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The ordering of the frustrated S=1/2 XY spin chain with the competing nearest- and next-
nearest-neighbor antiferromagnetic couplings, J1 and J2, is studied by using the density-matrix
renormalization-group method. It is found that besides the well-known spin-fluid and dimer phases
the chain exhibits gapless ‘chiral’ phase characterized by the spontaneous breaking of parity, in
which the long-range order parameter is a chirality, κl=Sx

l S
y

l+1
− Sy

l S
x
l+1, whereas the spin corre-

lation decays algebraically. The dimer phase is realized for 0.33<∼ j = J2/J1 <∼ 1.26 while the chiral
phase is realized for j >∼ 1.26.

Considerable attention has been paid to the ordering
of frustrated quantum spin chains since these systems
exhibit a wide variety of magnetic phases due to the in-
terplay between quantum effect and frustration. We con-
sider here an anisotropic frustrated quantum spin chain
described by the XXZ Hamiltonian,

H =

2
∑

ρ=1

{

Jρ
∑

ℓ

(

Sx
ℓ S

x
ℓ+ρ + Sy

ℓ S
y
ℓ+ρ +∆Sz

ℓ S
z
ℓ+ρ

)

}

, (1)

where Sℓ is the spin-S spin operator at the ℓth site,
Jρ > 0 is the antiferromagnetic interaction between the
nearest-neighbor (ρ = 1) and the next-nearest-neighbor
(ρ = 2) spin pairs, and ∆ (0 ≤ ∆ ≤ 1) represents an ex-
change anisotropy. Note that ∆=0 and ∆=1 represent
the XY and Heisenberg chains, respectively.
In the classical limit, S → ∞, the system in the ground

state exhibits a magnetic long-range order (LRO) char-
acterized by a wavenumber q. The order parameter is
defined by

~m(q) =
1

L

∑

ℓ

~Seiqℓ, (2)

where L is the total number of spins. While the LRO is
of the Nèel-type (q = π) when the frustration is smaller
than a critical value, i.e., j ≡ J2/J1 ≤ 1/4, it becomes
of helical-type for j > 1/4 with q = cos−1 (−1/4j).
It should be noticed that both the time-reversal and
the parity symmetries are broken in this helical ordered
phase. In the XY -like case (0 ≤ ∆ < 1), the helical or-
dered state possesses a two-fold discrete chiral degener-
acy characterized by the right- and left-handed chirality,
in addition to a continuous degeneracy associated with
the original U(1) symmetry of the XY spin. The chiral
order parameter is defined by1

Ochiral =
1

L

∑

ℓ

κℓ, (3)

κℓ = Sx
ℓ S

y
ℓ+1

− Sy
ℓ S

x
ℓ+1 =

[

~Sℓ × ~Sℓ+1

]

z
.

The chiral order parameter changes its sign under the
parity operation but is invariant under the time-reversal
operation.
In contrast to the classical case S = ∞, in the quan-

tum case S < ∞ the magnetic LRO (2) is completely de-
stroyed by strong quantum fluctuations.2 Nevertheless,
for the case of the S = 1 XY -like chain, we have recently
shown on the basis of the exact-diagonalization (ED)
and the density-matrix renormalization-group (DMRG)
methods that there exist novel chiral phases in which
only the chirality (3) exhibits a LRO without the mag-
netic helical LRO (2).4 Two distinct chiral phases have
been found, one gapless and the other gapped. With in-
creasing j, the system exhibits two phase transitions first
from the Haldane phase3 to the gapped chiral phase, and
then from the gapped chiral phase to the gapless chiral
phase. These chiral ordered phases break only the par-
ity symmetry spontaneously, with preserving both the
time-reversal and the translational symmetries. We also
constructed the ground state phase diagram of the model
(1) for the S = 1 case.5,6

By contrast, the situation is less clear in the case of
the S = 1/2 XY chain. There remains a discrepancy
between the field-theoretical results7 and our numerical
results:4 While the field-theoretical analysis based on the
bosonization method predicted the occurrence of the chi-
ral phase in the large j region, the Binder parameter of
the chirality calculated via the ED method up to L = 20
exhibited no sign of the chiral phase. Although Aligia
et al.

8 recently pointed out that the system size L = 20
might be insufficient to deal with the chirality in the large
j region, the question whether the chiral phase is realized
in the S = 1/2 XY chain has not been clarified so far.
In the present paper, we try to resolve this discrepancy

by determining the phase diagram of the S = 1/2 XY
chain (1) based on the DMRG method. The method
used is the same as that in the previous work.5 Using
the DMRG method, we calculate appropriate correlation
functions associated with each order parameter charac-
terizing the phases, and analyze their long-distance be-
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haviors. The results of our analysis strongly suggest the
appearance of the chiral ordered phase for j > jc(≃ 1.26).
Before going into details of our calculation, we briefly

summarize the known properties of the ground-state
phases of the S = 1/2 spin chain (1). The system under-
goes a phase transition from the spin-fluid phase to the
dimer phase at j = jd with increasing j.9–12 The critical
value jd has been estimated to be jd ≃ 0.33 for the XY
case.12 The spin-fluid phase realized at j ≤ jd is charac-
terized by gapless excitations above the ground state and
an algebraic decay of spin correlations, while the dimer
phase realized at j > jd is characterized by a finite en-
ergy gap above the doubly degenerate ground states and
an exponential decay of spin correlations. In the dimer
phase, both the parity and the translational symmetries
are broken spontaneously. The order parameter charac-
terizing the dimer phase is given as

Oα
dimer =

1

L

∑

ℓ

ταℓ , (α = x, y, z) (4)

ταℓ = (−1)ℓSα
ℓ S

α
ℓ+1.

The dimer phase is further divided into two regions by the
so-called Lifshitz line at j = jL according to the nature of
the spin correlations: Whereas the structure factor S(q)
has a maximum at q = π for j ≤ jL, the wavenumber
q of the maximum of S(q) shifts to an incommensurate
value q = Q < π for j > jL. This incommensurate
character is regarded as the vestige of the helical order
in the classical case.13 Meanwhile, the question whether
the chiral phase exists for larger j for the XY chain still
remains controversial as mentioned above.
In order to probe the possible phases, we calculate the

chiral, dimer and spin correlation functions defined by

Cκ(r) = 〈κr0−r/2κr0+r/2〉, (5)

Cx
dim(r) = 〈Sx

r0−r/2S
x
r0−r/2+1 × (Sx

r0+r/2S
x
r0+r/2+1

−Sx
r0+r/2+1S

x
r0+r/2+2)〉, (6)

Cα
s (r) = 〈Sα

r0−r/2S
α
r0+r/2〉 (α = x, z) (7)

which correspond to the order parameter (3), (4) and
(2), respectively. Here r0 represents the center position
of open chain, i.e., r0 = L/2 for even r and r0 = (L+1)/2
for odd r. We employ the infinite-system DMRG algo-
rithm introduced by White.14 The notation 〈· · ·〉 repre-
sents the expectation value in the lowest energy state in
the subspace of Sz

total = 0. Note that, since the chains
treated in our calculation are sufficiently large,15 one can
safely avoid the finite-size effect arising from the incom-
mensurate character of the spin correlation as pointed
out by Aligia et al.
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The calculated r-dependence of the chiral, dimer, and
spin correlation functions are shown in Fig.1 (a)-(c) on
log-log plots for several typical values of j. As can be seen
from Fig.1 (a), the data of Cκ(r) for j > jc ≃ 1.26 are
bent upward at larger r suggesting a finite chiral LRO,
while for j < jc they are bent downward suggesting an
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FIG. 1. Correlation functions versus r on log-log plots
for various j: (a) chiral correlation Cκ(r); (b) dimer corre-
lation (−1)rCx

dim(r); (c) spin correlation Cx
s (r) divided by

the oscillating factor cos(Qr). The number of block states
kept in the DMRG calculation is m = 450. To illustrate
the m-dependence, we also indicate by crosses the data for
m = 400 and 350 for several cases where the m-dependence
is relatively large. In other cases, the truncation errors are
smaller than the symbols.
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exponential decay of chiral correlations. Although the
data around the transition point suffer from the trunca-
tion error inherent to the DMRG calculation, we estimate
the transition point as jc = 1.26+0.01

−0.03 by taking account
of the m-dependence of the data shown in the figure.
The appearance of the chiral phase is consistent with the
prediction of the field theory.7,16

Meanwhile, as shown in Fig.1 (b), the data of Cx
dim

(r)
for j < jdc ≃ 1.26 are bent upward for larger r suggesting
a finite dimer LRO, whereas they are bent downward for
j > jdc suggesting an exponential decay of dimer corre-
lations. The dimer transition point jdc is then estimated
to be jcd = 1.26±0.01. Figure 1 (c) exhibits the spin cor-
relation function Cx

s (r) divided by the leading oscillating
factor cos(Qr). The data of Cx

s (r) are bent downward
for j < jsc ≃ 1.26 suggesting an exponential decay of
spin correlations, while they exhibit a linear behavior for
j > jsc suggesting a power-law decay of spin correla-
tions.17 This behavior of spin correlations suggests that,
as j increases, the system exhibits a transition from the
gapped state (j < jsc) to the gapless state (j > jsc). We
note that the absence of magnetic (spin) LRO has been
proven rigorously for any j and for general S < ∞.2

The remaining problem is the relation among jc, jdc,
and jsc. Two possibilities seem to be allowed from our
data, i.e., (i) jc = jdc = jsc or (ii) jc < jdc = jsc. If the
case (i) is realized, the system undergoes only one phase
transition at j = jc = jdc = jsc between the dimer phase
and the gapless chiral phase with no dimer order. If the
case (ii) is realized, on the other hand, the system under-
goes two successive transitions on increasing j, first at
j = jc from the dimer phase to the “chiral dimer” phase
where both the dimer and chiral LRO’s coexist with gap-
full excitations, and then at j = jdc = jsc from the chiral
dimer phase to the gapless chiral phase. Although rather
large error bars of jc and jdc prevent us from determin-
ing which of the cases is realized, our result suggests that
the chiral dimer phase, if it ever exists, appears only in
a rather narrow region, less than 3.2 % of jc ≃ 1.26, be-
tween the dimer and gapless chiral phases. (We note that
in the S = 1 XY chain the gapped chiral phase exists for
0.473<∼ j <∼ 0.49, whose width corresponds to about 3.6

% of jc ≃ 0.473.4,5) Further work will be necessary to
solve the problem whether the chiral dimer phase exists.
In summary, from numerical studies of the ground-

state properties of the frustrated S = 1/2 XY chain (1),
we have found that

1. The chiral LRO is realized for a range of j > jc(≃
1.26). This is consistent with the prediction by
Nersesyan et. al.

7

2. The dimer phase exists in the range jd(≃ 0.33) <
j < jdc(≃ 1.26).

Detailed results including the critical properties and the
full phase diagram in the j-∆ plane will be reported else-
where.

We thank Prof. T. Tonegawa for valuable discussion.
Numerical calculations were carried out in part at the
Yukawa Institute Computer Facility, Kyoto University.
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rection terms characterized by wavenumbers Q′ 6= Q. Nev-
ertheless, we consider that we can judge the behavior of
the leading term of Cx

s (r) from the figure and make the
conclusion in the text about Cx

s (r).
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