
Symmetry Detection for Large Boolean Functions using
Circuit Representation, Simulation, and Satisfiability

Jin S. Zhang1 Alan Mishchenko2 Robert Brayton2 Malgorzata Chrzanowska-Jeske1

 1Department of ECE 2Department of EECS
 Portland State University UC Berkeley
 Portland, OR 97201 Berkeley, CA 94720

 {jinsong, jeske}@ece.pdx.edu {alanmi, brayton}@eecs.berkeley.edu

ABSTRACT
Classical two-variable symmetries play an important role in many
EDA applications, ranging from logic synthesis to formal
verification. This paper proposes a complete circuit-based method
that makes uses of structural analysis, integrated simulation and
Boolean satisfiability for fast and scalable detection of classical
symmetries of completely-specified Boolean functions. This is in
contrast to previous incomplete circuit-based methods and complete
BDD-based methods. Experimental results demonstrate that the
proposed method works for large Boolean functions, for which
BDDs cannot be constructed.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – Automatic synthesis.

General Terms
Algorithms, Performance, Experimentation, Theory.

Keywords
Boolean functions, classical symmetries, And-Inverter Graphs,
simulation, Boolean satisfiability.

1 INTRODUCTION
A completely specified Boolean function has a non-equivalent

classical symmetry [7][8] in two variables (a, b) if the function is not
changed after swapping a and b:

F(…, a, ..., b, …) = F(…, b, ..., a, …).
If a function has two pairs of symmetric variables (a, b) and (b, c), it
is also symmetric in (a, c). Due to this transitivity of pair-wise
symmetries, the symmetric variables can form groups containing
more than two variables. The variables in a symmetry group are
functionally indistinguishable and can be used interchangeably. This
fact is often exploited in circuit optimization and verification. For
example, a circuit’s placement can be improved by swapping wires
corresponding to variables of a symmetry group [5]. In synthesis, a
symmetric group of n variables is decomposable using a block with n
inputs and log2(n+1) outputs [15][17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007…$5.00.

Other applications of symmetries include Boolean matching [25],

BDD minimization [33], and symmetry breaking in Boolean and
pseudo-Boolean satisfiability [1][2]. The usefulness of symmetry in
formal verification has been extensively investigated [10][13][30].

The methods to detect symmetries are divided into complete ones,
which can detect all symmetric variable pairs in a Boolean function,
and incomplete ones, which can only detect a subset of them. The
previous complete methods used decomposition charts [28], Reed-
Muller forms [35], Hadamard transform [32], simulation and ATPG
[31], and BDDs [26][20][29][38]. Incomplete methods relied on
structural analysis of the circuit [37] and simulation [6]. Of the
complete BDD-based methods, the method in [20] is the fastest but
requires the construction of BDDs, which is often impossible or takes
prohibitive time. This non-robustness is the main limitation of the
BDD-based methods for symmetry detection in large functions.

To overcome this limitation of BDDs, several methods to compute
symmetries have been proposed that use circuit representations for
functions. Some of these approaches are incomplete [37][6]. To our
knowledge, the only complete circuit-based approach [31] is based
on simulation and ATPG. In this paper, we propose a complete
circuit-based symmetry detection algorithm based on structural
analysis, simulation, and state-of-the-art in Boolean satisfiability
(SAT) [19][27][9]. The proposed algorithm is named CSSS.

First, structural analysis detects classical symmetries for a subset of
variable pairs in one sweep over the circuit. It is simpler and faster
than the method proposed in [37], which detects not only classical
symmetries but also a subset of generalized symmetries [16].

Second, simulation detects non-symmetric variable pairs. Our
simulation method is more efficient than simulation in [31][6]
because: (a) it targets all rather than individual variable pairs, and
(b) in addition to random simulation, it employs guided simulation
using distance-1 patterns derived from SAT counter-examples. This
simulation scheme is effective for hard variable pairs, substantially
reducing the number of SAT calls.

Third, SAT is applied to variable pairs that are unresolved by the
previous two techniques. The proposed SAT formulation is based on
detecting intermediate equivalences in the circuit during the SAT
search [18][21]. The counter-examples discovered by SAT together
with distance-1 patterns computed from them are used by the
simulation engine again to detect other non-symmetric variable pairs.
This tight integration of simulation and SAT is a key factor in the
performance improvement of the proposed method.

Furthermore, transitivity analysis of symmetries is applied
throughout the process, which can often resolve the symmetry status
of a group of variables quickly.

While structural analysis, simulation and SAT are used in previous
work for symmetry detection, our key contribution lies in fine-tuning
these techniques and synergistically combining them to form a
symmetry detection engine applicable to large Boolean functions.

The classical symmetries have been generalized to higher-order
symmetries [16] and linear cofactor relationships [40]. Both of these
generalizations require efficient detection of the classical symmetries
as a special case. Therefore, the current work also contributes to an
efficient and scalable detection of these generalized relationships for
large Boolean functions.

The paper is organized as follows. Section 2 provides background.
Section 3 discusses the overall flow of symmetry computation
(Section 3.1) and details our specific contributions to structural
analysis (Section 3.2), simulation (Section 3.3), and the use of
Boolean satisfiability (Section 3.4). Section 4 shows experimental
results. Section 5 concludes and gives directions for future work.

2 BACKGROUND
2.1 Boolean network

A Boolean network N is a directed acyclic graph (DAG) such that
for each node i in N, there is an associated representation of a
Boolean function fi and a Boolean variable yi, where yi = fi. A node i
is a fanin of a node j if there is a directed edge {i, j} and a fanout if
there is a directed edge {j, i}. A node i is a transitive fanin (TFI) of a
node j if there is a directed path from i to j and a transitive fanout
(TFO) if there is a directed path from j to i. The sources of the graph
are the primary inputs (PIs) of the network; the sinks are the primary
outputs (POs). The functionality of a node in terms of its immediate
fanins is its local function. The functionality of a node in terms of the
PIs of the network is its global function.

2.2 And-Inv Graphs
In this work, Boolean networks are represented using And-Inv

Graphs composed of two-input ANDs and inverters. Structural
hashing [18] ensures that ANDs with the same fanins are not
duplicated. AIGs compactly represent logic functions and can be
easily transformed into multi-input gate graphs to detect symmetries
structurally, as was shown in [37]. Simulation of the AIGs can be
done efficiently because they are uniform. Finally, AIGs can be
combined with an incremental SAT solver [9] for efficient
combinational equivalence checking [18][21].

For the details about efficient manipulation of AIGs, refer to [22].
An overview of several other problems solved efficiently by AIG-
based simulation and SAT can be found in [24].

2.3 Classical Symmetries
Given a Boolean function f(X) and a subset S ⊆ X, S is a symmetric

set of f if and only if (iff) f is invariant under any permutation of the
subset. If |S| = 2, then S is called a symmetric pair of f.

For any pair of variables xi and xj in X, there are four cofactors, f00,
f01, f10 and f11. Variables xi and xj have non-equivalent (equivalent)
symmetry in f(X) iff f01= f10 (f00= f11), denoted by NE(xi, xj) (E(xi, xj))
[7][8]. These two symmetry types are called classical symmetries. In
the rest of the paper, unless otherwise noted, symmetry refers to
classical non-equivalent symmetry.

The following theorems form the basis of transitivity analysis in
symmetry detection. Let f(X) be a Boolean function, and let A and B
be two disjoint subsets of X. Let variables x1, x2 belong to X but not A
and B: x1, x2 ∈ X, x1, x2 ∉ A ∪ B.

Theorem 1. Let variables x1 and x2 be symmetric with variables in
the sets A and B, respectively. If x1 and x2 are symmetric, then all

pairs of variables (v1, v2) such that v1 ∈ A, v2 ∈ B, are symmetric,
that is, A ∪ B is a symmetry group.

Theorem 2. Let variables x1 and x2 be non-symmetric with
variables in the sets A and B, respectively. If x1 and x2 are symmetric,
then all pairs of variables (x1, v2) such that v2 ∈ B, and (x2, v1) such
that v1 ∈ A, are non-symmetric.

Theorem 3. Let variables x1 and x2 be symmetric with all variables
in the sets A and B, respectively. If x1 and x2 are non-symmetric, then
all pairs of variables (v1, v2) such that v1 ∈ A, v2 ∈ B, are non-
symmetric.

3 SYMMETRY DETECTION ALGORITHM
This section describes the proposed algorithm CSSS for symmetry

detection. We start with a high-level overview of the algorithm in
Section 3.1 and proceed to discuss the specific aspects: exploiting the
circuit structure (Section 3.2) and using simulation (Section 3.3)
combined with Boolean satisfiability (Section 3.4). Even though we
focus on the computation of non-equivalent symmetry, the proposed
algorithm can be easily extended to compute other types of two-
variable symmetries [35][40].

3.1 Algorithm overview
The flow of the symmetry detection algorithm is composed of the

following steps, as shown in Figure 1.

Figure 1. General flow of the symmetry detection algorithm

1. At the beginning, the network is converted into an AIG using
structural hashing.

2. The functional supports for the POs are computed. This is
necessary since the AIG may contain redundant PI variables
belonging to the TFI cones of the POs but having no impact on
the PO functionality.

3. A subset of symmetric variable pairs is detected by analyzing
the AIG structure. For example, if variables a and b appear as
inputs to only one AND gate in the AIG, or if they appear
together as inputs to several AND gates but never appear as
inputs independently, then (a, b) is a symmetric pair. Not all
symmetric variable pairs can be detected by examining the AIG
structure. For example, all the inputs of a three-input majority
gate are symmetric, but the above analysis does not apply to the

AIG derived from the SOP: ab + bc + ac. Therefore, symmetry
detection based on structural analysis alone is incomplete.

4. Simulation is performed to detect non-symmetric variable pairs.
First, random simulation is performed to detect the majority of
easy non-symmetric pairs. This is done until saturation, i.e., no
new non-symmetric pairs are found during the last n simulation
rounds.

5. If some variable pairs are still undecided after simulation, SAT
is called to check the symmetry status of the remaining pairs.
SAT is performed until all pairs are proved symmetric or a
counter-example is found to demonstrate that a variable pair is
non-symmetric. In the latter case, the counter-example is passed
to the simulation engine. Distance-1 patterns are generated from
the counter-example. For example, the distance-1 patterns
generated from “0100” are “1100”, “0000”, “0110” and “0101”.
Guided simulation is performed using these patterns. This
approach is effective for discovering hard-to-detect non-
symmetric pairs because the counter-examples reach into
narrow functional subspaces. By performing guided simulation
from these special points, other difficult pairs can be resolved.
Therefore in our algorithm, simulation and SAT are not separate
techniques as in the early work, but tightly integrated. This
accounts for the reduction of the number of SAT calls, which
translates into improved performance for the proposed method.

6. The algorithm finishes when all the variable pairs are proved to
be either symmetric or non-symmetric. The set of symmetric
variable pairs is returned.

 During symmetry detection, each time the symmetry status of a
variable pair is determined, transitivity is used to find other
symmetries using Theorems 1-3 (Section 2.3). Transitivity analysis is
implemented using bit-wise operations on the rows and columns of
the bit-matrices storing the symmetry information of the POs.

The following subsections give a detailed description of the three
major steps of symmetry detection (Steps 3, 4, and 5). Structural
analysis and simulation are applied simultaneously to all POs that
have undecided variable pairs, while Boolean satisfiability targets
hard-to-prove pairs of one PO.

3.2 Analysis of circuit structure
Symmetry detection based on structural analysis of the circuit is

incomplete. Previous work [37] uses graph automorphism to detect
both classical and higher-order symmetries. In our structural
analysis, we use implication supergates (IS) [5]. Instead of
performing graph automorphism, we obtain structural symmetries by
propagating symmetries through the circuit. Our method is faster and
more scalable than [37] because it focuses on the detection of
classical symmetries only.

For AIGs, an implication supergate rooted at node n is a multi-
input AND gate created by expanding the AND gate rooted at node n
until a PI or a complemented edge is reached. Figure 2 shows an
example of constructing implication supergates for an AIG.

Figure 2. Example of the implication supergate.

Here we describe an efficient implementation of structural
symmetry detection by propagating symmetry information of the
implication supergates in topological order from the PIs to the POs.

 First, the fanins of a supergate are divided into three categories:
direct PIs (Kp), complemented PIs (Kn) and all other nodes (Ko).
Columns 2, 3, and 4 in Table 1 list the variables in Kp, Kn and Ko for
each implication supergate in Figure 2.

Second, candidate symmetries (as shown in Column C-Symm of
Table 1) are determined as follows: for classical non-equivalent
symmetries, the variables in Kp and in Kn are paired up separately;
for classical equivalence symmetry, the variables are paired up by
taking one variable from Kp and another from Kn.

Third, the algorithm filters the candidate symmetries by keeping
only those for which the following condition holds (as shown in
Column K-Symm of Table 1):
• for each fanin in Ko, both variables involved in the symmetry

either are symmetric for this fanin or do not belong to its
structural support.

Last, the set of resulting symmetries is propagated to its parent
supergate if the following conditions hold (as shown in Column P-
Symm of Table 1):
• the symmetry holds for at least one fanin in Ko,
• for all fanins in Ko, for which the symmetry does not hold, both

variables involved in the symmetry do not belong to the
structural support of the fanin.

The symmetric pair after structural analysis for the example in
Figure 2 is (b, c).

Table 1. Structural analysis of AIG in Figure 2.
IS Kp Kn Ko C-Symm K-Symm P-Symm
s3 b,c (b,c) (b,c)
s2 d s3 (b,c)
s1 b,c,e a s2 (b,c) (b,e) (c,e) (b,c) (b,c)

3.3 Simulation
The proposed simulation method detects non-symmetric variable

pairs in function f by finding an input pattern such that f01 ≠ f10,
where f01 and f10 are cofactors computed with respect to the
considered pair of variables. Previous work [31][6] used a straight-
forward simulation scheme that targets each variable pair
individually and analyzes the simulation patterns at each output of
the circuit, making it slow for large functions.

One advantage of our simulation method is that it simultaneously
targets all PI variable pairs appearing in the true support of several
POs. In doing so, the manipulation of individual bits is reduced by
using bit-parallel computation. The following steps discuss the
simulation process for each vector, while Figure 3 illustrates these
steps on an example.

1. Get an n-bit Boolean vector P, where n is the number of
inputs in the true support of the function. The vector could
come from the random vector queue or distance-1 patterns, as
discussed in Section 3.1.

2. Create an n x n bit-matrix. Fill n rows with vector P.
3. Flip the bits on the diagonal of the bit-matrix.
4. Treat each row as one simulation pattern and perform bit-

parallel simulation of the pattern through the circuit. Let R be
the resulting n-bit simulation vector.

5. Create four n-bit vectors: A1 = P & R; A2 = P & R ; B1 = P &
R; B2 = P & R , where & is bit-wise AND.

6. Let A[i] denote the i-th value of the bit-vector A, and let
Ones(A) denote the set of indexes i, such that A[i] = 1. Now

we can mark as non-symmetric all the variable pairs (v1, v2),
such that v1 ∈ Ones(A1), v2 ∈ Ones(A2), and all the variable
pairs (u1, u2) such that u1 ∈ Ones(B1), u2 ∈ Ones(B2).

This approach works because after flipping the bits on the
diagonal of the bit-matrix in Step 3, every two rows in the resulting
matrix represent input vectors needed to compute f01 and f10 (or f00
and f11) for the corresponding input variable pairs. By simulating
these vectors and comparing the values of the outputs, we can
potentially derive symmetry status for more variable pairs, as shown
in the example in Figure 3.

Figure 3. Example of detecting non-symmetric variable pairs

using simulation.
Step 6 above is for classical non-equivalent symmetry. For

equivalent symmetry, it should be modified: non-symmetric are all
the variable pairs (v1, v2), such that v1∈ Ones(A1), v2 ∈ Ones(B2), and
all the variable pairs (u1, u2) such that u1 ∈ Ones(A2), u2 ∈ Ones(B1).

One advantage of the presented simulation technique is that it
“implicitly” considers all variable pairs, without having to enumerate
through them individually, which makes it fast for large functions.
Another advantage is that all operations on the simulation data are
performed in bit-parallel fashion, except O(n) operations working
with individual bits in Steps 3 and 6.
 Variable pairs usually differ in the average number of patterns
needed to detect the difference of the cofactors. Some variable pairs
cannot be detected using random simulation in reasonable time. This
is why we start with random simulation and later switch to guided
simulation using counter-examples returned by the SAT solver,
together with their distance-1 patterns. The advantage of this
simulation model is that it uses the intelligence of the SAT solver to
reach into subspaces that are unlikely to be reached using random
simulation alone.

For example, random simulation often fails for sparse functions
whose Boolean space is populated with many 0’s and a few 1’s, or
vice versa. For such functions, random simulation almost always
turns up the more likely value because the probability of getting the
unlikely value is very low. Consider a 20-input AND-gate, the
probability of getting 1 at the output is equal to 2-20 ≈ 10-6, i.e. it
takes roughly one million random patterns to distinguish the output
from the constant 0 function.

Counter-examples are the patterns producing the unlikely value of
a sparse function, thereby distinguishing it from other closely related
sparse functions. For practical circuits, the same-valued minterms
often lie close and are grouped into cubes. Therefore, the distance-1

patterns of SAT counter-examples target the close neighborhood of a
minterm, where the probability of getting the unlikely value is higher
than in other parts of the Boolean space. This heuristic does not work
for random functions, in which the unlikely values are scattered
randomly through the Boolean space.

3.4 Boolean satisfiability
SAT-based symmetry detection is applied to the variable pairs that

are not yet proven symmetric or non-symmetric using the analysis of
circuit structure and simulation, as discussed above. For an
undecided pair, two cofactors are derived and checked for
equivalence using a combinational equivalence checker (CEC) [21],
which is conceptually similar to [18][11]. Our checker is based on a
tight integration of simulation, SAT solving, and fast logic synthesis.
For detailed description and experimental evaluations, refer to [21].
The following are the key characteristics of the equivalence checker:

1. Use of fast logic synthesis by way of AIG rewriting [23].
Logic synthesis results in fewer AIG nodes, which leads to
faster SAT solving.

2. Use of intelligent simulation by simulating not only distance-
1 patterns of SAT counter-examples, but also distance-1
patterns from useful patterns which are successful in
distinguishing nodes. This substantially reduces the number
of SAT calls, thereby improving the runtime.

3. Use of conflict analysis for better interleaving of the input
and output SAT runs. This aids in early detection of
intermediate equivalent nodes and speeds up the output proof.

4. Use of CNF-based SAT solver. Recent progress in CNF-
based SAT solvers [9] and efficient circuit-to-CNF
conversions [36], together with using circuit decision
heuristics, increase the speed of SAT solving.

 As a result, the employed CEC is faster than earlier approaches
[11][12] and leads to improved performance of symmetry detection.

4 EXPERIMENTAL RESULTS
The proposed symmetry detection algorithm CSSS was

implemented in ABC [3] as command print_symm. The experiments
were conducted using a Pentium 4 computer with 1.6GHz CPU and
1Gb RAM with the following goals:
• to analyze the effectiveness of different symmetry detection

techniques: structural analysis, simulation, SAT checking and
transitivity analysis;

• to demonstrate the efficiency of the proposed method as a result
of the tight integration of simulation and SAT;

• to show that CSSS outperforms the BDD-based approaches for
large Boolean functions.

In all the experiments, the benchmarks are read into ABC and
preprocessed by several iterations of AIG balancing and rewriting to
reduce the number of the AIG nodes and logic levels [23]. This
preprocessing substantially reduces the runtimes of both CSSS and
the BDD-based symmetry computation. Since it is a common step for
both computations, the runtime measurements in the tables do not
include the preprocessing.

4.1 Analysis of symmetry detection techniques
We divided the MCNC multi-level combinational benchmarks [39]

into categories based on the percentage of symmetric variable pairs,
as shown in Column 1 of Table 2. The number of benchmarks in
each category is shown in Column 2. For example, category “0%”
includes 13 benchmarks with no symmetries, whereas category
“100%” includes 3 benchmarks, whose outputs are completely

symmetric functions. 52 out of 79 MCNC benchmarks contain less
than 10% of symmetric variable pairs, as shown in Column 2.
Columns 3 to 6 give the average percentages of variable pairs
classified using various techniques: structural analysis, simulation,
SAT checking, and transitivity analysis.

Table 2. Performance of various symmetry detection techniques
on MCNC benchmarks.

Symm.
Category

Num. of
Benchmark

Structural
Analysis

Simulation SAT Transitivity
Analysis

0% 13 0.00% 99.94% 0.06% 0.00%
0-1% 6 0.26% 99.08% 0.51% 0.15%
1-10% 33 3.88% 94.64% 0.95% 0.57%
10-20% 7 12.77% 84.04% 2.89% 0.30%
20-30% 5 26.09% 73.33% 0.58% 0.00%
30-50% 8 39.71% 54.92% 2.82% 2.54%
50-100% 2 35.80% 44.20% 5.00% 15.00%
100% 3 18.89% 0.00% 12.13% 68.98%

Table 2 confirms that simulation is an important technique in
detecting non-symmetric variable pairs. Simulation detected over
94% of non-symmetric variable pairs for the benchmarks with less
than 10% of symmetries. As the number of symmetries increases,
structural analysis plays a more important role in symmetry
detection. Because of the effectiveness of the proposed structural
analysis and simulation, SAT is used to process less than 1% of the
variable pairs for most MCNC benchmarks. This is desirable because
SAT is NP-hard and time-consuming.

4.2 Integration of simulation and SAT
 The following experiment compares CSSS with a plain
implementation where only random simulation is performed,
followed by SAT. The purpose is to demonstrate the effectiveness of
the integration of simulation and SAT.

Table 3. Contribution of integrated simulation and SAT.
 Number of SAT Calls Runtime (s) Name Total

Pairs CSSS Plain Ratio CSSS Plain Gain
c1355 26240 105 642 0.16 0.51 2.02 3.96
c1908 11116 98 1583 0.06 0.86 4.68 5.44
c2670 32333 100 11380 0.01 1.78 54.06 30.37
c3540 13579 28 230 0.12 0.51 3.88 7.61
c499 26240 109 642 0.17 0.53 2.19 4.13
c5315 62496 180 3079 0.06 1.56 11.55 7.40
c6288 10792 44 291 0.15 10.44 37.55 3.60
c7552 143390 166 50563 0.00 4.21 300.46 71.37
c880 6436 34 140 0.24 0.14 0.33 2.36
dalu 12540 23 144 0.16 5.36 6.63 1.24
frg2 14523 62 563 0.11 0.38 1.3 3.42
i10 110581 364 14235 0.03 8.25 172.24 20.88
i2 20100 11 62 0.18 0.21 0.48 2.29
i8 9408 3 4 0.75 0.12 0.12 1.00
k2 9361 44 292 0.15 0.44 1.42 3.23
my_adder 3656 9 186 0.05 0.07 0.43 6.14
rot 19429 107 1751 0.06 0.68 5.33 7.84

Experiments show that 31 out of 79 MCNC benchmarks benefit
from the simulation and SAT integration. Table 3 lists some
relatively large Boolean functions whose number of variable pairs
exceeds 5000. Column 1 gives the names of these benchmarks, and
Column 2 lists the total number of variable pairs in these functions.
Columns 3 (CSSS) and 4 (plain implementation) show the number of
SAT calls used to detect non-symmetric variable pairs (only non-
symmetric pairs benefit from this integration). Because of this
integration, the number of SAT calls is dramatically reduced. This
translates into improved runtime, as shown in Column 6 (CSSS),
Column 7 (plain implementation) and Column 8 (performance gain is
the ratio of Columns 8 and 7). For the largest benchmark, C7552, the

SAT call savings are almost 100% with a significant 71x
performance improvement.

In summary, tight integration between simulation and SAT makes
the proposed method applicable to larger Boolean functions.

4.3 Performance comparison of CSSS vs. BDDs
Table 4 contains the runtime information for the same subset of

large MCNC benchmarks, as shown in Table 3, as well as some large
benchmarks from ITC [14], ISCAS [4], and PicoJava [34] benchmark
suites. The total runtime (Column 5) of our approach includes
structural analysis (Column 2), simulation (Column 3), SAT
checking (Column 4) and the time it takes to detect the true support
of each output. Column 6 (“F-BDD”) reports the runtime of the
fastest BDD-based symmetry detection algorithm [20] implemented
in ABC and tested on the same computer. It includes the time needed
to construct the shared BDDs of the PO functions and compute
symmetries by traversing the BDDs. Column 7 (“N-BDD”) reports
the runtime of the naïve BDD-based symmetry computation, which
computes the cofactors with respect to all variables pairs and
compares them. Column 8 (“Gain-F”) gives the performance gain
between the proposed method and method in [20], whereas Column 9
(“Gain-N”) gives the performance gain between the proposed method
and the naïve method. The highlighted entries indicate when the
proposed approach performs the same as or better than the other two
methods.

Table 4. Runtime comparison.
Proposed CSSS algorithm (s) Name

Struct Sim SAT Total
F-BDD

(s)
N-BDD

(s)
Gain-F

Gain-N

C1355 0.01 0.04 0.05 0.39 2.89 34.69 7.41 88.95
C1908 0.00 0.00 0.10 0.67 0.94 3.90 1.40 5.82
C2670 0.00 0.03 0.27 0.89 1.08 16.77 1.21 18.84
C3540 0.00 0.05 0.11 0.49 3.41 16.59 6.96 33.86
C499 0.00 0.02 0.02 0.36 3.26 34.43 9.06 95.64
C5315 0.01 0.12 0.20 1.15 0.91 2.56 0.79 2.23
C6288 0.00 0.04 6.85 7.65 xxxx xxxx xxxx xxxx
C7552 0.00 0.14 0.52 2.15 1.88 17.65 0.87 8.21
C880 0.01 0.05 0.04 0.20 0.95 4.24 4.75 21.20
dalu 0.00 0.03 0.49 3.13 0.55 0.85 0.18 0.27
frg2 0.01 0.09 0.01 0.52 0.38 0.49 0.73 0.94
i10 0.01 0.39 0.75 4.87 6.59 199.30 1.35 40.92
i2 0.23 0.03 0.01 0.36 0.41 1.46 1.14 4.06
i8 0.00 0.12 0.00 0.33 0.28 0.44 0.85 1.33
k2 0.02 0.08 0.02 0.40 0.36 0.56 0.90 1.40
my_ad 0.01 0.01 0.05 0.18 0.10 0.16 0.56 0.89
rot 0.00 0.03 0.04 0.60 0.64 4.83 1.07 8.05
too_large 0.01 0.02 0.04 0.17 0.30 0.37 1.76 2.18
b14 9.49 4.08 9.04 54.52 xxxx xxxx xxxx xxxx
b15 0.31 25.29 64.4 921.2 xxxx xxxx xxxx xxxx
pj2 0.06 1.03 0.44 9.70 3.23 18.18 0.33 1.87
pj3 1.28 12.09 10.24 503.9 xxxx xxxx xxxx xxxx
s15850 0.05 1.73 9.06 68.24 8.13 53.66 0.12 0.79
s38417 65.48 29.45 4.89 316.6 xxxx xxxx xxxx xxxx

Table 4 shows that CSSS is faster in 15 out of the 24 cases
compared to the fastest BDD-based algorithm [20]. In 5 of these
cases BDDs can not be constructed. When CSSS loses, it is mostly
within 2x of the best BDD runtime, which is still reasonable. This
demonstrates that the proposed method is more robust and can be
applied to large functions.

5 CONCLUSIONS AND FUTURE WORK
In this paper, a set of methods is proposed to detect all classical

symmetries in completely specified Boolean functions. The methods
use the circuit representation and do not require the construction of
BDDs, which may be impossible for large designs.

In the proposed approach, a substantial subset of symmetries is
detected by a quick traversal of the circuit. Bit-parallel simulation is
applied to detect the majority of non-symmetric variable pairs. The
simulation is interleaved with a specialized SAT-based equivalence-
checking method, which proves or disproves the unresolved variable
pairs and provides counter-examples for guided simulation.

The proposed method detects the complete set of symmetries. It is
more robust than the efficient BDD-based method and faster even for
some of those examples for which BDDs can be efficiently
constructed.

This work continues the research started in [24] extending the use
of simulation and SAT to EDA applications in logic synthesis. Future
work will include developing efficient methods for NPN-equivalence
checking of large Boolean functions without using BDDs.

ACKNOWLEDGEMENT
This research was supported in part by SRC contract 1361.001,

NSF contract CCR 0312676, and by the California Micro program
with our industrial sponsors, Intel, Magma, Synplicity, and Altera.
The authors acknowledge Jerry Burch for helpful suggestions.

REFERENCES
[1] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, ”Solving difficult

instances of Boolean satisfiability in the presence of symmetry”, IEEE
Trans. CAD, Vol. 22(9) , Sep. 2003, pp. 1117-1137.

[2] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, “ShatterPB:
Symmetry-breaking for pseudo-Boolean formulas”, Proc. ASP-DAC ‘04,
pp. 884-887.

[3] Berkeley Logic Synthesis and Verification Group. ABC: A system for
sequential synthesis and verification, Release 60303.
http://www.eecs.berkeley.edu/~alanmi/abc/

[4] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” Proc. ISCAS ’89, pp. 1929-1934.

[5] C.-W. Chang, C.-K. Cheng, P. Suaris, and M. Marek-Sadowska, “Fast
post-placement rewiring using easily detectable functional symmetries”,
Proc. DAC ’00, pp. 286-289.

[6] C.-L. Chou, G.-W. Lee, J.-Y. Jou, and C.-Y. Wang, “Graph
automorphism-based algorithm for determining symmetric inputs”,
Proc. ICCD ‘04, pp. 417-419.

[7] D. L. Dietmeyer and P. R. Schneider. “Identification of symmetry,
redundancy, and equivalence of Boolean functions”. IEEE Trans. Elec.
Computers, Vol. 16(6), Dec. 1967, pp. 804-817.

[8] C. R. Edward and S. L. Hurst. “A digital synthesis procedure under
function symmetries and mapping methods”. IEEE Trans. Computers,
Vol. C-27(11), Nov. 1978, pp. 985-997.

[9] N. Eén and N. Sörensson, “An extensible SAT-solver”, Proc. SAT ’03,
pp. 502–518, http://www.cs.chalmers.se/Cs/Research/FormalMethods/
MiniSat/Main.html

[10] E. A. Emerson and A. P. Sistla, “Symmetry and model checking”, Proc.
Formal Methods in System Design ‘96, pp. 105-131.

[11] F. Lu, L. Wang, K. Cheng, and R. Huang. “A circuit SAT solver with
signal correlation guided learning”. Proc. DATE ‘03, pp. 892-897.

[12] F. Lu, L.-C. Wang, K.-T. Cheng, J. Moondanos and Z. Hanna, “A signal
correlation guided ATPG solver and its applications for solving difficult
industrial cases”, Proc. DAC ’03, pp. 668-673.

[13] C. N. Ip and D. L. Dill, “Better verification through symmetry”, Proc.
Formal Methods in System Design ‘96, pp. 41-75.

[14] ITC ’99 Benchmarks. http://www.cad.polito.it/tools/itc99.html
[15] B.-G. Kim and D. L. Dietmeyer. “Multilevel logic synthesis of

symmetric switching functions”. IEEE Trans. CAD, Vol. 10(4), April
1991, pp. 436-446.

[16] V. N. Kravets and K. A. Sakallah. “Generalized symmetries in Boolean
functions”. Proc. ICCAD ‘00, pp. 526-532.

[17] V. N. Kravets. Constructive Multi-Level Synthesis by Way of Functional
Properties. Ph. D. Thesis. University of Michigan, 2001.

[18] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust
Boolean reasoning for equivalence checking and functional property
verification”, IEEE Trans. CAD, Vol. 21(12), Dec. 2002, pp. 1377-1394.

[19] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A search algorithm
for propositional satisfiability”, IEEE Trans. Comp, Vol. 48(5), May
1999, pp. 506-521.

[20] A. Mishchenko, “Fast computation of symmetries in Boolean
functions”. IEEE Trans. CAD, Vol. 22(11), Nov. 2003, pp. 1588-1593.

[21] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Eén, “Improvements
to combinational equivalence checking”, Proc. IWLS ’06. http://www.
eecs.berkeley.edu/~alanmi/publications/2006/iwls06_cec.pdf

[22] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple
circuit structure”, Proc. IWLS ’06. http://www.eecs.
berkeley.edu/~alanmi/publications/2006/iwls06_sls.pdf

[23] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis”, Proc. DAC
’06.
http//www.eecs.berkeley.edu/~alanmi/publications/2006/dac06_rwr.pdf

[24] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. Brayton, and M.
Chrzanowska-Jeske, “Using simulation and satisfiability to compute
flexibilities in Boolean networks”, IEEE Trans. CAD, Vol. 25(5), May
2006, pp. 743-755.

[25] J. Mohnke, P. Molitor, and S. Malik. “Limits of using signatures for
permutation independent Boolean comparison”. Formal Methods in
System Design, Vol. 21(2), Sep. 2002, pp. 167-191.

[26] D. Möller, J. Mohnke, and M. Weber. “Detection of symmetry of
Boolean functions represented by ROBDDs”. Proc. ICCAD’93, pp. 680-
684.

[27] M. Moskewicz, C. Madigan, Y. Zhao, L.Zhang, and S. Malik. “Chaff:
engineering an efficient SAT solver”. Proc. DAC ’01, pp. 530–535.

[28] A. Mukhopadhyay. “Detection of total or partial symmetry of a
switching function with the use of decomposition charts”. IEEE Trans.
Elec. Computers. Vol. 16(10), Oct. 1963, pp. 553-557.

[29] S. Panda, F. Somenzi, and B. F. Plessier. “Symmetry detection and
dynamic variable ordering of decision diagrams”. Proc. ICCAD ‘94, pp.
628-631.

[30] M. Pandey and R.E. Bryant, "Exploiting symmetry when verifying
transistor-level circuits by symbolic trajectory evaluation," IEEE Trans.
CAD, Vol. 18(7), July 1999, pp. 918-935.

[31] I. Pomeranz and S.M. Reddy, “On determining symmetries in inputs of
logic circuits”, IEEE Trans. CAD, Vol. 13(11), Nov. 1994, pp. 1428-
1434.

[32] S. Rahardja and B. L. Falkowski. “Symmetry conditions of Boolean
functions in complex Hadamard transform”, Electronic letters, vol. 34,
Aug. 1998, pp. 1634-1635.

[33] Ch. Scholl, D. Möller, P. Molitor, and R. Drechsler. “BDD minimization
using symmetries”. IEEE Trans. CAD, Vol. 18(2), Feb. 1999, pp. 81-
100.

[34] SUN Microelectronics. PicoJava Microprocessor Cores.
http://www.sun.com/microelectronics/picoJava/

[35] C.-C. Tsai and M. Marek-Sadowska. “Generalized Reed-Muller forms
as a tool to detect symmetries”. IEEE Trans. Computers, Vol. C-45(1),
Jan. 1996, pp. 33-40.

[36] M. N. Velev, “Efficient translation of Boolean formulas to CNF in
formal verification of microprocessors”, Proc. ASP-DAC '04, January
2004, pp. 310-315.

[37] G. Wang, A. Kuehlmann, and A. Sangiovanni-Vincentelli, “Structural
detection of symmetries in Boolean functions”, Proc. ICCD ’03, pp.
498-503.

[38] K.-H. Wang and J.-H. Chen. “K-Disjointness paradigm with
applications to symmetry detection for incompletely specified
functions”, Proc. ASP-DAC’05, pp. 994-997.

[39] S. Yang. Logic synthesis and optimization benchmarks. Version 3.0.
Tech. Report. Microelectronics Center of North Carolina, 1991.

[40] J. S. Zhang, M. Chrzanowska-Jeske, A. Mishchenko, and J. R. Burch,
“Linear cofactor relationships in Boolean functions”, IEEE Trans. CAD.
To appear in June 2006 issue.

