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Optimal Strategies for Second Guessers

Abstract

A model is given for a class of contests in which the participants try to guess (or estimate) unknown
quantities, and the objective of each player is to come closer to the unknown quantities than an
adversary. A general optimality result is proved that gives the best guessing rules for the second guesser.
These rules are first calculated exactly in a certain hierarchical linear model, and then simpler
approximate rules are given.
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1. INTRODUCTION

The goal in many activities or contests is not necessarily to do
well in any ébsolute sense, but merely to out perform. an adversary;

The objective of this paper is to provide a model for such a contest,
establish the optimality of certain procedures, and provide suitable
approximations to these optimal procedures. But before yielding to

the Mathematics of the model, we wish to fix ideas with an anecdote.

Two statisticians, Bob and Mike, engége in a contest to guess
welghts of people at a party. They agree that Bob will always guess
first. Mike will then guess and finally the person in question will
say who is closer. For example on person number one Bob guessed 137
pounds. Mike then guesses 137.01 pounds and the guest declared Mike
the victor. The contest continued in a similar vein and to Bob's
dismay he won barely a quarter of the time.

Intuitively it is clear that the second guesser has an advantage,
and one of the results of Section 2 shows that this advantage is typically
as large as the 75 percent obtained by Mike in the anecdote.

To continue the story, Bob was so stunned by defeat and eager for
revenge, that he elicited the assistance of s professional weight guesser.
Mike agreed that since the new team was so powerful it should be willing
to make all of its guesses about the weights of the guests before Mike
had to state any of his guesses. The team agreed to the proposed rule

change, and Mike then proceeded to win even more convincingly than before.



The strategy used by Mike in the second case is naturally more
sophisticated than the one he used when he was matched against an
equal. This second strategy derives from an hierarchical linear
model like that studied in ILindley and Smith [8]. It is also closely
connected with the James-Stein estimator and was originally motivated
by the "Batting Aberage” example of Efron and Morris [3].

Our program begins by establishing in Section 2 a formal theory
of guessing contests. We also give a simple but very general
optimality result which forms the basis for the rest of the paper.

The third section determines the exact optimal strategy for second
guessing under a certain linear model. Practical approximations to this
optimal strategy are worked out in Section L4 . The final section gives
a critical discussion of the various sources of difficulties inherent
in applying this theory of guessing contests. While the main point of
this paper is to provide a tractible theory of guessing contests, we
feel that the largest single point established is the approximagte

optimality of the simple rule given by Equation (4.1).



2« HOTELLING'S STRATEGY

The structure of our guessing model can be described by

a system of four p vectors.

Target Values: (91,92, ceos ep) =

= 8
Second Guesser's Hunch: (Yl’Yé""’Yp) =Y
Second Guess: (Gl,Ge,. .o ,G’p) = G’

The Gi represent the real values to be guessed. The Xi are
‘guesses made by the person who goes first and all of these are assumed
to be available to the second guesser before he acts. The Yi
represent the second guesser's best estimate of the ei. Finally,
the 'Gi are the guesses to be announced by the second guesser.
Our principal task is to determine how G should be based on X
and Y.

The objective of each player is to come closer to 6 than his

opponent, so we begin by setting

(2.1) V(G,6) = E V. (G,6)
=1 *
where
1 lg.-0.] < |X.~8,]
J 73 =" 73
VJ.(G,G) = .
0 otherwise



The strategic objective of the second guesser is therefore to maximize

E V(G,0), i.e., the second guesser wishes to maximize the expected
number of times his guesses come closer to the true values.

The only probabalistic assumptions to be made now are that 6, X, Y

have a joint distribution which is continuous. This assumption is made

for convenience and avoids the ad hoc conventions required for dealing
with ties.

Now let vi(X,Y) denote the median of the conditional distribution
of Gi given X and Y. A key role in our guessing theory is played

by the following strategy:

X, +e if X <y (X,Y)

X, -€ otherwise

These strategies will subsequently be called Hotelling Strategies

since they were essentially put forward in Hotelling [6, p. 51]. There
are broad differences between the present model and Hotelling's problem
in location economices, but the relationship seems close enough to
justify (or even require) the name. The main fact in this section is
the following simple result:

Theorem-2,1. The Hotelling Strategies are €-optimal, that is,

€
lim E V(G ,0) = sup E V(G,0) .
€$+0 G

Proof. Since any guess Gi must be on one side or the other of X

we have



4 _ _ P24 14
1 (lay -6, < [x5-6.1) < max(F* (6; < %), P (6; > %)) .
The basic observation gbout G§ is that

El_i,mo PX’Y(IGE-eiI <[xi-eil) = max{PX’Y(Gi < ?(i), 1=X’Y(e:.L > %)) .
Taking expectations in the two preceeding relations and summing over
1<1i<p, the theorem is proved.

A compelling impediment to the use of Hotelling strategies is that
they require the knowledge of the joint distribution of 6, X, Y, or at
least the knowledge of vi(X,Y). The key task of the remainder of this
paper is to isolate some feasible circumstances where this impediment
can be overcome,

To begin,'consider the strategies

Xi+€ if Xi < Yi

where the second guesser places his guess just a bit to the side of the
first guess in the direction of his own "hunch" Y.
In some cases one can show that these Hunch Guided Guesses are
in fact Hotelling strategies. Certainly, if the vectors (ei’Yi’Xi)’
1 <i<p are independent and eilYi ~ N(Yi,ci), Xﬁ'ei’Yi = Xﬁlei ~ N(ei,ci)
then vi(X,Y) is on the same side of X, as Yi. This immediately
implies that the Hotelling and Hunch Guided strategies will then coincide
Without distributional assumptions on 6 one can no longer speak
of the optimality of a guessing strategy, but the following result points

out a case where the second guesser can still realize a substantial advantage.



Three Quarters Theorem;. If X=X6 and ¥ =7Y-6 are identically

distributed, independent and symmetric about zero, then the Hunch Guided

Guess has probability 3/4 of winning as e = 0.

Proof. As € -+ 0 the probability that the Hunch guided guesser loses
is PA<X<0)+P0O<X<Y). By symmetry and exchangesbility this

probability also equals

2P0<¥<X) =PO<Fando<¥) =1/h.

In a practical application of the three-quarter theorem the assumption
of identical distributions might seem to pose some difficulties. Reassur-
ingly, the result is quite robust. For example, assuming unbiased jointly
normal guesses the second guesser still wins with probabil}ty greater than
.68 when Var Y/Var X = 2.5 and wins with probability greater than .59
when Var ?/Var X = 10. (These probabilities are easily confirmed by
tables of the bivariate normal (e.g. Owen [10]).) The more detailed
assessment of robustness in guessing competitions will be dealt with in
a subsequent report, but one should note an obvious aspect of non-robust-
ness under gross changes in the model of Theorem 2.1 is that the probability

of the second guesser winning will tend to 1/2 or 1 according as

Var Y/Var X tends to © or O.

L. A result equivalent to the above was told to the first author in 1975
by R. Chacon and was known much earlier to R. Chacon and S. Kochen. The
result was also known earlier to T. Cover in the form: Between two "equally
matched" basketball beams the odds are 3 to 1 in favor of the team leading
at the half.



3. GAUSSIAN GUESSING

Since Hotelling strategies have been shown to be optimal, one would
naturally like to provide a class of models in which the strategies can
be determinéd explicitly. The main result of this section is to give
such explicit strategies under a multivariate normal hodel studied by
Lindley [8] and Lindley and Smith [9].

We write U|V for the conditional distribution of U given V,

1_ for the row p-vector (1,1,...,1), and Ip for the px p

D
identity matrix.

Our Gaussian Model assumptions are the following:

: 2
6 ~Nwpl, o.1 -

(3.1)
2
b~ N(uy, Gu)
and _
X,Y|e,n~ N(B(I,T)T)
where
2
GXIP 0
F = .
2
0 GYIP

The physical motives behind this model are that the true weights
6 of the persons we see are viewed as independent reglizations of a
single fixed random process which was itself once drawn from a ropula-
tion of random processes. For example, the parameter y can be viewed
as a geographically fixed quantity determined at a earlier time by
(random) immigrations. The assumption of normality one made partially
out of traditional convenience, but also because they seem justifiable
in the weight guessing example. The structural model together with

T



the normality lead uniquely to the Gaussian Model specified in (3.1.)

The promised explicit determination of the Hotelling strategy is now

possible.

Theorem 3.1. Under the preceding Gaussian Model the Hotelling strategy

is
X, +e if Xy < yug+(L-y )[BX+(1-B)Y]
(10 )[B (%, =X) + (1-B) (¥, 7))
*
Xi-e otherwise
-1
=2, =2 -2 -2 2 2
where Yy =0 ( top oy ) 5, o = Og T PO,
-1 -1
-2, =2 -2 -2 -2, =2 -2
o =0, (Ue toy toy ) and B = Oy (GX + oy ) .

The proof of the preceeding depends on a multivariate calculation which

we have deferred to Appendix I in order to take up directly the problem
of interpreting the result.

The basic part is the mixture of means, yu + (1-7)[BX+ (1-8)Y],
which is perturbed on trial i by the "mixture" of residuals
a-O-f(lJI)[B(Xi-f) + (l-B)(Yi-?)]. The coefficient B = Ei(cig-kcgg)-l
appearing in these mixtures is near O, 1/2, or 1 accordingly as

2 -2 ., . . . .
(o 1s near o, 1 or O. This ratio is one natural measure of
Y > b

the relative abilities of the two guessers and this interpretation is

reinforced by considering the extreme cases. TWhen 0§g§2 ~ « the first
guess is essentially ignored and when Ui@;g ~ 0 1t is the hunch which

gets ignored. This last case is of particular interest since it

corresponds to trying to out guess a far better informed adversarys.



4. STEIN GUIDED GUESSING

The strategies just derived have the drawback that they are functions
2 2 2

of Ho» cﬁ’ Ogs Oy and ci. Although the magnitude of Ho and of the
relevant variance ratios may be sufficiently understood for some appli-
cations, the exact values of these quantities can nqt generally be
assumed to be known. The next objective is thiis to derive reasonable
estimates to the unknown mean and variances. One benefit of this
analysis is a clearer understanding of the empirical fact [3] that

the Stein estimator performs well with respect to the reward

function V.

A Bayesian approach to the above estimations can be maqe along the
lines suggested in Lindley and Smith [9] but such a procedure can prove
quite complex (c.f. Discussion [9] by V. D. Barnett). The estimators
considered here are based on an empirical Bayes procedure which seems
both simple and sensible.

As before we write Z = (X,Y) and begin by transforming Zv into a

ilp = pP?AP where P denotes

canonical form. Next we recall that 1
the p x p Helmert orthogonal matrix (c.f. [2], p. 102) and A is
the p x p matrix with 1 in the (1,1) position and all other entries

zero. We define (U,V) by



A straightforward calculation shows (U,V) ~ N(u*, &) where

* 2 (ep)/?

o
!

(1’0:--')0) E)

[)
1l

T oI I 0] A O
* p =¥ 2i P | 2
s = 5 + 269{ + 2po ,
I oI 1o 0 j Lo o
=P+

and

2
CJ--l-

1,2 2 2
5 (oy +oy) s o

- L (02 - 62) .
2 X Y
From the canonical form above one notes that cﬁ cannot be meaningfully
estimated since there is only one degree of freedom avsilable for its
estimation.
We now turn to the analysis of important special cases which
correspond to qualitatively different contexts.

Case A. Known Varianqes. We only need to estimate Ho and this

is done by maximizing the Type II likelihood (c.f. Good [5]). This
calculation easily follows from equation (A.1) of the appendix, and the

estimator obtained is

A -1 T I A
by = (1_ 5 : A )(1gp Zg 12P) .

This simplifies further to just

10



ﬁo =pX + (1-B)Y,

so the estimated Hotelling strategy becomes

X,te  if X, < a[pX + (1-B)¥] + (1)[ex; + (1-8)y,]

X. =€ otherwise

Case B. 05 = 03 ci = c§ = 82 and cg unknown. The canonical

model simplifies to

I 0 I O
2
0, v) ~ n|(2p) 3 (e,0), &2 | P -

o I 0 O
Y

and this time estimators are easily found without carrying out the
2. ,2.-1
likelihood maximization. We take the estimators of Hgs T = (S +209)

and 62, respectively, given by

A -1/2
A 2.-1
T = p( f: u;)
i=2
and :
A -

In terms of X and Y we then get

11



1

By =5 X+Y)
A 1 1 o~ = 2%
sz(i [— (Xi+Yi) -— X+ 101
i-1 V2 ¥2
and
a2 -1 1 2
2oty (X, -Y)17 .
i=1 V2
The approximate Hotelling strategy for this case is therefore
. AT R A~ 1
. Xi+e if X, <03 X+ )+ (1) 5 (Xi+Yi)
G. =
i
Xi-e otherwise
where

G- 1) )Py (e - DI
=1 2 * % i=1 y2 Y * V2
One should note that o has a natural interpretation. It is just
the ratio (between the guesser variance) - (between the trial variance).
The optimal strategy favors using %—()?ﬁ{-) vhen O is close to 1
and favors %“-(Xiﬂ{i) when o is close to 0. Also, the strategy can
be improved slightly by replacing & by 1 if it happens that o > 1.

2 2 2 2
Case C. O'p. =0, Oy = @ Oy Known; O Unknown.
This is a case we feel to be of particular interest. Calculating
as before we find that a Stein estimator determines the approximate

Hotelling strategy, but that it plays a cameo role since the strategy

12



simplifies to just "betting on the Xi side of X." This simple result

gives some theoretical justification to the otherwise somewhat mysterious

empirical fact that X performs even better than the Stein estimator in

terms of "gambler's" loss on the batting average data set (c.f. Plackett's

Comment [3, p. 416] and an easy computation). |
The formal analysis begins as in Case B. Since 0226 = o the Y

is uninformative and the analysis must rest on X above. Also since

Uﬁ = O the canonical form of the X's marginal model can be simplified

to

1/2

* 2 2
U N(p Boe s (0X+Ge)1p)

The obvious estimate of Ho is given by
Mg = X

“ -1
and if we require that the estimate, Tys of Ty = (0)2(+Gg) to be unbiased,

A -2 -1
= -5 X.-X )
2= o ><i§l< EP)

becomes the natural choice and the estimated Hotelling strategy is

. . A e A%
+ : a -
. X, +e if X < X+(loz)Xi
Gi =
Xi-e otherwise

~% ’- _l
where o = min{l,&) and O = cri(p-B)[ E (Xi-X)g] .
i=1

15



The direction of the guess on the side of Xi is determined by
?ﬁ‘iﬂp(l-&*)xi which is precisely the Stein estimator as modified
by ILindley (c.f. [7]) and the discussion following [9]).
Now since the convex combination of X and Xi will always be on
the same side of Xi as X the estimated Hotelling strategy can be

more simply written as just

(k.1) Gf = .

X, =€ otherwise

This is an extraordinarily simple procedure in a model which we
feel may be realistic in several sporting and business contexts.

To assess the performance of this Stein-guided strategy guessing
trials were simulated for a variety of special cases. The ei were

1525e00,P

chosen as ei =0, 8, =i, and ei = 15 for each of i

i
with p = 10 and then with p = 100; thus, in all 3 x 2 = 6 cases
were considered. '

As an illustration of the computation consider the case where
ei =1 and p = 100. In this case 200 repetitions were made as
follows: ‘

(1) X was generated as N(6,I) with 6 = (1,2,...,100).

(2) G; was calcuiated by (4.1) with € = 10-6.

(3) V was then calculated, and the process was repeated 200 times.

(%) The 200 realizations of V/100 were used to estimate the density
of V/lOO, the percentage of times the second pleyer wins using the G*
of (4.1).

14



(5) This density was plotted in Figure 2 (in this case, the
unshaded density in the middle gragh).

From Figure A one learns 5y looking at the unshaded density in
the top graph that when as many as 10 parameters growing like 15
are to be guessed that the modal percent of correct guesses made by
the second guesser is about 95 percent. The general conclusion to be
drawn from Figure A are (1) the more parameters to be guessed, the
greater the advantage to the second guesser and (2) the more spread
out the ei to be guessed, the more the advantage to the second
guesser,

- In Figure B, these conclusions are further examined by taking the

6; themselves to be random. Here p = 20 was fixed throughout. First

1

we took a realization of 6 ~ N(0, LI Then 200 of the X's we

20)'
generated with the same fixed underlying 6 (just as in Figure A).
The density of V/200 was estimated as before, and altogether 25
runs were made. The 25 runs produced remarkably similar estimates of

the density of V/QOO, and the estimates from runs number 1, 17, and

21 were selected as indicative of the variability in the 25 runs.

15
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G-Lé iSall i

AY)
(64

Estimated probability density function of x

[\Y)
16}

I 1 ] | I
8,=iall i W
| | p=100
| — ; \ '
T

| 5 B 1.0
x = proportion of p trials won by the second guesser

Estimated Density of the Proportion of Second Guesser Wins

Using the Btein-Guided Optimal Strategy (Based on Runs of
200 Contests ).
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Estimated density

1))

Run 21

Qi_ random

Run |

! l l,_/l/( I .l !

5 1.0
% = proportion of p=20 trials won by the second guesser

B. Estimated Density of the Proportion of Second Guesser Wins in
P = 20 Trials Using the Stein-Guided Optimal Strategy (3 Runs
of 100 Contests and Combined Runs of 2500 Contests ).
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5. REALITTES OF APPLICATION

Almost any discussion of the preceeding theory eventually turns to
the problem of football betting, and it seems generally worthwhile to
note why the theory is not applicable to that problem. - A key reason
is that the boockie (or person "setting the line") is not trying to
estimate the actual point spread. Hé is trying to produce a point
spread which will produce a nearly equal number of takers on each side
of the spread. The bookie is therefore not a "first guesser" in the
sense of this paper and our theory naturally does not apply.

Consider instead two bookies of equal caliber, one of whom sets
his line on Monday and the other oh Tuesday (for the game on Sunday).
If the Tuesday bookie only wished to obtain a more even distribution
of customers on either side of his line than the Monday bookie, he
should be able to do so in almost 3/l of the games by using the Hunch

guided guessing of Section 2. In this case, each bookie is a bona fide

guesser of that spread s which will evenly split the pool of betbers.

Since there are actually many games each week, the Tuesday bookie
could actually out perform the Monday bookie by using the Stein guided
strategy of Section 4, particularly (4.1). The assumptions of (3.1) may
mot be applicable to the vhole set of games; but if one considers only
non-carismaﬁic games outside the bookie's city, then (3.1) secems
reasonsple. (This is a stratification step to obtain increased homogeneity
of the spreads to be guessed. )

The examples put forward above are in the long tradition of gedanken
experimente, and the problem of producing a truly telling application remains
open. An intriguing aspect of a thedry of this nature is that it is only

necessary to find one good application.

18



Appendix I: Proof of Theorem 3.1

By Theorem 2.1 the problem depends on the calculatiqn of the posterior
median vi(X,Y) vhich by the normality assumptions (3.1) coincides with
the posterior mean. The argument given here for completeness is similar
to those of Lindley [7] and Lindley and Smith [9]. Tt depends on the

well known fact (c.f. [1], p. 27) that if U and V are jointly normal

then

UlV ~ N(EU-EV: £ + VL, £ o)
where -tz M -5 - o ¥ denotes the covariance
L= Zyy Sy Zuov T Zuu T Ruv Syy Dvw? v
matrix of V and so on.

Setting Z = (X,Y) and applying the above to (3.1) we have

(a-1) 7~ Wy (Lp1)s 5p)

where

. 2 2 2 2 T
g = dlag{O'X,UY} ® Ip + 0,0, ® Ip + O'HJE ® lplp

where ® denotes the Kronecker matrix product and Jé is the matrix

with all 1 entries. Further,

E(e|lz) =E(®) -E(Z) - ¢ +Z - T

where

19



with

and

2 2.7
) ol +o0c 171 .
66 6P b DPp

=

We now determine Z%é . First we note that

T T
171 =pPLAP
vp P F A

where P denotes the Helmert orthogonal matrix (e.f. [2], p. 102) and
A is the px p matrix with 1 in the (1,1) position and all
remaining entries zero.

One then notes that

T
(T, ®P) £, (T, ®F)

-reduces to Just
. 2 2 2 2
diaglol,o,} @ It 0, @ L +p0d, @
which makes it straightforward to show

-1 T
S = (12®P )e (I2®P)

20



where

-2 -2 -2 2
' - 0]
(O'X 0 (7 0 1l -1 - O'y (g
0 = @ + ®
-2} -2 -2 2
0 0 o - (o)
Oy Tp1 = x % %50

where ¥ and & are as in Theorem 3.1.

From these results an explicit expression for Z.¥ is readily

obtained. We first note

T
Z-7 = (XPT,YPT) ® (PT,PT) z

66
and
T T 7 0
T _T -2 =2
o(FL,F) = (0} ,07) ® Py .
0 ar
-1
Thus
T 14 0
T T -2 =2 2 2 -2 -
(a.2)  Z-r = (XP,YP )EUX 0y ) @ ](GeIp+pcr AP = (0F X+0]7Y)A
0 ar M Y
p-1
where
Ti 027 0
A = P 2 P .
\o o,

Now represent X as

X=Xl + (X-X1) .
v p Y
Then we have

X~ = Sc‘(pl/e,o,...,o) + (o,x(g))

21



vhere

) woeo

¥1.2 2.5 - 1-p)p

SO

1/2

y .

-0'7 X(p ,....,O)P+U§G(O,X(2))P

1l

2 - 2 =
o 7X1 + cO(X-X1 .
7XL 9(_p)

A similar result holds for YA. Introducing the resulting expressions

for XA and YA in (A.2) yields
(A.3) (cerJrcr;zY)A= (1-7)[B>'c'+(1—8)?]1P+(l-a)[6(X-ﬁp)+(1-6)(Y-Ylp)}

since 7U2(U£2+U;2) = 1-y and ace(o %U ) = 1<,
From the expression just obtained in (A.3) E(Z)-z and hence
E(0)-E(z)-¢ are easily found. To get E(Z)z  simply substitute polp

for both X and Y. This gives

2, =2 2
E(Z)C = yg [UX *o, ]polp .

At the same time E(g) = pOlp, s0 we have

(A) E(e) -E(2)C = Tholy

The proof of Theorem 3.1 is now an immediate consequence of (A.3)

and (Al+).

22
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