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ABSTRACT
Page ranking is a fundamental step towards the construction of ef-
fective search engines for both generic (horizontal) and focused
(vertical) search. Ranking schemes for horizontal search like the
PageRank algorithm used by Google operate on the topology of
the graph, regardless of the page content. On the other hand, the
recent development of vertical portals (vortals) makes it useful to
adopt scoring systems focussed on the topic and taking the page
content into account.

In this paper, we propose a general framework for Web Page
Scoring Systems (WPSS) which incorporates and extends many of
the relevant models proposed in the literature. Finally, experimen-
tal results are given to assess the features of the proposed scoring
systems with special emphasis on vertical search.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Sorting and Searching; H.3.3
[Information Storage and Retrieval]: Information Search and
Retrieval—Information Filtering; H.5.4 [Information Interfaces
and Presentation]: Hypertext/Hypermedia

General Terms
Algorithms

Keywords
Web Page Scoring Systems, Random Walks, HITS, PageRank, Fo-
cused PageRank

1. INTRODUCTION
The analysis of the hyperlinks on the Web [1] can significantly

increase the capability of search engines. A simple counting of the
number of references does not take into account the fact that not
all the citations have the same authority. PageRank1[2] is a no-
ticeable example of a topological-based ranking criterion. An in-
teresting example of query-dependent criteria is given in [3]. User
queries are issued to a search engine in order to create a set of seed
pages. Crawling the Web forward and backward from that seed
is performed to mirror the Web portion containing the information

1http://www.google.com
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which is likely to be useful. A ranking criterion based on topolog-
ical analyses can be applied to the pages belonging to the selected
Web portion. Very interesting results in this direction have been
proposed in [4, 5, 6]. In [7] a Bayesian approach is used to com-
pute hub and authorities, whereas in [8] both topological informa-
tion and information about page content are included in distillation
of information sources performed by a Bayesian approach.

Generally speaking, the ranking of hypertextual documents is
expected to take into account thereputation of the source, thepage
updating frequency, thepopularity, thespeed access, the degree of
authority, and the degree of hubness.

The page rank of hyper-textual documents can be thought of as
a function of the document content and the hyperlinks. In this pa-
per, we propose a general framework for Web Page Scoring Sys-
tems (WPSS) which incorporates and extends many of the relevant
models proposed in the literature. The general web page scoring
model proposed in this paper extends both PageRank [2] and the
HITS scheme [3]. In addition, the proposed model exhibits a num-
ber of novel features, which turn out to be very useful especially
for focused (vertical) search. The content of the pages is combined
with the web graphical structure giving rise to scoring mechanisms
which which are focused on a specific topic. Moreover, in the pro-
posed model, vertical search schemes can take into account the mu-
tual relationship amongst different topics. In so doing, the discov-
ery of pages with high score for a given topic affects the score of
pages with related topics.

Experimental results were carried out to assess the features of the
proposed scoring systems with special emphasis on vertical search.
The very promising experimental results reported in the paper pro-
vide a clear validation of the proposed general scheme for web page
scoring systems.

2. PAGE RANK AND RANDOM WALKS
Random walk theory has been widely used to compute the abso-

lute relevance of a page in the Web [2, 6]. The Web is represented
as a graphG, where each Web page is a node and a link between
two nodes represents a hyperlink between the associated pages. A
common assumption is that the relevancexp of pagep is repre-
sented by the probability of ending up in that page during a walk
on this graph.

In the general framework we propose, we consider a complete
model of the behavior of a user surfing the Web. We assume that a
Web surfer can perform one out of four atomic actions at each step
of his/her traversal of the Web graph:

• j jump to a node of the graph;
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• l follow a hyperlink from the current page;

• b follow a back-link (a hyperlink in the inverse direction);

• s stay in the same node.

Thus the set of the atomic actions used to move on the Web isO =
{j, l, b, s}.

We assume that the behavior of the surfer depends on the page
he is currently visiting. The action he/she will decide to take will
depend on the page contents and the links it contains. For example
if the current page is interesting to the surfer, it is likely he/she will
follow a hyperlink contained in the page. Whereas, if the page is
not interesting, the surfer will likely jump to a different page not
linked by the current one. We can model the user behavior by a set
of probabilities which depend on the current page:

• x(l|q) the probability of following one hyperlink from page
q,

• x(b|q) the probability of following one back-link from page
q,

• x(j|q) the probability of jumping from pageq,

• x(s|q) the probability of remaining in pageq.

These values must satisfy the normalization constraint∑
o∈O

x(o|q) = 1

Most of these actions need to specify their targets. Assuming
that the surfer’s behavior is time-invariant, then we can model the
targets for jumps, hyperlink or back-link choices by using the fol-
lowing parameters:

• x(p|q, j) the probability of jumping from pageq to pagep;

• x(p|q, l) the probability of selecting a hyperlink from pageq
to pagep; this value is not null only for the pagesp linked
directly by pageq, i.e. p ∈ ch(q), beingch(q) the set of the
children of nodeq in the graphG;

• x(p|q, b) the probability of going back from pageq to pagep;
this value is not null only for the pagesp which link directly
pageq, i.e. p ∈ pa(q), beingpa(q) the set of the parents of
nodeq in the graphG.

These sets of values must satisfy the following probability nor-
malization constraints for each pageq ∈ G:

∑
p∈G x(p|q, j) = 1,∑

p∈ch(q) x(p|q, l) = 1,
∑
p∈pa(q) x(p|q, b) = 1.

The model considers a temporal sequence of actions performed
by the surfer and it can be used to compute the probability that the
surfer is located in pagep at timet, xp(t). The probability distri-
bution on the pages of the Web is updated by taking into account
the possible actions at timet+ 1 using the following equation

xp(t+ 1) =
∑
q∈G

x(p|q) · xq(t), (1)

where the probabilityx(p|q) of going from pageq to pagep is ob-
tained by considering the action which can be performed by the
surfer. Thus, using the previous definitions for the actions, the

equation can be rewritten as

xp(t+ 1) =
∑
q∈G

x(p|q, j) · x(j|q) · xq(t) + (2)

∑
q∈pa(p)

x(p|q, l) · x(l|q) · xq(t) +

+
∑

q∈ch(p)

x(p|q, b) · x(b|q) · xq(t) + x(s|p) · xp(t)

These probabilities can be collected in aN -dimensional vector
x(t), beingN the number of pages in the Web graphG, and the
probability update equations can be rewritten in a matrix form. The
probabilities of moving from a pageq to a pagep given an action
can be organized into the following matrices:

• theforwardmatrix∆ whose element(p, q) is the probability
x(p|q, l);

• thebackwardmatrixΓ collecting the probabilitiesx(p|q, b);

• thejumpmatrixΣ which is defined by the jump probabilities
x(p|q, j).

The forward and backward matrices are related to the Web adja-
cency matrixW whose entries are 1 if pagep links pageq. In
particular, the forward matrix∆ has non null entries only in the
positions corresponding to 1s in matrixW , and the backward ma-
trix Γ has non null entries in the positions corresponding to 1s in
W ′.

Further, we can define the set ofaction matrices which collect
the probabilities of taking one of the possible actions from a given
pageq. These areN×N diagonal matrices defined as follows:Dj

whose diagonal values(q, q) are the probabilitiesx(j|q), Dl col-
lecting the probabilitiesx(l|q), Db containing the valuesx(b|q),
andDs having on the diagonal the probabilitiesx(s|q).

Hence, equation (2) can be written in matrix form as

x(t+ 1) = (Σ ·Dj)
′x(t) + (∆ ·Dl)

′x(t) + (3)

(Γ ·Db)
′x(t) + (Ds)

′x(t)

The transition matrixT used to update the probability distribution
is

T = (Σ ·Dj + ∆ ·Dl + Γ ·Db +Ds)
′ (4)

Using this definition, the equation (3) can be written as

x(t+ 1) = T · x(t) (5)

Starting from a given initial distributionx(0) equation (5) can be
applied recursively to compute the probability distribution at a given
time stept yielding

x(t) = T t · x(0). (6)

In order to define an absolute page rank for the pages on the Web,
we consider the stationary distribution of the Markov chain defined
by the previous equations.T ′ is the state transition matrix of the
Markov chain.T ′ is stable, sinceT ′ is a stochastic matrix having
its maximum eigenvalue equal to1. Since the state vectorx(t)
evolves following the equation of a Markov Chain, it is guaranteed
that if

∑
q∈Gxq(0) = 1, then

∑
q∈Gxq(t) = 1, t = 1, 2, . . ..

By applying the results on Markov chains (see e.g. [9]), we can
prove the following proposition.

PROPOSITION 2.1. If x(j|q) 6= 0 ∧ x(p|q, j) 6= 0, ∀p, q :∈ G
thenlimt→∞x(t) = x? wherex? does not depend on the initial
state vectorx(0).
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Proof: Because of the hypotheses,Σ ·Dj is strictly positive, i.e.
all its entries are greater then0. Since the transition matrixT of the
Markov chain is obtained by adding non-negative matrices, then
also the transition matrixT is strictly positive. Thus, the result-
ing Markov Chain isirreducibleand consequently it has a unique
stationary distribution given by the solution of the equationx? =
Tx?, wherex? satisfies(x?)′q beingq theN -dimensional vec-
tor whose entries are all 1s.2

2.1 Uniform Jump Probabilities
In order to simplify the general model proposed so far, we can

introduce some assumptions on the probability matrices. A pos-
sible choice is to consider some actions to be independent on the
current page. A first hypothesis we investigate is the case of jump
probabilities which are independent on the starting pageq. This
choice models a surfer who decides to make random jumps from
a given page to another page with uniform probability. Thus, the
jump matrixΣ has all the entries equal tox(p|q, j) = x(p|j) = 1

N

Σ =


1
N

1
N

. . . 1
N

...
...

. . .
...

1
N

1
N

. . . 1
N


Moreover, we suppose that also the probability of choosing a

jump among the available actions does not depend on the page, i.e.
x(j|p) = dj ,∀p : p ∈ G. Under these two assumptions, equation
(3) becomes

x(t+ 1) =
dj
N
q+ (∆ ·Dl + Γ ·Db +Ds)

′x(t) (7)

because(Σ ·Dj)
′ · x(t) = (dj/N) ·q as

∑
p∈Gxp(t) = 1.

If we defineR = (∆ ·Dl + Γ ·Db +Ds)
′, the solution of

equation (7) is

x(t) = Rt · x(0) +
dj
N

(
t∑

j=0

Rt−1−j

)
·q (8)

Using the Frobenius theorem on matrices, the following bound on
the maximum eigenvalue ofR can be derived

λmax(R) = λmax(R′) = λmax(∆ ·Dl) +

+λmax(Γ ·Db) + λmax(Ds)

≤ max
q=1,...,N

(x(l|q) · λmax(∆)+

+x(b|q) · λmax(Γ) + x(s|q)) =

= max
q=1,...,N

(x(l|q) + x(b|q) + x(s|q)) <

< max
q=1,...,N

(x(l|q) + x(b|q) + x(j|q) + x(s|q))

= 1 (9)

becauseλmax(∆) = λmax(Γ) = 1. Hence, in equation (8) the
first term vanishes ast→∞, i.e.

lim
t→∞

Rt = O (10)

whereO is the matrix having all elements equal to0. Thus, when
t→∞, the probability distributionx(t) converges to

x? = lim
t→∞

x(t) =
dj
N

(
∞∑
t=0

Rt

)
·q (11)

Sinceλmax(R) < 1 as shown in equation (9), it can be proven that
the previous equation converges to

x? =
dj
N

(I −R)−1 ·q (12)

As it is stated by proposition 2.1, the value ofx? does not depend
on the choice of the initial state vectorx(0).

2.2 Multiple State Model
A model based on a single variable may not capture the com-

plex relationships among Web pages when trying to model their
importance. Ranking schemes based on multiple variables have
been proposed in [3, 6], where a pair of variables are used to repre-
sents the concepts ofhubnessandauthorityof a page. In the prob-
abilistic framework described so far, we can define a multivariable
scheme by considering a pool of Web surfers each described by a
single variable. Each surfer is characterized by his/her own way of
browsing the Web modeled by using different parameter values in
each state transition equation. By choosing proper values for these
parameters we can choose different policies in evaluating the abso-
lute importance of the pages. Moreover, the surfers may interact by
acceptingsuggestionsfrom each other.

In order to model the activity ofM different surfers, we use a set
of state variablesx(i)

q (t) which represent the probability of each
surferi to be visiting pageq at timet. The interaction among the
surfers is modeled by a set of parameters which define the proba-
bility of the surferk to accept the suggestion of the surferi, thus
jumping from the page he/she is visiting to the one visited by the
surferi. This interaction happens before the choice of the actions
described previously. If we hypothesize that the interaction does
not depend on the page the surferk is currently visiting, the de-
gree of interaction with the surferi is modeled by the valueb(i|k)
which represents the probability for the surferk of jumping to the
page visited by the surferi. These values must satisfy the probabil-
ity normalization constraint

∑M
s=1 b(s|k) = 1.

As an example, suppose that there are two surfers, “the novice”
and “the expert”. Surfers1, the novice, blindly trusts the sugges-
tions of surfers2 as he/she believess2 is an expert in discovering
authoritative pages, whereass1 does not trust at all his/her own ca-
pabilities. In this case the complete dependence of the novice on
the expert is modeled by choosingb(1|1) = 0 andb(2|1) = 1, i.e.
the novice chooses the page visited by the expert with probability
equal to 1.

Before taking any action, the surferi repositions himself/herself
in pagep with probabilityv(i)

p (t) looking at the suggestions of the
other surfers. This probability is computed as

v(i)
p (t) =

M∑
s=1

b(s|i)x(s)
p (t) (13)

Thus, when computing the new probability distributionx(i)
p (t+

1) due to the action taken at timet by the surferi, we consider the
distributionv(i)

p (t) instead ofx(i)
p (t) when applying equation (2).

Thus, the transition function is defined as follows

x(i)
p (t+ 1) =

∑
q∈G

x(i)(p|q, j) · x(i)(j|q) ·
M∑
s=1

b(s|i)xsq(t)+

+
∑

q∈pa(p)

x(i)(p|q, l) · x(i)(l|q) ·
M∑
s=1

b(s|i)xsq(t)+

+
∑

q∈ch(p)

x(i)(p|q, b) · x(i)(b|q) ·
M∑
s=1

b(s|i)xsq(t)+
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+x(i)(s|p) ·
M∑
s=1

b(s|i)xsp(t) i = 0, . . . ,M (14)

When consideringM surfers, the score vectors of each surfer
x(i)(t) can be collected as the columns of a matrixX(t). More-
over, we define the[M × M ] matrix A which collects the val-
uesb(i|k). The matrixA will be referred to as theinteraction
matrix. Finally, each surferi will be described by his/her own
forward, backward and jump matricesΣ(i), ∆(i), Γ(i) and by
the action matricesD(i)

j , D(i)
l , D(i)

b , D(i)
s . Thus, the transition

matrix for the Markov chain associated to the surferi is T (i) =(
Σ(i) ·D(i)

j + ∆(i) ·D(i)
l + Γ ·D(i)

b +D
(i)
s

)′
.

Using these definitions, the set ofM interacting surfers can be
described by rewriting equation (14) as a set of matrix equations as
follows 

x(1)(t+ 1) = T (1) ·X(t) ·A(1)

...
x(M)(t+ 1) = T (M) ·X(t) ·A(M)

(15)

When the surfers are independent on each other (i.e.b(i|i) = 1,
i = 0, . . . ,M , andb(i|j) = 0, i = 0, . . . ,M, j = 0, . . . ,M,
j 6= i), the model reduces toM models as described by equation
(6).

3. HORIZONTAL WPSS
Horizontal WPSSs do not consider any information on the page

contents and produce the rank vector using just the topological
characteristics of the Web graph. In this section we show how
these scoring systems can be described in the proposed probabilis-
tic framework. In particular we derive the two most popular Page
Scoring Systems,PageRankand HITS, as special cases.

3.1 PageRank
The Google search engine employs a ranking scheme based on

a random walk model defined by a single state variable. Only two
actions are considered: the surfer jumps to a new random page with
probability1 − d or he/she follows one link from the current page
with probabilityd. The Google ranking scheme, calledPageRank,
can be described in the general probabilistic framework of equation
(2), by choosing its parameters as follows. First, the probabilities of
following a back-linkx(b|p) and of remaining in any pagex(s|p)
are null for all the pagesp. Then, as stated above, the probability
of performing a random jump isx(j|p) = 1 − d for any pagep,
whereas the probability of following a hyperlink contained in the
pagep is also a constant, i.e.x(l|p) = d. Given that a jump is
taken, its target is selected using a uniform probability distribution
over all theN Web pages, i.e.x(p|j) = 1/N, ∀p ∈ G. Finally, the
probability of following the hyperlink fromq to p does not depend
on the pagep, i.e. x(p|q, l) = αq. In order to meet the normaliza-
tion constraint,αq = 1/hq wherehq is the number of links exiting
from pageq (the page hubness). This assumption makes the surfer
random, since we define a uniform probability distribution among
all the outgoing links.

This last hypothesis cannot be met by pages which do not con-
tain any links to other pages. A page with no out-links is calledsink
page, since it would behave just like a score sink in the PageRank
propagation scheme. In order to keep the probabilistic interpreta-
tion of PageRank, all sink nodes must be removed. The page rank
of sinks is then computed from the page ranks of their parents.

Under all these assumptions equation (2) can be rewritten as

xp(t+ 1) =
(1− d)

N
·
∑
q∈G

xq(t) + d
∑

q∈pa(p)

αq · xq(t) (16)

Since the probabilistic interpretation is valid, it holds that∑
q∈G

xq(t) = 1

and, then, equation (16) becomes

xp(t+ 1) =
(1− d)

N
+ d

∑
q∈pa(p)

αq · xq(t) (17)

Since0 < d < 1, x(j|p) = 1 − d > 0 for each page and then
equation (12) guarantees that the Google’s PageRank converges to
a distribution of page scores that does not depend on the initial
distribution.

In order to apply the Google’s PageRank scheme without remov-
ing the sink nodes, we can introduce the following modification to
the original equations. Since no links can be followed from a sink
nodeq, x(l|q) must be equal to0 andx(j|q) equal to1. Thus,
when there are sinks,x(j|q) is defined as{

x(j|q) = 1− d if ch(q) 6= ∅
x(j|q) = 1 if ch(q) = ∅ (18)

In this case the contribution of the jump probabilities does not sum
to a constant term as it happens in equation (17), but the value
x(p|j, t) = 1

N

∑
q∈G x(j|q)xq(t) must be computed at the be-

ginning of each iteration. This is the computational scheme we
used in our experiments.

3.2 The HITS Ranking System
The HITS algorithm was proposed to model authoritative doc-

uments only relying on the information hidden in the connections
among them due to co-citation or web hyperlinks [3]. In this for-
mulation the Web pages are divided into two page classes: pages
which are information sources (authorities) and pages which link
to information sources (hubs). The HITS algorithm assigns two
numbers to each pagep, the pageauthority and the pagehubness
in order to model the importance of the page. These values are
computed by applying iteratively the following equations{

aq(t+ 1) =
∑
p∈pa(q)i hp(t)

hq(t+ 1) =
∑
p∈ch(q) ap(t),

(19)

whereaq indicates the authority of pageq andhq its hubness. If
a(t) is the vector of the authorities at stept, andh(t) is the hubness
vector at stept, the previous equation can be rewritten in matrix
form as {

a(t+ 1) = W · h(t)
h(t+ 1) = W ′ · a(t),

(20)

whereW is the adjacency matrix of the Web graph. It is trivial
to demonstrate that ast tends to infinity, the direction of authority
vector tends to be parallel to the main eigenvector of theW ·W ′

matrix, whereas the hubness vector tends to be parallel to the main
eigenvector of theW ′ ·W matrix.

The HITS ranking scheme can be represented in the general Web
surfer framework, even if some of the assumptions will violate the
probabilistic interpretation. Since HITS uses two state variables,
the hubness and the authority of a page, the corresponding random
walk model is a multiple state scheme based on the activity of two
surfers. Surfer 1 is associated to the hubness of pages whereas
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surfer 2 is associated to the authority of pages. For both surfers
the probabilities of remaining in the same pagex(i)(s|p) and of
jumping to a random pagex(i)(s|p) are null. Surfer 1 never fol-
lows a link, i.e. x(1)(l|p) = 0, ∀p ∈ G whereas he/she always
follows a back-link, i.e. x(1)(b|p) = 1, ∀p ∈ G. Because of
this, the HITS computation violates the probability normalization
constraints, since

∑
p∈pa(q) x

(1)(p|q, b) = |pa(q)| ≥ 1.
Surfer 2 has the opposite behavior with respect to surfer 1. He/she

always follows a link, i.e.x(2)(l|p) = 1, ∀p ∈ G, and he/she
never follows a back-link, i.e.x(2)(b|p) = 0. In this case the nor-
malization constraint is violated for the values ofx(2)(l|p) because∑
p∈ch(q) x

(1)(p|q, b) = |ch(q)| ≥ 1.

Under these assumptionsD(1)
b = I, D

(2)
l = I, beingI the

identity matrix, whereasD(1)
j ,D(1)

l ,D(1)
s ,D(2)

j ,D(2)
b ,D(2)

s are
all equal to the null matrix.

The interaction between the surfers is described by the matrix:

A =

[
0 1
1 0

]
(21)

The interpretation of the interactions represented by this matrix is
that surfer1 considers surfer2 as an expert in discovering author-
ities and always moves to the position suggested by that surfer be-
fore acting. On the other hand, surfer2 considers surfer1 as an
expert in finding hubs and then he/she always moves to the posi-
tion suggested by that surfer before choosing the next action.

In this case equation (15) is x(1)(t+ 1) =
(
∆(1)

)′
·X(t) ·A(1)

x(2)(t+ 1) =
(
Γ(2)

)′
·X(t) ·A(2)

(22)

Using equation (21) and the HITS assumption∆(1)′ =W ′, Γ(2)′

=W we obtain{
x(1)(t+ 1) = W ′ · x(2)(t)

x(2)(t+ 1) = W · x(1)(t)
(23)

which, redefininga(t) = x(1)(t) andh(t) = x(2)(t), is equiva-
lent to the HITS computation of equation (20).

The HITS model violates the probabilistic interpretation and this
makes the computation unstable, since theW ·W ′ matrix has a
principal eigenvalue much larger then1. Hence, unlike Google’s
PageRank, the HITS algorithm needs the score to be normalized at
the end of each iteration.

Finally, the HITS scheme suffers from other drawbacks. In par-
ticular, large highly connected communities of Web pages tend to
attract the principal eigenvector ofW ·W ′, thus pushing to zero
the relevance of all other pages. As a result the page scores tend
to decrease rapidly to zero for pages outside those communities.
Recently some heuristics have been proposed to avoid this problem
even if such behavior can not be generally avoided because of the
properties of the dynamic system associated to the HITS algorithm
[10].

3.3 The PageRank-HITS model
PageRank is stable, it has a well defined behavior because of its

probabilistic interpretation and it can be applied to large page col-
lections without canceling the influence of the smallest Web com-
munities. On the other hand, PageRank is sometimes too simple
to take into account the complex relationships of Web page cita-
tions. HITS is not stable, only the largest Web community in-
fluences the ranking, and this does not allow the application of
HITS to large page collections. On the other hand the hub and

authority model can capture more than PageRank the relationships
among Web pages. In this section we show that the proposed prob-
abilistic framework allows to include the advantages of both ap-
proaches. We employ two surfers, each one implementing a bidi-
rectional PageRank surfer. We assume that surfer1 either follows a
back-link with probabilityx(1)(b|p) = d(1) or jumps to a random
page with probabilityx(1)(j|p) = 1 − d(1), ∀p ∈ G. Whereas
surfer2 either follows a forward link with probabilityx(2)(l|p) =

d(2) or jumps to a random page with probabilityx(2)(j|p) = 1 −
d(2), ∀p ∈ G.

Like in HITS, the interaction between the surfers is described by
the matrix

A =

[
0 1
1 0

]
In this case, equation (15) becomes{

x(1)(t+ 1) = (1−d(1))
N
q+ d(1)(Γ(1))

′ · x(2)(t)

x(2)(t+ 1) = (1−d(2))
N
q+ d(2)(∆(2))

′ · x(1)(t)
(24)

Further, we assume the independence of parametersx(1)(p|q, b)
andx(2)(p|q, l) on the pagep. Hence, it holds that∆(1)′ = W ′ ·
Θ, Γ(2)′ = W ·Ω, whereΩ is the diagonal matrix with element
(p, p) equal to1/pa(p) andΘ is the diagonal matrix with element
(p, p) equal to1/ch(p). Then:{

x(1)(t+ 1) = (1−d(1))
N
q+ d(1)W ·Ω · x(2)(t)

x(2)(t+ 1) = (1−d(2))
N
q+ d(2)W ′ ·Θ · x(1)(t)

(25)

This page rank is stable, the scores sum up to1 and no normal-
ization is required at the end of each iteration. Moreover, the two
state variables can capture and process more complex relationships
among pages.

In particular, settingd(1) = d(2) = 1 yields a normalized ver-
sion of HITS, which has been proposed in [4].

4. VERTICAL WPSS
Horizontal WPSSs exploit the information provided by the Web

graph topology. Different properties of the graph are evidenced
by each model. For example the intuitive idea that a highly linked
page is an absolute authority can be captured by PageRank or HITS
schemes. However, when applying scoring techniques for focused
search the page contents should be taken into account beside the
graph topology. Vertical WPSSs aim at computing a relative rank-
ing of pages when focusing on a specific topic. A vertical WPSS
relies on the representation of the page content with a set of fea-
tures (e.g. a set of keywords) and on a classifier which is used
to assess the degree of relevance of the page with respect to the
topic of interest. Basically the general probabilistic framework of
WPSSs proposed in this paper can be used to define a vertical ap-
proach to page scoring. Several models can be derived which com-
bine the ideas underlining the topology-based scoring and the topic
relevance measure provided by text classifiers. In particular a text
classifier can be used to compute proper values for the probabilities
needed by the random walk model. As it is shown by the experi-
mental results, vertical WPSSs can produce more accurate results
in ranking topic specific pages.

4.1 Focused PageRank
In the PageRank framework, when choosing to follow a link in a

pageq each link has the same probability1/ch(q) to be followed.
Instead of therandomsurfer model, in the focused domain we can

512



consider the more realistic case of a surfer who follows the links
according to the suggestions provided by a page classifier.

If the surfer is located at pageq and the pages linked by page
q have scoress(ch1(q)), . . . , s(chhq (q)) by a topic classifier, the
probability of the surfer to follow thei-th link is defined as

x(chi(q)|q, l) =
s(chi(q))∑hq
j=0 s(chj(q))

. (26)

Thus the forward matrix∆ will depend on the classifier outputs on
the target pages.

Hence, the modified equation to compute the combined page
scores using a PageRank-like scheme is

xp(t+ 1) =
(1− d)

N
+ d

∑
q∈pa(p)

x(p|q, l) · xq(t), (27)

wherex(p|q, l) is computed as in equation (26).
This scoring system removes the assumption of complete ran-

domness of the underlying Web surfer. In this case, the surfer is
aware of what he/she is searching, and he/she will trust the classi-
fier suggestions following the links with a probability proportional
to the score of the page the links leads to. This allows us to derive
a topic-specific page rank. For example: the “Microsoft” home
is highly authoritative according to the topic-generic PageRank,
whereas it is not highly authoritative when searching for “Perl” lan-
guage tutorials, since even if that page gets many citations, most of
these citations will be scarcely related to the target topic and then
not significantly considered in the computation.

4.2 Double Focused PageRank
The focused PageRank model described previously uses a topic

specific distribution for selecting the link to follow but the decision
on the action to take does not depend on the contents of the current
page. A more realistic model should take into account the fact that
the decision about the action is usually dependent on the contents
of the current page. For example, let us suppose that two surfers
are searching for a “Perl Language tutorial”, and that the first one
is located at the page “http://www.perl.com”, while the second is
located at the page “http://www.cnn.com”. Clearly it is more likely
that the first surfer will decide to follow a link from the current page
while the second one will prefer to jump to another page which is
related to the topic he is interested in.

We can model this behavior by adapting the action probabilities
using the contents of the current page, thus modeling a focused
choice of the surfer’s actions. In particular, the probability of fol-
lowing a hyperlink can be chosen to be proportional to the degree
of relevances(q) of the current page with respect to the target, i.e.

x(l|p) = d1 ·
s(p)

max
q∈G s(q)

(28)

wheres(q) is computed by a text classifier.
On the other hand, the probability of jumping away from a page

decreases proportionally tos(q), i.e.

x(j|p) = 1− d1 ·
s(p)

max
q∈G s(q)

− d2 (29)

Finally, we assume that the probability of landing into page after a
jump is proportional to its relevances(p), i.e.

x(p|j) =
s(p)∑
q∈G s(q)

(30)

Such modifications can be integrated into the focused PageRank
proposed in section 4.1 to model a focused navigation more accu-
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Figure 1: (a) The distribution of page scores for the topic
“Linux”. (b) The distribution of scores for the topic “cook-
ing recipes”. In both cases PageRank is much smoother that
the HITS one. The focused versions of the PageRank are still
smooth but concentrate the scores on a smaller set of authori-
tative pages which are more specific for the considered topic.

rately. Equation (12) guarantees that the resulting scoring system
is stable and that it converges to a score distribution independent
from the initial distribution.

5. EXPERIMENTAL RESULTS
Using the focus crawler described in [11], we have performed

two focus crawling sessions, downloading 150.000 pages for each
single crawl. During the first session the crawler spidered the Web
searching for pages on the topic “Linux”. During the second ses-
sion the crawler gathered pages on “cooking recipes”. Each down-
loaded page was classified to assess its relevance with respect to the
specific topic. Considering the hyperlinks contained in each page,
two Web subgraphs were created to perform the evaluation of the
different WPSSs proposed in the previous sections. For the second
crawling session, the connectivity map of pages was pruned remov-
ing all links from a page to pages in the same site in order to reduce
the “nepotism” of Web pages.

The topological structure of the graphs and the scores of the text
classifiers were used to evaluate the following WPSSs:

• the “In-link” surfer. Such surfer is located in pagesp with
probabilityxp = s(p)/

∑
q∈G s(q) wheres(q) is the rele-

vance of the page computed by the text classifier;

• the PageRank surfer;

• the Focused PageRank scheme as described in section 4.1;
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PageRank
www.zdnet.com
www.google.com
search.internet.com/powersearch
www.ibm.com
www.yahoo.com
www.ibm.com/planetwide/select
java.sun.com
www.osdn.com

HITS
www.openbsdapps.com/?page=category&categor...
www.openbsdapps.com/?page=category&categor...
www.openbsdapps.com/?page=category&categor...
www.openbsdapps.com/?page=category&categor...
www.openbsdapps.com/?page=category&categor...
www.openbsdapps.com/?page=category&categor...
www.openbsdapps.com/?page=newupdated&dat...
www.openbsdapps.com/?page=linkus

Figure 2: We report the 8 top score pages from a portion of the
Web focused on the topic “Linux”, using either the PageRank
surfer, or a HITS surfer pool. For the HITS surfer pool we
report the pages with the top authority value.

• the Double Focused PageRank scheme described in section
4.2;

• the HITS surfer pool;

• the PageRank-HITS surfer pool.

5.1 The Distribution of Score Among Pages
We have performed an analysis of the distribution of page scores

using the different algorithms proposed in this paper. For all the
PageRank surfers (focused or not) we set thed parameter equal
to 0.85. For each ranking function, we normalized the rank using
its maximum value. We sorted the pages according to their ranks,
then we plotted the distribution of the normalized rank values. Fig-
ure 1 reports the plots for the two categories, “Linux” and “cooking
recipes”. In both cases the HITS surfer assigns a score value sig-
nificantly greater than zero only to the small set of pages associated
to the main eigenvector of the connectivity matrix of the analyzed
portion of the Web. On the other hand the PageRank surfer is more
stable and its score distribution curve is smooth. This is the effect
of the homogeneous term1−d in equation (17) and of the stability
in the computation provided by the probabilistic interpretation. The
Focused PageRank surfer and the Double Focused one still provide
a smooth distribution. However, the focused page ranks are more
concentrated around the origin. This reflects the fact that the ver-
tical WPSSs are able to discriminate the authorities on the specific
topic, whereas the classical PageRank scheme considers the author-
itative pages regardless their topic.

5.2 Some Qualitative Results
Figures 2 and 3 show, respectively, the 8 top score pages for

four different WPSSs on the database with pages on topic “Linux”,
while figures 4 and 5 reports the same results for the topic “cooking
recipes”.

As shown in figure 2, all pages distilled by the HITS algorithm
come from the same site. In fact, a site which has many internal
connections may acquire the principal eigenvector of the connec-
tivity matrix associated to the considered portion of the Web graph,

Focused PageRank
www.internet.com/sections/linux.html
www.slackware.com
www.linux.org
www.zdnet.com
jobs.osdn.com
www.yahoo.com
www.linux.org/books/index.html
www.python.org

Double Focused PageRank
www.internet.com/sections/linux.html
www.slackware.com
www.li.org
www.linux.org
www.linuxhq.com
www.slackware.org
www.linux.org/index.html
www.linuxusers.org

Figure 3: We report the 8 top score pages from a portion of the
Web focused on the topic “Linux”, using the proposed focused
versions of the PageRank surfer.

conquering all the top positions in the page rank and hiding all other
resources.

Even the elimination of intra-site links does not improve the per-
formances of the HITS algorithm. For example, as shown in the
HITS section of figure 4, the Web site “www.allrecipe.com”, which
is subdivided into a collection of Web sites (“www.seafoodrecipes-
.com”, “www.cookierecipes.com”, etc.) strongly connected among
them, occupies all the top positions in the ranking list, hiding all
other resources. In [10] the content of pages is considered in order
to propagate relevance scores only over the subset of links pointing
to pages on a specific topic. In the “cooking recipe” case, the per-
formances cannot be improved even using page content, since all
the considered sites are effectively on the topic “cooking recipes”,
and then there is a semantic reason because such sites are con-
nected. We claim that such behavior is intrinsic of the HITS model.

The PageRank algorithm is not topic dependent. Since some
pages are referred to by many Web pages independently from their
content, such pages result in always being authoritative, regardless
the topic of interest. For example, in figures 2 and 4 pages like
“www.yahoo.com”, “www.google.com”, etc, are shown in the top
list even if they are not closely related to the specific topic. It is
shown in figures 3 and 5 that the “Focused PageRank” WPSS de-
scribed in section 4.1 can filter many off-topic authoritative pages
from the top list. Finally, the “Double Focused PageRank” WPSS
is even more effective in filtering all the off-topic authorities, while
pushing all the authorities on the relevant topic to the top positions.

5.3 Evaluating the WPPSs
In order to evaluate the proposed WPSSs, we employed a metho-

dology similar to that one presented in [12]. For each WPSS we
selected theN pages with highest score, creating a collection of
pages to be evaluated by a pool of humans.10 experts on the
specific topics independently labelled each page in the collection
as “authoritative for the topic” or “not authoritative for the topic”.
Such a reliable set of judgments was finally used to measure the
percentage of positive (or negative) judgments on the bestN pages
returned by each ranking function. In particular,N was varied be-
tween1 and300. The topics selected for these experiments were
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Page Rank
www.bravenet.com
www.yahoo.com
www.ebay.com
chef2chef.com
www.internet.com
www.livve.com
www.ringsurf.com
www.gograph.com

HITS
www.allrecipes.com/default.asp
www.cookierecipe.com
www.vegetarianrecipe.com
www.barbequerecipe.com
seafoodrecipe.com/Default.asp
www.saladrecipe.com
seafoodrecipe.com
www.chickenrecipe.com

Figure 4: We report the 8 top score pages from a portion of the
Web, focused on the topic “cooking recipes”, using either the
PageRank surfer, or the HITS surfer pool. For the HITS surfer
pool we report the pages with the top authority value.

Focused PageRank
www.yahoo.com
chef2chef.com
www.bravenet.com
www.ebay.com
my.lycos.com
www.livve.com
www.netrelief.com
www.freeservers.com

Double Focused PageRank
chef2chef.com
mcgees.com/kitchen
www.bravenet.com
adserve.greekcuisine.com
recipe-cookie.com
www.mega-zine.com/kitchen
www.eaglebrand.com
www.ok-web-design.com

Figure 5: We report the 8 top score pages from a portion of
the Web, focused on the topic “cooking recipes”, using the pro-
posed focused PageRank surfers.
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Figure 6: The plots show the percentage of positive judgments
assessed by a set of 10 users on the bestN pages returned by
the various WPSSs respectively for the topic “Linux” (case a)
and “Golf” (case b).

“Linux” and “Golf”. As in the previous experiments 150.000 pages
were collected by focus crawling the Web.

Figure 6 reports the percentage of positive judgments on theN
best pages returned by the five WPSSs, respectively, for the topic
“Linux” and “Golf”. In both cases the HITS algorithm is clearly
the worst among the other ones. Since its performance decreases
significantly when applied to the entire collection of documents, it
can only be used as a query-dependent ranking schema [1].

As previously reported in [12], in spite of its simplicity the In-
link algorithm has performances similar to PageRank. In our exper-
iments PageRank outperformed the In-Links algorithm on the cate-
gory “Golf”, whereas it was outperformed on the category “Linux”.
However, in both cases the gap is small. The two focused ranking
functions clearly outperformed all the not focused ones, demon-
strating that when searching focused authorities, a higher accuracy
is provided by employing a stable computation schema and by tak-
ing into account the page content.

6. CONCLUSIONS
In this paper, we have proposed a general framework for the

definition of web page scoring systems for horizontal and vertical
search engines. The proposed scheme incorporates many relevant
scoring models proposed in the literature. Moreover, it contains
novel features which looks very appropriate especially for vortals.
In particular, the topological structure of the web as well as the
content of the web pages play jointly a crucial rule for the construc-
tion of the scoring. The experimental results support the effective-
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ness of the proposal which clearly emerge especially for vertical
search. Finally, it is worth mentioning that the model described in
this paper is very well-suited for the construction of learning-based
WPSS, which can, in principle, incorporate the user information
while surfing the Web.
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