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SPECTRAL METHODS FOR PERIODIC INITIAL VALUE PROBLEMS
WITH NONSMOOTH DATA

PRAVIR K. DUTT AND A. K. SINGH

Abstract. In this paper we consider hyperbolic initial value problems subject

to periodic boundary conditions with nonsmooth data. We show that if we filter

the data and solve the problem by the Galerkin-Collocation method, recently

proposed by us, then we can recover pointwise values with spectral accuracy,

provided that the actual solution is piecewise smooth. For this we have to

perform a local smoothing of the computed solution.

1. Introduction

Spectral methods give very highly accurate approximations to hyperbolic

problems with smooth solutions. The naive use of spectral methods on hy-

perbolic problems with discontinuous solutions, however, produces oscillatory

numerical results. The oscillations arising directly from the discontinuity have

a Gibbs-like high-frequency character. It has been known for some time that

these oscillations are in themselves not insurmountable but contain sufficient

information to permit reconstruction of the actual solution. This is achieved

by a filtering of the computed values.
A detailed examination of the effect of filtering for linear systems of hy-

perbolic equations with periodic boundary conditions and discontinuous initial

data was made by Majda, McDonnough, and Osher [6]. They showed that for

problems in one space dimension it was possible to achieve a convergence rate
of infinite order by a proper filtering of the intial conditions and also by apply-
ing a filtering during derivative evaluations. However, in two space dimensions

this infinite order of accuracy can be obtained only in a domain which excludes

the region of influence, and this region spreads linearly with time. Moreover, it

is not clear as to how to handle problems where there are discontinuities in the
forcing function.

As opposed to global smoothing, one can postprocess the solution obtained

by standard Collocation or Galerkin methods by a local smoothing in order

to recover spectral accuracy. The idea is based on the observation that while

the pointwise convergence of a high-order polynomial approximation to a
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646 P. K. DUTT AND A. K. SINGH

discontinuous solution is very slow, the convergence in a weighted mean is very

fast. Local smoothing will be carried out by a convolution in physical space

with a localized function and hence by a weighted mean which approximates

exceedingly well the exact values of the solution.

From a mathematical point of view, convergence in the mean can be mea-

sured in terms of a Sobolev norm of negative order. It can be shown that the er-

ror between the computed and exact solution in a negative Sobolev norm decays

at a rate which depends only on the order of the norm. The idea was originally
developed by Abarbanel, Gottlieb, and Tadmor [1], Gottlieb and Tadmor [5],
and Mercier [7]. In their formulation the approximate solution is obtained by

first solving a system of ordinary differential equations arising from either the

Galerkin or Collocation method, and then postprocessing is applied to the com-

puted solution of this semidiscrete system of equations. We are not aware as to
how this procedure would deal with problems in which there are discontinuities

in the forcing function also, instead of just in the initial data.

In [3, 4] we proposed an alternative formulation for solving hyperbolic par-

tial differential equations which we shall refer to as the Galerkin-Collocation

method; this method is spectral in both space and time. In this approach the

partial differential equation and initial and boundary conditions are collocated

at an overdetermined set of points, and the approximate solution is chosen to

be the least squares solution to the overdetermined set of equations thus ob-

tained. It has been proved that for problems with smooth solutions the error
decays spectrally in space and time, and computational results for this have

been provided in [4]. In this paper we show that for hyperbolic problems with

periodic boundary conditions it is possible to recover pointwise values with

spectral accuracy using the Galerkin-Collocation method, even when there are

discontinuities in the initial data and forcing function, as long as the actual

solution is piecewise smooth. In another paper we intend to publish, we hope
to extend the theory developed here to general initial-boundary value problems

using Legendre and Chebyshev expansions in space and time.
We now outline the contents of this paper. In §2 we define the Sobolev

spaces we shall work in and describe the energy estimates in negative Sobolev

norms which are needed in this paper. In §3 we briefly describe the Galerkin-
Collocation method and prove that the error between the approximate solution

computed by this method and the actual solution in a negative Sobolev norm

decays at a rate which depends only on the order of the norm. In §4 we explain

the filtering procedure proposed by Abarbanel, Gottlieb, and Tadmor and show

how it can be applied to the approximate solution we obtain by the Galerkin-

Collocation method to recover pointwise values of the solution with spectral ac-

curacy. Finally in §5 we present computational results for the proposed method.

2. Energy estimates for hyperbolic initial value problems
with periodic boundaries

We consider hyperbolic initial value problems with periodic boundary con-

ditions. Hereafter, x denotes the vector x = (xi, x2, ... , x¿).

Let Q = (0, 2n)d be the space domain and J = (-1, 1) be the time interval

we are considering. Consider the initial value problem (IVP)
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d

Lu = u,-^AiUXi-Bu = F   for (x,t)e£lxJ,

u = f   íot(x, t)eílx{-l}.

Here, « is a vector-valued function with values in Rp and A,, B are matrix-

valued functions. Moreover, A,, B are smooth functions of x and t and

periodic in x¡ with period 2n, for all j = I, ... , d, and / and F are
periodic in each space coordinate with the same period but are not necessarily

smooth.
Before we proceed to describe our numerical method and prove its conver-

gence, we need to review some a priori energy estimates which have been proved
for solutions of the system (2.1). The interested reader is referred to [8, 9] for

details.
Let u and v be vector-valued functions of x and t and 2n-periodic in

each space direction. Then we denote

(u,v)axJ= u*vdxdt   and   \\u\\o,axj = ( \u\2dxdt)     .
JJilxJ \JJiixJ )

Here, |w| denotes the Euclidean norm of u if u is a vector and \A\ denotes
the induced matrix norm if A is a matrix. Similarily, we denote

imi«.qx/= [if   E mDfu\2dxdt)   ,
\J JS1»J \a\+ß<s J

where a = (ai, a2, ... , a¿) is a multi-index and Dxu = Dx\ ■ • ■ D"ddu. In the

same way we define

(u, v)iix{±i} = / u'vdx   and   ||«||o,£ix{±i} =    / \u\2dx)     .
Jn*{±\} \Jcix{±\} j

Let

ll"lli,ox{±i}= I / V] \Dxu\2dx)     ,
\Jnx{±i} |a|<s J

where a is a multi-index as above.

We can now state the a priori energy estimates conveniently in terms of the

Sobolev norms we have just defined. Let y/ be the solution of the hyperbolic

IVP with periodic boundary conditions

(2.2a) Ly = <f>   for (x, t) 6 Q x J,

(2.2b) \¡/ = e   for(x,i)e£2x{-l},

where <j> and 6 are smooth functions and periodic in space. Then for all inte-
gers s > 0 there exists a constant Cs, which depends only on the smoothness

properties of A¡, B such that the estimate

(2.3) \\v\\s,axj + llrlkoxO) ^ CÁMWs.axj + l|0||,,ox{-i})
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648 P. K. DUTT AND A. K. SINGH

holds. Henceforth we shall use C and Cs as generic constants. Next, we need

to state a version of (2.3) for negative Sobolev norms.

Let w be a function of x and t which is periodic in space. Let H = {</>: <j>

is a smooth function of x and t which is periodic in x and has compact
support in t} . We define

lln.ll            -■„Jfo'flnx.H
\\w\\-s,axj - SUP -¡mi-•

<t>eH    11011s,£ix/

Then H-Scixj is defined to be the completion of H with respect to the above
norm. Similarity, we define

■ I      |, \(W , (t>)çîx{-l}\
|M|-S,£ix{-1}   =  SUP -j-rr-L-J-.

06//     llallí, Íix{-1}

With these definitions we can now state the energy estimates in "negative"

Sobolev norms. For any s > 0 there exists a constant Cs, which depends

only on the smoothness properties of A,, B, such that

(2.4) ||y||-í>nx/ + IMU,nx{i} ̂(IMU.fixj + lloll-í.íixí-i}),
where y/ is the solution of (2.2), for all <\> and 6. For the sake of completeness

we shall provide the proof of (2.4) below, which is very similar to an analogous

result proved by Rauch in [8].

We consider the following hyperbolic IVP with periodic boundary conditions:

d

(2.5a) L*w = -w, + Y,(A[w)Xl - BTw = x   for (x, t) eilx J,
i=i

(2.5b) w = fi   for (x, t) eflx {1},

which is the adjoint of (2.2). Notice that for this problem we let time run

backwards. The following energy estimate is then valid for the solution w of

the adjoint problem:
For every s > 0 there exists a constant Cs which depends only on the

smoothness properties of A,■, B such that

(2.6) IMI,,ox/ + IMI*,nx{-i} < C,(||/||4ioxj + llallí,nx{i>)

holds.
Let y/ be the solution of (2.2). An integration by parts yields

(2.7) (y/,L*w)çlxJ = (Ly/, w)çtxj + (y/, w)çix{-i} - (y, w)çix{i},

since the integrands are periodic in space.

Let w be the solution of the adjoint IVP with periodic boundary conditions

(2.8a) L*w=x   for (x, i)eQx/,

(2.8b) iu = 0   for (x, í)efíx{l}.

Then by (2.7) we have

(2.9) \(y/, xhxA < H^H-í.íixj x INknxj + IMU.oxí-i} x IM|j,nx{-i}-

But using the estimate (2.6) we have

IMIi.nx/ + IMI,,nx{-i} < QWxh.axj »
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and this together with (2.9) gives

(2.10) \(y/,X)nxj\ <Cs(||Ly||-s,nx./ + IHI-s,o.x{-i}) x ||*||,,Ox/.

Thus, from (2.10) we obtain

(2.11) \W\\-s,QxJ < Cs(\\Ly/\\-StÇïxj + \\W\\-S,CIX{-1}).

Next, let w be the solution of the adjoint IVP with periodic boundary condi-
tions

(2.12a) L*w = 0   for (x,t)e£ixj,

(2.12b) w = ß   for(jc,í)eQx{l}.

Then (2.7) takes the form

(2.13) {V,fi)ax{i} = (Ly/, w)axJ + (y/, w)çix{-i},

and by (2.6) the estimate

(2.14) Nils,£2x7 + |M|s,£íx{-l} < CJ/ilLoxíl}

is valid.
Now (2.13) and (2.14) give

\(V. ßhx{\}\ < Cs{\\Ly/\\-Staxj + llvll-s,fix{-i}) x ||^||í;íix{i},

from which we obtain

(2.15) Hvll-s,Qx{i} < Cs(\\Ly/\\^^xj + ||^ll-s,nx{-i}).

Combining (2.11) and (2.15), we get (2.4).

3. Error estimates for blended Fourier-Legendre methods

for periodic problems with nonsmooth data

Henceforth we shall take Q, — (0, 2n), since the results we state carry over to

the general case Q = (0, 2n)d in a straightforward manner. We now introduce
some notation. For each integer N we denote by n^ the space of algebraic

polynomials in the variable t of degree up to N. For each integer M we
denote by SM the space

SM = span{eikx\ -M<k<M).

Then we define the space VM •N as the tensor product

{n     m -\

<f>:<t>(x,t) = Y<  E  amneimxLn(t)\,
n=0m=-M )

where L„(t) is the Legendre polynomial of degree n.   Henceforth we shall
assume that there exists a constant X such that

\/X<M/N<X.

For any function w periodic in x, which also belongs to L2(Q x J), let PM • Nw
denote the projection of w into (VM'N)P , i.e.,

N       M oo       oo

PM,NW = YJ  £  wmne'mxLn(t),    where w = E  E  wmHeimxLH(t).

n=0m=-M n=0m=-oo
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650 P. K. DUTT AND A. K. SINGH

Henceforth we shall denote PM'Nw by wM'N.
The following results are well known [2, p. 293]. If w e Hk,cixj , then

(3.1) \\w-wM'N\\o,axj<CN-k\\w\\k>rlxj.

Moreover,

(3.2) \\wM'N\\0^xJ < ||«;||o,nxj.

Also we have

(3.3) ||W - wM'N\\l,QxJ < CN"-kM\k,QxJ,

for all 0 < / < k . Next, we introduce the norm

IMIs,oc,nx/ = max (  esssup \D^Dfw\).
a+ß<s \(x,t)eQxJ j

Then we have

(3.4) ||w - wM'N\\Lo0iQxJ < CiST2,-*||«;||fc(00>nxy ,

for all 0 < / < k.
If s(x) is a periodic function belonging to L2(Q), we define

M

PM-°s=   E  smeimx = sM,

m=—M

where s(x)^YZ=-oo^eimx.

Similarly, if h(t) e L2(J), we define

N -N

P°>Nh = y£hnL„(t) = h   ,    where A(i) = EÄ«L«W-
n=0 n=0

We have results similar to (3.1)—(3.3) for the above. Let

-jM-l,N-l _ pM-\,N-\A -gM-\,N-\ _ pM-\,N-lß

p2M-l,2N-\ _p2M-l,2N-lp j2M-l _ p2M-\ ,0 r

We define the differential operator

tM N -¡M-l.N-l -^M-\,N-\
L   '   w -wt - A wx - B w.

We choose as our approximate solution

{n     m \

<j>:<Kx,t) = Y,  E amneimxLn(t), amm e R"\ ,

n=0m=-M J

which minimizes

^M,N{WM,N)=    if        \LM,NwM,N_T2M-i,2N-ll2(jxdt
(3 5) JJaxJ

+ 11 \wM>N(x,-\)-fM-\x)\2dx
J Jilx{-\)

over all wM'N € (VM<N)P. The above problem reduces to obtaining a least

squares solution to an overdetermined set of equations obtained by collocating
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the modified equation lM,nwm,n _ p an¿ tjje initial conditions at

an overdetermined set of points. We briefly explain this.

Let xf = ni/M, 0 < i < 2M - 1, and let {t^};=o,...,at be the Gauss-
Lobatto-Legendre points with To = -1 and rN - \. Notice that

rj^M,NwM,N _-p2M-l,2N-l. y2M-1,IN-1 y>

and
(WM>N(X , -I) -fM~l) £ (S2m-1)».

Hence we have that

(3.6)
2N 2M-\

^m,n{wm,n)=Y^ £ af¡'N\(LM'NwM'N -F2M~U2N'l)(x2M ,T2N)\2

j=0   i=0

4jW-1

+ E ß?\*M'N{xYi,-i)-f    (x2M)\2,
1=0

where af*'N and ßf1 are appropriate constants obtained from the Gauss-

Lobatto integration formulae. Thus, obtaining a solution to (3.5) is equivalent

to solving a least squares problem. It has been shown that if we choose our

approximate solution vM'N such that it minimizes the modified functional

2N 4M-I

^m,n{wm,n)=Y^ J2 a%'N\(LwM>N -F2M~l'2N-l)(x2M,r2N)\2

j=0   1=0

+ 4Y! ßti\wM'N(x2M,-l)-fM~\xfM)\2,
i=0

then we would be committing, in addition, only a spectrally small further error.

There is therefore no need to filter the coefficients A and B in practice. The

interested reader is referred to [4] for further details. We are interested in

another aspect of this minimization procedure. Our approximate solution v M •N

is the unique polynomial belonging to (VM<N)p which satisfies

(3.7)

//     (LM'NvM'N-F2M'i'2N~l)*(LM'NyM'N)dxdt
J JaxJ

+ f      (vM'N-fM~lyyM'Ndx = o,
Jcix{-1}

for all yM-N e(VM<N)p .

We shall now use the above relation to prove that

\\LM>NvM'N-Tm~l'2N~l\\.s,QxJ <CsNl~s

and
\U,M,N     72M~i\\ s r at1-*\\v - J ll-i,£ix{-l} S CSI\       .

for any 5 > 1. In addition to this, we shall also prove

\\L»>Nu-Fm-l>2N-l\Uaxj<CsN-°
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652 P. K. DUTT AND A. K. SINGH

and

ll«-7M#"1ll-».ox{-i> < CJV-«.
With these results established, we can prove Theorem 1, and the reader is ad-

vised to proceed directly to the theorem at the end of this section and continue

his perusal of how these results are established only afterwards.

We first need to establish an upper bound on ß?M'N(vM-N). Let wM'N(x, t)
= 0. Then

S*>M,N(..,M,N\ <> i|p2M-1'2Ar_1||2 ,   \\'f2M~l\\2
/3 8} ¿r   -  (w   '  )<\\F \\o,sixj + \\J       llo.x{-i}

^ ll-^llo.nxy + ll/Ho.x{-i}>

by virtue of (3.2). Hence we can conclude that

(3.9) ßTM'N(vM-N) < c.

To estimate \\LM>NvM-N -Fm~X'W~l\\-StQxJ , we need to bound

rv.,^.»-,fa;i fo
Il0lli,nx7

Consider the periodic IVP

(3.10a) LM'Ny/ = (b   for (x, t) eu e J,

(3.10b) y/ = 0   for (x, 0gQx{-1}.

Then y/ is a smooth function, and using estimate (2.3), we have

(3.11) \\¥\U,Qxj<Cs\\<l>\\s,axj,

where Cs is a constant which depends only on the smoothness of the coefficients
of the modified IVP and hence of the original IVP.

Let QM 'N be the projection operator that maps functions belonging to H n

HunxJ into VM-N defined as:

qM,nw ¿s ̂ g umque element of VM'N such that

\\w - QM'Nw\\i,axj = M inf     \\w-sM>%>axJ.

Then it is known that

(3.12) ||w - QM'Nw\\urlxJ < CNl-\\w\\,tQXj.

Let y/M-N = QMNy/. Now

(tM,N,,M,N      -p2M-l,2N-l      ,.

_ (TM,N.,M,N      -~2M-\,2N-\     TM,N,..\
= (L V - t ,L'    y/)çixj

_ /j^M,NyM,N _-p-2M-l,2N-l    j^M,N^M,N\

,   (tM,N.,M,N      -p2M-\,2N-l     TM,N(...       ,r.M,N\\
+ (L      v       -1 , L   '   (y/- y/   '   ))iiXj.

But by (3.7),

^LM,NVM,N_JÍM-\,2N-X } LM,NpM,N)Qxj

+ (vM'N-fM-l,v«>Nhx{-l}=0.
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Now since y/ = 0 for (x, t) e Q x {-1} , we may write

(„M,N      -?2M-\      ~M,N\ _ i,,M,N      -p-M~\     .r.M ,N       ,„\
(v   '   - J       ,y/'  )fix{-i} - (v       -J       ,y/'   - w)ax{-\}-

Hence we can conclude that

(LM>NvM>N-Tm-U2N-\<l>)axj

,iTM,N,,M,N      -p2M-l,2N-l     tm,N(,.,      ,7,M,N\\
+ (L      v       -t , L   '   (y/- y/   '  ))iixj.

Now using (3.12), we can conclude that

\\LM'N(ys - y/M'N)\\o,axj < CNl-*\\y\\s,QxJ.

And applying (3.11), we may write

(3.14) \\LM-N(¥ - y/M'N)\\o,nxj < CNl~°U\\s>axJ.

But

(TM,N.,M,N      -p2M-\,2N-\     tm,N(,„      .r.M ,N\\ i
(L ' v      -t ,l     (y-y     ))çixj\

(3.15) <-• \\jM,N(...      ,r,M,N\\\ v utM,N.,M,N      -p2M-l,2N-l

<C,^I-f||^||1,0x/,

by (3.9) and (3.14).
Next, we estimate

\u,M,N      -¡¿M-l      ~M,N       ,„\ i
\(v   -   - J        , y/ V)six{-i}\-

From (3.9) we have that

(3.16) \\vM>N-fM~l\\o,çix{-i}<C.

Now

\\VM'N - rllo.nxi-!} < C\WM'N - y/\\iMxj ,

by the trace theorem; and so by (3.12) we obtain

\WM'N-¥h,çix{-i}<CN'-s\\y,\\sMxJ.

Using estimate (3.11) once again, we conclude that

(3.17) \\y/M>N - H|o,qx{-i} < CNl-sU\\s,axJ.

Hence, applying (3.16) and (3.17), we get

(3.18) \(vM'N - fM~X ,yjM-N- ¥/)nx{-,}| < CsNl-sU\\StQxj.

Combining (3.13), (3.15), and (3.18), we obtain

1{LM,NVM,N _ F2^-1,2AT-1 ^ ̂ ^ < Qjfl-^^ ,

and this gives us the required estimate

(3.19) \\LM'NvM'N-F2M-l'2N~l\\_s^xJ<CsNi-s.

Next, we estimate

\\v".»-fM-l\UQx{_l}.
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Consider the periodic IVP

(3.20a) LMNy/ = 0   foT(x,t)eQxJ,

(3.20b) yt = p   for (x, t) gQx{-1}.

Then y/ is a smooth function, and using estimate (2.3), we have

(3.21) ll^lls.fixy < QI/iH^nxf-i}-
Let y/M>N = QM-Ny/ . Now

/.,M,N      -?2M-\ _/,,M,N      -¿M-\      ~M,N\
(V -J ,P)nx{-l}-(V -J , W )flx{-l}

,(„M,N      -p-M-\ ,r,M,N\
+ (v        - J , ¥ - V       )nx{-i}-

But by (3.7),

(jM,N.,M,N      -p2M-\,2N-\   TM,N.r,M,N^ ,   i,,M,N      ~fM~l   .r.M,N\ _ n
(L     v      -t ,L     y/  ' )cixj + (v      -J        ,¥     )iix{-i}=U.

And since LM'Ny/ = 0 for (x, t) eQx J ,we may write

= iLM,NvM,N_j2M-U2N-i ^ LM,N^M,N _ ^)w

Hence we can conclude that

(3.22) =(vM>N-fM-\¥-VM'N)çlx{-X}

,(tM,N,,M,N      -p2M-l,2N-\     jM,Ni...      .r.M ,N\\
+ (L,      v       -t ,L'(y/-y/'   ))iixj-

Thus, we can show

(3.23) \\vM'N-fM~l\\-s,ax{-i}<CsN^,

using (3.22) and the arguments employed earlier.

We now need to estimate

\\tM,N„      -p2M-l,2N-\
\\L       u-r ||-s,£2xy-

We know that u satisfies ut - Aux - Bu = F in the sense of distributions.
Accordingly, we may write

LM'Nu * j2M~l '1N~l ' {LM'Nu * LU) * {T2M~1 '2N~l - F)

' .-¡M-\,N-\ m-\,N-\ .^2M-\,2N-\        „.
= -(A -A)ux-(B -B)u-(F - F).

Now by (3.4),

(3.25) \\A-A l,oo,iixj<CsN-s\\A\\3St00^xJ,

and so

(3.26) \\A Hj.oo.nx/<C||y4||3j)00)nx/,

for M and N large enough. Let us show how to estimate the various terms
in (3.24). It is known [2, p. 431] that the projection operator has the property

that

(3.27) l|JF-F2"/-1'2Af-1|UJ,fixy<CV-i||JP||o,£ixy.

—M-l  N-\
Next, we shall estimate ||(5 - B )w||-j,nx/ • For this we need a lemma.
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Lemma 1. Let A e Hs 00çlxj and v e H-Sçixj . Then Av e H_s axJ, and

(3.28) \\Av\\-s,QxJ < C,||i4||jF0O,nx/ * ||w||_,,0xy.

Proo/. We have

(Av, <f>)axj = (v, A*<t>)QxJ,

by definition. Hence,

\(Av, 4>)axj\ = \(v, A*<j))axj\ = \(v,A*<f>)axj\ x \\A*<b\\Staxj

11011s,nx/ 11011s,nx/ \\A*ç\\s,axj 11011s,nx/

And this gives

\\Av\\{.sUQxJ < sup ll^ll,-°x/ x M-.a*j.
4>£H     11011s, ClxJ

Now it is easy to see that

„„, M*0lls,nx/     ~„ .,,
SUP~iüai- ^ <-s\\A\\s,oo,ClxJ-
4>eH   11011s,nx/

This gives us the required result.   D

Thus, we obtain

||(5-5 )u\\-Staxj <CS\\B-B ||j,oo,nx7 x ||m||_íiÍíxjt.

_M—\   N—\ _
w||-j,nx/ < l|w||o,nxy   and   \\B-B \\s,oo,üxj < QN s\\B\\3s>O0tçiXJ.

But

INI
Hence, we obtain

(3.29) \\(B-BM~l'N~l)u\\S!00tíixj<CsN-s.

Next, we estimate \\ux\\-s>axj . Let 0 e H. Then (ux, cj))axj = -(«, <t>x)axJ ,

since both « and 0 are periodic in x. Hence,

\(Ux, 4>)axj\     l(">0x)nxy|

\U,sixj ||0||s,nx/

But ||0x||(j-i),nx/ < 11011s,nx/ • And so we can conclude that

sup l(»x,0)nxj|     sup \(u,4>x)axJ\ ^

4>eH   11011s,cixj    ~ ¿e// ||0^||s-i,nxi '

which gives us

(3.30) ||Mjt||-j,nx/ < ||«||-j+i,nx/-

But

(3.31) ll"ll-i+i.nx7<ll«llo,nxy.
And so by the lemma just proved we get

(3.22) ||(^-^"1''V"l)Wx||s,oo,nxy<CîV-s.

Combining all these estimates, we get the required result

(3.33) \\LM'Nu-F2M-U2N-X\U^xJ<CsN-\

Also we have [2, p. 432]

(3.34) ||«-7Mr~1H^,Qx{-i> < CJNT-*.

We can now prove our main theorem.
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Theorem 1. Let vM'N be the solution obtained by minimizing ß?M'N(wM'N)

as described in (3.5). Then for all s > 0 the estimate

(3.35) ||M - vM'"||_s,nx{i} + II« - vM'N\\_s^XJ < QNl~s

holds.

Proof. We have by (3.19) that

Moreover, by (3.33) we know that

\\jM,N,.      -p2M-\,2N-\.. i_s
\\L U-t \\-s,iixJ <CSJ\

Using the triangle inequality, we obtain

(3.36) \\LM'N(u - vM'N)\\.StQxJ < QNl~s.

Finally, we have

II,.      „M,N\\ s ||„      T2^-1!!Il"-v      ll-j,nx{-i} S II" — y       ll-j,nx{-i}

(3.37) +ll72M~1    ,,".*ii ,   ,v       '                                                +11/        — v   ■   ||-j,nx{-i}

<C,Nl",

using (3.23) and (3.34). Therefore, using estimate (2.4) along with (3.36) and

(3.37), we conclude that

II" - ^M'"ll-s,nx{i} + II« - vM>N\\-StQxJ < CsNl~s.   D

4. Recovering pointwise values with spectral accuracy

In this section we briefly describe how the local smoothing proposed by Abar-
banel, Gottlieb, and Tadmor can be used to recover pointwise values with spec-

tral accuracy at any point in a neighborhood of which the actual solution is

smooth. If we wish to recover the values at t = 1, the local smoothing is partic-

ularly simple. Suppose we wish to obtain the value of the solution at the point

(xo, 1 ). We assume that there exists a neighborhood

J - {x: \x - xo\ < S}

in which the actual solution u(x, t) is smooth. Let p(x) be a Cq° function

with support in the set J and such that p is nonnegative everywhere and

p(x0) = 1. Choose K = M? with 0 < ß < 1, and let DK(Ç) denote the
Dirichlet kernel

K ( sin((2*+lK/2)
Z)^)=¿^í= sinß/2)        '       t*¿m*>

j=-K ( 2K + 1, £ = 2mn.

Then, to obtain the regularized version of vM'N at (xo, 1), we define

1    f2n
(4.1) RvM-N(x0,l) = ^        DK(x0-x)p(x)vM-N(x,l)dx.

2n J0

It has been proved in [2, p. 433] that if

\\u-vM<N\\-Stnx{l] <QM-°+l,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SPECTRAL METHODS FOR INITIAL VALUE PROBLEMS 657

then

(4.2)      \u(x0, 1)-Rvm<n(x0, l)\ < Ci(1 +\ogM)M~s+l + C2M-s+l+Ps,

where the constants Ci and C2 depend upon the Sobolev norms of p and u

over the interval /. A balance of the errors is achieved by putting ß = 1/2,

in which case we obtain

\u(x0, \)-RvM<N(xo, \)\=cf(M-sl2+x),

which proves that u(xo, 1) can be approximated with spectral accuracy starting

from the knowledge of the Galerkin-Collocation approximation vM'N .

Suppose now that we wish to recover the value of the solution at an interior

point (x0, to) ■ We assume that u(x, /) is smooth in the set O, where

O = {(x,t):\x-x0\<3, \t- io| < e}.

Let p(x) be a Cfi° function with support in the set J = {x: \x - xo\ < 3},
which is nonnegative everywhere and such that p(xo) = 1. Similarly, let n(t)

be a Cq° function with support in the set K = {t: \t - to\ < e}, which is

nonnegative everywhere and satisfying n(to) - 1. Choose K = M& and L =

V with 0 < ß , y < 1/2. Let DK(£,) denote the Dirichlet kernel and EL(r, t0)

denote the Legendre kernel

L

EL(r,T0) = Y/U+l/2)Lj(T)Lj(x0).
7=0

Then, to obtain the regularized values of vM'N at (xq, to), we define

RvM'N(x0, 1) = ^- //     DK(x0-x)EL(t,to)p(x)n(t)vM-N(x,t)dxdt.
¿n JJilxJ

Once more it can be shown that RvM'N(xo, to) approximates u(x0, to) with
spectral accuracy, and an optimal balance of the errors is obtained by choosing

0 = 7=1/3.

5. Computational results

In this section we demonstrate the efficiency of the method proposed in this

paper.

Example 1. Consider the problem

U, - a(x, t)Ux - b(x, t)U = F(x, t)

subject to periodic boundary condition Í7(0, t) = U(2it, t) and initial con-

dition U(x, -1) = g(x). We assume that g(x) has a discontinuity in its

derivative.
Case I. Consider

U(x  t) = í (1+')i + sin(x)>       0<x<n,

\ (1 +t)t-sin(x),       n<x<2n,

and take a(x, t) - 0.5 and b(x, t) = 0.0.
Case II. Consider

v     ( (\ + t)sin(t) + x, 0<x<n,
U(x, t) = <

{ ( 1 + r) sin(r) + 2n - x,       n<x<2n,

and with the same a(x, t) and b(x, t).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



658 P. K. DUTT AND A. K. SINGH

The results of smoothing the spectral approximation of U(x, t), with M =

128 and N = 17, are shown in the tables below.

Case I

x„ = f(i/+l/2)
v equals \u(xv, i)-vm<n(x„, i; \U(xv, \)-RVm>n(xv, 1)1

4

5

6

1.47 (-3)

1.88 (-3)

2.32 (-3)

2.69 (-8)

2.28 (-8)

2.67 (-8)

Case II

xv = f(i/ + l/2)
v equals \U(xv, l)-Vm'"(xv, 1)| \U(xv, \)-RVm-n(xv,\)\

5

6

1.12 (-3)

1.11 (-3)

1.28 (-3)

2.88 (-8)

4.19 (-8)

4.48 (-8)
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