation at 20,000rpm for 30 

mins in the SS34. The soluble S1 fragment was purified by using an anion exchange column, where 

the S1 elution on a linear salt gradient (0-1M NCl) produced a single peak. The S1 fractions were 

collected by ultrafiltration on an Amicon spin column. A sample was taken for optical density 

measurements before the S1 was aliquoted and frozen in liquid nitrogen. It was stored at -80ºC in 

the presence of 30% (w/v) sucrose. Optical density measurements gave the final stock 

concentration as ~5.2mg/ml.  

 

The HMM fragment was prepared using a chymotrypsin [Sigma-Aldritch] digestion.  After the 

myosin II was precipitated and centrifuged as with the papain digestion above, the myosin pellets 

were redissolved in 2X high salt buffer [see Appendix]. Digestion took place for 10 mins at 23ºC, 

by adding 0.05mg/ml TLCK-treated chymotrypsin [Sigma-Aldritch]. The digestion process was 

stopped by adding PMSF [Sigma T9777] to a final concentration of approximately 0.25mM. The 

digestion products were then dialysed against low salt buffer for 12 h at 4ºC in a cold room. The 

light meromyosin (LMM) and undigested material was pelleted by centrifugation 1t 75,000rpm for 

10 mins in the Beckman TL100.3. A sample was taken for SDS-PAGE and for optical density 

measurements. The HMM was aliquoted and frozen in liquid nitrogen then stored at -80ºC. Optical 

density measurements gave the final stock concentration as ~ 1.25mg/ml. 
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3.5 Actin polymerisation 

One twentieth volume of 20xAB+
/CP [see Appendix] buffer (without creatine phosphokinase, see 

below) was added to G-actin to give a final polymerisation buffer concentration of 1xAB+
/CP. The 

actin was left for 2 h at room temperature to polymerise [141].  

 

3.6 Actin and S1/HMM networks 

To prepare active actin/myosin networks, actin was first polymerised as described above. 

Approximately 30 seconds before S1 or HMM were mixed with the actin, creatine phosphokinase 

(CPK) [Sigma-Aldritch] was added to the buffer. CPK enables creatine phosphate (CP) to react 

with ADP to produce ATP, creating a cycle of ATP production to sustain the dynamic interaction 

of the myosin fragments with actin; thus preventing a fixed or rigor configuration (Figure 3.1). 

HMM and S1 were diluted accordingly before being added to the F-actin.  

 

 
Figure 3.1: Cycle of ATP production from creatine phosphate and ADP. 

  

3.7 Jurkat cell culture 

T-cells play an important role in the regulation of immune responses in the human body. The 

disregulation of T-cell triggering has been linked to the development of a number of autoimmune 

diseases [142-144]. The actin cytoskeleton controls multiple aspects of T-cell function, such as 

maintenance of cell shape, signalling, differentiation, and T-cell migration within tissues. 

Quiescent T-cells exhibit ‘ball’ morphology, with cortical actin filaments distributed underneath 

the cell membrane. Jurkat cells are a line of T-lymphocytes that express the protein CD4 on their 

surface, which is the protein targeted by the HIV virus. For this reason, CD4+ expressing T-

lymphoma cells are often used to study T-cell signalling [145] and HIV-1 dissemination in viral 

pathogenesis [146] . 

ADP ATP 

CREATINE PHOSPHATE CREATINE 

CREATINE 

PHOSPHOKINASE 
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Jurkat  cells  were  obtained  from  ATCC  (clone  E6-1,  TIB-152) and maintained  in RPMI 1640 

(1x) media containing L-Glutamine and 25mM HEPES [Gibco, Invitrogen]. Prior to experiments 

they were suspended in PBS [Gibco, Invitrogen], mixed with functionalised beads and allowed to 

equilibrate for ~ 10min. 

 

3.8 Functionalised beads 

Anti-CD4+ [Invitrogen] was attached to 5μm carboxylate functionalised silica beads [Bangs 

Laboratories Inc] using a method based on a previously protocol [147]. The adaptation of the 

method involved first binding a short heterobifunctional polyethylene glycol chain to the beads to 

provide a flexible linker to which the anti-CD4+ was subsequently bound. The microspheres were 

washed (3x) with 0.1 M Na2CO3 buffer (pH 9.6) using centrifugation between washes to remove 

the supernatant liquid.  This ensured that all the carboxylate groups were deprotonated. Following 

the final wash, the beads were resuspended in RO water and centrifuged again. After removal of 

the water, the remaining pellet was resuspended in freshly prepared 0.02 M sodium phosphate 

buffer (pH 6) containing 2 mM 1-ethyl-3-(3-155dimethylaminopropyl)-carbodiimide [EDC, 

Sigma] and 5 mM sulfo-N-hydroxysuccinimide [sulfo-NHS, Thermo-Fisher]. The microsphere 

solution was then agitated for 15 minutes to allow the sulfo-NHS to activate the carboxylate groups 

on the surface of the microspheres. The solution was centrifuged, then the supernatant removed and 

replaced by a 10 mM solution of the flexible linker, O-(2-Aminoethyl)-O′-160(2-

carboxyethyl)polyethylene glycol 3,000 hydrochloride [Aldrich] in pH 7.4 phosphate buffer.  The 

activated microspheres were then agitated in the flexible linker solution for 2 h at 4ºC, before 

further centrifugation and washing with pH 7.4 buffer. The anti-CD4+ was then bound to the 

carboxylate terminals of the PEG linker from a 1 mg/ml solution of anti-CD4+, using the same 

EDC/sulfo-NHS activation procedure outlined above. 

 

3.9 Polyacrylamide 

Polyacrylamide (PAM) [Polysciences, Inc] was prepared a molecular weight of 5-6 million Da.  
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3.10 Optical tweezers instrumentation 

Two different optical tweezer systems were employed throughout this thesis, which will be 

described here. On the first system, trapping was achieved using a continuous wave Ti:sapphire 

laser system (M Squared, SolsTiS) which provided up to 1W at 830nm (Figure  3.2). Holographic 

optical traps were created using a spatial light modulator (Boulder XY series). The tweezers were 

based around an inverted microscope with a 100 x 1.3 NA objective lens (Zeiss, Plan-Neoflur) used 

to both focus the trapping beam and to image the particle motion. Samples were mounted in a 

motorised microscope stage (ASI, MS-2000). Two complementary metal-oxide semiconductor 

cameras are used to view the sample, with bright-field illumination: one provides a wide field of 

view (Prosilica EC1280M), while the other takes high-speed images of a reduced field of view 

(Prosilica GV640M). These images are processed in real time at 1 kHz using our own LABVIEW 

(National Instruments) particle tracking software running on a standard desktop PC [49].  

 

 
 

Figure 3.2: Optical tweezers configuration. From left to right; (LZ) Ti:sapphire laser 
system, (L1 and L2) beam telescope, (M1 and M2)  folding mirrors, (SLM)  boulder fast 
SLM, (L3), (PBS) polarising beam splitter cube, (M3) mirror, (CAM) Prosilica fast camera, 
(O) objective lens, (CL) condensing optics, (B) 250W halogen bulb. Image taken from 
[155]. 

 

An alternative optical tweezer setup was also employed, consisting of a continous wave Ti:sapphire 

laser (Coherent, Model 890) pumped by a solid state single frequency laser (Coherent model Verdi 

V5, λ=532nm). The Ti:sapphire was tunable from 690-1100nm. The samples were loaded on a 

motorised stage (Prior Pro-Scan II), and optical traps were again created using a spatial light 

modulator (Hamamatsu). A Prosilica PCI-6713 camera was used to view the particles, and as 

above, custom Labview software was used for position analysis.   



Chapter 3                                                                                                                          Materials and Methods   

 

                                                                                                                                                                        

49

The bead position was measured by detecting the bead centre of mass over a specific number of 

data points (usually 100,000 to 500,000), then the output time and position data were analysed by a 

code written in Labview. No correction was applied for Faxen’s law as the beads were measured in 

solution in a chambered microscope slide, far from the cover slip and far from the walls of the 

chamber. The power output of the trap was varied between measurements as the beads became 

increasingly difficult to trap with increased polymer concentration. This had no bearing on the 

analysis as the data was normalised to take into account the optical trap strength, as discussed in the 

next section.  

 

Spatial light modulators are based upon holographic technology and allow multiple particles to be 

trapped at once [148] (Figure 3.3). During the development of optical tweezers, an obvious desire 

arose to trap multiple particles in independently steerable traps. Two traps are readily produced 

using separate steering mirrors and a pair of beam splitters [149]. For more traps it is possible to 

time share a single beam to create multiple traps, either by using a rapid scanning galvo-mirror 

[150] or, for higher speed, acousto-optic beam deflectors [151]. The latter technology makes it 

possible to trap hundreds of particles in complicated patterns. However, neither of these scanning 

approaches allows simultaneous and easy control of the axial position of the traps, for which one 

needs holographic tweezers. The term holographic optical tweezers was coined by Curtis et al. in 

2002 in their seminal paper on the use of a commercially obtained spatial light modulator acting as 

a programmable diffractive optical element to split a single laser beam into many optical traps that 

could be independently positioned in 3D and for which the point spread function for each of the 

traps could be independently controlled [48].  

 

 
Figure 3.3: Spatial light modulator (SLM) holograms designed to create a single trap 
(left), two traps (centre) and three traps (right). Red circles indicate the approximate 
positions of where the first order traps would lie. Image created by author.     

 

The use of a spatial light modulator in this thesis presents to us the opportunity to perform transient 

measurements with the optical tweezers, as will be discussed in detail in Chapter 4.  
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3.11 Optical tweezers calibration 

The optical tweezers can be calibrated and the trap stiffness calculated by using the principle of 

Equipartition of Energy: 

 2

2
1

2
3 rTkB κ=  

(3.1)

 
where Bk  is the Boltzmann constant, T  is the absolute temperature, and 2r  is the time-

independent variance of the particle displacement from the trap centre, the origin of rr . Despite all 

the possible methods for determining the optical trap stiffness (e.g. using the power spectrum or the 

drag force [34, 152, 153]), the equipartition method is the only method independent of the 

viscoelastic properties of the material under investigation and is thus essential from a rheological 

point of view.  

 

3.12 Experimental protocol 

For optical tweezer measurements using one or more traps, silica beads [5μm, Bangs Laboratories 

Inc] were added to the required sample, before the sample was placed in a chambered microscope 

slide. A glass cover-slip was used to seal the chamber, and nail varnish was used around the edges 

of the cover-slip to keep the chamber air-tight in order to prevent evaporation. The beads were then 

optically trapped and their position measured for a length of time. When the beads were required to 

be subjected to a flowfield, this was achieved by suddenly moving the motorised microscope stage 

at a predetermined speed and direction  

 

For experiments involving the viscoelastic properties of Jurkat cells, the beads were optically 

trapped and then moved to the equatorial plane of the cell. They were held for a sufficient time (~2 

min) until the binding process to the cell was completed. The optical trap was then switched off and 

the bead position monitored (see Chapter 8).  
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Chapter 4 
 

MICRORHEOLOGY WITH OPTICAL TWEEZERS 

 
The aim in this Chapter is to present two new self-consistent procedures for measuring the linear 

viscoelastic properties of materials, from non-oscillatory measurements, across the widest 

frequency range achievable with optical tweezers [154, 155]. The Chapter consists of a description 

of how basic static measurements of the linear material viscoelasticity can be carried out using 

optical tweezers, followed by the presentation of two new wideband techniques developed as part 

of this thesis. These are referred to as the ‘Flow-field’ method and the ‘Two trap’ method, 

respectively. 

 

Optical tweezers have been successfully used with Newtonian fluids for rheological purposes such 

as determining the fluid viscosity with a high accuracy, measuring the hydrodynamic interactions 

between particles, or estimating the wall effect on the Stokes drag coefficient (i.e. Faxén’s 

correction), as reviewed in Ref. [76]. Conversely, when optical tweezers are adopted for measuring 

the viscoelastic properties of complex fluids the results are either (I) limited to the material’s high-

frequency response [156-158] (discarding the essential information related to long time scales i.e. 

low-frequency material behaviour), or (II) supported by low-frequency measurements performed 

by different techniques (e.g. rotational rheometry [71] or PPTM [72]) but either without showing a 

clear overlapping region between the results [71] or leaving a macroscopic gap of information in 

the range of frequencies explored [72]. Some oscillatory measurements have been obtained at 

relatively low frequencies on non-Newtonian fluids using optical tweezers [159, 160] by 

performing lengthy experiments. These are, however, accompanied by an incomplete analysis of 

the frequency-dependent viscosity data.   
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The two wideband microrheological methods presented here aim to remove the lower frequency 

limitation of non-oscillatory optical tweezer measurements. They both consist of two steps. The 

first step (common to both of the methods) consists of measuring the thermal fluctuations of a 

trapped bead for a sufficiently long time, in what we refer to as a static measurement. It is designed 

to provide the high frequency viscoelastic response of the material, and because it is relevant to 

both techniques, it will be discussed first. The second step of both methods involves imposing a 

transient between two steady states, and is designed to extract the material’s low frequency 

viscoelastic response. In the second technique - ‘Two trap’ - we also present an equivalent way of 

taking static measurements in the first step.  

 

4.1 Static measurements with optical tweezers 

In the case of static measurements, the optical tweezers are fixed in space, and only the thermal 

fluctuations of the trapped bead are of interest (Figure 4.1). The experimental procedure is 

analytically described through the analysis of the motion of a bead trapped in a stationary harmonic 

potential of force constant, κ . The equation describing the bead position ttr ∀)(r  r can be derived 

by means of a generalised Langevin equation, which in three dimensions is: 

 
 

∫ −−−=
t

t
R trdttftam

0

)()()()()( rrrr
κττντζ  

(4.1) 

where m  is the mass of the particle, )(tar  is its acceleration, )(tν
r

 is the bead velocity, and )(tfR

r
is 

the usual Gaussian white noise term, modelling stochastic thermal forces acting on the particle. The 

integral term represents the viscous damping of the fluid, which incorporates a generalised time-

dependent memory function, )(tζ . In all measurements carried out with optical tweezers, the 

tweezers can be calibrated and the trap stiffness calculated by using the principle of Equipartition 

of Energy (Equation 3.1).  

 
Figure 4.1: Bead trapped in a stationary (‘static’) optical trap.  
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The thermal fluctuations of the trapped bead can also be investigated to determine the high-

frequency viscoelastic properties of the material through the analysis of the time dependence of the 

mean-square displacement [ ]
t

trtrr 22 )()()( rr
−+≡Δ ττ . The average is taken over all initial 

times t  and the number of particles considered in the experiment, if more than 1. By performing 

the Laplace transform of Equation 4.1, the viscoelastic memory function can be expressed as a 

function of the velocity autocorrelation function (VAF) in Laplace space, defined as )(~)0( sνν . 

Taking the unilateral Laplace transform of Equation 4.1 results in: 

 
 [ ] )(~)(~)(~)(~)0()(~ srsssfssm R κνζνν −−=−  (4.2)

 
where s  represents the frequency in the Laplace domain.  

 

In terms of the VAF Equation 4.2 becomes: 

 [ ]
s

sms

msf
s R

κζ

ν
ν

++

+
=

)(~
)0()(~

)(~  
(4.3) 

Based on the same statistical mechanics assumptions adopted by Mason and Weitz in the study of 

thermally excited free particles [4] at thermal equilibrium, where 0)()0( =tfRν  and 

tTkttm B ∀= 3)()( νν
rr

, Equation 4.3 can be reorganised as:  
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where s  is the Laplace frequency. Following Mason and Weitz [4] in assuming that the bulk 

Laplace frequency-dependent viscosity of the fluid, )(~ sη , is proportional to the microscopic 

memory function )(~6)(~ sas ηπζ = , where a  is the bead radius, Equation 4.4 can be written as: 
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    (4.5) 

 
where the first term in the brackets reflects the viscoelasticity of the medium, the second term is 

related to the inertia of the bead, and the third term takes into account the optical trap strength. It is 

easy to demonstrate that, for a micro-bead of density on order of 1 g/cm3 suspended in water, the 

product ms  is negligible compared with the first term for the majority of the experimentally 

accessible frequencies i.e. 1610 −≤ ss . With regard to the optical trap strength, two limiting cases 

can be distinguished: (i) in the limit 0/ →sκ , which can be obtained either for vanishing trap 

strength or for measurements performed at high frequencies, but lower than 1610 −s , Equation 4.5 
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recovers the generalised Stokes-Einstein relationship derived by Mason and Weitz [4]; and (ii) in 

the limit ∞→s/κ , which can be obtained either for a strong optical trap or for measurements 

performed at very low frequencies, Equation 4.5 gives the same result as if the bead were 

embedded in a purely elastic continuum with elastic constant of aπκ 6/ . For all intermediate cases, 

where  ∞<< s/0 κ ,  it is possible to show that from Eq. 4.5, the complex modulus can be 

expressed directly in terms of the time-dependent MSD: 
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   (4.6)

 
where )(ˆ2 ωrΔ  is the Fourier transform of )(2 τrΔ .  

 

In principle, Equation 4.6 is a simple expression relating the material complex modulus )(* ωG to 

the observed time-dependent bead trajectory, )(tr
r , via the Fourier transform of  the MSD. In 

practice, the evaluation of this Fourier transform, given only a finite set of data points over a finite 

time domain, is nontrivial since interpolation and extrapolation from that data can yield serious 

artefacts if handled carelessly. In order to express the Fourier transform in Equation 4.6 in terms of 

the N  experimental data points ( )
kk rt )(, 2 τΔ  (where Nk .....1= ) which extend over a finite 

range, exist only for positive t, and need not be equally spaced, we adopt the analytical method 

introduced in Ref. [161]. In particular, we refer to Equation 10 of Ref. [161] which is equally 

applicable to finding the Fourier transform )(ˆ ωg  of any time-dependent quantity )(tg  sampled at 

a finite set of data points ),( kk gt , giving : 
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 (4.7)

 
where ∞g&  is the gradient of )(tg  extrapolated to infinite time. Also )0(g  is the value of )(tg  

extrapolated to += 0t . An identical formula can be written for )(ˆ2 ωrΔ , with g  being replaced 

with 2rΔ . This analytical procedure has the advantage of removing the need for Laplace and 

inverse-Laplace transformations of experimental data [11]. 
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4.1.2 The normalised mean-square displacement 

Here, we introduce the normalised mean-square displacement, 22 2/)( rr τΔ , (i.e. the MSD 

divided by twice the variance, as seen in Equation 4.6) which is a parameter that we make use of 

throughout this thesis, and which we term )(τΠ . In Chapter 4.3 we show how )(τΠ  is related to 

the normalised position autocorrelation function.  

 

To understand the physical basis of the normalised mean-square displacement, we need to consider 

the MSD of a bead in an optical trap. At short time intervals (high frequencies) the optical trap only 

exerts negligible forces upon the trapped bead (as the displacements from the trap centre are small), 

thus the thermal forces dominate; however, at long time intervals (low frequencies) the bead is 

constrained by the optical trap, and the bead’s MSD reaches a constant value. Experimentally we 

find that the MSD tends to a value of twice the variance, 22 rr , at long time intervals. The reason 

for this can be explained by considering a series of numbers flipping randomly between 1 and -1 

for a sufficiently long period of time. The mean value of this series would be zero, and the variance 
2rr  would be equal to 1)01( 2 =−± . The MSD for each point would be either 4 or 0, depending 

upon the specific event (1 -1, -1 1 or 1 1, -1 -1 respectively). Averaging over a sufficiently 

long measurement would give a value of 2, which is twice the variance. Thus for long time 

intervals, and for a bead that is subject to a restraining optical force, the following holds true: 

 
 ( )

)(1
2 2

2

τ
τ

Π==
Δ

r

r
r

r

 
(4.8)  

 
This ratio is a dimensionless parameter that is neither dependent upon optical trap strength nor bead 

radius, thus it provides a direct comparison between different fluids and viscosities, as discussed in 

greater detail in Chapter 5. In addition, it determines the so called ‘cut-off” frequency of static 

optical tweezer measurements, below which the elastic nature of the optical trap masks the elastic 

response of the material.  

 

Note that, this is the first time in more than 40 years of optical tweezers study that it has been 

explicitly stated that for a constrained bead, 1)(lim =Π
∞→

τ
τ

.  

 

As mentioned above, the optical tweezers exert a non-negligible force on a trapped bead only at 

low frequencies. As a result of this, the low frequency viscoelastic response of a material has never 

before been obtained with non-oscillating optical tweezers. We present two methods that measure 

this low frequency response over the greatest range possible with non-oscillating tweezers.  
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4.2 Wideband microrheology with optical tweezers: ‘Flow-field’ method 
 

4.2.1 Analytical method 

In this section a new broadband microrheological technique is described that has been designed to 

obtain the widest possible frequency range using non-oscillating optical tweezers. In particular, the 

experimental procedure consists of two steps: (I) measuring the thermal fluctuations of a trapped 

bead for a sufficiently long time, as introduced above, and (II) measuring the transient bead 

displacement, from the optical trap centre, in response to a uniform fluid flow field entraining the 

bead (Figure 4.2). The flow is switched on at time zero by translating the whole fluid sample while 

the trap is held fixed. The imposed constant velocity motion continues until a steady displacement 

of the bead is reached.  

 

 
Figure 4.2: Diagram of experimental procedure: Step I measures the bead trajectory in a 
static optical trap. Step II measures the displacement of the bead in response to a uniform 
fluid flow.      

 
 

The analysis of Step I provides (a) the trap stiffness (κ ) - note that this has the added advantage of 

making the present method self-calibrated - and (b) the high-frequency viscoelastic properties of 

the material to a high accuracy. Step II has the potential to provide information about the 

viscoelastic properties of the material down to very low frequencies, limited only (at the bottom 

end) by the duration of the experiment. However, because of the harmonic nature of the optical 

trap, which tends not to transmit high-frequency applied forces to the bead, the material’s high-

frequency response can not be determined by this step. The full viscoelastic spectrum is thus 

resolved by combining the results obtained from Steps I and II.  

 
The experimental procedure is analytically described through the analysis of the motion of a bead 

trapped in a stationary harmonic potential of force constant κ , where a uniform fluid flow field of 

FLUID 

FLOW 

STEP I STEP II 



Chapter 4                                                                                                  Microrheology with Optical Tweezers   

 

                                                                                                                                                                        

57

magnitude sV
r

can be exerted at time 0=t . The equation describing the bead position ttr ∀)(r  

can be derived by means of a generalised Langevin equation, which in three dimensions is: 

 
 [ ]∫ −−−−=

t

t
sR trdVttftam

0

)()()()()()( rrrrr
κτττντζ  

(4.9)

 
where m  is the mass of the particle, )(tar  is its acceleration, )(tν

r
 is the bead velocity, )(tVs

r
 is the 

fluid flow field velocity, and )(tfR

r
is the usual Gaussian white noise term, modelling stochastic 

thermal forces acting on the particle. The integral term represents the viscous damping of the fluid, 

which incorporates a generalised time-dependent memory function )(tζ  (as introduced by Mason 

and Weitz [4]). The term )(trrκ represents the optical trapping force acting on the bead.  

 

We now show how Equation 4.5 evolves in the two cases mentioned above; when 0)(
rr

=tVs (Step I) 

and 0)(
rr

≠tVs  (Step II) respectively. In the first case, where 0)(
rr

=tVs , the measurement is 

effectively a static measurement, and can be analytically described by the same method introduced 

in the previous section, resulting in the complex shear modulus being calculated as in Equation 4.6.   

 

The second step of the procedure, which experimentally follows the first, consists of the analysis of 

the induced bead displacement from the trap centre due to an imposed time-dependent uniform 

fluid flow field )(tVs

r
 entraining the bead. In this case, Equation 4.9 yields, in the Laplace form, the 

mean velocity of the particle: 
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where the brackets ....  denote the average over several independent measurements (but not 

averaged over absolute time since time-translation invariance has been broken by the flow start-up 

at 0=t ). It is straightforward to show that, by analytical continuation from Equation 4.10, the 

complex modulus can be expressed directly in terms of both the imposed flow field and the induced 

bead displacement from the trap centre: 
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where )(ˆ ωsV  and )(ˆ ωr  are the Fourier transforms of )(tVs

r
and )(trr , respectively. Note that, so 

far, the temporal form of )(tVs

r
 is still undefined. Thus, Equation 4.11 represents the general 

solution for )(* ωG  independent of the temporal form of )(tVs

r
 (e.g., sinusoidal function 
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)sin( tVs ω
r

 or, as in this work, Heaviside step function )(tHVs

r
, where 00)( <∀= ttVs

rr
 and 

0)( ≥∀= tVtV ss

rr
). 

 

As before, Equation 4.11 (as with Equation 4.6) can be seen to be a simple expression relating the 

material complex modulus )(* ωG to the observed time-dependent bead trajectory )(trr  via the 

Fourier transform of )(trr  itself. Once again, the evaluation of this Fourier transform, given only a 

finite set of data points over a finite time domain, is nontrivial since interpolation and extrapolation 

from those data can yield serious artefacts if handled carelessly. To express the Fourier transforms 

of Equation 4.11 in terms of the N  experimental data points and ( )kk trt )(, r  (where Nk .....1= ), 

which extend over a finite range, exist only for positive t, and need not to be equally spaced, we 

adopt the analytical method introduced in Ref. [161] and shown in Equation 4.7. An identical 

formula can be written for )(ˆ ωr , with kg  (being the finite set of data points of  the time 

dependent quantity )(tg ) being replaced with rr .  

 

4.2.2 Results and Discussion 

In this section Equations 4.6 and 4.11 are tested (via Equation 4.7) by measuring both the viscosity 

of water and the viscoelastic properties of water-based solutions of polyacrylamide (PAM) (MW = 

5-6×106 Da) using optical tweezers (as described in Chapter 3). The Brownian fluctuations of an 

optically trapped bead give rise to the time-dependent MSD, )(2 τrΔ , shown in Figure 4.3.  

 

In the case of a bead immersed in a Newtonian fluid, it is expected that at short time intervals (thus 

small distances) the bead behaves as if it were free to diffuse. Indeed, the agreement between the 

observed MSD at short times of a trapped bead in water (circles) and the Einstein prediction for a 

freely diffusing bead (solid line) is good. As the time intervals increase the bead becomes 

influenced by the optical potential. This results in a plateau at large time intervals, where 

)(2 τrΔ tends to 22 r   and we note that the ratio of these two quantities (the MSD and twice the 

variance of the positional distribution, as discussed in Chapter 4.1) is a dimensionless parameter 

that we call )(τΠ , which is independent of both the optical trap stiffness and the bead radius. It 

thus allows an explicit comparison between the dynamics of the fluids under investigation as 

shown in Figure 4.4. Moreover, the onset point of the plateau region in Figure 4.4 indicates the 

bottom limit of the frequency range within which the moduli can be determined, which we define 

previously as the cut-off frequency (and will be discussed in greater detail in Chapter 5). 
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Figure 4.3: The MSD vs. lag time of a 5μm diameter bead in water (with κ = 0.8 μN/m) 
and in two water-based solutions of PAM at concentrations of 0.5% and 1% w/w (both with 
κ = 1.7 μN/m). The line is the Einstein prediction of the MSD for 5μm diameter bead in 
water at 25 °C. 

 

Figure 4.4: The normalised MSD vs. lag time of a 5μm-diameter bead in water (with κ = 
0.8 μN/m) and in two water-based solutions of PAM at concentrations of 0.5% and 1% w/w 
(both with κ = 1.7 μN/m).  

 

In Figure 4.5 we compare the responses of a 5μm diameter bead immersed in water (a Newtonian 

fluid) and in a water solution of PAM at 1% w/w ( non-Newtonian fluid) due to the imposition of a 

uniform fluid flow field having temporal behaviour as a Heaviside step function )()( tHVtV ss

rr
= , 
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with different magnitudes in the two measurements. Experimentally, the execution of a Heaviside 

step function is achieved by suddenly moving the motorized microscope stage at a predetermined 

speed and direction (here, parallel to the x axis). The experiment runs until a steady displacement 

( xΔ ) of the bead from the trap centre is reached (i.e. until all the material’s characteristic relaxation 

times are exceeded).  

 

 

 
 

Figure 4.5: (A) The coordinates of a 5μm diameter bead vs time for two different solutions 
and for two uniform fluid flow fields of different magnitudes sV

r
 at 25 °C. In both cases the 

data was averaged over three measurements and the x coordinate has been normalised by 
the steady-state displacement xΔ . In water κ = 1.7 μN/m, sV

r
= 20 μm/s, and xΔ = 0.523 

μm. In 1% w/w of PAM κ = 8.6 μN/m, sV
r

= 3 μm/s, and xΔ = 1.115 μm. (B) The graph 

highlights the start-up behaviour of both the above systems. 
 

(A) 

(B) 
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In Figure 4.5 the x component of the bead displacement has been normalised by xΔ  for a better 

comparison between the viscoelastic characters of the two samples. It is clear that while the 

Newtonian fluid reaches a steady value of the displacement almost instantaneously (as expected), 

the non-Newtonian fluid shows complex dynamics representative of its viscoelastic nature. It is 

important at this point to note that, because of the harmonic nature of the optical potential, at early 

times (i.e. for 0→t  or equivalently for ∞→ω ), the trapping force exerted on the bead is actually 

small  (i.e. 0)( →trrκ );  and the particle moves almost at the same speed as the imposed flow 

(i.e. )()( tVt s

rr
≅ν ); this implies that Equation 4.11 becomes undefined at high frequencies.  

 

The broadband microrheological measurement with optical tweezers is achieved by combining the 

frequency responses obtained from both the methods introduced above. In particular, the material’s 

high-frequency response is determined by applying Equation 4.6 (via Equation 4.7 with 
k

r 2Δ  

replacing kg ) to the )(2 τrΔ  measurements, whereas the low-frequency response is resolved by 

applying Equation 4.11 (via Equation 4.7 with krr  replacing kg ) to the data describing the bead’s 

transient response to the applied flow field.  

 

In the broadband response of water (not shown), a constant viscosity of 64 1061069.8 −− ×±×=η Pa.s 

is measured over five frequency decades at 25°C. A typical result of this procedure for a non-

Newtonian fluid (1% PAM) is shown in Figure 4.6.  

 

 
Figure 4.6:  Storage (circles) and loss (squares) moduli vs. frequency of a solution of 1% 
w/w of PAM in water measured by means of both Equation 4.6 (solid symbols at high 
frequencies) and Equation 4.11 (open symbols at low frequencies) applied directly to the 
experimental data presented in Figures. 4.4 and 4.5, respectively. The dotted lines are 
guides to the gradients.  
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It is evident that, although there is some noise in the frequency domain that has propagated from 

genuine experimental noise in the time-domain data, there is a clear overlapping region of 

agreement between the two methods that makes the whole procedure ‘self-consistent’. Moreover, it 

confirms the ease with which the low-frequency material response can be explored, right down to 

the terminal region (where 2' ω∝G  and ω∝''G ), which is the current limitation for 

microrheological measurements performed not only with stationary optical tweezers (as shown 

here by the high-frequency response in Figure  4.6, limited to frequencies above 100 s-1), but also 

with PVPT and diffusing wave spectroscopy [6]. In particular, in PVPT microrheological 

measurements, the lowest accessible frequency is inversely proportional to both the fluid viscosity 

and the bead size; it is given by the inverse of the longest time for which the probe particle stays in 

focus (i.e. within the objective depth of field) during the experiment. For example, in water at 25°C 

a micron-sized bead, observed through a 100x objective with a depth of field of order 200nm, 

would remain in focus for a time of order 0.1s.  

 

The experimental method presented here, on the other hand, has no fundamental restriction on the 

lowest achievable frequency. Indeed, with a suitable choice of the velocity of the applied fluid flow 

field (e.g., smVs /3μ=
r

) and the sample holder geometry (e.g., a 3-cm-long microfluidic channel), 

an experiment could be made to run for hours, thereby probing frequencies of order 10-4 s-1 or 

lower, without limit. Finally, in order to remove the genuine noise, a simple smoothing operation of 

the original data is sufficient and the results are shown in Figure 4.7. 

 

 
Figure 4.7: Storage (circles) and loss (squares) moduli vs. frequency of a solution of 1% 
w/w of PAM in water measured by means of both Equation 4.4 (solid symbols at high 
frequencies) and Equation 4.9 (open symbols at low frequencies) applied directly to the 
experimental data presented in Figs. 4.4  and 4.5 but smoothed. The dotted lines are guides 
to the gradients.  
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In summary, we have presented a ‘self-consistent’, ‘self-calibrating’ and simple experimental 

procedure, coupled with an analytical data analysis method, for determining the broadband 

viscoelastic properties of complex fluids with optical tweezers. This method extends the range of 

the frequency response achieved by conventional optical tweezers measurements down to the 

material’s terminal region. In fact, the method has no lower limit on the accessible frequency, thus 

allowing microrheological measurements to be performed on complex fluids with very long 

relaxation times, such as those exhibiting soft glassy rheology [162], or composed of very high 

molecular weight polymers. Thus, the accessible frequency spectrum for small samples of complex 

fluids is now limited only by the patience of the observer. 

 

4.3 Wideband microrheology with optical tweezers: ‘Two trap’ method  
 

4.3.1 Analytical Method 

The second method we present is an improved, efficient, self-consistent procedure for measuring 

the linear viscoelastic properties of materials, from non-oscillatory measurements, across the 

widest frequency range achievable with optical tweezers. Once again, in this case the experimental 

procedure consists of two steps: (I) measuring the thermal fluctuations of a trapped bead for a 

sufficiently long time; (II) measuring the transient displacement of a bead flipping between two 

optical traps (spaced at fixed distance 0D ) that alternately switch on/off at a sufficiently low 

frequency (Figure  4.8). The analysis of Step I provides: (a) the trap stiffness ( 2,1, =iiκ ) - note 

that, as for the fluid flow method, this has the added advantage of making the method self-

calibrated - and (b) the high-frequency viscoelastic properties of the material, to a high accuracy. 

Step II has the potential to provide information about the material’s viscoelastic properties over a 

very wide frequency range, which is only limited (at the top end) by the acquisition rate of the bead 

position (~ kH ) and (at the bottom end) by the duration of the experiment. However, because of the 

finite time required by the equipment to switch on/off (i.e. tens of milliseconds), the material’s 

high-frequency response cannot be fully determined by this step. The full viscoelastic spectrum is 

thus resolved by combining the results obtained from steps I and II.  

 

This method has various advantages over the flow field technique, namely it (a) is simpler to 

perform and (b) creates better statistics through flipping the traps multiple times, as described 

hereafter. 
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Figure 4.8: Diagram of experimental procedure: Step I measures the bead trajectory in a 
static optical trap. Step II measures transient displacement of a bead flipping between two 
optical traps (spaced at fixed distance 0D ) that alternately switch on/off. 

   

To understand the basis of the procedure, we consider the time-dependent position )(trr  of a bead 

trapped by a stationary harmonic potential of force constant iκ . Throughout the Step I of the 

procedure, the bead is always found close to the centre of the single trap which is switched on; it 

makes only small deviations )(trr  (of a magnitude set by the thermal energy) away from the centre 

of the trap. During Step II of the procedure, the detours are considerably larger, of a magnitude set 

by the separation 0D  of the traps. ||t  is defined as the time at which Step II commences, i.e. the 

time at which the traps are first switched. Subsequently each trap remains on for a duration P  

before it is switched off and the other trap is switched on. Hence, the total period of the repeated 

sequence is therefore P2 . At the instant immediately after the traps are switched 

( nPtt II += , Nn ...1,0= ) the bead is typically positioned at a distance 0)( Dtr ≈
r  from the centre 

of the currently active trap (i.e. close to the centre of the trap that has just been switched off). The 

coordinates are redefined so that the displacement of the bead, )(tr
r , is always measured with 

respect to the centre of whichever trap is switched on. 

 

The bead’s position in three dimensions can be modelled by a generalised Langevin equation: 

 

                                               ∫ −−−=
t

t
iR trdttftam

0

)()()()()( rrrr
κττντζ                                    (4.12) 
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where m  is the mass of the particle, )(tar  is its acceleration, )(tν
r

 is its velocity and )(tfR

r
 is the 

usual Gaussian white noise term, modelling stochastic thermal forces acting on the particle. The 

integral, which incorporates a generalised time-dependent memory function )(tζ , represents 

viscoelastic drag from the fluid.  

 

Note that the present method does not require the two traps to be equal. They can be independently, 

but not simultaneously, calibrated during step (I) by appealing to the principle of equipartition of 

energy, as described in the flow field method. Despite the variety of established methods for 

determining the stiffness of an optical trap (e.g. using the power spectrum or the drag force [34, 

152]), the equipartition method is the only one independent of the viscoelastic properties of the 

material under investigation and is thus essential to the calibration of a rheological measurement. 

 

Now, Equation 4.10 will be examined to see how it evolves in the two Steps, I and II. Step I is 

based on the statistical analysis of the thermal fluctuations of a trapped bead, as described in 

Chapter 4.1; however, here we present a alternative, yet equivalent, method of analysis.  

 

During Step I, the thermal fluctuations of the trapped bead are investigated to determine the high-

frequency viscoelastic properties of the material through analysis of the time dependence of the 

normalized position autocorrelation function A(τ ) (NPAF): 
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(4.13)

which, by time-translation invariance, is a function only of the time interval τ  . Here, 
0

2
0 )(

t
tr is 

the time-independent variance and the brackets 
0

.... t  denote an average over all initial times 0t . If 

we take the Laplace transfer of Equation 4.11, it gives: 

 
 )(~)]()(~)[(~)(~)]0()0(~)(~[ 2 srorsrsssfrssrsm R κζν −−−=−−  (4.14)

 
Then, by multiplying both the sides of Equation 4.12 by )( 0trr  and averaging over 0t , one obtains: 
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where )(~ sA  is the Laplace transform of )(τA , s  is the Laplace frequency and it has been assumed 

that both the quantities 
0

)()( 00 tttr ν
rr and 

0

)()( 00 tR tftr τ+
rr vanish for all τ  .  
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We note that, for )(~ sms ζ<<  (which is a good approximation up to MHz frequencies for micron-

sized beads with a density of the order 1 g/cm3in aqueous suspension) and for a Newtonian fluid 

(i.e. a liquid with time-independent viscosity η ,for which ηπζ a6= ), Equation 4.12 recovers the 

well-known result for a massless particle harmonically trapped in a Newtonian fluid: 

 
 )exp()( ττ iA Γ−→  (4.16)

 
where ηπκ ai 6/=Γ  is the characteristic relaxation rate of the system (i.e. optical tweezers, bead 

and fluid) and can be used to determine η  once both iκ  and a  are known.  

 

In the general case of non-Newtonian fluids (i.e. materials with time-dependent viscosity )(tη ) we 

adopt the relationship, first introduced by Mason and Weitz [4], between the bulk Laplace 

frequency-dependent viscosity of the fluid )(~ sη  and the microscopic memory function 

)(~6)(~ sas ηπζ = ; so Equation 4.15  can be written as: 
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Moreover, given that 
ω

ηω isssG
=

≡ )(~)(* , the complex viscoelastic modulus, )(* ωG , can be 

expressed directly in terms of the time-dependent NPAF: 
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where )(ˆ ωA  is the Fourier transform of )(τA  and, as mentioned before, the inertia term ( 2ωm ) 

can be neglected for frequencies MHz<<ω . 

 

It is interesting to highlight that Equation 4.18 is equivalent to Equation 4.6. Indeed, )(τA  is 

directly related to the quantity that we have defined as the normalised mean-square displacement 

(i.e. 22 2/)()( rr ττ Δ=Π ) via: 
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(4.19) 

 
By performing the Fourier transform of Equation 4.19 one obtains the relation: 
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(4.20)

 
Note that the quantity )(τA  has the added advantage of having a well-controlled Fourier transform 

unlike the )(τMSD  as discussed hereafter.  

 

The second step of the procedure consists of analysing the bead’s transient displacements as it 

moves between two traps with separation 0D , that swap on and off at time nPtt += 0 . Note that 

the duration of P must exceed all of the material’s characteristic relaxation times. We can define the 

normalised mean position of the particle as: 
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where ... denotes the average over several independent measurements, but not over absolute 

time, since time translation invariance is broken by periodic switching. In this case, Equation 4.12 

yields, in Laplace form, an identical expression to Equation 4.15, with )(~ sA  replaced by )(~ sD . 

Thus, as before, the complex modulus can therefore be expressed in terms of bead position: 
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where )(ˆ ωD is the Fourier transform of )(tD , and the sum takes into account the linearity of the 

measurements performed with both traps. Note that )(τA and )(tD  are expected to have the limits 

1)0()0( == DA , 0)()( =∞=∞ DA , and 0)()( =∞=∞ DA && . This turns out to be very useful when 

applying the Fourier transform during data processing.  

 

In principle, Equations 4.18 and 4.22 are two simple expressions relating a materials complex 

modulus )(* ωG  to the observed time dependent bead trajectory )(trr via the Fourier transform of 

either )(trr  itself (as in Equation 4.22) or the related NPAF (as in Equation 4.18). In practice, the 

evaluation of these Fourier transforms, given only a finite set of data points over a finite time 

domain, is non trivial since interpolation and extrapolation from these data can yield serious 

artefacts if handled carelessly. We deal with this in the same manner as the fluid flow method, by 

applying the equation derived by Ref. [161].  In this method, )(ˆ ωg is replaced with )(ˆ ωA  or 

)(ˆ ωD respectively. It is a strength of our new procedure that the extrapolated quantities ∞g& and 

)0( +g  (which assumed the role of fitting parameters in Ref. [161]) in this case assume known 

values ( 0=∞g&  and 1)0( =+g ) given by the limits of the functions )(τA and )(tD . Like the 
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method presented in [161], the present procedure also has the advantage of removing the need for 

Laplace/inverse Laplace transform of experimental data [11].  

 

4.3.2 Results and Discussion 

We have validated the experimental procedure as described by Equations 4.16 and 4.20, via 

Equation 4.11, by measuring both the viscosity of water and the viscoelastic properties of water-

based solutions of polyacrylamide (MW = 5-6×106 Da) using optical tweezers as described in 

Chapter 3. The normalized position autocorrelation functions, )(τA , measured from the stochastic 

fluctuations of beads optically trapped in two different fluids are shown in Figure 4.9, together with 

the function predicted for a simple Newtonian fluid. In the Newtonian case, it is expected that 

)(τA  decays as a single exponential with a characteristic relaxation rate related to the trap strength, 

bead size and fluid viscosity, i.e. Equation 4.16. The agreement between the data and prediction for 

water is good. 

 

On the other hand, in the case of a non-Newtonian fluid, where the viscosity is time-dependent, it is 

not guaranteed that Equation 4.15 could be resolved (i.e. inverse-Laplace transformed) into a 

simple form like Equation 4.16. However, this is no hindrance since the viscoelastic moduli will be 

found via the analysis of the normalized position autocorrelation function. 

 

 

 
Figure 4.9: The normalised position autocorrelation function vs. lag-time of a 5µm 
diameter bead (squares) in water (with mN /7.2 μκ = ) and (circles) in a water-based 
solution of PAM at concentrations of 1 % w/w (with mN /2.2 μκ = ). The continuous and 
dotted lines represent Equation 4.16 for a 5µm diameter bead in water at T = 25ºC 
with mN /7.2 μκ =  and mN /2.2 μκ = , respectively. 

 



Chapter 4                                                                                                  Microrheology with Optical Tweezers   

 

                                                                                                                                                                        

69

In Figure 4.10 we compare the impulse response (i.e. step (II) of the procedure) of a 5μm diameter 

bead suspended in water and in an aqueous solution of PAM at 1% w/w (a non-Newtonian fluid), 

with a duration between flips of sP 20= and a trap centre-to-centre separation of mD μ6.10 = , 

giving 64.0/0 =aD . In order to guarantee the linearity of the confining forces exerted by the two 

optical traps, the distance between them was always chosen to be no more than 80% of the bead 

radius, aD 8.00 ≤ [163]. Although Brownian statistical fluctuations appear in the figure, the 

difference between the viscoelastic natures of the two fluids is clear. Indeed, while a bead 

suspended in water flips from one trap to the other almost instantaneously, the same bead in the 

PAM solution takes much longer (a few seconds) to flip.  

 

 
Figure 4.10: The trajectory of a 5µm diameter bead flipping between two optical traps 1κ  
(bottom) and 2κ (top) repeatedly switching after a duration P = 20 s. The bead is 
suspended in (squares) water (with mN /7.21 μκ =  and mN /5.22 μκ = ) and (circles) a 
water-based solution of PAM at concentrations of 1 % w/w (with mN /1.21 μκ =  and 

mN /2.22 μκ = ). 
 
 
In order both to evaluate 0/)()( DtrtD = (t) and to reduce noise caused by Brownian 

fluctuations, the transient measurements were averaged over twenty flips, with the resulting curves 

shown in Figure 4.11. Experimentally, the switching process of the two traps is controlled by 

means of a spatial light modulator (SLM) which alternately creates an optical trap in one of two 

positions. It is important at this point to note that there is a short but finite time for which both traps 

exist simultaneously [164], due to the finite time required by the SLM’s display to update the 

holographic pattern. This makes the switching process not exactly binary. However, this will of 

course only affect the high-frequency results obtained during this step, which will ultimately be 

neglected in favour of the high-frequency response from Step (I).  
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Figure 4.11: The normalised mean position of all step-down data shown in Figure 4.10, i.e. 
when simultaneously trap 2 (top) switches off and trap 1 (bottom) switches on. 

 

Wideband microrheological measurement are obtained from the optical tweezers by combining the 

frequency responses obtained from both steps (I) and (II) of the procedure. In particular, the 

material’s high-frequency response is determined by applying Equation 4.18 (via Equation 4.11 

with kA replacing kg ) to the )(τA  measurements (in which low-frequency information tends to be 

very noisy); whereas, the low-frequency response is resolved by applying Equation 4.22 (via 

Equation 4.11 with kD  replacing kg ) to the data describing the bead’s transient response to the 

flipping traps (in which the high-frequency response is limited by the performance of the SLM). 

 

Typical results for both Newtonian (water) and non-Newtonian (PAM) fluids are shown in Figures 

4.12 and 4.13, respectively. As expected, the Newtonian example exhibits no elastic modulus other 

than what exists from the ‘fingerprint’ of the optical trap (which is a result both of the low number 

of flips that take place and of the non-perfect measurements – unless 1000s of flips are averaged 

this fingerprint will remain in evidence). In both the cases, it is evident that, although there is some 

noise in the frequency domain which comes from genuine experimental noise in the time-domain 

data, there is a clear overlapping region of agreement between the two methods which makes the 

whole procedure self-consistent. Moreover, it confirms the ease with which the low-frequency 

material response can be explored right down to the terminal region (where 2' ω∝G and ω∝''G ). 

This is the current limitation for microrheological measurements. 
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Figure 4.12: Storage ( 'G ) and loss ( ''G ) moduli of water vs. frequency, analysed using 
both Equation 4.18 (high frequencies) and Equation 4.22 (low frequencies) applied directly 
to the experimental data presented in Figure 4.9 and Figure 4.11, respectively. The lines 
represent the expected limiting behaviour of the moduli when the material reaches the 
terminal region: ω∝''G for a Newtonian fluid, and 2' ω∝G and ω∝''G for a viscoelastic 
fluid.  
 

 

 
Figure 4.13: Storage ( 'G ) and loss ( ''G ) moduli vs. frequency of a solution of 1% w/w of 
PAM in water measured by means of both Equation 4.18 (high frequencies) and Equation 
4.22 (low frequencies) applied directly to the experimental data presented in Figure 4.9 
and Figure 4.11 respectively. The lines represents the expected limiting behaviour of the 
moduli when the material reaches the terminal region: 2' ω∝G and ω∝''G . 
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In summary, we have presented another ‘self-consistent’, ‘self-calibrating’ and simple experimental 

procedure, coupled with a data analysis method, for determining the wide-band viscoelastic 

properties of complex fluids using optical tweezers. This method extends the range of the 

frequencies previously available to optical tweezers measurements. In fact, the accessible 

frequency range is limited only by the experiment length and by the maximum data acquisition 

speed (10s of MHz for a quadrant photo-diode). This allows access to the material’s terminal 

region enabling micro-rheological measurements to be performed on complex fluids with very long 

relaxation times, such as those exhibiting soft glassy rheology [162]. The method provides a simple 

yet concrete basis on which future viscoelastic measurements may be made on both biological and 

non-biological systems using optical tweezers.  
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Chapter 5 

 

CONCENTRATION SCALING LAWS IN POLYMER SOLUTIONS 

 
It is of general interest in rheological studies to apply scaling laws to viscoelastic data in order to 

extract, for example, information about the concentration regimes into which the viscoelastic 

sample falls. In conventional rheology, these concentration scaling laws are derived either from the 

shear viscosity, or from the complex shear modulus, )(* ωG in the frequency domain. Indeed, if we 

consider the model developed by Morse, we see that the any concentration dependences are 

presented with respect to the frequency-dependent moduli and their respective components (i.e. the 

tension, orientational and curvature stresses). Here, we present a new method of deriving the 

concentration scaling laws of polymer solutions directly from the time-dependent MSD, avoiding 

the need to Fourier transform the data.  

 

Aside from biological samples, microrheological techniques have been applied to various systems, 

such as polymer gels [165], “worm-like” micelle gels and solutions [166] and associating polymer 

solutions [167]. These previous investigations indicate that a detailed study of the Brownian motion 

of spherical probes in simple flexible polymer solutions would provide an excellent method by 

which to interpret the Brownian motion in the more structurally complex systems - especially an 

investigation of the effect of polymer concentration on the observed Brownian motion [168]. 

Although some flexible polymer solutions have been investigated in limited detail previously, these 

earlier studies have not considered a wide range of polymer concentrations and have essentially 

been used to demonstrate the microrheological approach, specifically the agreement between the 

viscoelastic properties determined from microrheology and bulk rheometry [11, 13, 169]. Here, we 

present a detailed investigation of the Brownian motion of colloidal spheres in both water and 

aqueous polyacrylamide (PAM) as model Newtonian and non-Newtonian systems, respectively.  
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It is well established that the viscosity of a polymer solution depends on concentration and size (i.e. 

molecular weight) of the dissolved polymer, and here we will briefly discuss how this is of interest 

to this thesis. When a substance is added to a solvent, the viscosity of the solution will increase, the 

magnitude of which depends upon the size, shape and concentration of the solute. If we consider 

flexible polymers, then at low concentrations and in good solvents (i.e. where the polymer chain is 

more expanded) the polymers are roughly spherical. To good approximation, we can treat them as 

spheres, with an associated hydrodynamic radius. As the size or length (i.e. molecular weight) of 

the polymer increases, then the larger the sphere becomes. Indeed, statistical analyses have 

established a well defined relationship between the molecular weight of a molecule and its 

hydrodynamic radius [170].  

 

One of the first studies on how the viscosity of a continuous phase solution changes with respect to 

the addition of non-interacting rigid spherical particles was conducted by Einstein [171]. Diluted 

suspensions of identical spherical particles show a Newtonian behaviour, and the distances between 

the particles are large enough that the thermal fluctuations of the particles predominate over the 

effect of inter-particle interactions for colloidal suspensions. Einstein derived an equation for the 

viscosity of highly diluted suspensions obtained in pure shear flow. He expanded the ratio of the 

solution viscosity to that of the solvent as a function of the volume fraction: 

 
 

...)(1 22
21 ++++= ϕϕϕ

η
η Okk

s

(5.1)

 
where η  is the viscosity of the solution, sη  is the viscosity of the solvent, ϕ  is the volume fraction 

and 1k  and 2k  are constants that are related to the particle in solution ( 1k ) and the interaction 

between particles ( 2k ). Einstein was the first to calculate that in solutions of rigid spheres 5.21 =k , 

thus 1k  is termed the Einstein viscosity coefficient. The order of approximation is denoted by the 

symbol (..)O .  

 

The most common functions that are adopted to describe the contribution of the solute to viscosity 

of the system are shown in Equations 5.2 to 5.5. There exist several parameters that characterise the 

relationship between the solution viscosity, η , and the solvent viscosity, sη . In particular, the: 
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Intrinsic Viscosity
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(5.5)

 
where c is the concentration of solute.  

 

Relative viscosity, relη ,  is the ratio between the viscosity of the solution and that of the solvent. 

Specific viscosity, spη , expresses the incremental viscosity due to the presence of the polymer in 

the solution. Dividing spη  by concentration gives the reduced viscosity, redη  , which expresses the 

capacity of a polymer to cause the solution viscosity to increase; i.e. the incremental viscosity per 

unit concentration of polymer. The extrapolation of the reduced viscosity to zero concentration, 

gives us intrinsic viscosity, ][η . The intrinsic viscosity is adopted to measure the polymer’s 

molecular weight via the Mark-Houwink equation : 

 
 αη KM=][  (5.6)

 
where M is the molecular weight , and α  and K are a fluid-dependent constants.   

  

The intrinsic viscosity is, in fact, a generalisation of the Einstein coefficient for systems of rigid 

spheres. This, and the fact that rheological studies have related the volume fraction to the 

hydrodynamic radius, allows us to write Equation 5.1 in terms of the concentration and intrinsic 

viscosity as:  
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s
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η
η  

(5.7)

 
where c  is the concentration and Hk is the Huggin’s coefficient.  

   

5.1 Analytical model and bench tests 

The overall aim here is to extract the contribution of the solute (i.e. polymer) concentration to the 

solution viscosity, through the analysis of the time-dependent thermal fluctuations of a trapped 

bead. Before this can be done, however, it is important to first characterise the contribution made 

by the ‘system’, which may arise from the ensemble of the laser (i.e. the optical tweezers), the bead 

radius and the solvent viscosity. This was done by analysing an optically trapped bead in water, 

which is a Newtonian fluid with constant viscosity of 8.9 x 10-4 Pa.s at 25ºC. The Brownian 

fluctuations of an optically trapped bead give rise to the time-dependent MSD, )(2 τrΔ , shown in 

Figure 5.1.  
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Figure 5.1:  MSD vs. lag time of a 5μm diameter bead for different optical trap strengths 
(κ) in water. The dotted line represents the Einstein prediction of the MSD of a freely 
diffusing 5μm bead in water at 25°C. 

 

At short time scales (high frequency) the bead behaves as if it was free to diffuse, as observed in 

the coincidence between the observed MSD and the Einstein prediction for a freely diffusing bead 

(from Equations 1.9 and 1.10). This is a result of the harmonic nature of the optical trap. The slope 

of the plot of the MSD against lag time, at high frequencies, gives the diffusion coefficient, D . At 

long time scales (low frequency) the MSD plateaus as the bead position becomes constrained by 

the force of the optical trap. The dependence upon trap power can be seen as a decrease in plateau 

height as the trapping power (and hence optical trap strength, κ ) increases.  

 

In this thesis we show for the first time that the correct asymptotic value (for large lag-times) of the 

mean-square displacement of a confined bead is equal to 22 rr ), where 2rr  is the variance of the 

particle trajectory from the trap centre. Although we acknowledge that the limiting value of the 

MSD has been discussed before by Starrs et al [172], we also recognise that they did not obtain the 

correct constant of proportionality (i.e. the factor 2) between the MSD and the variance.  

 

In order to characterise the plateau value more explicitly, let us once again discuss the normalised 

mean-square displacement, )(τΠ , a dimensionless quantity that we discovered and introduced in 

Chapter 4. We observed experimentally that the MSD tends to twice the variance, 22 rr , at long 

time intervals.  
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As proof of concept of the above result, let us consider a series of numbers flipping randomly 

between 1 and -1 for a sufficiently long period of time. The mean value of this series would be 

zero, and the variance, 2rr  (defined as Nr∑ − 2)( μ , where μ  is the mean, and N is the 

number of measurements) would be equal to 1)01( 2 =−± . The MSD for each point would be 

either 4 or 0, depending upon the specific event (1 -1, -1 1 or 1 1, -1 -1 respectively). 

Averaging over a statistically valid set of data would give a value of 2, which is twice the variance.  

 

Thus for long time intervals, and for a confined bead, the following holds true: 
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(5.8)

 
where Γ  is defined as the slowest relaxation rate of the system. In the case of optical tweezers, 

ηπκ a6/=Γ , as in Equation 4.16, where κ   is the optical trap strength, a is the radius of the bead, 

and η  is the zero-frequency viscosity of the solution. The nMSD is a dimensionless parameter that 

is neither dependent upon optical trap strength nor bead radius. Thus it provides a direct 

comparison between different fluids and viscosities. Figure 5.2 shows )(τΠ  against lag time for 

5μm beads in water.   

 

 
Figure 5.2:  )(τΠ  vs. lag time for a 5μm diameter bead at different optical trap strengths 
(κ) in water. For long timescales )(τΠ reaches a constant value of 1.  
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Figure 5.2 shows that the thermal fluctuations can be normalised on the vertical axis through use of 

the normalised MSD. In order to normalise the horizontal axis, we consider the Einstein equation, 

which defines the MSD of a freely diffusing bead as tdDr Δ=Δ 2)(2 τ . If both sides are divided 

by twice the variance, it is simple to show that (using the equipartition of energy theorem):  

 
τ

ηπ
κτ

sa6
)( =Π  

(5.9)

 
where κ  is the optical trap strength, a is the bead radius and sη  is the solvent viscosity.  

 

It is then an easy step to show that the curves of Figure 5.2 can be collapsed onto a common curve 

when the normalised MSD, )(τΠ , is plotted against the normalised lag time of Equation 5.9 (with 

sη  equal to the viscosity of water at 25ºC).  This curve is presented in Figure 5.3.  

 

 
Figure 5.3: )(τΠ vs. normalised lag time ( saηπτκ 6 ) for a 5μm diameter bead at 
different optical trap strengths (κ) in water. After normalisation the curves collapse onto a 
master curve.  

 

The normalised lag time is a dimensionless parameter where saηπκ 6  represents the characteristic 

relaxation rate of the system made by the combination of trap strength, bead radius and solvent 

viscosity. The master curve proves that, given a solution, the contribution to the time behaviour of 

the MSD by the combination of trap strength, bead radius and solvent viscosity (if constant) can be 

separated from that provided by the solute itself.  
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The characteristic relaxation rate saηπκ 6 defines a cut-off frequency below which no viscoelastic 

information about the system can be obtained from measurements performed with stationary 

optical tweezers. If the MSD of an optically trapped bead in a Newtonian fluid is analysed by 

adopting the analytical model described by Mason & Weitz [3] for a freely diffusing bead (i.e one 

that is not optically trapped), one would expect that the measured storage modulus arises only from 

the elasticity of the optical trap. This is demonstrated in Figure 5.4, which shows the storage, 

)(' ωG , and loss, )('' ωG , moduli plotted for a bead optically trapped in water. The loss modulus 

has a slope of 1, consistent with a Newtonian fluid. The elastic response is a result of the optical 

trapping force and reiterates the fact that the trap only significantly affects the bead at low 

frequencies (as discussed in Chapter 4.1, Equation 4.5).  

 

 
Figure 5.4: Storage and loss moduli of an optically trapped 5μm bead in water analysed to 
show the elasticity ( )(' ωG ) arising from the optical trap. The cut-off frequency 

saηπκ 6 defines the lowest frequency at which meaningful information can be extracted 
about the material properties. It dictates the crossover point at which )(' ωG and 

)('' ωG intersect. 
 

In rheology, the intersection points of the storage and loss moduli are always indicative of a 

characteristic relaxation time. For example, in Figure 2.4 (Chapter 2) the low frequency intersect of 

the moduli defines the reptation time, the slowest relaxation mode of a semiflexible polymer. Here, 

in Figure 5.4, the intersect point of )(' ωG  and )('' ωG  represents the single relaxation time of the 

system (the ensemble of laser, bead radius, and fluid viscosity), and is coincident with the value of 

saηπκ 6 (~ 26.2 for this particular sample with 61006.1 −×=κ μN/m). The existence of this cut-off 

frequency can be understood from Figure 5.3, where at the time  ( ) 16 −= saηπκτ  the curves begin 

to diverge from a slope of 1, as the trapping force begins to dominate over the thermal energy. If 
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we normalise the )(' ωG  and )('' ωG  of Figure 5.4 by a factor of aπκ 6/  and the frequency by a 

factor of Saηπκ 6/  then we see that the intersect of the moduli occurs at the point [1,1] (Figure 

5.5).  

 
For the case of a Newtonian fluid, the viscosity that defines the cut-off frequency must be the 

constant viscosity of the fluid. For a non-Newtonian fluid however, we can generically define the 

cut-off frequency as: 

 

06 ηπ
κω
acoff =  

(5.10)

 
 where 0η is the zero-shear viscosity of the fluid.  

 

 
Figure 5.5: Normalised storage and loss moduli of an optically trapped 5μm bead in water 
analysed to show the elasticity arising from the optical trap. The data is seen to be 
normalised (i.e. the intersect occurs at [1,1]) by applying a factor of κηπ /6 sa to the 
frequency and a factor of κπ /6 a  to the moduli.  

 

We have defined the contribution to the thermal fluctuations of a trapped bead that arise from the 

‘system’ (i.e. laser, bead radius and solvent viscosity) itself. Now, let us define the relationship 

between the normalised MSD, )(τΠ , and the viscosity of the solution. We have shown that both 

)(τΠ  and the normalised position autocorrelation function, )(τA , can be arbitrarily adopted to 

describe the linear viscoelastic properties (i.e. )(* ωG ) of a material by means of their Fourier 

transform (in Equations 4.6 and 4.18). At high frequencies Equation 4.18 recovers the generalised 

Stokes-Einstein equation (Equation 1.15) derived by Mason & Weitz for a freely diffusing particle 

[4]: 
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                                Equation 1.15                       Equation 4.18  

where )(ˆ2 ωrΔ  is the Fourier transform of the mean-square displacement. The κ  term in 

Equation 5.11 arises from the Equipartition of Energy theorem. It follows from the above relation 

that: 
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where )(ˆ ωη is the Fourier transform of )(tη . 

 

As mentioned in the Introduction to this Chapter, a classical rheological parameter adopted to 

quantify the contribution to the solvent viscosity due to the addition of the solute itself, is the 

viscosity ratio, or relative viscosity, which is defined as the ratio between the solution viscosity, 

)(tη , and the solvent viscosity, )(tsη .  From this definition, and from Equation 5.12, it follows 

that: 
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where )(ˆ ωηrel is the relative viscosity in the Fourier domain, )(ˆ ωηs is the Fourier transform of the 

solvent viscosity )(tsη , and )(ˆ ωsΠ  is the Fourier transform of )(tsΠ , which is the normalised 

MSD experienced by the bead suspended into the solvent. Moreover, in Equation 5.13 it has been 

assumed that both the measurements of the normalised MSDs had the same constant of 

proportionality, aπκ 6 .  

 

Note that, although the non-trivial issue of evaluating the Fourier transform of a generic function 

given only a finite set of data points over a finite time domain, has been recently solved by Evans et 

al.[23] (as discussed in Chapter 4), we demonstrate that, in order to measure the concentration 

scaling laws, there is actually no need to evaluate the Fourier transforms in Equations 5.12 and 

5.13, because we will show that Equation 5.13 holds also in the time-domain. 

 

To do this, it is useful to remember a fundamental relationship between the shear modulus, )(tG , 

and the shear creep compliance, )(tJ [173]: 
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which is the convolution integral between the above two time-dependent functions. An important 

property of the convolution integral between two functions is that its Fourier transform is equal to 

the product of the two Fourier transformed functions. This applies to Equation 5.14 and gives: 
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where )(ˆ ωG  and )(ˆ ωJ are the Fourier transforms of )(tG and )(tJ respectively.  

 

Let us now consider the definition of the complex modulus )(* ωG , which is given by the Fourier 

transform [ ]( )...F  of the time derivative of the shear modulus )(tG : 
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Thus, combining Equation 5.15 with Equation 5.16 it becomes clear how the complex modulus is 

related to the Fourier transform of the time-dependent creep compliance: 
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Furthermore, since the material’s linear viscoelastic properties are independent from the type of 

linear measurement performed to evaluate them, the combination of Equation 5.11 with Equation 

5.17 provides, at high frequencies, the relationship between the Fourier-transformed compliance 

and the Fourier-transformed normalised MSD:  

 
 

)(ˆ6)(ˆ ω
κ
πω Π=

aJ  
  (5.18)

  
It is important to highlight that, because the Fourier transform is a linear operator, the simple 

proportionality of Equation 5.13 holds also in the time-domain: 

 
 

)(6)( τ
κ
π

Π=
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(5.19)

 
Note that a similar result to Equation 5.19 was found by Mason et al. [173] in the case of a freely 

diffusing particle. They pointed out that: “the primary advantage of choosing )(tJ  as the linear 

viscoelastic representation is that it is directly proportional to the measured MSD” (to the 

normalised MSD, in this case); “no transformation to the frequency domain or fitting of the data 

are needed to properly report the material’s linear viscoelastic response”.  
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In order to evaluate the concentration functionality of the shear modulus (or equivalently of the 

shear viscosity) it is convenient at this point to express the relationship between the concentration 

dependencies of both )(tG  and )(tJ . In the general case of polymer solutions, both the above 

functions depend on the polymer concentration, c , and the time; and they can be expressed as 

follows: 

 )())(/(),( 00 cGcttgctG =  (5.20) 

 

where ))(/( 0 cttg and )(0 cG  represent the time and concentration dependent parts of ),( ctG  

respectively and )(0 ct  is a characteristic time, which also depends on the polymer concentration. 

An identical formula can be written for ),( ctJ  with g and 0G being replaced with j and 0J  

respectively. It is an easy step to show that by substituting Equation 5.20, written for both )(tG and 

)(tJ  into Equation 5.15, one obtains: 
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where )(/ 00 cttu = and )(/ 0 ctu τ= are two arbitrary times. It can be seen that the left term of 

Equation 5.21 depends only on the polymer concentration and the central term depends only on 

time; indeed, once the solution concentration is fixed, both the terms are equal to an arbitrary 

constant, which we can fix equal to 1 for simplicity.  

 

Finally, combining Equations 5.19 and 5.13, it is an easy step to show that, at high frequencies (or 

short lag-times), the relative viscosity in the time-domain is given by: 
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where the subscript ‘s’ denotes that the functions are related to the solvent. Also in this case, as for 

Equation 5.13, it has been assumed that the constant of proportionality aπκ 6 for both the solvent 

and the solution are equal.   

 

Note that, so far, the viscoelastic nature of both the solvent and the solution has not been discussed. 

Indeed, both Equation 5.13 and Equation 5.22 are of general validity and can be applied to any 

fluid, whether the solvent is Newtonian or not. In the simplest and most common case of a 

Newtonian solvent, with time-independent viscosity sη  (as in this chapter; i.e. water), Equation 

5.22 simply becomes:  
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From the basic description of )(tJ , in the absence of solute (i.e. 1)( =trelη ), Equation 5.23 

recovers Equation 5.9.  

 

5.2 Scaling laws in flexible polymers 

We have now shown both how to remove the contribution of the system from the analysis of the 

thermal fluctuations of a trapped bead and how the viscosity of the solution is related to the time-

dependent normalised mean-square displacement of the bead. Now, we can develop test ideas to 

show how the bead fluctuations are related to the concentration of the solution. PAM is a well 

studied flexible polymer [65-68], and because of this is a useful tool for calibrating rheological 

measurements. Since we do not yet know the zero shear viscosity of the system, we instead use the 

viscosity of the solvent, water, to determine the characteristic relaxation time saηπτκ 6 . This 

allows us to separate the viscosity contribution of the solvent from that of the solute at different 

concentrations.  

 

In Figure 5.6, )(τΠ is plotted against normalised lag time, for a number of PAM concentrations 

(molecular weight 5-6 million Da).  

 

 
Figure 5.6: )(τΠ  vs. normalised lag time for a 5μm diameter bead in PAM (molecular 
weight 5-6 million Da) in concentrations ranging from 0.01-1.0% w/w. The normalised lag 
time uses the viscosity of the solvent, water.   
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Since the viscosity contribution increases as the polymer concentration increases, the curves do not 

collapse in the same manner as a Newtonian fluid does. Indeed the solute contribution to the 

viscosity can be clearly seen in the increased time taken to reach the optical trap plateau (which 

itself is the fingerprint of the optical trap).  

 

We have shown already that the concentration dependence of a fluid’s linear viscoelastic properties 

can be extracted from the time-domain data. We therefore plot the concentration dependence at a 

value of saηπτκ 6 =0.5 (chosen to be well below the approximate cut-off frequency). It can be seen 

that the MSD (through )(τΠ ) varies approximately as 45.0−c . From the definition of the 

characteristic relaxation time, Equation 5.9, we know that Π∝ 1η , thus 45.0c∝η  (Figure 5.7).   

 

The theoretical predictions for the concentration scaling laws of the viscosity of flexible 

polyelectrolytes are 2/1c∝η , for ecc ≤ (where ec  is the entanglement concentration) and 

2/3c∝η  for ecc ≥  [174]. The slope of 2/1−c is included in Figure 5.7 as a guide, and it can be seen 

that this is very close to the actual measured slope.    

  

 
Figure 5.7: Reliance of MSD on concentration for two points on )(τΠ  (from Figure 5.6) 
for PAM (molecular weight 5-6 million Da) in concentrations ranging from 0.01-1.0% w/w. 
The lines are a guide to the gradient. 

 

In order to extract the concentration scaling laws of viscoelastic materials directly from the time 

domain, further steps can be taken, beginning with obtaining the relative viscosity, which was 

discussed in the introduction to the chapter, and is calculated as in Equation 5.20. By plotting 

)(trelη  against the characteristic relaxation time of Equation 5.21, the ratio of the solution to that of 
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the solvent can be obtained (Figure 5.8). Only a select number of concentrations have been plotted 

in order to make the graphs clearer.  

 

 

Figure 5.8: Relative viscosity, relη , vs. normalised lag time for PAM (molecular weight 5-6 

million Da) in concentrations ranging from 0.01-1.0% w/w. The dotted line is a slope of 1.  
 

As expected, by reducing the solute (PAM) concentration the curves tend to 1 at short time 

intervals, as η  sη . There is a section of the graph - where the data falls along the dotted line - 

from which no information can be extracted. This is due to the optical trap plateau. From Figure 5.1 

we know that a decrease in optical trap strength can increase the magnitude of the trap plateau, and 

thus the amount of information that can be obtained. Unfortunately the trap strength could not be 

reduced any less as the bead would drop from the focus point of the trap and the measurement of 

centre of mass proved problematic. 

 

Following on from the relative viscosity, the specific viscosity, spη , (another dimensionless 

parameter, defined in the introduction) expresses the incremental viscosity due to the presence of 

the polymer in the solution. We plot the specific viscosity, )(tspη , against normalised lag time in 

Figure 5.9. As η  tends towards sη  the specific viscosity should approach zero, which is consistent 

with the behaviour of the curves shown in Figure 5.9. The next stage in deriving the scaling laws 

involves plotting the reduced viscosity, redη  (with units of reciprocal concentration), which was 

defined in the introduction to this chapter, and which expresses the capacity of a polymer to cause 

the solution viscosity to increase; i.e. the incremental viscosity per unit concentration of polymer. 

The reduced viscosity, redη , plotted against normalised lag time is presented in Figure 5.10.    
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Figure 5.9: Specific viscosity, spη , vs. normalised lag time for PAM (molecular weight 5-6 
million Da) in concentrations ranging from 0.01-1.0% w/w.. The dotted line is a slope of 1. 

                                        

 
Figure 5.10: Reduced viscosity, redη , vs. normalised lag time for PAM (molecular weight 
5-6 million Da) in concentrations ranging from 0.01-1.0% w/w. The dotted line is a slope 
of 1. 

 

We have applied the definition of the reduced viscosity as defined in Equation 5.4 in the 

Introduction. As observed in Figure 5.10, the data curves do not “collapse”. Interestingly however, 

if we divide both axes (i.e. the specific viscosity and the normalised time) by 2/3c  we scale the 

higher concentration (0.1-1.0% PAM) data both vertically and horizontally onto a master curve 

(Figure 5.11).  It is not immediately obvious why this uncovers the scaling factor of polyelectrolyte 
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solutions of ecc ≥  (3/2) as opposed to the scaling factor of concentrations ecc ≤  (1/2) that we 

discovered earlier in Figure 5.7. The two lowest concentration curves (0.01 and 0.0464 mg/ml) 

scale more accurately with a factor of  c as shown in Figure 5.12.    

 

 
Figure 5.11: Specific viscosity spη /c3/2 vs. normalised lag time (taking into account c3/2) for 
PAM (molecular weight 5-6 million Da) in concentrations ranging from 0.1-1.0% w/w. The 
dotted line is a slope of 1. 

 

 
Figure 5.12: Specific viscosity spη /c vs. normalised lag time (taking into account c) for 
PAM (molecular weight 5-6 million Da) in concentrations ranging from 0.01 and 0.0464% 
w/w. The dotted line is a slope of 1. 
 

We have obtained two concentration scaling factors for the time-dependent viscosity of the 

solution. Having already related the solution viscosity to the thermal fluctuations of a trapped bead 
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via Equation 5.23, the next logical step is to plot the nMSDs (i.e. the thermal fluctuations) of the 

beads (from Figure 5.6) against the concentration normalised lag times of Figure 5.11 and Figure 

5.12. This is shown in Figure 5.13. 

 
Figure 5.13: Specific viscosity/cα vs. normalised lag time/ cα for PAM (molecular weight 5-
6 million Da) in concentrations ranging from 0.01-1.0% w/w. For concentrations 0.01-
0.215% PAM α=1/2, and for concentrations 0.316-1.0% PAM α=3/2. The dotted line is a 
slope of 1. 

 

As may be suggested by the graphs of Figs. 5.11 and 5.12, two scaling regimes are uncovered in 

Figure 5.13; a factor of 1/2 for PAM concentrations of 0.01-0.215%, and a factor of 3/2 for PAM 

concentrations of 0.316-1.0% (Figure 5.12). Although the low concentration scaling of 1/2 in 

Figure 5.13 differs from the scaling of 1 in Figure 5.12, it is possible that the data of Figure 5.12 is 

just too close to the dotted line (which represents the plateau value of the optical trap, and thus the 

section of the graph where information is hidden) for the scaling laws to be extracted properly. 

Indeed, a scaling law of 1/2 makes more sense rheologically, given that it is the predicted scaling of 

flexible polymers for concentrations beneath the entanglement concentration (as in Figure 5.7). In 

addition, the higher concentration (0.215-1.0%) scaling of 3/2 is the predicted scaling for flexible 

polymers in concentrations above the entanglement concentration.  

 

We note that the higher concentration scaling of 3/2 was not detected in the concentration 

dependence of 5.0|)( =Π ωτ  shown in Figure 5.7, and here we discuss why this is so. In Figure 5.7 

we plotted the nMSD at a specific frequency, which was an arbitrary value, albeit it was chosen to 

be well below the cut-off frequency defined in Equation 5.10. Instead of choosing this arbitrary 
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value we will show hereafter how the correct concentration scaling laws can be obtained by 

analysing the slope of the normalised MSD, )(τΠ , close to zero.  

 

We recall Equation 4.19 which relates the nMSD to the normalised autocorrelation function, )(τA , 

via )(1)( ττ A−=Π . For a Newtonian fluid, the nPAF can be described by an exponential function, 

as in Equation 4.16. For a viscoelastic fluid, and in the case of an optically trapped bead, we can 

write the exponential as: 

 
 

)(6)( taeA ηπ
κτ

τ
−

=  
(5.24)

  

where κ is the trap strength and )(tη  is the viscosity of the solution. Although the theoretical basis 

for describing the nPAF of a viscoelastic fluid is not trivial to prove, we can see empirically that 

this is the case in Figure 5.14.  

 

 
Figure 5.14: Normalised position autocorrelation function vs. lag-time of a 5µm diameter 
bead in water, 1 mg/ml actin and 1% [w/w] PAM, showing the exponential shape of the 
function. The solid line is Eq. 5.24 plotted for a bead in water experiencing the same trap 
strength ( mN /7.2 μκ = ) as the experimental water measurement.  

 

If this exponential is expanded as a Taylor series around zero, it can be written (to 1st order) as:  
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Equation 5.25 can be simplified to: 
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where 0η is the viscosity at time zero. This in turn leads to a similar definition of the nMSD as in 

Equation 5.9: 
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The compliance )(τJ can then be written (from Equation 5.19) as: 
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If we multiply both sides of Equation 5.28 by the viscosity of the solvent, sη , we see that for 

)0( →Π τ the slope of the nMSD plotted against the normalised lag time 06/ ηπκτ a is actually 

equal to relη/1  where relη  is the relative viscosity (which is the ratio between the solution and 

solvent viscosities) at 06 →τηπκ sa . 

 

By plotting the reciprocal of the slope of the nMSD (when plotted against normalised lag time, 

when 0]6[ →τηπκ sa ) against concentration, the correct concentration scaling laws (of 1/2 and 

3/2), as predicted by the theory can be obtained, as shown in Figure 5.15.  

 

 
Figure 5.15: The relative viscosity, relη , at 0→t plotted against concentration for PAM 
(molecular weight 5-6 million Da) in concentrations ranging from 0.01-1.0% w/w. The 
lines are a guide to the gradient. 
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 In this chapter we have discussed the usage of the normalised mean-square displacement, )(τΠ , in 

deriving a characteristic relaxation rate of a system, saηπκ 6 . This defines the single relaxation 

rate of a system composed of the ensemble of optical trap, bead radius, and solvent viscosity. In the 

case of a viscoelastic fluid, the normalisation factors allow the curves to be compared with respect 

to only the concentration. The concentration scaling laws can then be obtained in the time domain 

through manipulation of the relative viscosity and specific viscosity, without any need to perform a 

Fourier transform on the experimental data.  

 

In addition, the factor of saηπκ 6  defines the cut-off frequency, below which the elastic nature of 

the trap masks any elastic component of the sample. This can be addressed by applying either of 

the two wideband methods introduced in Chapter 4, which use an extra step to obtain the low 

frequency viscoelastic response of the material.  
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Chapter 6 

 

ACTIN NETWORKS 

 
In this chapter the concentration scaling laws and viscoelasticity of in vitro reconstituted solutions 

of actin filaments are explored. Firstly, ‘static’ optical tweezer measurements are used (via the 

method described in Chapter 4.1) to analyse the normalised mean-square displacement, )(τΠ , of 

micron-sized tracer probes in order to derive the concentration scaling laws of actin solutions in the 

time-domain. Following on from this, the storage and loss moduli of actin are examined and 

compared to the expected high frequency response of 4/3~ω as predicted by viscoelastic models 

[87, 175]. Next, the concentration dependence of the frequency-dependent viscoelastic response is 

compared to that of the time-dependent data; then finally, the ‘two-trap’ broadband technique for 

non-oscillating optical tweezers (presented in Chapter 4.4) is used to obtain a wideband frequency 

spectrum of the actin viscoelastic moduli.  

 

6.1 Concentration scaling laws of actin networks 

The dense actin filament networks that contribute to the mechanical properties of the cytoskeleton 

are difficult to measure in vivo and can be problematic to model theoretically as the structures and 

interactions involved are still not well understood. As actin is the main component of the 

cytoskeleton, studying the viscoelastic response of reconstituted actin networks will lead to a better 

understanding of cytoskeletal function.  

 

Here, actin is obtained directly from fresh rabbit muscle and prepared as described in Chapter 3. 

We make use of the ‘static’ optical tweezer measurement described in Chapter 4.1 to study the high 

frequency viscoelastic response of actin solutions, and from these measurements we derive 
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concentration scaling laws of actin networks (and in the next Section, the related viscoelastic 

moduli) by analysing the normalised MSD, )(τΠ . In Figure 6.1 are shown the normalised mean-

square displacements against lag time for a range of actin concentrations, from 0.04-1.0 mg/ml.  

 

 
Figure 6.1: )(τΠ  vs. lag time for a 5μm diameter beads in actin solutions of 
concentrations ranging from 0.04-1 mg/ml.  

 

As expected, we see that the time taken to reach the plateau (where y→1) increases as the 

concentration increases. As introduced previously (Chapter 5) there exists a cut-off frequency, 

coffω , that dictates the timescale above which the elastic component of the solution is masked by 

the elastic component of the optical trap. This cut-off frequency is inversely proportional to the 

zero-shear viscosity of the system, thus as the actin concentration (and hence viscosity) increases, 

the cut-off frequency decreases and the time taken to reach the plateau is lengthened.     

 

To present the results of Figure 6.1 more clearly the data has been split into two graphs, one from 

0.04-0.25mg/ml (Figure 6.2 A) and one from 0.4-1.0mg/ml (Figure 6.2 B), both plotted against the 

characteristic relaxation time of the system (defined in the previous chapter) saηπκτ 6 , where 

κ is the optical trap strength, τ is the lag time, a  is the radius of the bead, and sη  is the viscosity 

of the solvent (in this case, water).  

 

 The dotted lines on the graphs are added as guidance for the slopes. Since viscous behaviour 

manifests itself as a slope of 1 (from Chapter 5) it is clear that sub-diffusive (i.e. elastic) behaviour 

(slope <1) is detected for all concentrations. In addition, it is observed that some data has a slope of 
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3/4, which is the predicted frequency dependence of the universal high-frequency limiting form of 

the complex modulus [85, 169] 

 
 

 
Figure 6.2: )(τΠ  vs. normalised lag time for a 5μm diameter bead in F- actin solutions in 
concentrations from (A) 0.04-0.25 mg/ml, and (B) 0.4-1.0 mg/ml. The lines are added as 
guide for the gradients.   

 

The derivation of the concentration scaling laws of biopolymer solutions can be addressed by the 

analytical methods employed in Chapter 5. The first technique makes use of the relative viscosity, 

)(τη rel , specific viscosity, )(τη sp  and reduced viscosity, )(τη red . The relative viscosity is 

calculated via Equation 5.20, where we use the viscosity of water as the solvent viscosity, sη . The 

relative, specific and reduced viscosities have all been plotted against the normalised lag time 

(A) 

(B) 
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( saηπτκ 6/ ) in Figure 6.3. The relative viscosity (Figure 6.3A) represents the ratio of the solution 

viscosity to that of the solvent. The link between concentration and viscosity has already been 

discussed in Chapter 5, thus we see that as concentration of actin increases, so does the relative 

viscosity. Specific viscosity (Figure 6.3B) expresses the incremental viscosity due to the presence 

of the polymer in the solution. Dividing )(τη sp  by concentration gives the reduced viscosity 

(Figure 6.3C), which expresses the capacity of a polymer to cause the solution viscosity to 

increase; i.e. the incremental viscosity per unit concentration of polymer.  

 

 
Figure 6.3 [A,B]: (A) Relative viscosity, relη , vs. normalised lag time and (B) specific 
viscosity, spη , vs. normalised lag time for a 5μm diameter bead in solutions of actin in 
concentrations from 0.04-1.0 mg/ml.  The dotted lines are the lines of y=x (A and B) and 
y=1 (A).  

(A) 

(B) 
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Figure 6.3 [C]: Reduced viscosity, redΩ , vs. normalised lag time for a 5μm diameter bead 
in solutions of actin in concentrations from 0.04-1.0 mg/ml.   

 

In order to make the reduced viscosity curves collapse onto a master curve, the concentration factor 

of the reduced viscosity ( c ) needs to be changed to 3/4c , and then this value must be used to 

normalise the time axis (Figure 6.4). This value of 4/3 corresponds to the scaling factor that 

Morse’s model predicts for the concentration dependence of the curvature stress of the macroscopic 

plateau modulus ( 0'G , Figure 2.4) of semiflexible polymers [85].  

 

 
Figure 6.4: Specific viscosity, spη  divided by c4/3  vs. normalised lag time multiplied by c4/3 
for a 5μm diameter bead in varying concentrations of actin. The dotted line is the slope of 
1.  

(C) 
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It should be recalled that Morse’s model expresses the intramolecular stress contribution (the main 

contribution to the viscoelastic properties of semiflexible chains) as a sum: 

δσσσσ TckBtensorientcurvera −++=int . The curvature stress arises from the forces that oppose the 

transverse deformation or the rotation of chain segments. Tassieri et al [139] proved experimentally 

that the scaling factor of 4/3 was the correct concentration dependence of the curvature stress by 

measuring the persistence length, pL , of actin filaments.  

 

The second technique of extracting the concentration dependence of the time-dependent normalised 

MSD is by measuring the slope of the nMSD (when plotted against normalised lag time) close to 

zero. This slope is equal to relη/1 , where relη  is the relative viscosity of the solution. The relative 

viscosity is therefore plotted against concentration in Figure 6.5.   

 

 
Figure 6.5: The relative viscosity, relη , at 0→t plotted against concentration for actin in 
concentrations ranging from 0.04-1.0 mg/ml. The lines are a guide to the gradient. 

 

For this method, three scaling regimes are noted; a low concentration dependence of 4/1c , a high 

concentration dependence of 3/4c , and an intermediate regime of 2/1c . The 1/4 and 4/3 scaling 

factors are both predicted by Morse’s model [87]; the 4/3 factor arises from the curvature stress as 

described above, and the 1/4 arises from the concentration dependence of the plateau modulus for 

semiflexible rods. These are exactly the same scaling factors as those that can be extracted from the 

frequency-dependent data, as will be shown in the next section.  

 

We see, therefore, that it is possible to obtain scaling laws from the time-domain that were 

traditionally obtained from the frequency-domain. The frequency-dependent scaling factor of 3/4 

(as described for the universal high-frequency limiting form for the complex modulus [87, 175]) is 
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apparent in the normalised MSDs in Figure 6.2 as 4/3~ τ , and the concentration dependences of 

1/4 and 4/3 (as predicted for the concentration dependence of the plateau modulus in the frequency 

domain) can be extracted from the time-dependent normalised viscosity data of Figures 6.4 and 6.5. 

It may therefore not be strictly necessary to move to the frequency domain in order to extract 

scaling laws, such as the concentration dependence of a polymer solution; however, we will 

compare the results of this section to the concentration scaling of the frequency-dependent storage 

and loss moduli hereafter.  

 

6.2 Viscoelasticity of actin solutions 

To explore further the viscoelasticity of actin filaments the storage and loss moduli were calculated 

for actin solutions over a range of concentrations from 0.04-1.0 mg/ml. This was done by analysing 

the thermal fluctuations of a 5μm diameter silica bead in an optical trap. Morse’s model describes 

the viscoelastic behaviour of 1mg/ml actin as shown in Figures 2.7 and 2.8. Figure 2.8 (for a 

polydisperse actin solution) has been repeated and modified below, in Figure 6.6.  

 

 
Figure 6.6: (Taken from Ref. [87]) Calculated moduli )(' ωG (solid line) and 

)('' ωG (dotted line) for a polydisperse actin solution with mLc μ17= and an exponential 
distribution of chain lengths. Morse’s model predicts a frequency-independent plateau 
caused by the curvature stress and a high frequency dependence of ∝ω3/4. 

 

Indeed, many experimental studies have uncovered scaling laws predicted by Morse and others (i.e 
4/3)(* ωω ∝G at high frequencies) [87, 127], although there have also been experimental results 

that differ from this, and incorporate other scaling laws [120, 176]. Since the ultimate goal in actin 

cytoskeleton mechanics is to develop predictive physical models to characterise the mechanics of 

cellular physiology, work still needs to be done to fully elucidate what mechanisms these 

alternative scaling laws arise from, and to incorporate them into viscoelastic models.     

∝ω3/4 

(Curvature)
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Here, we measure the linear viscoelastic properties (i.e. )(* ωG ) of a series of actin solutions using 

optical tweezers and the ‘static’ analytical method described in Chapter 4.1. The storage, )(' ωG , 

and loss, )('' ωG , moduli are plotted directly from the experimental data (via Equation 4.18), using 

Equation 4.7 to compute the Fourier transforms. Note that, this method of performing Fourier 

transforms of the normalised MSDs produces some scatter in the viscoelastic data at high 

frequencies and ripples in the low frequency portions of the curves. As explained in detail in Ref. 

[161], this method works directly on the experimental data points (i.e.{ }kk Π,τ , where Nk ..1= ) 

and therefore preserves genuine experimental noise.  

 

As mentioned above, Equation 4.18 is used in order to calculate the complex shear modulus. This 

equation relates the normalised position autocorrelation function (nPAF) to complex shear 

modulus. The nPAF is related to the normalised MSD via 1)()( =+Π ττ A and has the advantage of 

possessing a well defined Fourier transform. Note that Equation 4.6, which relates the complex 

shear modulus to the velocity autocorrelation function (VAF) is an equally valid method to use.  

 

An important feature of using the nPAF to calculate the complex shear modulus, )(* ωG ,  is that 

the range over which the nPAF is analysed can greatly affect the resultant viscoelastic moduli. 

Next, we show specifically what range of data should be selected and what should be ignored.  

 

The normalised autocorrelation function can be described by a simple exponential decay. By 

including in the data analysis the portion of the autocorrelation function that is close to zero (Figure 

6.7, top left) a significant amount of high frequency noise is introduced into the calculation of the 

complex moduli (Figure 6.7, bottom left). This is due to the noise around zero which arises from 

poor statistics. By neglecting this portion of the nPAF graph (Figure 6.7, top right) the resulting 

moduli are much smoother (Figure 6.7, bottom right).  

 

 

 

 

 



Chapter 6                                                                                                                                                       Actin   

 

                                                                                                                                                                        

101

 
 

 
Figure 6.7: Normalised position autocorrelation functions and resultant storage and loss 
moduli for 0.1 mg/ml actin. As the nPAF approaches zero a significant amount of noise 
becomes apparent in the measurement (top left). If this section of the data (i.e 0)( =τA ) is 
selected to compute the complex shear modulus this noise is carried over into )(* ωG  
(bottom left). A typical nPAF selection containing no noise (i.e 1.0)( ≥τA ) (top right) 
produces moduli with much less noise (bottom right). 

 
 

Taking into account the correct nPAF selection, the storage and loss moduli of a series of actin 

concentrations are plotted below in Figure 6.8. Solid lines are a guide to the gradients.  
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Figure 6.8: Loss and storage moduli vs. frequency for varying concentrations of actin (0.1-
1.0 mg/ml). The solid lines are a guide for the gradients.   

 

In Figure 6.8 we see that the storage and loss moduli of the higher concentration graphs are only 

just reaching a cross-over point at low frequencies (approaching 100 rad/s). Morse’s model predicts 
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that this high frequency crossover point between the storage and loss moduli occurs at the 

entanglement frequency, 1−
eτ . The first point of note is that the dependence of 4/3)()(* ωω iG ∝  at 

high frequencies (above the entanglement frequency) which has been predicted by Morse’s model 

(amongst others i.e.[175]) and experimentally measured [177-180], can only be seen in the loss 

modulus of the 0.6 mg/ml and 1 mg/ml solutions, and in the storage modulus of the 0.1 and 0.16 

and 1.0 mg/ml solutions.   

 

Using Morse’s model we now distinguish between the different stress contributions to the complex 

modulus, )(* ωG . This is done by extracting the concentration dependence of both the loss 

modulus, )('' ωG , and storage modulus , )(' ωG . In Figure 6.9 the loss modulus is plotted against 

concentration at two frequencies: 5 and 400 rad/s. Due to the oscillations present in Figure 6.8, the 

value of the moduli was obtained by applying a linear fit over a small range of frequencies in the 

log-log graph.   

 

 
Figure 6.9: The loss modulus )('' ωG vs. concentration extracted from the complex moduli 
of Figure 6.8, at frequency values of 5 rad/s and 400 rad/s. The lines are a guide for the 
gradient. 

 

The lower frequency of 5 rad/s in Figure 6.9 is designed to capture the ωω ∝)(''G  dependence 

highlighted by the six higher concentrations (0.1-1mg/ml) in Figure 6.8. )('' ωG  is found to vary 

linearly with concentration, c∝ , until the concentration drops to 0.1 mg/ml and below. Indeed the 

lower three concentration samples appear to exhibit no dependence upon concentration at 5 rad/s. 

This may be explained by the fact that the global rheological response of low actin concentrations 

is viscous at these concentrations and so the actin cannot resist shear deformations [181]. The 

scaling of cG ∝)('' ω  would seem to demonstrate that the stress tension, tensσ , provides the largest 

contribution to the loss modulus in this range of concentration, in good agreement with the 
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prediction of Morse’s model, which calculates that ρω ∝)(tensG  (where ρ  represents the 

concentration) for 1−>> eτω . For frequencies greater than the entanglement frequency )('' ωG is 

expected to vary with 4/3ω , which it clearly does not in the graphs of Figure 6.8 at frequencies 

surrounding 5 rad/s. Indeed, the slope of )('' ωG actually varies between 5/4ω and ω .  

 

Given this discrepancy, we confirm that our measurements fall within the approximate magnitude 

range predicted by Morse’s model by plotting the viscoelastic moduli of 1 mg/ml actin (from 

Figure 6.8) against Morse’s three predictions for a 1 mg/ml actin solution (Figure 2.7). The best fit 

is found in the prediction for an actin solution with pc LL =  (for μm17=pL ), as shown below in 

Figure 6.10. Note that the results from Figure 6.8 have been converted into Dynes/cm2.  

 

 
Figure 6.10: (Taken from Ref. [87]) Morse’s prediction for )(' ωG  (solid line) and )('' ωG  
(dotted line) for a monodisperse solution of actin, pc LL = . The straight solid line in each 
figure has a slope of 3/4 and is the predicted high-frequency asymptote of )('' ωG .The 
viscoelastic moduli (red circles: )(' ωG ; green squares: )('' ωG ) of 1 mg/ml actin from 
Figure 6.8 have been added as a comparison.  

 

The higher frequency of 400 rad/s in Figure 6.9 was also used to obtain a concentration dependence 

of )('' ωG . At this frequency the loss modulus varies quite precisely with 8/5c . For this frequency 

(as for the lower frequency of 5 rad/s) it would be expected that )('' ωG  varies linearly with 

concentration, since )(ωtensG  is still the main contributor to the stress relaxation. A scaling law of 

5/4)( cGtens ∝ω has been observed before however, by Tassieri et al [120]. This is shown in Figure 

6.11, where the data of Tassieri et al [120] for 6.25 rad/s has been plotted next to the 5 rad/s data of 

Figure 6.9. Although slightly ambiguous, there it appears as it there may well exist a similar 

concentration independent plateau at low concentrations (<0.1 mg/ml).  
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Figure 6.11: The loss modulus )('' ωG vs. concentration at a frequency value of 5 rad/s 
(extracted from the complex moduli of Figure 6.8) compared to the loss modulus vs. 
concentration at a frequency of 6.25 rad/s (from Ref. [120]). The lines are a guide for the 
gradient. 

 

Morse’s model predicts a concentration independent limiting form of the loss modulus at high 

frequency (the straight solid line in Figure 6.10). This high frequency asymptotic behaviour, 
4/3)('' ωω ∝G , is only evident in the viscoelastic moduli  of Figure 6.8 in the concentrations of  0.6 

and 1 mg/ml. The lower concentrations of 0.25-0.6 mg/ml scale with 8/7ω for 60010 << ω and 

the concentrations of 0.04-0.16 mg/ml scale with ω  for 80030 << ω . An explanation of this 

scaling linearly with ω , as previously mentioned, is that at low concentrations, the actin filaments 

cannot resist shear deformations, and their global rheological response is viscous [181].  

 

Although the high frequency scaling of the loss moduli at lower concentrations (i.e. 
8/7)('' ωω ∝G and ωω ∝)(''G ) are not predicted by Morse, the 8/7ω case has also been measured 

before for concentrations of actin ≤ 0.6 mg/ml [120]. Similar time scales have been discovered by 

Everaers et al [182] and Liverpool [176, 183] in studies of the longitudinal and transverse 

fluctuations of semiflexible filaments. They found that at high frequency (thus short times) the 

fluctuations perpendicular to the local axis of the polymer scale as 4/32 tr ∝⊥  (similar to Morse’s 

Equation 2.24) but fluctuations parallel to the local axis scale instead as 8/72
|| tr ∝ and are 

correlated over a length 8/1
|| t∝l . However, these studies are not addressed towards the 

viscoelastic properties of semiflexible polymers, rather they are focused more upon measuring the 

dynamics of filaments; therefore they do not provide any real insight into the relationship between 

these time scales and the viscoelastic parameters required to test these theories more rigorously.   
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Our results here indicate that the high frequency dependence of the viscous moduli moves from 

ω∝  at low concentrations (0.04-0.16 mg/ml) to a value of 4/3ω∝  at high concentrations (0.6-1.0 

mg/ml).  These discrepancies from the predicted scaling in the frequency-dependence moduli may 

explain why the high frequency concentration dependence also differs from the predicted value. 

Additionally, it should be noted that experimental measures of properties of actin solutions 

(specifically the modulus) suffer from wide variations, even on samples from the same source 

[184]. This variation may be the result of small numbers of cross-linking proteins that exist in the 

samples. Whilst it may be extremely useful to use a highly purified model, with carefully 

controlled filament length, to test the theoretical models, it may perhaps be even more important to 

develop a better understanding on how actin networks more typically behave.  

 

We next plot the concentration dependence of the storage modulus, )(' ωG , at two frequencies of 2 

and 50rad/s (Figure 6.12). At the lower frequencies we recall (from Figure 6.8) that )(' ωG  varies 

with frequency between 2/1ω and 4/3ω , so we chose the frequency of 2 rad/s to capture this 

scaling. Note that the scaling of 2/1ω  has been noted in bulk rheological measurements [185, 186] 

and in magnetic tweezer microrheology [25] for 11 1010 <<− ω as an extension of the )(' ωG  

plateau.   

 

 

 
Figure 6.12: The storage modulus )(' ωG vs. concentration extracted from the complex 
moduli of Figure 6.8, at frequency values of 2 rad/s and 50 rad/s. The dotted lines are a 
guide for the gradient. It has been shown experimentally [139] that the EMA is the most 
accurate scaling law for the macroscopic plateau modulus of semiflexible polymer 
solutions in the tightly entangled regime, although we provide slopes of both the EMA and 
BCA gradients. The slope of 3/4c is a better fit for the data than 5/7c , agreeing with the 
EMA scaling.  
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From Figure 6.12 it can be seen that the concentration dependence at the frequency of 2 rad/s is not 

well defined, although the values increase with concentration above a concentration of 0.1 mg/ml. 

Below 0.1 mg/ml they become more scattered, although arguably around a constant value. At the 

higher frequency of 50 rad/s the concentration dependence varies as 3/4)(' cG ∝ω  for 11.0 << c , 

but is approximately constant with concentration for 1.0<c . Morse’s model predicts that the 

stress curvature, curveσ , contributes the most to the elastic modulus, thus Morse provides two 

scaling predictions for behaviour under this regime; i) 5/7)( ρω ∝curveG by using the binary-

collision approximation, and ii) 3/4)( ρω ∝curveG by using the effective-medium approximation. We 

include lines of both these gradients in Figure 6.11 to highlight that merely plotting the 

concentration dependence alone cannot distinguish between the two scalings. Tassieri et al [139] 

calculated the persistence length of different actin solutions in order to prove that the EMA 

approximation is the correct one.   

 

At low concentrations, Morse provides an alternative scaling of )(ωcurveG . His model predicts that 

that upon entering the tightly-entangled regime, by increasing the concentration (or chain length) 

from a loosely entangled solution of semiflexible rods, one would expect to see the curvature-

dominated power law regime predicted for loosely-entangled regimes, in which 4/1)()(* ωω iG ∝ , 

evolve into a curvature-dominated plateau, with a plateau modulus 4/1)(' ρω ∝G . At higher 

concentrations, the behaviours become similar to that predicted for coil-like chains, 3/4)(' ρω ∝G . 

The slope of 4/1c has therefore been added as an alternative interpretation in Figure 6.12.   

 

The scaling of 4/1c  for the storage modulus has also been discovered by Tassieri et al [120] at a 

frequency of 1 rad/s. This has been plotted against the 2 rad/s data (of Figure 6.12) in Figure 6.13.  
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Figure 6.13: The storage modulus )(' ωG vs. concentration at a frequency value of 2 rad/s 
(extracted from the complex moduli of Figure 6.8) compared to the storage modulus vs. 
concentration at a frequency of 1 rad/s (from Ref. [120]). The lines are a guide for the 
gradient. 

 

Note that these two scaling factors of 1/4 and 4/3 were also obtained from the time-dependent data, 

and shown in Figure 6.5.  

 

For actin solutions the cross-over point between the loosely-entangled and tightly entangled 

regimes has been measured at  ~0.1 mg/ml [127, 120, 139] and indeed Figures 6.10 and 6.12 both 

exhibit a change in scaling around these points (with the exception of the high frequency loss 

modulus).  

 

Using the previous results from in Section 6.1, a comparison can now be made to see if similar 

concentration scaling occurs across the full spectrum of both the time-domain MSDs and the 

frequency-domain moduli. A scaling factor of 4/3 was used to normalise the time-dependent data, 

and this factor was also predicted by Morse’s model for the concentration dependence of the 

curvature stress at the plateau modulus. In addition, this factor was discovered as the concentration 

scaling factor of the storage moduli in Figure 6.12. We find here that it can be used here to scale 

the higher concentration frequency-dependent data (i.e. neglecting the two lowest concentrations 

0.04 and 0.06 mg/ml) specifically by dividing the storage modulus by 3/4c  (Figure 6.14).  
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Figure 6.14: )(' ωG (left) and normalised )(' ωG (right) for actin solutions in 
concentrations from 0.1-1.0mg/ml. The normalisation factor is a value of c4/3. 

 

Figure 6.15 shows how the two lower concentrations (0.04 and 0.06 mg/ml) scale with the factor of 
4/1c discovered in the concentration dependence of the storage modulus (which was shown Figure 

6.12) and also in the concentration dependence of the relative viscosity (which was shown in 

Figure 6.7).  

 
Figure 6.15: Normalised )(' ωG for actin solutions in concentrations of 0.04 and 0.06 
mg/ml. The normalisation factor is a value of c1/4. 
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Similarly, the frequency-dependent loss modulus can be scaled by the factor 8/5c which was found 

in Figure 6.9 for the high frequency concentration dependence of the )('' ωG (Figure 6.16). Note 

that normalising by a factor of c  – the low frequency concentration dependence of )('' ωG  – does 

not cause the curves to collapse.  

 

 

 
Figure 6.16: )('' ωG (left) and normalised )('' ωG (right) for actin solutions in 
concentrations from 0.04-1.0mg/ml. The normalisation factor is a value of c5/8. 
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6.3 Wideband microrheology measurements of actin 

We now adopt the ‘two trap’ broadband step procedure introduced in Chapter 4.3 in order to 

measure the viscoelasticity of actin over a larger frequency range than is accessible with a single 

trap. Usually microrheological measurements of viscoelastic materials are either limited to the high 

end of the frequency response [156, 158, 187] (omitting the low frequencies entirely) or account is 

taken of the low frequency response only by the use of complementary techniques such as 

rotational rheometry [71] or passive video particle tracking microrheology [72]. In both cases this 

has been done without showing an overlapping region, thus leaving a significant information gap. 

This technique was applied successfully to a single actin concentration of 0.04 mg/ml. 

 

We recall from Chapter 4 that the broadband the procedure consists of two steps; namely 

measuring the thermal fluctuations of a trapped bead for a sufficiently long time to provide the trap 

stiffness and the high frequency viscoelastic properties (step I); followed by measuring the 

transient displacement of a bead flipping between two optical traps (spaced at fixed distance 0D ) 

that alternately switch on/off at sufficiently low frequency (step II). This second step has the 

potential to provide information about the material’s viscoelastic properties over a very wide 

frequency range, which is only limited by the acquisition rate of the bead position and by the 

duration of the experiment. However, because of the finite time required by the equipment to 

switch on/off (i.e. tens of milliseconds), the material’s high-frequency response can not be fully 

determined by this step. The full viscoelastic spectrum is thus resolved by combining the results 

obtained from both steps.  

 

Step I involves measuring the thermal fluctuations of an optically trapped bead in order to derive 

the normalised position autocorrelation function, )(τA  (Figure 6.17, together with the nPAFs 

predicted for a simple Newtonian fluid (i.e. water) with the same trap constant κ ). In the 

Newtonian case, it is expected that )(τA  decays as a single exponential with a characteristic 

relaxation rate related to the trap strength, bead size and zero-shear viscosity i.e. the well-known 

result for a massless particle harmonically trapped in a Newtonian fluid, recovered from Equation 

4.16, )exp()( ττ iA Γ−→  where ηπκ ai 6/=Γ . If κ and a are known then the viscosity of the 

Newtonian fluid can be extracted.  

 

On the other hand, in the case of a non-Newtonian fluid (where the viscosity is time-dependent) it 

is not guaranteed that Equation 4.16 can be resolved (i.e. inverse-Laplace transformed) into a 

simple form like the equation above, as shown in Chapter 4. However, this is no hindrance since 

we can calculate the viscoelastic moduli via the analysis of the nPAF, as in Equation 4.18. 



Chapter 6                                                                                                                                                       Actin   

 

                                                                                                                                                                        

112

 
Figure 6.17: The nPAF vs. lag-time of a 5µm diameter bead in actin at the two trap 
positions  mN /34.51 μκ =  and mN /04.52 μκ = . The dotted lines represent the prediction 
for a 5µm diameter bead in water at T = 25ºC with mN /34.51 μκ =  and mN /04.52 μκ = , 
respectively. 

 

In Figure 6.18 we display the impulse response (i.e. step II of the procedure) of a 5μm diameter 

bead suspended in a 0.04 mg/ml actin solution, with a duration between flips of sP 19~=  and a 

trap centre-to-centre separation of mD μ6.10 = , giving 64.00 =aD . In order to guarantee the 

linearity of the confining forces exerted by the two optical traps, the distance between them was 

chosen to be no more than 80% of the bead radius, aD 8.00 ≤  [163].  

 

 
Figure 6.18: The trajectory of a 5µm diameter bead flipping between two optical traps 1κ  
(bottom) and 2κ  (top) repeatedly switching after a duration sP 19~= . The bead is 
suspended in actin (with mN /34.51 μκ =  and mN /34.51 μκ = ).  
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In order both to evaluate 0)()( DtrtD r
=  and to reduce noise caused by Brownian fluctuations, 

the transient measurements were averaged over twenty flips, with the resulting curves shown in 

Figure 6.19. Experimentally, the switching process of the two traps is controlled by means of a 

spatial light modulator (SLM) which alternately creates an optical trap in one of two positions. It is 

important at this point to note that there is a short but finite time for which both traps exist 

simultaneously [164], due to the finite time required by the SLMs display to update the holographic 

pattern. This makes the switching process not exactly binary. However, this will of course only 

affect the high-frequency results obtained during this step which will ultimately be neglected in 

favour of the high-frequency response from step I. 

 

As in Chapter 5, wideband microrheological measurement are obtained from the optical tweezers 

by combining the frequency responses obtained from both steps I and II of the procedure. In 

particular, the material’s high-frequency response is determined by applying Equation 4.18 (via 

Equation 4.7 with kA  replacing kg ) to the )(τA  measurements (in which low-frequency 

information tends to be very noisy); whereas, the low-frequency response is resolved by applying 

Equation 4.22 (via Equation 4.7 with kD  replacing kg ) to the data describing the bead’s transient 

response to the flipping traps (in which the high-frequency response is limited by the performance 

of the SLM).  

 

 
Figure 6.19: The normalised mean position of all step-down data shown in Figure 6.18 
i.e.when simultaneously trap 2 (top) switches off and trap 1 (bottom) switches on. 

 

Typical results for actin are shown in Figure 6.20. It is evident that, although there is some noise in 

the frequency domain which comes from genuine experimental noise in the time-domain data 

(which can be reduced by increasing the number of flips), there is a clear overlapping region of 

agreement between the two methods, especially in the loss modulus, which makes the whole 
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procedure self-consistent. Moreover, it confirms the ease with which the low-frequency material 

response can be explored. 

 

 
 
Figure 6.20: Storage (G′) and loss (G′′) moduli vs. frequency of a solution of 0.04mg/ml 
actin; measured by means of both Equation 4.18 (high frequencies) and Equation 4.22 (low 
frequencies) applied directly to the experimental data presented in Figure 6.17 and Figure 
6.19, respectively. 

 

The loss modulus once again exhibits a steeper slope ( ω~ ) than described by Morse, but this is a 

result of the lower actin concentration used, as before. The storage modulus shows some agreement 

with the high frequency prediction of 4/3~ ω . The cross over between the storage and loss modulus 

at the entanglement frequency 1−
eτ  can clearly be seen. This intersection was only just reached with 

the ‘static’ optical tweezer measurements in the previous section.  

 

Note that actin can be up to 20μm long, thus it can have a reptation time is typically on the order of 

hours (since 3
crep L∝τ ). It is therefore possible for )(' ωG to extend to very low frequencies. Indeed, 

Morse’s model for semiflexible polymers with pc LL 10=  predicts a reptation time of around 

100,000 seconds (~27 hours). Bulk rheometer studies of 1 mg/ml actin [177, 184] found that even 

at their lowest accessible frequency (~ 310− rad/s) )(' ωG  was significantly larger than )('' ωG , 

suggesting a very low terminal relaxation frequency. By using the two-trap method presented here 

optical tweezers have the potential to span a large frequency range; however, a measurement of 

these extremely low frequencies would involve monitoring the tracer bead position for over a day. 

This is problematic in terms of the sheer amount of data that would need to be collected and 

analysed. Indeed, this is the reason that we use a low concentration of actin for the two trap 

method. Although higher concentrations were attempted, it was found that the actin had still not 

relaxed completely between alternate flips of the traps. When the time between flips was extended 
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(~hours) the size of data sets collected (~millions of data points) prohibited analysis, and this is an 

issue that is still being dealt with.  

 

To conclude, we have analysed the concentration scaling laws of actin solutions from both the 

time-dependent and frequency-dependent data. There are shown to be similar concentration scaling 

laws in both the frequency and time domains, which are coincident with those predicted by 

theoretical models. In addition, we have applied the wideband microrheological method described 

in Chapter 4 to an in vitro reconstituted solution of actin.  
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Chapter 7 
 

ACTIN AND MYOSIN NETWORKS 

 
It has been observed that single cells possess viscoelastic moduli with a much higher absolute value 

than those observed in reconstituted actin solutions alone [188-191]. This can be attributed to the 

huge variety of proteins that actin interacts with as it undergoes its normal routine. The biochemical 

differences between these proteins are exploited by the cell so as to adapt to as many environments 

and conditions as possible. Many actin-binding proteins possess the ability to significantly 

influence the structure of the actin cytoskeleton, and may therefore affect the viscoelastic properties 

of an actin network. For a small number of actin-binding proteins the viscoelastic change they 

produce within an actin network has been quantified e.g. fascin [192], myosin filaments [193], 

HMM [194], α-actinin [195], scruin [196] and filamin [197].  

 

One of the most ubiquitous of these actin binding proteins is the motor protein myosin, of which 

the myosin-II isoform found in skeletal muscle cells has been extensively characterised in terms of 

its biophysical and kinetic properties [38, 89, 99, 198]. In practice however, the thick myosin-II 

filaments that occur naturally in muscle cells are problematic to work with. A common alternative 

to these filaments are the protolytically produced fragments that are soluble and enzymatically 

active. The S1 fragment is comprised of a single head domain attached to a part of the myosin-II 

heavy chain. It retains the ability to bind to actin; indeed, if ATP is present in solution the head 

domain alone can generate movement [98, 99]. Heavy meromyosin (HMM) contains two head 

domains and a portion of the heavy chain, as described in detail in Chapter 1.  

 

The rigor properties (i.e. with no adenosine triphosphate (ATP) present) of HMM networks have 

been well studied [199-201]. For example, Tharmann et al. [200] demonstrated experimentally that 
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the linear elastic response of the cross-linked rigor networks is of entropic origin and fully 

determined by the distance between the cross-linked points (hence, the  cross-link concentration).  

 

In the general behaviour of polymer networks, recall that distinct molecular mechanisms can lead 

to a relaxation of an external or internal stress on different time scales, producing either elastic or 

viscous behaviour depending on whether energy is stored or dissipated. Many synthetic polymer 

networks contain cross-links that are covalent in nature, which causes a predominantly elastic 

response over a wide frequency range, as discussed in Chapter 2. This is a result of the covalent 

cross-links suppressing the single polymer diffusion that exists in entangled solutions; which in 

turns means that reptation is repressed and the low frequency viscoelastic behaviour of a covalently 

cross-linked polymer network is expected to reach a constant level of elasticity whilst viscous 

effects become negligible.  

 

Transient cross-links can be defined as those based on electrostatic interactions or Van der Waals 

forces, as is the case with actin and myosin [194]. These cross-links are different to purely covalent 

bonds; in particular, transiently cross-linking proteins can be characterised by an off-rate offk , 

which typically corresponds to frequencies in the intermediate regime of several mHz up to a few 

Hz [202, 203]. A molecular understanding of the mechanisms responsible for the behaviour of 

transiently cross-linked cytoskeletal networks is needed to quantify the mechanical properties of 

living cells. 

 

In contrast to covalently cross-linked filaments (as discussed in Chapter 2, for the model presented 

by Morse [87]), if transient cross-links are present, a pronounced minimum and maximum in the 

viscous loss moduli is observed at low frequency [194, 202] (Figure 7.1). In the case of rigour-

HMM, this viscous maximum occurs around Hzf 03.0max ≈ [194], and this time scale is 

independent of the cross-link density. Alongside this feature in the loss modulus there is always a 

decrease in elasticity at low frequencies, although the elastic response is still the dominant one. The 

magnitude of the storage modulus is dependent upon cross-link density, and this is not affected by 

frequency.  
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Figure 7.1: (Taken from Ref. [194]) Elastic (solid symbols) and viscous (open symbols) 
response for actin-rigor-HMM networks as a function of frequency [cACTIN=19μM, Ratio of 
HMM/actin =0.0076 (upright triangles) up to R= 0.143 (diamonds)]. The solid and dashed 
lines represent a global best fit of the model described in the study.  

 

In contrast to HMM, the S1 molecule has only a single actin-binding domain and cannot cause 

cross-linking between filaments, and its effect on actin networks has not been well studied; indeed, 

to the best of our knowledge, only one rheological study has been carried out by Le Goff et al. 

[204] which focused on the very high (>1000 Hz) frequency response obtained using DWS.  

 

In this chapter we aim to explore the dynamics of active actin and HMM or S1 networks (i.e. 

networks experiencing an excess of ATP), and the viscoelastic properties of active actin/S1 

networks at ‘medium’ frequencies, which we class as between the ‘low’ frequency (0.01-10 Hz) 

work of Lieleg et al [194], and the ‘high’ frequency (103-106 Hz) data of Goff et al [204]. Note 

that, the highest frequency we can access with optical tweezers (~1000Hz) corresponds to a 

timescale that is relevant to the myosin power-stroke duration (as described in Chapter 1) inferred 

from biochemical assays (~1ms) [204].   

 

A major line of work in recent years has been to address the issue of how ‘active’ systems in non-

equilibrium should be treated [205-208]. Active systems may be described as ones where some 

driven process occurs, for example, the interaction of actin with myosin molecules in the presence 

of adenosine triphosphate. The fluctuation-dissipation theorem (FDT) dictates that the same 

random ‘kicks’ of molecules in a system cause both Brownian diffusion motion and viscous 

dissipation, or equivalently that the response of a system in thermodynamic equilibrium to a small 

applied force is the same as its response to a spontaneous fluctuation [209]. If non-thermal forces 

are present within a system, then the fluctuations are greater than can be described thermally, and 

the FDT breaks down. This renders the Einstein component of the Einstein-Stokes relationship 

invalid, because the Einstein description of Brownian motion is violated.  
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One of the studies that instigated this branch of research was by Mizuno et al [205], who evaluated 

active and passive microrheology of in vitro actin filaments and myosin mini-filament networks. 

They found low-frequency discrepancies in the passive microrheology measurements when 

compared to the active microrheology. These non-thermal fluctuations were attributed to the 

myosin mini-filaments changing from a non-progressive to a progressive state at low ATP 

concentrations, whereby they increased the tension in the actin network, as shown in a change of 

scaling law of the elastic modulus from 4/3ω  to 2/1ω  [210]. However, we must highlight that there 

were two conditions that needed to be satisfied in order for these non-active fluctuations to be 

observed, namely that the ATP levels were low (≤60μM), either through ATP hydrolysis or 

through low initial conditions, and that the system was studied at a frequency <10Hz. If the ATP 

levels were kept at 1mM (using an ATP regeneration system as we have used in this thesis) then 

there was no difference from actin networks without myosin.   

 

Notwithstanding, the system studied here differs substantially from that of Mizuno et al because (I) 

we use a higher ATP concentration higher than 60 μM; (II) our experiments are conducted at a 

higher frequency (>10Hz), and (III); we do not use myosin filaments, instead we use double headed 

(HMM) and single headed (S1) myosin fragments. Single S1 molecules possess the ability to 

process along an actin filament [98] but they cannot cross-link filaments and therefore cannot 

increase tension in a manner comparable to myosin mini-filaments. Since HMM does possess the 

ability to cross-link actin filaments, we only study the dynamics of actin and HMM solutions in the 

time-domain, through the MSD and the concentration scaling laws.  

 

To explore the dynamics and viscoelasticity of in vitro reconstituted solutions of actin and myosin 

networks ‘static’ optical tweezer measurements are used (via the method described in Chapter 4.1) 

to analyse the normalised mean-square displacement, )(τΠ , of micron-sized tracer probes in order 

to derive the concentration scaling laws of actin and S1/HMM solutions from the time-domain. 

Following on from this, the storage and loss moduli of actin/S1 are examined and the concentration 

dependence of the frequency-dependent viscoelastic response is compared to that of the time-

dependent data. 
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7.1 Concentration scaling laws of actin and myosin networks 

To derive the concentration scaling laws of active actin/HMM and actin/S1 networks, the Brownian 

trajectory of optically trapped beads embedded in both the materials were analysed, via the 

normalised MSD, )(τΠ . S1 and HMM were added to actin (0.04mg/ml) in ratios of one molecule 

per actin filament (1:1) and four molecules per actin filament (4:1); both in the presence of excess 

ATP. In addition, a control sample of ‘dead’ or inactive HMM was analysed. The nMSD is plotted 

against normalised lag time in Figure 7.2. All results were averaged over a number of  

measurements N [(a) actin N=3, (b) dead HMM/actin N=2, (c) S1/actin (1:1) N=5, (d) HMM/actin 

(1:1) N=4, (e) S1/actin (4:1) N=4, (f) HMM/actin (4:1) N=5] taken from multiple samples over a 

period of three days. The error bars (representing the standard deviation) have been omitted from 

Figure 7.2 for ease of viewing, but have been plotted in Figure 7.3.  

 

The error bars are relatively small, although the errors for HMM/actin (1:1) are slightly larger as 

they exceed the errors of the HMM/actin (4:1) at very high frequency. At lower frequencies (longer 

timescales) this overlapping disappears. The normalised MSD, )(τΠ , of the dead HMM control 

sample is indistinguishable from that of the pure actin solution, and has a marked difference from 

the HMM/actin (1:1) sample, showing that no chemical interaction is taking place. Thus, steric 

interactions between actin and HMM are not enough to produce a marked behavioural change in 

the actin network. The S1/actin (1:1) sample is also virtually the same as that of the pure actin, 

whereas the HMM/actin solutions in both low and high ratio show a distinct change from that of 

actin alone. Interestingly the higher ratio (4:1) of the S1/actin sample actually lies above the 

)(τΠ curve of actin, and thus closer to the curve of water (slope of 1) implying the solution 

possesses reduced viscoelasticity when compared to that of actin.  
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Figure 7.2:  )(τΠ  vs. normalised lag time for a 5μm diameter bead in (A) pure actin or 
actin with dead HMM, (B) actin with single (S1) or double (HMM) headed myosin 
fragments in the ration 1:1, and (C) actin with single (S1) or double (HMM) headed myosin 
fragments in the ration 4:1. 

(A) 

(B) 

(C) 
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Figure 7.3: )(τΠ  vs. normalised lag time (with error bars) for a 5μm diameter bead in 
(A) pure actin or actin with dead HMM, (B) actin with single (S1) or double (HMM) 
headed myosin fragments in the ration 1:1, and (C) actin with single (S1) or double (HMM) 
headed myosin fragments in the ration 4:1. Error bars represent the standard deviation. 

(C) 

(B) 

(A) 
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As discussed in Chapters 5 and 6, we have found that concentration scaling laws of polymer 

solutions can be obtained directly from the time-domain, with no need to convert the experimental 

data to the frequency-domain, through the use of a Fourier transform. The first method of doing 

this is by analysing the relative viscosity, )(τη rel  (Figure 7.4) and specific viscosity )(τη sp  (Figure 

7.5).  

 

 

 
Figure 7.4:  Relative viscosity, )(τη rel , vs. normalised lag time for actin (0.04mg/ml), and 
for actin with dead myosin, single headed (S1) myosin fragments (Ratio of myosin:actin of 
1:1 and 4:1) or double headed (HMM) myosin fragments (Ratio of myosin:actin of 1:1 and 
4:1). Inset is a magnified section of the graph (at short times). 
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Figure 7.5: Specific viscosity, )(τη sp ,  vs. normalised lag time for actin (0.04mg/ml), and 
for actin with dead myosin, single headed (S1) myosin fragments (Ratio of myosin:actin of 
1:1 and 4:1) or double headed (HMM) myosin fragments (Ratio of myosin:actin of 1:1 and 
4:1). Inset is a magnified section of the graph (at short times). 

 
 

The next step in deriving the concentration scaling factors is to uncover a factor that normalises the 

specific viscosity. In this case, the scaling factor is obtained by first dividing the specific viscosity 

by the number of myosin heads per molecule (i.e. 1 for S1, and 2 for HMM), then by the square 

route of the concentration of the myosin fragments. If this normalisation factor is also applied to 

the normalised time, it produces a master curve for the HMM/actin solutions and the lower ratio of 

S1/actin, as shown in Figure 7.6.  
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The S1/actin (4:1) data does not collapse onto the same curve as the other networks under these 

normalisation conditions. This can be explained by the different mechanisms by which the two 

molecules interact with actin i.e. the cross-linking capabilities of HMM vs .the single actin binding 

domain of S1. The fact that the S1/actin (1:1) curve collapses onto the master curve shows that at 

low S1 concentrations the viscoelastic response is similar to that of low concentrations of HMM, 

but for the higher concentrations the two responses diverge.  

 

 
Figure 7.6: Specific viscosity normalised by a factor of (no. of heads x cmyosin

1/2) vs. 
normalised lag time (no. of heads x cmyosin

1/2) for actin (0.04mg/ml) with single headed (S1) 
myosin fragments (Ratio of myosin:actin of 1:1 and 4:1) or double headed (HMM) myosin 
fragments  (Ratio of myosin:actin of 1:1 and 4:1) 

 

 

The factor of cmyosin
1/2 is different from that found in pure actin networks (cactin

4/3).  As far as we are 

aware, this scaling factor is not predicted anywhere in the literature.  

 

A corollary of this normalisation is that normalising both the specific viscosity and time with 

regards to only the number of heads per molecule (one for S1, and two for HMM) for the low 

concentration 1:1 ratio measurements also causes the curves to collapse, as in Figure 7.7.  

 



Chapter 7                                                                                                                                   Actin and Myosin 

 

                                                                                                                                                                        

126

 
Figure 7.7: Specific viscosity normalised by number of molecular heads vs. normalised lag 
time (taking into account number of molecular heads) for actin (0.04 mg/ml) and S1 or 
HMM in 1:1 ratio. 
 

 

The concentration dependence can also be obtained by analysing the slope of the nMSD vs. 

normalised time close to zero. This value is equal to relη/1  (where relη  is the relative viscosity) 

and it was shown in Chapter 5 that plotting the relη  against concentration ratio ( R ) for PAM 

solutions produced the concentration scaling factors predicted in the literature. If the relη  of the 

actin and myosin solutions are plotted against the concentration ratio (Figure 7.8), it can be 

seen that two very approximate scaling regimes are uncovered: an increasing relη  for 

actin/HMM and a decreasing relη  for actin/S1.  
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Figure 7.8: The relative viscosity, relη , at 0→t plotted against actin/myosin ratio for 
actin/HMM (squares) and actin/S1 (circles). The lines are a guide to the gradient. 
 

 
Whilst there are obvious limitations to obtaining accurate slopes from graphs with only two 

points, the error bars are small enough that the general trends can still be hinted at. In Section 

7.2.2 actin/S1 networks are studied in greater detail and similar scaling laws are found as in 

Figure 7.8. 

 

7.2 Viscoelasticity of actin-S1 networks 

In order to elucidate further the effect of adding S1 molecules to actin networks, we probe the 

linear viscoelastic properties of a number of additional active S1 and actin solutions. The 

storage, )(' ωG , and loss, )('' ωG , moduli were once again calculated from measuring the trajectory 

of an optically trapped bead in a series of concentrations of S1 and actin (in the presence of ATP). 

An average was taken of the complex moduli of N measurements per concentration ratio [N=5-7 

for all data sets] (Figure 7.9, A-G).  
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Figure 7.9 [A-G]: Loss and storage moduli vs. frequency for (A) pure actin (0.04mg/ml) or 
actin with single head myosin fragment (S1) in ratios of: (B) S1/actin 1:1, (C) 2:1, (D) 3:1, 
(E) 4:1, (F) 8:1 and (G) 16.1. The solid and dotted lines are a guide for the gradients.   
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For the pure actin sample (Figure 7.9A), we see that the storage modulus scales with 85.0ω  and the 

loss modulus with 4/3ω . The scaling of 3/4 is as described by Morse [87] and as discussed in 

previous chapters, whereas the scaling of 0.85 is between the values of 7/8 and 1, as measured for 

other low concentration actin samples in Chapter 6. The most obvious change that the addition of 

S1 produces in the network is the immediate decrease in the storage modulus at high frequencies, 

opposed to HMM, which produces an increase [201]. Indeed, apart from in the 3:1 ratio (Figure 

7.9D), the elastic component practically vanishes for all frequencies > 100 rad/s, leaving only some 

high frequency noise.  

 

The study by Le Goff et al. found that S1 decreased the elastic modulus at very high frequencies 

(>1000Hz), as well as changing the scaling factor of the shear modulus amplitude ( dG ) from 

4/3~ ωdG to 8/7~ ωdG , indicating dominance of the longitudinal modes of fluctuation  [204]. We 

find here that S1 also decreases the elastic modulus at lower frequencies (4-1000Hz), but we do not 

see the concomitant change in scaling law.  

 

To extract further information, the concentration dependence of the loss and storage moduli are 

plotted for frequencies of 80 and 400 rad/s for the loss modulus, (Figure 7.10) and 50 rad/s for the 

storage modulus (Figure 7.11). Both the loss and storage moduli have been normalised by the value 

for pure actin.  

 

The loss moduli graphs have been shown in both linear (Figure 7.10, A) and log-log (Figure 7.10, 

B) form. The added lines on the log-log graph are designed to extract the actual dependence of the 

concentration. 
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.  

 

 
Figure 7.10:  The normalised loss modulus )(''/)('' ωω ActinGG vs. ratio of myosin:actin 
(for data extracted from the complex moduli of Figure  7.9) for actin/S1 samples at a 
frequency of 80 and 400 rad/s, and at S1:actin ratios of 1:1 16:1 .(A) Linear graph: The 
lines have been added to demonstrate the general trends of the concentration dependence. 
(B) Log-log graph: The dotted lines are a guide for the gradient. 
 

 

The data in Figure 7.10 confirms the trend first noticed in Figure 7.8, where the loss modulus 

decreases as the S1 concentration increases. At both frequencies in Figure 7.8 the loss modulus 

scales with 6/1~ −R . From this it can be inferred that the S1 molecules suppress the viscous 

dissipation of the actin filament.  If we assume that (for the frequencies measured here) that the 

tension stress contributes the most to the response of the complex shear modulus, then from 

Equation 2.24 (Morse’s equation for the limiting value of )(* ωtensG , ) we see that the stress is 

proportional to the persistence length (as 4/5
pL , which is also predicted by MacKintosh [130]). The 

(A) 

(B) 
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persistence length of actin filaments interacting with S1 molecules has been measured to be less 

than that of an actin filament [204], which would correspond to a decreasing tension stress 

contribution to the high frequency moduli.   

 

The scaling uncovered here for the concentration ratio dependence of the loss modulus is similar to 

the scaling factor of -1/5 seen in Figure 7.8, where the relative viscosity was plotted against 

concentration. From Chapter 5, the relative viscosity can be related to the complex shear modulus 

via Equations 5.23 and 4.18, thus it is valid to compare the scaling laws of both quantities.  

 

Figure 7.11 shows the relationship between the concentration and the storage modulus, where the 

data is shown in linear (Figure 7.11A) and log-log (Figure 7.11B) form. It can be seen that the 

concentration dependence of the storage modulus at a frequency of 50 rad/s is approximately 3/1−R , 

which is a stronger dependence than measured for the relative viscosity in Figure 7.8.   

 

 

 
 

Figure 7.11 [A]: The normalised storage modulus )(''/)('' ωω ActinGG vs. ratio of 
myosin:actin (for data extracted from the complex moduli of Figure 7.19) for actin/S1 
samples at a frequency of 50 rad/s, and at S1:actin ratios of 1:1 16:1. The data is shown 
on a linear plot where the lines are added simply to illustrate the shape of the 
concentration dependence. 
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Figure 7.11 [B]: The normalised storage modulus )(''/)('' ωω ActinGG vs. ratio of 
myosin:actin (for data extracted from the complex moduli of Figure 7.9) for actin/S1 
samples at a frequency of 50 rad/s, and at S1:actin ratios of 1:1 16:1. The data is shown 
on a log-log plot where the dotted lines are a guide for the gradient. 

 

What is striking about the effect of S1 upon actin networks is that the observed decrease in network 

elasticity is similarly observed in active solutions of actin and myosin filaments. Humphrey et al. 

[211] studied active actin and myosin-II mini-filaments (short versions of the myosin ‘thick’ 

filaments) and discovered a similar reduction in storage (and a small reduction in loss modulus) 

when compared to pure actin. Using a ratio of myosin to actin of 15:1, they showed that when no 

ATP was present, the myosin filaments act as a cross-linker (similar to HMM samples that were 

discussed earlier in the chapter), thus increasing the elastic plateau modulus. Once ATP was added 

however, the storage modulus decreased to 40%± 10% of actin alone (a value close to the 

25%± 11% for the 16:1 sample of Figure 7.13). A simple tipping of a cuvette demonstrated that the 

presence of myosin caused the actin solution to flow, confirming that it became more fluid-like. A 

subsequent fluorescence comparison of filaments with and without myosin motors highlighted 

differences in both speed and directionality; in the absence of myosin motors, the filament 

undergoes random Brownian motion confined by the surrounding unlabelled actin filaments; in the 

presence of myosin filaments, the myosin induces longitudinal sliding of the actin filaments (in the 

presence of ATP); thus, they found that the average reptation time of the network decreased from 

500± 100 seconds to 8± 0.4s when myosin was added.  

 

The difference between the myosin mini-filaments and the S1 molecules studied in this chapter lies 

in the timescales upon which they modify the actin behaviour. In the case of the mini-filaments 

)(' ωG  is only much less than )('' ωG  (i.e. the material flows) for frequencies lower than 1−
repτ  
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(approximately 1/8 rad/s in this case) whereas for the S1 molecules )(' ωG  is decreased at high 

frequencies when compared to actin alone, due to the increase in persistence length.  

 

In this Chapter we have investigated the effect of two types of myosin fragments upon the 

dynamics or viscoelasticity of actin networks. In particular, we have presented a direct comparison 

between HMM and S1 molecules in order to highlight the different ways in which they modify the 

relative viscosity of actin solutions.  
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Chapter 8 
 

MEASURING THE MECHANICS OF SINGLE CELLS 

 
Measuring the properties of protein networks in vitro has great importance in understanding cell 

mechanics, but being able to measure cytoskeletal properties in situ within a live cell takes us a step 

closer to seeing the ‘bigger picture’ of cell behaviour. Many more variables come into play during 

an in vivo experiment and being able to accurately and sensitively decipher the viscoelastic changes 

requires a more careful interpretation than for protein networks. As many authors have noted, the 

mechanical properties of a cell’s cytoskeleton can influence factors such as growth, apoptosis, 

motility, signal transduction, gene expression etc [89, 212, 213]. Related to this is a desire to be 

able to provide a theological interpretation of the cell’s viscoelastic response that has the potential 

to yield quantitative information on the cell’s cytoskeletal structure. Consequently, we have 

developed a means of passive video particle-tracking microrheology measurements that 

quantitatively measure changes in the time-dependent and viscoelastic properties of a cell as a 

consequence (in this case) of simple changes in its external environment i.e subjecting a cell to 

hypo-osmotic shock. In the process, we identify scaling laws that differ from the expected high-

frequency cell response of 4/3~ ω , which we attempt to describe rheologically as well as 

biologically.  

  

Osmotic regulation and the transport of osmotically active molecules are fundamental to both 

metabolic processes and homeostasis of cells and require a precise regulation and maintenance of 

intracellular water homeostasis [214]. The ability of many cells to regulate their volume, via

internal restructuring, in response to osmotic changes in their environment is an essential 

component of normal cellular function.  This regulatory volume change is linked to a 

reorganization of the cytoskeletal actin networks [215-218]. Figure 8.1 is taken from Ref. [218] and 

provides a good example of how the actin structures in a cultured astrocyte cell can change under 
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exposure to various osmotic conditions. Cells thrive in iso-osmotic conditions where their 

environment contains physiological salt levels. Exposure to a hypotonic solution typically induces 

an initial swelling followed by a compensatory cell shrinkage, which occurs over a slower 

timescale of several minutes. The modulation of the actin dynamics and polymerisation that 

accompanies these regulatory volume changes has been shown in various cell types by methods 

such as DNase I inhibition assay, fluorescence measurements of phalloidin-labelled actin, and 

immunoblot analysis [219].  

 

In this thesis we have developed a video particle-tracking tool to study the microrheology of cells, 

using a Jurkat lymphocyte cell line as a model system. In general, lymphocytes have been shown to 

have a response to hypo-osmotic solutions that is influenced by tyrosine kinase activity [220] and 

cytoskeleton (actin) participation in ion channel activation has been demonstrated [221]. 

Furthermore, the interest in T-cells stems from their important role in the regulation of immune 

responses. In particular, Jurkat cells, as used here, are CD4+ T-lymphoma cells that are often 

utilised in the study of T-cell signalling [145] and HIV-1 dissemination in viral pathogenesis [146].  

In addition, they are non-adherent spherical cells that retain their spherical shape throughout their 

lifetime, and experience no spreading or migration when settled on a glass coverslip.  

 

 
Figure 8.1: (Taken from Ref. [218]). Distribution of actin in astrocyte cells under different 
osmotic conditions. Cells were incubated in Krebs-HEPES medium of different osmolarities 
and then fixed and stained with rhodamine-phalloidin. Actin was visualised by fluorescence 
microscopy. (A): cells in iso-osmotic medium; (B): cells maintained in 50%  hypo-osmotic 
medium  for 2 min; (C): cells maintained in 50% hypo-osmotic medium for 15 min; (D): 
cells maintained in 50%  hypo-osmotic medium for 2 hours.  

 

The linear viscoelastic properties of a material can be represented by the frequency-dependent 

dynamic complex modulus, )(* ωG , which provides information on both the viscous and elastic 

nature of the material. The standard method of measuring )(* ωG  is based on the imposition of an 

oscillatory stress, ),( tωσ , and the measurements of the resulting oscillatory strain, ),( tωγ , or vice 
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versa. The amplitudes of in-phase and out-of-phase components are proportional to the stress 

amplitude, with constants of proportionality defining, respectively, the storage and loss moduli.  

 

The aim here is to present a straightforward procedure for measuring the in vivo mechanical 

properties of single cells via passive video particle tracking microrheology of single beads attached 

to the cells’ exterior. This method has advantages over both complicated active microrheology 

techniques, where complex experimental set-ups are necessary to exert an external force for 

performing stress-controlled measurements; and invasive passive video particle tracking of 

submicron-probes embedded (either via endocytosis or micropipette injection) within the cell’s 

cytoskeleton (e.g. [14, 26, 108, 222-224]). 

 

In particular, the procedure consists of measuring the thermal fluctuations of a bead chemically 

bound to a cell (Figure 8.3) for a sufficiently long time. Under these circumstances the cell acts as a 

trap, creating normalised MSD profiles very similar to those of optically constrained beads as 

shown in Figure 8.2. The time-dependent mechanical properties of the cell can then potentially be 

analysed similarly to the OT tweezer experiments in previous chapters.  

 

 
Figure 8.2: Normalised MSDs of optically trapped beads in water (blue) and actin (red) 
(left) and of a bead stuck to a cell (right). 
  

A generalised Langevin equation is adopted to relate the time-dependent bead trajectory, )(trr , to 

the frequency-dependent moduli of the cell. Notably, the procedure presented here represents an 

alternative methodology that can be extended to many experimental formats and provides a simpler 

addition to cellular physiology studies (e.g. those monitoring cell pharmacological response) than 

existing single cell viscoelasticity assays. Indeed, when compared to single cell viscoelasticity 

assays such as magnetic tweezers, atomic force microscopy and optical stretcher, as employed in 

[14, 26, 108, 222-224], our method has the advantage of revealing the changes of the cell’s 

viscoelastic properties over a wide range of frequencies (here from ~0.6 Hz up to ~600 Hz), to a 

high level of accuracy, whilst it experiences an induced physiological process. 
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As discussed in Chapter 7, when carrying out microrheology on ‘active’ systems, there arise some 

open questions that need to be addressed. Predominantly these deal with whether or not it is valid 

to apply Einstein’s equation for the MSD (Eq. 1.14) to a system where active fluctuations may be 

measureable, because Einstein’s equation is valid only for Gaussian distributions [171]. To recap, 

Mizuno et al [205] discovered that at low ATP conditions, non-thermal low frequency fluctuations 

were measureable in in vitro solutions of actin and myosin mini-filaments, causing the fluctuation 

dissipation theorem (FDT) to break down.  

 

Some studies have shown that these non-thermal fluctuations are important in cell microrheology 

[206-208], with beads undergoing two different types of movement in cells, depending upon the 

time-scale under observation. Indeed, Rogers et al [225] highlight that intracellular probes can 

experience two different regimes of behaviour; sub-diffusive behaviour at short time scales, 

indicative of thermal motion in a viscoelastic medium; and a super-diffusive regime at longer time-

scales, indicative of active motion. In the experiment we present here, the beads are prohibited by 

experiencing this super-diffusive regime because they are neither intracellular, nor are they free to 

diffuse on long time scales, as the cell itself acts as an anchor, restricting the beads’ long term 

motion.   

 

Moreover, there is another set of studies [206, 226] which have found that even though active 

fluctuations clearly have a place in the physiology of a cell, they do not interfere with cellular 

rheology measurements, and indeed the displacement of beads within or on cells can be treated as 

Gaussian; thus Einstein’s equation is valid. The work of Massiera et al [226] on epithelial cells 

directly conflicts with the study performed by Bursac et al [208] on muscle cells. Massiera et al 

found that for short lag times only a small non-Gaussian parameter exists in the distribution of the 

thermal fluctuations of a bead attached to the epithelial cell membrane, as opposed to the finding of 

Bursac et al that a large non-Gaussian parameter is apparent in muscle cells. It may be that the 

large bead excursions seen in muscle cells are due to cell-scale contractile activity, which is not 

relevant in non-contractile epithelial cells [226]. Importantly, this highlights the differences that 

exist between each cell type, and the care that must be taken when comparing cell mechanics 

across different kinds of cells. 

 

To calculate the linear viscoelastic properties of the cell from the time-dependent bead MSD, 

Massiera et al truncate data at long lag times from their measurements, thus removing any bead 

behaviour that may be considered super-diffusive [226]. This is similar to the approach which we 

adopt here, although we do not truncate the data; instead, the cell constrains the movement of the 

bead at long times, acting in the same way as an optical trap and restricting the bead’s long time-

scale diffusion. Accordingly, as in previous Chapters, we first analyse the time-dependent 

trajectory of the bead using the mean square displacement. Then, using only the data at short times, 
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and treating the system as ‘quasi-static’ (as discussed further in a later section), we calculate the 

linear viscoelastic properties of the cell.  

 

8.1 Experimental Details 

Jurkat  cells  were  obtained  from  ATCC  (clone  E6-1,  TIB-152) and maintained  in RPMI 1640 

(1x) media containing L-Glutamine and 25mM HEPES [Gibco, Invitrogen]. Prior to experiments 

they were suspended in PBS [Gibco, Invitrogen] with an osmolarity of 275-304 mOsm then, mixed 

with functionalised beads and allowed to equilibrate for ~ 10min. 

 

 
Figure 8.3: (Left) Top view of a 5μm diameter silica bead chemically bound to the surface 
of a Jurkat cell and (Right) Side view of left image. 

 

Silica beads were functionalised with anti-CD4+ (as described in Chapter 3); chosen so as to bind 

to the CD4 protein expressed on the surface of Jurkat cells. These beads were optically trapped and 

moved to the equatorial plane of the cell, where they were held for a sufficient time (≈ 2min) until 

the bonding process was completed (Figure 8.3). This was judged by switching the trap off and 

confirming that the bead stayed in the same position.  

 

The bead trajectory was measured in real time, at up to ≈ 600Hz, by using our own suite of image 

analysis software written in LabVIEW, which is based on the analytical method (the static optical 

tweezer measurements) described in Chapter 4. Measurements were taken first in phosphate-

buffered saline (PBS), a common buffer for biological studies because it provides cells with 

optimal isotonic conditions similar to what would be experienced in the body. 10% (v/v) of 

distilled water was then added in order to change the osmolarity of the solution and to induce a 

regulatory volume change in the cell. 
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8.2 Analysis of the mean square displacements 

It is anticipated that there are two major physiological processes that accompany the changes in 

osmolarity of the solution surrounding the Jurkat cell: firstly, there is an actin cytoskeleton 

reorganisation; and secondly there is an increase of the cell volume as the solution becomes hypo-

osmotic. In order to quantify the changes in cell volumes, we assumed that the cells were spherical 

(Figure 8.3). In particular, Figure 8.4 shows the relative volume changes <20% when the 

surrounding PBS solution was made hypo-osmotic by addition of 10% [v/v] distilled water.  

 

 

 

 
Figure 8.4: (Top) Change in volume measured for a single Jurkat cell, with left image 
showing the cell in the isotonic solution, and the right image showing the cell 7 minutes 
after the solution was made hypotonic. (Middle left) Volume change of a Jurkat cell plotted 
as a function of time in our experiment and in (Middle right) Ref. [227] for a human 
melanoma cell.(Bottom) The volume change plotted as a function of the radius.  
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The data in Figure  8.4 shows that, after an initial swelling, the cells contract to a still swollen state 

that is ~15% larger than when they were in isotonic PBS. These results correspond to a change of 

<6% and ~5% in the cell radius, respectively (Figure 8.4, bottom). The shape of the volume graph 

we obtain (middle left in Figure 8.4) compares favourably with other measurements of 

hypotonically induced regulatory volume changes already existing in the literature (middle right in 

Figure 8.3, taken from Ref. [227]). In this example the authors fitted an exponential decay to the 

curve, however it appears that the data diverges from the curve at long time, which is similar to our 

results. Based on these observations, in this study we assume that these small radius changes do not 

affect the dynamics of the system appreciably. To study how the dynamics of Jurkat cells vary with 

the osmolarity of the solution, we first analyse the difference time regimes in the time-dependent 

normalised mean-square displacement, )(τΠ , which has the potential to reveal information both on 

the pure elastic component of the cell (at long time intervals or low frequencies) and on the fast 

dynamics occurring at small length scales (e.g. those related to the transverse bending modes of 

single actin filaments in the cytoskeleton).  

 

In Figure 8.5, the )(τΠ curves are derived from measurements that were collected at fixed time 

intervals after the solution was made hypotonic and compared with the normalised MSD of the 

same cell in phosphate buffered saline (PBS) solution, prior to hypotonic exposure Note that in 

order to more easily discern visually the changes in )(τΠ caused by the hypo-osmolarity, the 

normalised MSD for the cell in PBS is plotted in each of the panels.  

 

During hypo-osmotic shock the analysis of the MSD uncovers the changes in the dynamical 

response of the cell, as shown in Figure 8.5. 2 minutes after exposure to a hypo-osmotic condition 

the cell behaves similarly to the control conditions in PBS (Figure 8.5A). However, after 7 minutes 

exposure the MSD moves upwards when compared to the cell in PBS (Figure 8.5B), indicating an 

increase in elasticity (as demonstrated in Figure 1.6 in the Introduction). As time passes the cell 

then begins to equilibrate its osmolarity, and both the slope and time dependence of the MSD 

change and revert back to once again behaving in an equivalent way to the cell in PBS. 

Importantly, it should be noted that in Figure 8.5 there is no evidence of a super-diffusive bead 

motion at long times. This is, we believe, because the cell acts as an anchor, meaning that long term 

diffusion modes are prohibited.  
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Figure 8.5 [A-F]: The )(τΠ  vs. lag-time of a 5µm diameter silica bead chemically bound 
to a Jurkat cell in iso-osmotic (PBS) solution (squares) and in hypo-osmotic solution 
(circles) after addition of 10% v/v distilled water to the PBS buffer, and measured at time 
intervals (Δt) of (A) 2 min, (B) 7 min, (C) 12 min, (D) 18 min,  (E) 23 min and (F) 28 min 
respectively.  
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8.3 Cell viscoelasticity model, results and discussion  

We now analyse the linear viscoelastic properties of the cell via a Langevin equation, which relates 

the time-dependent bead position to the viscoelastic moduli of the cell. As discussed earlier, there 

is some debate about the conditions under which the Stokes-Einstein relation can be applied to 

active materials. The condition of ‘quasi-steady’ is required for the FDT to be applicable, and is 

described by Mason and Squires as when ‘changes occur slowly compared to sampling times’ 

[228]. As can be seen in Figures 8.2 and 8.5, the plateau region of the MSD, where no diffusion 

modes are apparent, is reached within a few seconds. It is therefore reasonable, given the quick 

sampling time (where each measurement takes on average 2 minutes), to assume that the cell is in a 

quasi-steady state, as the broad cytoskeletal restructuring (in response to hypo-osmotic shock) takes 

place on a time-scale of ~ 30 minutes.  

 
The experimental procedure is analytically described through the analysis of the time-dependent 

trajectory )(trr  of a bead, chemically bound to the cell membrane. The equation describing the 

bead position ttr ∀)(r  can be derived by means of a generalised Langevin equation, which in three 

dimensions is: 

 
[ ]∫ −+−−=

t

scR dttftam
0

)()()()( ττντζτζ
rrr  

(8.1)

where m  is the mass of the particle, )(tar  is the acceleration, )(tvr  is the bead velocity and Rf
r

 is 

the usual Gaussian white noise term, modelling stochastic thermal forces acting on the particle. The 

integral term represents the total viscous damping force acting on the bead, which, based on the 

superposition principle, incorporates two generalised time-dependent memory functions, )(tcζ  and 

)(tsζ , that are representative of the viscoelastic nature of both the cell and the solvent respectively. 

These memory functions are directly related to the materials’ complex modulus as shown below.  

 

In the case of the solvent, which in this work is the media surrounding the cell, the relationship 

between the memory function and the complex modulus is straightforward. Indeed, to a first 

approximation, using the assumptions adopted by Mason & Weitz [4] when studying the motion of 

thermally excited free particles at thermal equilibrium, the complex modulus of the solvent is 

related to )(tζ  by the expression:  

 

R
i

G s
s π

ωζω
ω

6
)(ˆ

)(* =  
(8.2)

 
where R  is the bead radius and )(ˆ ωζ s  is the Fourier transform of )(tsζ . In the case of the cell, we 

assume a similar relationship between )(* ωcG  and )(tcζ  to that given above for the solvent, but 

with a different constant of proportionality, yet unknown, that we will call β : 
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(8.3)

 
Note that, β may vary between different cells because it depends on (i) the cell radius ( cR ), (ii) the 

number of the chemical bonds between the bead and the cell, (iii) the contact area between the cell 

and the glass coverslip, and (iv) the relative position of the bead with respect to both the cell’s 

equatorial plane and the glass coverslip. However, in this study we will focus only on the changes 

in dynamics due to variations in osmolarity. This can be achieved since all the above parameters, 

with the exception of cR , are (in good approximation) time-independent, and will not change 

significantly during the course of a set of measurements (as shown hereafter in Figure 8.4 for cells 

performed in iso-osmotic conditions). In addition, it is important to highlight that the cells 

maintained  a  spherical  shape  well  beyond  the  duration  of  the  experiment. Moreover, the cells 

adhered to the cover-slip and no drift was observed during the experiment. Finally, given that we 

measure an increase of the cell radius ( cR ) of  ≤5% for the hypo-osmolarity experiments described 

below, we make the assumption that this small change does not affect the dynamics of the system 

appreciably.  

 

Importantly, β also incorporates the boundary conditions of the Stokes part of the Stokes-Einstein 

relation. Moving a bead close to a surface boundary requires a correction factor to be applied, in 

comparison to when the bead is far from a boundary in solution. Although we cannot quantify this 

factor, it can be neglected here provided it stays constant throughout the experiment, because our 

results will be shown to include a ratio of two functions proportional to β.  

 

We now describe how the thermal fluctuations of a bead, chemically bound to a cell, can be 

investigated to determine the viscoelastic properties of the cell through the analysis of the time 

dependence of the bead’s mean-square displacement [ ]
t

trtrr 22 )()()( rr
−+≡Δ ττ  in the radial 

direction of the cell; where t  is the absolute time and τ is the lag time (i.e. time interval). The 

average is taken over all initial times t . Under these circumstances, it is an easy step to show that, 

at thermal equilibrium, Equation 8.1 can be reorganized to express )(ωζ c  as function of the 

MSD ( )τ : 

 
 

)(ˆ
)(ˆ

6)(ˆ
22

ωζ
ωω

ωωζ s
B

c
r

Tkmi −
Δ

−−=
(8.4) 

 
where )(ˆ2 ωrΔ  is the Fourier transform of )(2 τrΔ , ωi  is the Fourier frequency, Bk  is the 

Boltzmann constant and T  is the absolute temperature. From Equation 8.4, it follows that: 
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where 0'G  is the limiting value, for vanishing frequencies, of the elastic modulus of the whole 

system (i.e cell plus solvent), which in this work is )(''0 ωcGG ≡ for 0→ω ; and )(ˆ ωΠ is the 

Fourier transform of 22 2/)()( rr ττ Δ=Π  as before, where 2r  is the variance of 

)(trr measured for sufficiently long time. It has been shown (in Chapter 5) that for a constrained 

bead 1)( =Π τ  at large time intervals. It is important to highlight that the term 0'Gβ  (representing 

the coefficient of the elastic restoring force) can be determined by means of the principle of 

equipartition of energy, which in one dimension, is written: 

 
 2

0' rGTkB β=  (8.6)

 

Usefully, two further simplifications can be applied here; namely that for micron-sized silica beads, 

the inertia term 2ωm is negligible up to frequencies on the order of MHz, and that for solvents 

having a frequency-independent viscosity sη  (e.g. water), )(* ωsG simplifies to siωη . Thus, 

Equation 8.5 provides the linear viscoelastic properties of the cell (scaled by 0'G ) over a range of 

frequencies that is limited at the top end by the rate of acquisition of images to determine the bead 

position, and at the bottom end by a cut-off frequency given by: 

 
 

0

0'
η
β

ω
G

coff =  
(8.7)

 

where 0η is the limiting value, for vanishing frequencies, of the viscosity of the whole system.  

 

Finally, in order to evaluate the Fourier transform in Equation 8.5 we adopt the analytical method 

introduced by Evans et al [161], discussed in Chapter 4, which is applied directly to the 

experimental data points and has the advantage of removing the need for Laplace and inverse-

Laplace transformations of experimental data. 

 

(I) Elastic properties of the cell derived from )(τΠ . 

The first result that can be obtained through the analysis of the thermal fluctuations of the bound 

bead is the relative change of the cell’s low-frequency elastic plateau modulus, )0('
cG , shown in 

Figure  8.6. This can be evaluated from the time-dependent variance, 2r ,  of the constrained 

bead in the radial direction of the cell, by adopting the principle of equipartition of energy as in 
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Equation 8.6. Based on the assumption of the cell being in a quasi-static state, we define this low 

frequency modulus (multiplied by the factor β) as analogous to the optical trap strength in optically 

trapped bead experiments, and it can be seen as being defined by the plateau value of the MSD 

graphs in Figure 8.5.  

 

In addition, experiments were carried out on cells treated with blebbistatin, an inhibitor of the actin 

and myosin interaction mechanism. If the low-frequency modulus was measuring any non-thermal 

fluctuations caused by actin-myosin contractility, it would be expected that this would be shown in 

differences between control cells and cells in which the contractility is inhibited; however, no 

statistical difference was found between the low-frequency elastic modulus of blebbistatin treated 

cells when compared to the control cells in PBS (results not shown in this thesis).  

 

 

Figure 8.6: The absolute value of )0('
cnn Gβ measured in PBS and in 10% hypotonic 

solution (squares) or in isotonic PBS solution (circles). The arrow indicates the time at 
which the PBS solution is made hypotonic by the addition of water. The single PBS 
measurement at 4.5 minutes was an average of three PBS measurements, and the standard 
deviation was used as the error in all readings. The dotted line is to compare later 
hypotonic measurements with the initial measurement in PBS.  

 

Although the absolute value of )0('
cG  cannot be determined because of the unknown factor , β , 

the relative change between the different values of )0('
cGβ , obtained from n sequential 

measurements performed on the same cell, differ from each other only because of the small 

increase of the cell radius (measured as ~5%) and the variation of )0('
cG . Thus, from Figure 8.6 it 

is clear that a change of 10% in osmolarity towards hypo-osmolarity, which occurs at t ~ 9min 

through the addition of distilled water to the isotonic solution, induces a temporary increase of 
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)0('
cGβ  that lasts for approximately 15-30 min. At its greatest, this change in the low frequency 

elastic modulus dependent term, )0('
cGβ , is over 3 fold in magnitude. Figure 8.5 also portrays the 

values of )0('
cGβ  for a control cell that was kept in isotonic PBS for a similar length of time as the 

hypo-osmotic cell. No significant change in )0('
cGβ  can be seen for the control cell.  

 

The explanation for such a large increase may in part be due to the change in radius; however, if 

this were solely responsible, it would be expected that )0('
cGβ would remain significantly above its 

original value, as the cells do not regain their original radius. Thus, since )0('
cGβ  does return to 

close to the original value (at t ~ 25 min), consideration should be given to a temporary increase in 

cytoskeletal tension due to the reduction in ionic strength of the solution (i.e. a reduction in 

screening of the charges of the cytoskeletal molecules by solution based ions). This would cause 

the elastic modulus to increase as predicted by Granek [210].  This latter phenomenon would also 

alter the cell’s viscoelastic properties and any resulting actin cytoskeleton rearrangement may be 

seen as part of an attempt of the cell to re-equilibrate the solution osmolarity.  

 

Moreover, a >3 fold increase in the cell’s elastic plateau modulus could be explained by an increase 

of biomolecular interactions (i.e. electrostatic interactions) that would have the effect of forming 

bundles of actin filaments and reshaping the isotropic cytoskeleton structure. This scenario is in 

good agreement with confocal microscopy results already reported for multiple cell lines (as shown 

in Figure 8.1) and the observations that actin forms bundles aortic bovine endothelial cells after 

hypotonic exposure [229].  

 

(II) Fast dynamics of the cell derived from )(τΠ  

In order to study the high frequency behaviour of cells, we analyse the elastic ( )(' ωG ) and viscous, 

( )('' ωG ) components of the viscoelastic modulus, )(* ωG , derived from the measurements shown 

in Figure 8.5 are shown in Figure 8.7 (scaled by the plateau modulus )0('cG ). It is clear that, in 

PBS (Figure 8.7A), the high frequency behaviour of the cell’s elastic and viscous moduli both 

show a frequency dependence of 4/3ω∝ , which is characteristic of concentrated isotropic actin 

filament solutions [139, 175] 
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Figure 8.7: The real (storage, )(' ωcG ) and the imaginary (loss, )('' ωcG ) parts of the 

complex modulus ( )(* ωcG ) scaled by 0'G vs. frequency, of a Jurkat cell in iso-osmotic 
(PBS) solution (A) and in hypo-osmotic solution (B-G) after the addition of 10% v/v 
distilled water to the PBS buffer and measured at time intervals  (Δt)  of (A) 2 min, (B) 7 
min, (C) 12 min, (D) 18 min, (E) 23 min and (F) 28 min, respectively. The moduli have 
been evaluated by using Equation 8.3 on the normalised MSD data shown in Figure 8.5. 
The lines are guides for the gradients.  
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As the solution is made hypo-osmotic, the cell cytoskeleton starts to reorganise and the frequency 

behaviour of the moduli drastically change as (sequentially) shown in Figure 8.7. Specifically, after 

~ 10min in the hypo-osmotic solution both moduli tend to assume a high frequency behaviour  
2/1ω∝  (Figures 8.7C and 8.7D). This change in the degree of elasticity may be explained by two 

alternative (and possibly concomitant) processes: (i) an increase in cytoskeletal tension as response 

to a stretching force caused by the cell swelling and (ii) the consequent formation of actin bundles 

(Figure 8.1), generated during the reorganisation process of the cell cytoskeleton. However, whilst 

the increase in cytoskeletal tension would explain both the initial increase of the cell stiffness and 

the change in the frequency scaling laws of the moduli (i.e. from 4/3ω∝  to 2/1ω∝ ), as predicted 

by Granek [210] it would fail to explain the softening process occurring during the cell volume re-

equilibration, which ends with a breakdown, at high frequency, of the cell’s elastic modulus 

(Figure 8.7G).  

 

Finally, it is important to highlight that the results that have been obtained here using a video 

particle tracking method are in good agreement with those presented in the review written by 

Papkonstanti & Stournaras [219], where a set of assessments of actin cytoskeleton dynamics and 

actin architecture in cell volume regulation are summarised. However, none of the techniques that 

have been reviewed [219] are able to provide quantitative information on the cell viscoelasticity, as 

is the case here.  

 

In summary, we have presented a straightforward experimental procedure, coupled with a new 

analytical method to interpret the data, which leads to quantitative determination of the in vivo 

viscoelastic properties of cells in the frequency-domain. The method has the potential to monitor, 

in real-time, the internal dynamics and re-organisation of the actin cytoskeleton up to frequencies 

on the order of kHz, representing a valuable addition to studies that address cellular physiology and 

pharmacological response. Indeed, in this thesis we report, for the first time, a real-time observation 

of the high frequencies (up to Hz600~ ) changes of the Jurkat cells’ viscoelastic spectrum from 
4/3ω∝  to 2/1ω∝ , as response to a change in osmolarity of the solution. The rheological 

interpretation of the results gives a direct insight of the cell cytoskeleton structure and its re-

organisation. In the future, it is envisaged that these interpretations could be coupled with advanced 

molecular biology techniques to resolve the detailed interactions underlying these rheological 

changes and that faster dynamics could be studied by means of a quadrant photo-diode based 

tracking system. 

   

 
 



 

 

                                                                                                                                                                        

149

 

 

 

Chapter 9 
 
CONCLUSIONS  
 

In this thesis optical tweezers and passive video particle tracking microrheology have been used to 

study the viscoelastic properties of both biopolymer solutions and cells.  

 

In particular,  

• Two new self-consistent and self-calibrating wideband microrheological techniques have 

been developed for measuring the linear viscoelastic properties of fluids across the widest 

frequency range achievable with optical tweezers (Phys.Review E. (2010) 81:2, and J. 

Optics (2011) 13:4). These methods extend the range of accessible frequencies previously 

available to optical tweezers measurements. The wideband optical tweezers methods were 

applied to synthetic and biopolymer solutions, demonstrating that it is possible to measure 

the material’s viscoelastic properties down to the terminal region (i.e. low frequency), 

where the material’s longest characteristic relaxation time is exceeded.  

 
• New methods for data analysis were developed to derive the concentration scaling laws of 

polymer and biopolymer solutions from microrheological measurements with optical 

tweezers. It has been shown that concentration scaling laws derived from time-dependent 

functions were in good agreement with those predicted for the concentration scaling of 

related functions but in the frequency-domain. In particular, the theoretical predictions for 

the concentration scaling laws of the viscosity of polyacrylamide (PAM) solutions (i.e. 
2/1c∝η  and 2/3c∝η ) were calculated directly from the thermal fluctuations of optically 

trapped beads. For solutions of actin (a semiflexible polymer), the predicted concentration 

scaling law of the elastic modulus, i.e. 3/4
0' cG ∝ , was obtained.  
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• The concentration scaling laws of actin/myosin samples were measured, giving rise to new 

scaling regimes not predicted by any current semiflexible polymer models. A direct 

comparison was made between the relative viscosity measured after the addition of either 

two-headed myosin fragment (HMM) or single-head myosin fragment (S1) to action 

networks.  

 

• A straightforward procedure was presented for measuring the in vivo mechanics and linear 

viscoelastic properties of single cells via passive video particle tracking microrheology of 

single beads attached to the cells’ exterior. Notably, the procedure presented here 

represents an alternative methodology that can be extended to many experimental formats 

and provides a simple addition to existing cellular physiology studies (e.g. those 

monitoring cell pharmacological response). 

 
• The first real time observation of the changes of the Jurkat cells’ viscoelastic spectrum at 

high frequencies (up to Hz600~ ) was reported. This highlighted a scaling in the 

viscoelastic moduli from 4/3ω∝  to 2/1ω∝ , as a response to a change in osmolarity of the 

solution. The rheological interpretation of the results gave a direct insight into the cell 

cytoskeleton structure and its reorganisation.  

 



 

 

                                                                                                                                                                        

151

 

 

 

Chapter 10 
 
FUTURE WORK 
 

There are a number of avenues that future work can focus on, based upon the results of this thesis.  

 

In particular,  

• The accessible frequency range of the wideband experiments is defined on one extreme by 

the experiment length and on the other by the maximum data acquisition speed (which can 

reach 10s of MHz for a quadrant photo-diode). This allows access to the material’s 

terminal region and enables microrheological measurements to be performed on complex 

fluids with very long relaxation times. For some materials, specifically actin, a very long 

measurement (on the order of hours) is required so that the longest relaxation time 

(predicted to range from 103 to 106 sec) can be observed.  However, lengthy measurements 

generate extremely large data files and the analysis of these becomes problematic; i.e. the 

software struggles to handle large data files, causing the operating system to crash. Once 

this data processing issue has been addressed, there is no reason why the reptation time (i.e. 

the longest relaxation time) of actin filaments cannot be measured using optical tweezers.  

 
• In the course of deriving the methodology of the concentration scaling laws and carrying 

out microrheological experiments with optical tweezers we also defined the quantity that 

we call the normalised mean-square displacement (equal to the MSD divided by twice the 

variance of the bead fluctuations) which is fundamental in defining the characteristic 

relaxation rate of the system.  This is noteworthy simply because to our knowledge, in 

more than 30 years of optical trapping, no-one has defined, in this way, the long time 

asymptotic value of the bead’s MSD. Given this fact, it is likely that both the nMSD and 
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the scaling factor saηπκ 6/  can be exploited in more ways than have been identified 

within this thesis.  

 

• With regards to the actin networks, it would be useful to draw on the results obtained here, 

along with other studies, as the basis for a more comprehensive investigation into the 

scaling regimes of in vitro reconstituted actin solutions. Although the properties of actin 

solutions are, on the whole, compliant with theoretical models [2-4] there are still some 

discrepancies that need to be understood. It is not completely clear whether these 

discrepancies stem from impurities in the actin solutions, or whether the theoretical 

predictions need to be modified to include a description of actin behaviour at other 

concentrations.  

 
• The actin and myosin network studies would benefit from study at more concentrations, 

and with varying actin concentrations. An interesting extension of the actin/myosin 

research would be to determine whether actin polymers interacting with S1 molecules 

display properties of ‘comb-polymers’ (whereby actin forms the backbone of the polymer, 

and S1 forms the combs) because models governing the viscoelasticity of semi-flexible 

polymers are sparse.  

 

• It would be of interest to see if the osmolarity induced changes observed in the 

viscoelasticity of Jurkat cells could be recreated in vitro with actin solutions and/or actin-

binding proteins. This would help create a more detailed model of the processes governing 

the actin reorganisation of the cell cytoskeleton in response to induced changes.  

 

• The passive video-particle tracking method for determining the dynamics and linear 

viscoelastic changes in singles cells has the potential to be applied to a wide range of 

studies, especially those that involve a change in cellular physiology; for example, the 

response of the cell to different pharmacological agents. In the future, it is envisaged that 

rheological interpretations of the cell’s behaviour could be coupled with advanced 

molecular biology techniques to resolve the detailed interactions underlying viscoelastic 

changes and that faster dynamics could be studied by means of a quadrant photo-diode 

based tracking system. 
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Appendix  

 
Buffers 
 
A. Guba-Straub  

Purpose: To separate out the actin and myosin components of fresh muscle  

 
0.3M KCl 

0.1M KH2PO4 

0.05M K2HPO4 

1mM ATP 

5mM MgCl2 

1mM DTT 

pH  6.5  

 

B. Actin extraction buffer 

Purpose: To dissolve actin from actin precipitate. 

 
0.4% NaHCO3 

 

C. ACEX  

Purpose: To extract actin from acetone powder 

 
2mM Tris pH 8.0 

0.2mM Na2ATP 

0.2mM CaCl2 

1mM DTT 

0.4mM Azide 

pH  8.0  

 

DTT and ATP added fresh, buffer left on ice in cold room 
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D. Myosin prep 

Purpose: To resuspend the myosin pellet.   

 
50mM Potassium phosphate buffer [61.5vol K2HPO4 to 38.5vol KH2PO4] 

5mM DTT 

5mM EDTA 

3M KCl 

pH t7.0  

 

 

E. Low salt myosin MIT 

Purpose: To dissolve myosin.  

 
50mM KCl 

0.7mM MgCl2 

25mM Imidazole 

5mM ATP 

0.2nM CaCl2 

pH  7.4  

 

F. High salt myosin MIT 

Purpose: To dissolve myosin for the chymotrypsin digestion that creates the HMM fragment.   

 
300mM KCl 

4mM  MgCl2 

1mM  DTT 

25mM Imidazole 

pH  7.4  

 

 

G. 1xAB+
/CP 

Purpose: To polymerise G-actin to F-actin.  

 
25mM IMadizole-HCl 

25mM KCl 

2mM MgCl2 

1mM EGTA 



 

 

                                                                                                                                                                        

169

1mM   DTT 

10mM Creatine Phosphate 

200μM ATP 

1mg/ml Creatine Phosphokinase (added just before use)
           

 

Techniques 

Optical density measurements 

The optical density (or absorbance) is defined as )/(log 0 IIA =λ where 0I  is the intensity of light 

of wavelength λ , and I  is the intensity of light has passed through the sample. The absorbance of 

a sample is proportional to the thickness of the sample and the concentration of the absorbing 

species within the sample.  

 

To calculate the concentration of Actin, the optical density was measured at a light wavelength of 

290-310nm, and this was compared to a background measurement of ACEX buffer. The extinction 

coefficient of actin (i.e. the measure of how strongly the substance absorbs light at a given 

wavelength per mass density) is: 

A290 – A310  extinction coefficient = 0.62/cm2/mg 

 

The concentration of the myosin solutions were also measured, at a wavelength of 280-340nm, 

using buffer solutions as background measurements. The extinction coefficients of myosin, S1, and 

HMM are: 

 

Myosin: A280 – A340 = 0.53/cm2/mg 

 

S1: A280 – A340 extinction coefficient = 0.83/cm2/mg 

  

HMM: A280 – A340 extinction coefficient = 0.53/cm2/mg 
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