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ABSTRACT 
Classical two-variable symmetries play an important role in many 
EDA applications, ranging from logic synthesis to formal 
verification. This paper proposes a complete circuit-based method 
that makes uses of structural analysis, integrated simulation and 
Boolean satisfiability for fast and scalable detection of classical 
symmetries of completely-specified Boolean functions. This is in 
contrast to previous incomplete circuit-based methods and complete 
BDD-based methods. Experimental results demonstrate that the 
proposed method works for large Boolean functions, for which 
BDDs cannot be constructed. 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – Automatic synthesis. 

General Terms 
Algorithms, Performance, Experimentation, Theory. 

Keywords 
Boolean functions, classical symmetries, And-Inverter Graphs, 
simulation, Boolean satisfiability. 

1 INTRODUCTION 
A completely specified Boolean function has a non-equivalent 

classical symmetry [7][8] in two variables (a, b) if the function is not 
changed after swapping a and b:  

F(…, a, ..., b, …) = F(…, b, ..., a, …). 
If a function has two pairs of symmetric variables (a, b) and (b, c), it 
is also symmetric in (a, c). Due to this transitivity of pair-wise 
symmetries, the symmetric variables can form groups containing 
more than two variables. The variables in a symmetry group are 
functionally indistinguishable and can be used interchangeably. This 
fact is often exploited in circuit optimization and verification. For 
example, a circuit’s placement can be improved by swapping wires 
corresponding to variables of a symmetry group [5]. In synthesis, a 
symmetric group of n variables is decomposable using a block with n 
inputs and log2(n+1) outputs [15][17].  
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Other applications of symmetries include Boolean matching [25], 

BDD minimization [33], and symmetry breaking in Boolean and 
pseudo-Boolean satisfiability [1][2]. The usefulness of symmetry in 
formal verification has been extensively investigated [10][13][30]. 

The methods to detect symmetries are divided into complete ones, 
which can detect all symmetric variable pairs in a Boolean function, 
and incomplete ones, which can only detect a subset of them. The 
previous complete methods used decomposition charts [28], Reed-
Muller forms [35], Hadamard transform [32], simulation and ATPG 
[31], and BDDs [26][20][29][38]. Incomplete methods relied on 
structural analysis of the circuit [37] and simulation [6]. Of the 
complete BDD-based methods, the method in [20] is the fastest but 
requires the construction of BDDs, which is often impossible or takes 
prohibitive time. This non-robustness is the main limitation of the 
BDD-based methods for symmetry detection in large functions. 

To overcome this limitation of BDDs, several methods to compute 
symmetries have been proposed that use circuit representations for 
functions. Some of these approaches are incomplete [37][6]. To our 
knowledge, the only complete circuit-based approach [31] is based 
on simulation and ATPG. In this paper, we propose a complete 
circuit-based symmetry detection algorithm based on structural 
analysis, simulation, and state-of-the-art in Boolean satisfiability 
(SAT) [19][27][9]. The proposed algorithm is named CSSS. 

First, structural analysis detects classical symmetries for a subset of 
variable pairs in one sweep over the circuit. It is simpler and faster 
than the method proposed in [37], which detects not only classical 
symmetries but also a subset of generalized symmetries [16].  

Second, simulation detects non-symmetric variable pairs. Our 
simulation method is more efficient than simulation in [31][6] 
because: (a) it targets all rather than individual variable pairs, and 
(b) in addition to random simulation, it employs guided simulation 
using distance-1 patterns derived from SAT counter-examples. This 
simulation scheme is effective for hard variable pairs, substantially 
reducing the number of SAT calls. 

Third, SAT is applied to variable pairs that are unresolved by the 
previous two techniques. The proposed SAT formulation is based on 
detecting intermediate equivalences in the circuit during the SAT 
search [18][21]. The counter-examples discovered by SAT together 
with distance-1 patterns computed from them are used by the 
simulation engine again to detect other non-symmetric variable pairs. 
This tight integration of simulation and SAT is a key factor in the 
performance improvement of the proposed method. 

Furthermore, transitivity analysis of symmetries is applied 
throughout the process, which can often resolve the symmetry status 
of a group of variables quickly. 



While structural analysis, simulation and SAT are used in previous 
work for symmetry detection, our key contribution lies in fine-tuning 
these techniques and synergistically combining them to form a 
symmetry detection engine applicable to large Boolean functions. 

The classical symmetries have been generalized to higher-order 
symmetries [16] and linear cofactor relationships [40]. Both of these 
generalizations require efficient detection of the classical symmetries 
as a special case. Therefore, the current work also contributes to an 
efficient and scalable detection of these generalized relationships for 
large Boolean functions.  

The paper is organized as follows. Section 2 provides background. 
Section 3 discusses the overall flow of symmetry computation 
(Section 3.1) and details our specific contributions to structural 
analysis (Section 3.2), simulation (Section 3.3), and the use of 
Boolean satisfiability (Section 3.4). Section 4 shows experimental 
results. Section 5 concludes and gives directions for future work. 

2 BACKGROUND  
2.1 Boolean network 

A Boolean network N is a directed acyclic graph (DAG) such that 
for each node i in N, there is an associated representation of a 
Boolean function fi and a Boolean variable yi, where yi = fi. A node i 
is a fanin of a node j if there is a directed edge {i, j} and a fanout if 
there is a directed edge {j, i}. A node i is a transitive fanin (TFI) of a 
node j if there is a directed path from i to j and a transitive fanout 
(TFO) if there is a directed path from j to i. The sources of the graph 
are the primary inputs (PIs) of the network; the sinks are the primary 
outputs (POs). The functionality of a node in terms of its immediate 
fanins is its local function. The functionality of a node in terms of the 
PIs of the network is its global function. 

2.2 And-Inv Graphs 
In this work, Boolean networks are represented using And-Inv 

Graphs composed of two-input ANDs and inverters. Structural 
hashing [18] ensures that ANDs with the same fanins are not 
duplicated. AIGs compactly represent logic functions and can be 
easily transformed into multi-input gate graphs to detect symmetries 
structurally, as was shown in [37]. Simulation of the AIGs can be 
done efficiently because they are uniform. Finally, AIGs can be 
combined with an incremental SAT solver [9] for efficient 
combinational equivalence checking [18][21].  

For the details about efficient manipulation of AIGs, refer to [22]. 
An overview of several other problems solved efficiently by AIG-
based simulation and SAT can be found in [24]. 

2.3 Classical Symmetries 
Given a Boolean function f(X) and a subset S ⊆ X, S is a symmetric 

set of f if and only if (iff) f is invariant under any permutation of the 
subset. If |S| = 2, then S is called a symmetric pair of f.  

For any pair of variables xi and xj in X, there are four cofactors, f00, 
f01, f10 and f11. Variables xi and xj have non-equivalent (equivalent) 
symmetry in f(X) iff f01= f10 (f00= f11), denoted by NE(xi, xj) (E(xi, xj)) 
[7][8]. These two symmetry types are called classical symmetries. In 
the rest of the paper, unless otherwise noted, symmetry refers to 
classical non-equivalent symmetry. 

The following theorems form the basis of transitivity analysis in 
symmetry detection. Let f(X) be a Boolean function, and let A and B 
be two disjoint subsets of X. Let variables x1, x2 belong to X but not A 
and B: x1, x2 ∈ X, x1, x2  ∉ A ∪ B.  

Theorem 1. Let variables x1 and x2 be symmetric with variables in 
the sets A and B, respectively. If x1 and x2 are symmetric, then all 

pairs of variables (v1, v2) such that v1 ∈ A, v2 ∈ B, are symmetric, 
that is, A ∪ B is a symmetry group. 

Theorem 2. Let variables x1 and x2 be non-symmetric with 
variables in the sets A and B, respectively. If x1 and x2 are symmetric, 
then all pairs of variables (x1, v2) such that v2 ∈ B, and (x2, v1) such 
that v1 ∈ A, are non-symmetric. 

Theorem 3. Let variables x1 and x2 be symmetric with all variables 
in the sets A and B, respectively. If x1 and x2 are non-symmetric, then 
all pairs of variables (v1, v2) such that v1 ∈ A, v2 ∈ B, are non-
symmetric. 

3 SYMMETRY DETECTION ALGORITHM 
This section describes the proposed algorithm CSSS for symmetry 

detection. We start with a high-level overview of the algorithm in 
Section 3.1 and proceed to discuss the specific aspects: exploiting the 
circuit structure (Section 3.2) and using simulation (Section 3.3) 
combined with Boolean satisfiability (Section 3.4). Even though we 
focus on the computation of non-equivalent symmetry, the proposed 
algorithm can be easily extended to compute other types of two-
variable symmetries [35][40]. 

3.1 Algorithm overview 
The flow of the symmetry detection algorithm is composed of the 

following steps, as shown in Figure 1. 

 
Figure 1. General flow of the symmetry detection algorithm 

1. At the beginning, the network is converted into an AIG using 
structural hashing.  

2. The functional supports for the POs are computed. This is 
necessary since the AIG may contain redundant PI variables 
belonging to the TFI cones of the POs but having no impact on 
the PO functionality.  

3. A subset of symmetric variable pairs is detected by analyzing 
the AIG structure. For example, if variables a and b appear as 
inputs to only one AND gate in the AIG, or if they appear 
together as inputs to several AND gates but never appear as 
inputs independently, then (a, b) is a symmetric pair. Not all 
symmetric variable pairs can be detected by examining the AIG 
structure. For example, all the inputs of a three-input majority 
gate are symmetric, but the above analysis does not apply to the 



AIG derived from the SOP: ab + bc + ac. Therefore, symmetry 
detection based on structural analysis alone is incomplete. 

4. Simulation is performed to detect non-symmetric variable pairs. 
First, random simulation is performed to detect the majority of 
easy non-symmetric pairs. This is done until saturation, i.e., no 
new non-symmetric pairs are found during the last n simulation 
rounds.  

5. If some variable pairs are still undecided after simulation, SAT 
is called to check the symmetry status of the remaining pairs. 
SAT is performed until all pairs are proved symmetric or a 
counter-example is found to demonstrate that a variable pair is 
non-symmetric. In the latter case, the counter-example is passed 
to the simulation engine. Distance-1 patterns are generated from 
the counter-example. For example, the distance-1 patterns 
generated from “0100” are “1100”, “0000”, “0110” and “0101”. 
Guided simulation is performed using these patterns. This 
approach is effective for discovering hard-to-detect non-
symmetric pairs because the counter-examples reach into 
narrow functional subspaces. By performing guided simulation 
from these special points, other difficult pairs can be resolved. 
Therefore in our algorithm, simulation and SAT are not separate 
techniques as in the early work, but tightly integrated. This 
accounts for the reduction of the number of SAT calls, which 
translates into improved performance for the proposed method. 

6. The algorithm finishes when all the variable pairs are proved to 
be either symmetric or non-symmetric. The set of symmetric 
variable pairs is returned. 

    During symmetry detection, each time the symmetry status of a 
variable pair is determined, transitivity is used to find other 
symmetries using Theorems 1-3 (Section 2.3). Transitivity analysis is 
implemented using bit-wise operations on the rows and columns of 
the bit-matrices storing the symmetry information of the POs.   

The following subsections give a detailed description of the three 
major steps of symmetry detection (Steps 3, 4, and 5). Structural 
analysis and simulation are applied simultaneously to all POs that 
have undecided variable pairs, while Boolean satisfiability targets 
hard-to-prove pairs of one PO.  

3.2 Analysis of circuit structure 
Symmetry detection based on structural analysis of the circuit is 

incomplete. Previous work [37] uses graph automorphism to detect 
both classical and higher-order symmetries. In our structural 
analysis, we use implication supergates (IS) [5]. Instead of 
performing graph automorphism, we obtain structural symmetries by 
propagating symmetries through the circuit. Our method is faster and 
more scalable than [37] because it focuses on the detection of 
classical symmetries only.  

For AIGs, an implication supergate rooted at node n is a multi-
input AND gate created by expanding the AND gate rooted at node n 
until a PI or a complemented edge is reached. Figure 2 shows an 
example of constructing implication supergates for an AIG.  

 

 
Figure 2. Example of the implication supergate. 

Here we describe an efficient implementation of structural 
symmetry detection by propagating symmetry information of the 
implication supergates in topological order from the PIs to the POs. 

 First, the fanins of a supergate are divided into three categories: 
direct PIs (Kp), complemented PIs (Kn) and all other nodes (Ko). 
Columns 2, 3, and 4 in Table 1 list the variables in Kp, Kn and Ko for 
each implication supergate in Figure 2. 

Second, candidate symmetries (as shown in Column C-Symm of 
Table 1) are determined as follows: for classical non-equivalent 
symmetries, the variables in Kp and in Kn are paired up separately; 
for classical equivalence symmetry, the variables are paired up by 
taking one variable from Kp and another from Kn.  

Third, the algorithm filters the candidate symmetries by keeping 
only those for which the following condition holds (as shown in 
Column K-Symm of Table 1):  
• for each fanin in Ko, both variables involved in the symmetry 

either are symmetric for this fanin or do not belong to its 
structural support. 

Last, the set of resulting symmetries is propagated to its parent 
supergate if the following conditions hold (as shown in Column P-
Symm of Table 1): 
• the symmetry holds for at least one fanin in Ko,  
• for all fanins in Ko, for which the symmetry does not hold, both 

variables involved in the symmetry do not belong to the 
structural support of the fanin. 

The symmetric pair after structural analysis for the example in 
Figure 2 is (b, c). 

 

Table 1. Structural analysis of AIG in Figure 2. 
IS Kp Kn Ko C-Symm K-Symm P-Symm 
s3 b,c   (b,c) (b,c)  
s2 d  s3   (b,c) 
s1 b,c,e a s2 (b,c) (b,e) (c,e) (b,c) (b,c) 

 

3.3 Simulation 
The proposed simulation method detects non-symmetric variable 

pairs in function f by finding an input pattern such that f01 ≠ f10, 
where f01 and f10 are cofactors computed with respect to the 
considered pair of variables. Previous work [31][6] used a straight-
forward simulation scheme that targets each variable pair 
individually and analyzes the simulation patterns at each output of 
the circuit, making it slow for large functions.  

One advantage of our simulation method is that it simultaneously 
targets all PI variable pairs appearing in the true support of several 
POs. In doing so, the manipulation of individual bits is reduced by 
using bit-parallel computation. The following steps discuss the 
simulation process for each vector, while Figure 3 illustrates these 
steps on an example. 

1. Get an n-bit Boolean vector P, where n is the number of 
inputs in the true support of the function. The vector could 
come from the random vector queue or distance-1 patterns, as 
discussed in Section 3.1. 

2. Create an n x n bit-matrix. Fill n rows with vector P. 
3. Flip the bits on the diagonal of the bit-matrix. 
4. Treat each row as one simulation pattern and perform bit-

parallel simulation of the pattern through the circuit. Let R be  
the resulting n-bit simulation vector. 

5. Create four n-bit vectors: A1 = P & R; A2 = P & R ; B1 = P & 
R; B2 = P & R , where & is bit-wise AND. 

6. Let A[i] denote the i-th value of the bit-vector A, and let 
Ones(A) denote the set of indexes i, such that A[i] = 1. Now 



we can mark as non-symmetric all the variable pairs (v1, v2), 
such that v1 ∈ Ones(A1), v2 ∈ Ones(A2), and all the variable 
pairs (u1, u2) such that u1 ∈ Ones(B1), u2 ∈ Ones(B2). 

This approach works because after flipping the bits on the 
diagonal of the bit-matrix in Step 3, every two rows in the resulting 
matrix represent input vectors needed to compute f01 and f10 (or f00 
and f11) for the corresponding input variable pairs. By simulating 
these vectors and comparing the values of the outputs, we can 
potentially derive symmetry status for more variable pairs, as shown 
in the example in Figure 3.  

 
Figure 3. Example of detecting non-symmetric variable pairs 

using simulation. 
Step 6 above is for classical non-equivalent symmetry. For 

equivalent symmetry, it should be modified: non-symmetric are all 
the variable pairs (v1, v2), such that v1∈ Ones(A1), v2 ∈ Ones(B2), and 
all the variable pairs (u1, u2) such that u1 ∈ Ones(A2), u2 ∈ Ones(B1). 

One advantage of the presented simulation technique is that it 
“implicitly” considers all variable pairs, without having to enumerate 
through them individually, which makes it fast for large functions. 
Another advantage is that all operations on the simulation data are 
performed in bit-parallel fashion, except O(n) operations working 
with individual bits in Steps 3 and 6. 
    Variable pairs usually differ in the average number of patterns 
needed to detect the difference of the cofactors. Some variable pairs 
cannot be detected using random simulation in reasonable time. This 
is why we start with random simulation and later switch to guided 
simulation using counter-examples returned by the SAT solver, 
together with their distance-1 patterns. The advantage of this 
simulation model is that it uses the intelligence of the SAT solver to 
reach into subspaces that are unlikely to be reached using random 
simulation alone. 

For example, random simulation often fails for sparse functions 
whose Boolean space is populated with many 0’s and a few 1’s, or 
vice versa. For such functions, random simulation almost always 
turns up the more likely value because the probability of getting the 
unlikely value is very low. Consider a 20-input AND-gate, the 
probability of getting 1 at the output is equal to 2-20 ≈ 10-6, i.e. it 
takes roughly one million random patterns to distinguish the output 
from the constant 0 function. 

Counter-examples are the patterns producing the unlikely value of 
a sparse function, thereby distinguishing it from other closely related 
sparse functions. For practical circuits, the same-valued minterms 
often lie close and are grouped into cubes. Therefore, the distance-1 

patterns of SAT counter-examples target the close neighborhood of a 
minterm, where the probability of getting the unlikely value is higher 
than in other parts of the Boolean space. This heuristic does not work 
for random functions, in which the unlikely values are scattered 
randomly through the Boolean space. 

3.4 Boolean satisfiability 
SAT-based symmetry detection is applied to the variable pairs that 

are not yet proven symmetric or non-symmetric using the analysis of 
circuit structure and simulation, as discussed above. For an 
undecided pair, two cofactors are derived and checked for 
equivalence using a combinational equivalence checker (CEC) [21], 
which is conceptually similar to [18][11]. Our checker is based on a 
tight integration of simulation, SAT solving, and fast logic synthesis. 
For detailed description and experimental evaluations, refer to [21]. 
The following are the key characteristics of the equivalence checker: 

1. Use of fast logic synthesis by way of AIG rewriting [23]. 
Logic synthesis results in fewer AIG nodes, which leads to 
faster SAT solving.  

2. Use of intelligent simulation by simulating not only distance-
1 patterns of SAT counter-examples, but also distance-1 
patterns from useful patterns which are successful in 
distinguishing nodes. This substantially reduces the number 
of SAT calls, thereby improving the runtime. 

3. Use of conflict analysis for better interleaving of the input 
and output SAT runs. This aids in early detection of 
intermediate equivalent nodes and speeds up the output proof. 

4. Use of CNF-based SAT solver. Recent progress in CNF-
based SAT solvers [9] and efficient circuit-to-CNF 
conversions [36], together with using circuit decision 
heuristics, increase the speed of SAT solving. 

 As a result, the employed CEC is faster than earlier approaches 
[11][12] and leads to improved performance of symmetry detection. 

 

4 EXPERIMENTAL RESULTS 
The proposed symmetry detection algorithm CSSS was 

implemented in ABC [3] as command print_symm. The experiments 
were conducted using a Pentium 4 computer with 1.6GHz CPU and 
1Gb RAM with the following goals: 
• to analyze the effectiveness of different symmetry detection 

techniques: structural analysis, simulation, SAT checking and 
transitivity analysis;  

• to demonstrate the efficiency of the proposed method as a result 
of the tight integration of simulation and SAT;  

• to show that CSSS outperforms the BDD-based approaches for 
large Boolean functions. 

In all the experiments, the benchmarks are read into ABC and 
preprocessed by several iterations of AIG balancing and rewriting to 
reduce the number of the AIG nodes and logic levels [23]. This 
preprocessing substantially reduces the runtimes of both CSSS and 
the BDD-based symmetry computation. Since it is a common step for 
both computations, the runtime measurements in the tables do not 
include the preprocessing. 

4.1 Analysis of symmetry detection techniques 
We divided the MCNC multi-level combinational benchmarks [39] 

into categories based on the percentage of symmetric variable pairs, 
as shown in Column 1 of Table 2. The number of benchmarks in 
each category is shown in Column 2. For example, category “0%” 
includes 13 benchmarks with no symmetries, whereas category 
“100%” includes 3 benchmarks, whose outputs are completely 



symmetric functions. 52 out of 79 MCNC benchmarks contain less 
than 10% of symmetric variable pairs, as shown in Column 2. 
Columns 3 to 6 give the average percentages of variable pairs 
classified using various techniques: structural analysis, simulation, 
SAT checking, and transitivity analysis. 

 

Table 2. Performance of various symmetry detection techniques 
on MCNC benchmarks. 

Symm. 
Category 

Num. of 
Benchmark 

Structural 
Analysis 

Simulation SAT Transitivity 
Analysis 

0% 13 0.00%    99.94% 0.06% 0.00% 
0-1% 6 0.26% 99.08% 0.51% 0.15% 
1-10% 33 3.88% 94.64% 0.95% 0.57% 
10-20% 7 12.77% 84.04% 2.89% 0.30% 
20-30% 5 26.09% 73.33% 0.58% 0.00% 
30-50% 8 39.71% 54.92% 2.82% 2.54% 
50-100% 2 35.80% 44.20% 5.00% 15.00% 
100% 3 18.89% 0.00% 12.13% 68.98% 

 

Table 2 confirms that simulation is an important technique in 
detecting non-symmetric variable pairs. Simulation detected over 
94% of non-symmetric variable pairs for the benchmarks with less 
than 10% of symmetries. As the number of symmetries increases, 
structural analysis plays a more important role in symmetry 
detection. Because of the effectiveness of the proposed structural 
analysis and simulation, SAT is used to process less than 1% of the 
variable pairs for most MCNC benchmarks. This is desirable because 
SAT is NP-hard and time-consuming.  

4.2 Integration of simulation and SAT 
   The following experiment compares CSSS with a plain 
implementation where only random simulation is performed, 
followed by SAT. The purpose is to demonstrate the effectiveness of 
the integration of simulation and SAT. 
 

Table 3. Contribution of integrated simulation and SAT. 
 Number of  SAT Calls             Runtime (s) Name Total 

Pairs CSSS Plain Ratio CSSS Plain Gain 
c1355 26240 105 642 0.16 0.51 2.02 3.96 
c1908 11116 98 1583 0.06 0.86 4.68 5.44 
c2670 32333 100 11380 0.01 1.78 54.06 30.37 
c3540 13579 28 230 0.12 0.51 3.88 7.61 
c499 26240 109 642 0.17 0.53 2.19 4.13 
c5315 62496 180 3079 0.06 1.56 11.55 7.40 
c6288 10792 44 291 0.15 10.44 37.55 3.60 
c7552 143390 166 50563 0.00 4.21 300.46 71.37 
c880 6436 34 140 0.24 0.14 0.33 2.36 
dalu 12540 23 144 0.16 5.36 6.63 1.24 
frg2 14523 62 563 0.11 0.38 1.3 3.42 
i10 110581 364 14235 0.03 8.25 172.24 20.88 
i2 20100 11 62 0.18 0.21 0.48 2.29 
i8 9408 3 4 0.75 0.12 0.12 1.00 
k2 9361 44 292 0.15 0.44 1.42 3.23 
my_adder 3656 9 186 0.05 0.07 0.43 6.14 
rot 19429 107 1751 0.06 0.68 5.33 7.84 

 

Experiments show that 31 out of 79 MCNC benchmarks benefit 
from the simulation and SAT integration. Table 3 lists some 
relatively large Boolean functions whose number of variable pairs 
exceeds 5000. Column 1 gives the names of these benchmarks, and 
Column 2 lists the total number of variable pairs in these functions. 
Columns 3 (CSSS) and 4 (plain implementation) show the number of 
SAT calls used to detect non-symmetric variable pairs (only non-
symmetric pairs benefit from this integration). Because of this 
integration, the number of SAT calls is dramatically reduced. This 
translates into improved runtime, as shown in Column 6 (CSSS), 
Column 7 (plain implementation) and Column 8 (performance gain is 
the ratio of Columns 8 and 7). For the largest benchmark, C7552, the 

SAT call savings are almost 100% with a significant 71x 
performance improvement.  

In summary, tight integration between simulation and SAT makes 
the proposed method applicable to larger Boolean functions. 

4.3 Performance comparison of CSSS vs. BDDs 
Table 4 contains the runtime information for the same subset of 

large MCNC benchmarks, as shown in Table 3, as well as some large 
benchmarks from ITC [14], ISCAS [4], and PicoJava [34] benchmark 
suites. The total runtime (Column 5) of our approach includes 
structural analysis (Column 2), simulation (Column 3), SAT 
checking (Column 4) and the time it takes to detect the true support 
of each output. Column 6 (“F-BDD”) reports the runtime of the 
fastest BDD-based symmetry detection algorithm [20] implemented 
in ABC and tested on the same computer. It includes the time needed 
to construct the shared BDDs of the PO functions and compute 
symmetries by traversing the BDDs. Column 7 (“N-BDD”) reports 
the runtime of the naïve BDD-based symmetry computation, which 
computes the cofactors with respect to all variables pairs and 
compares them. Column 8 (“Gain-F”) gives the performance gain 
between the proposed method and method in [20], whereas Column 9 
(“Gain-N”) gives the performance gain between the proposed method 
and the naïve method. The highlighted entries indicate when the 
proposed approach performs the same as or better than the other two 
methods. 

Table 4. Runtime comparison. 
Proposed CSSS algorithm (s) Name 

Struct Sim SAT Total 
F-BDD 

(s) 
N-BDD 

(s) 
Gain-F 

 
Gain-N 

 

C1355 0.01 0.04 0.05 0.39     2.89 34.69 7.41 88.95 
C1908 0.00 0.00 0.10 0.67 0.94 3.90 1.40 5.82 
C2670 0.00 0.03 0.27 0.89 1.08 16.77 1.21 18.84 
C3540 0.00 0.05 0.11 0.49 3.41 16.59 6.96 33.86 
C499 0.00 0.02 0.02 0.36 3.26 34.43 9.06 95.64 
C5315 0.01 0.12 0.20 1.15 0.91 2.56 0.79 2.23 
C6288 0.00 0.04 6.85 7.65 xxxx xxxx xxxx xxxx 
C7552 0.00 0.14 0.52 2.15 1.88 17.65 0.87 8.21 
C880 0.01 0.05 0.04 0.20 0.95 4.24 4.75 21.20 
dalu 0.00 0.03 0.49 3.13 0.55 0.85 0.18 0.27 
frg2 0.01 0.09 0.01 0.52 0.38 0.49 0.73 0.94 
i10 0.01 0.39 0.75 4.87 6.59 199.30 1.35 40.92 
i2 0.23 0.03 0.01 0.36 0.41 1.46 1.14 4.06 
i8 0.00 0.12 0.00 0.33 0.28 0.44 0.85 1.33 
k2 0.02 0.08 0.02 0.40 0.36 0.56 0.90 1.40 
my_ad 0.01 0.01 0.05 0.18 0.10 0.16 0.56 0.89 
rot 0.00 0.03 0.04 0.60 0.64 4.83 1.07 8.05 
too_large 0.01 0.02 0.04 0.17 0.30 0.37 1.76 2.18 
b14 9.49 4.08 9.04 54.52 xxxx xxxx xxxx xxxx 
b15 0.31 25.29 64.4 921.2 xxxx xxxx xxxx xxxx 
pj2 0.06 1.03 0.44 9.70 3.23 18.18 0.33 1.87 
pj3 1.28 12.09 10.24 503.9 xxxx xxxx xxxx xxxx 
s15850 0.05 1.73 9.06 68.24 8.13 53.66 0.12 0.79 
s38417 65.48 29.45 4.89 316.6 xxxx xxxx xxxx xxxx 

 

Table 4 shows that CSSS is faster in 15 out of the 24 cases 
compared to the fastest BDD-based algorithm [20]. In 5 of these 
cases BDDs can not be constructed. When CSSS loses, it is mostly 
within 2x of the best BDD runtime, which is still reasonable. This 
demonstrates that the proposed method is more robust and can be 
applied to large functions.  

5 CONCLUSIONS AND FUTURE WORK 
In this paper, a set of methods is proposed to detect all classical 

symmetries in completely specified Boolean functions. The methods 
use the circuit representation and do not require the construction of 
BDDs, which may be impossible for large designs.  



In the proposed approach, a substantial subset of symmetries is 
detected by a quick traversal of the circuit.  Bit-parallel simulation is 
applied to detect the majority of non-symmetric variable pairs. The 
simulation is interleaved with a specialized SAT-based equivalence-
checking method, which proves or disproves the unresolved variable 
pairs and provides counter-examples for guided simulation.  

The proposed method detects the complete set of symmetries. It is 
more robust than the efficient BDD-based method and faster even for 
some of those examples for which BDDs can be efficiently 
constructed. 

This work continues the research started in [24] extending the use 
of simulation and SAT to EDA applications in logic synthesis. Future 
work will include developing efficient methods for NPN-equivalence 
checking of large Boolean functions without using BDDs. 
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