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INTRODUCTION

The historical importance of General Relativity goes far beyond the fact that it provided a relativistic theory of
gravitation. General Relativity was also the beginning of a general program of geometrization of the rest of the
fundamental interactions. In the context of the standard model this program was performed by means of Yang-Mills
theories. The guiding principle of these kinds of theories is the so-called gauge principle. The theories which satisfy
this principle are called gauge theories. The main characteristic of gauge theories is the presence of constraints
between the canonical variables. These theories emerge from theories with a global symmetry, which is revealed
by the presence of conserved quantities through the first Noether’s theorem. The constraints appear as a consequence
of the localization of these global symmetries (second Noether’s theorem). The fundamental fact is that by demanding
the invariance of the theory under these kinds of local coordinate transformations, the relevant fields carrying the
fundamental interactions appear naturally as nontrivial geometric structures (namely connections) of the corresponding
fiber bundles over space-time. These new geometric degrees of freedom are called gauge fields.

In this contribution, we present a review of the formalism developed in Ref.[5] concerning the study of the geometric
structure and quantization of Yang-Mills theories by using what we have called an extended gauge principle. In general,
the localization of a theory with a global symmetry not only requires the definition of gauge fields, but also demands
other new geometric constructions. Firstly, it is necessary to fix the gauge by means of a section of the corresponding
principal bundle. Roughly speaking, fixing the gauge amounts to choosing in a continuous way a coordinate system
at the fibers for each point of space-time. Secondly, it is necessary to know how to extract from the resulting theory
gauge invariant information (observables). This can be done by means of the so-called BRST formalism (see Ref.[10]).
This formalism requires an extension of the set of canonical variables by adding the so-called ghost fields.

In Ref.[5] it was shown that these fundamental geometric components of Yang-Mills theories – the gauge fields,
the gauge fixing and the ghost fields – can be considered as different aspects of a single geometric object: an
extended connection in a properly chosen principal bundle. This unification is not only a conceptual improvement,
but also provides a means of solving the so-called Gribov ambiguity in the quantization of Yang-Mills theories (see
Refs.[8, 11]). In fact, in order to construct the extended connection it is necessary to generalize the notion of gauge
fixing by using a gauge fixing connection instead of the usual local sections. A fundamental difference is that the
gauge fixing connection is globally well defined, even when the topology of the fiber bundle is not trivial (Gribov
ambiguity). It was also shown in Ref.[5] that it is possible to derive the corresponding BRST transformations from the
equations for the curvature of the extended connection, without imposing the usual horizontality conditions used for
passing from topological Yang-Mills theories to ordinary Yang-Mills theories (see for example Ref.[3]). Finally, it is
shown that it is possible to follow the Faddeev-Popov method in order to find the gauge fixed action corresponding to
the generalized gauge fixing.

YANG-MILLS THEORIES

As we will see later, the kind of gauge fixing that we will use can be naturally implemented in the hamiltonian, or
canonical, formulation of Yang-Mills theories. We will then suppose that the space-time manifold M can be foliated
by space-like hypersurfaces. In other words, we shall assume that the space-time M is diffeomorphic to a product
space R×M with M a 3-dimensional Riemannian manifold that we will assume compact for simplicity.

In this framework, Yang-Mills theories are defined in a G-principal fiber bundle P→ M, where G is a compact
Lie group with Lie algebra g. The usual gauge principle states that in order to render the theory invariant under
local gauge transformations generated by the gauge group G of vertical automorphisms of P 1, it is necessary to
introduce connections A, which can be considered as g-valued 1-forms on P, i.e. as an element of Ω1(P)⊗g. In a local
trivialization defined by a local section s :U → P, where U is an open subset of M, the connection A can be identified
with the usual gauge fields Aa

μ ∈Ω1(U)⊗g.
Let A be the configuration space of all connections in P → M. This space is an affine space. The action of

the gauge group G on P induces an action on A . On each connection A the action is given by the usual formula

A′ = g−1Ag+ g−1dg. This action defines a structure of a G -principal fiber bundle A
π−→ A /G , where A /G is the

1 The gauge group G can be identified with the sections of the adjoint bundle ad(P) = P×G G and its Lie algebra L ie(G ) with the sections of
P×G g. When the fiber bundle P→M is trivial, the elements of this group can be considered as maps g(x) : M→ G. In other words, an element of
G defines at each x ∈M a coordinate transformation given by g(x) ∈ G. This is the usual description of G .
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orbit space of connections modulo gauge transformations2. Each orbit π−1([A]) (with [A] ∈A /G ) of this fiber bundle
is a set of gauge equivalent connections.

Since the geometric structure of the orbit space A /G is generally very complicated, it is much more convenient to
work on A . The usual means of doing so is by fixing the gauge by defining a gauge fixing section σ :

A
π �� A /G .

σ

��

For each equivalence class [A] ∈ A /G , the gauge fixing section σ selects a unique representative A ∈ A in the
corresponding orbit π−1([A]). The problem is that in Yang-Mills theories it is generally impossible to define a global
gauge fixing section σ , given that the topology of the fiber bundle A → A /G is not necessarily trivial. This is the
so-called Gribov ambiguity (see Refs.[8, 11]).

Once the theory is gauge fixed, the original gauge invariance is no longer manifest. Nevertheless, it was discovered
that the gauge fixed theory still has a rigid symmetry, namely the BRST symmetry [10]. This symmetry is implemented
by a nilpotent operator of order two, which defines a complex with its corresponding BRST cohomology. The
generators of this complex are the so-called ghost fields. As it was shown in Ref.[4] the ghost fields can be identified
with the Maurer-Cartan forms θMC of the gauge group G , which are the canonical 1-forms on G with values in its Lie
algebra L ie(G ). The fundamental point is that the BRST differential δBRST is constructed in such a way that its zero
degree cohomology coincides with the set of observables of the theory

H0(δBRST ) = {Observables} ,

i.e. with the set of gauge invariant functions on the reduced phase space (constraint surface modulo gauge transforma-
tions).

We can then say that Yang-Mills theories contain three fundamental geometric objects: gauge fields, gauge fixing
section, and ghost fields.

THE EXTENDED CONNECTION

The question that we want to answer is whether there exists a single geometric entity which unifies these three
components of Yang-Mills theories. The answer proposed in Ref.[5] is that it is in fact possible to define such an
entity, which is found to be an extended connection A in a properly chosen principal fiber bundle. The main references
for certain aspects of the following geometric construction are the seminal papers of M.F. Atiyah and I.M. Singer [1]
and L. Baulieu and I.M. Singer [2].

The first step of this unification process is the definition of a connection in the fiber bundle A → A /G . Such a
connection can be defined by means of a L ie(G )-valued 1-form η on A which must satisfy a certain equivariance
condition under the action of G . At each point A ∈ A , the connection 1-form η defines a horizontal subspace H η

A
of the tangent space TAA through its kernel: H η

A = Ker ηA = {X ∈ TAA|ηA (X) = 0}. In other words, a connection
can be also considered as an equivariant horizontal distribution. The fundamental point is that the connection η in the
fiber bundle A →A /G will encode both the ghost fields and a generalized notion of gauge fixing.

The main observation is that connections can be considered as infinitesimal versions of sections. Given any global
gauge fixing section σ , one can always define an induced flat connection ησ such that the section σ is horizontal for ησ .
This means that the tangent spaces to the section coincide with the horizontal subspaces defined by the connection.
On the contrary, a connection can not generally be integrated, even locally, to a section. A local obstruction is the
curvature and a global one is the monodromy. The fundamental difference between a connection and a section is that,
even when the topology of the fiber bundle A →A /G is not trivial (Gribov ambiguity), it is always possible to define
a global gauge fixing connection η .

The main use of the connection η will be to define a section not on the level of A → A /G but on the level of
paths. The section will be defined by the parallel transport along paths γ in A /G with any given fixed initial condition
A0 ∈A . We shall see that this section is what is necessary in order to quantize the theory using path integrals.

2 Technically speaking we shall work with Sobolev framed connections (see Ref.[6]). In this way one can assure that the action of the gauge group
G on A is free and one also gets local triviality. We will then consider that the space A is the configuration space of framed connections
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It can be shown that the gauge fixing connection η encodes also the ghost fields. A local section σ :U ⊂A /G →A
induces a trivialization of the fiber bundle A → A /G . This means that the restriction to U of the fiber bundle
A →A /G can be identified with a trivial productU×G . This identification is given by a map ϕσ :U×G → π−1 (U)
defined as ϕσ ([A],g) = σ([A])g. It is important to remark that this local identification is non canonical because it
depends on the arbitrary local section σ . Given this local map ϕσ , one can take the pullback of the connection η
(which is defined on π−1 (U)), i.e. we can look at it as a connection on the trivial product U×G . If we do so, we find
that the connection ϕ∗σ η defined by the pullback can be decomposed in a 1-form on the base space U and a canonical
vertical component which coincides with the Maurer-Cartan form θMC of the gauge group G . If w is a tangent vector
to U at [A] and v a tangent vector to G at g, the action of the connection 1-form ϕ∗σ η on w+ v is given by

ϕ∗σ η (w+ v) = g−1η(w)g+θMC(v),

where η = σ∗η ∈Ω1(U)⊗L ie(G ) (local form of the connection η). Given that the ghost field is the Maurer-Cartan
form θMC of the gauge group G [4], this decomposition means that in a local trivialization we can identify the ghost
field with the canonical vertical component of the connection η . In this sense, we could say that the ghost field and
the gauge fixing of the theory are different aspects of the same geometric entity, namely the connection η in the
G -principal fiber bundle A →A /G .

Nevertheless, this way of understanding the relation between the connection η and the ghost field, even if it is
clarifying, it is not fully satisfactory given that it depends on the definition of a family of local sections σ (which
is equivalent to fix the gauge in the usual way). Therefore, it would be much better if one could understand the
relation between the connection η and the ghost field without using such a family of local sections. This can be
done if we take into account that a connection in a fiber bundle can be defined by means of a universal construction.
The general philosophy is that a particular structure on an object can be defined by giving a particular morphism
from (or to) a universal object to (or from) the object in question. In our case, this means that instead of defining a
particular connection η in the fiber bundle A → A /G one can give a morphism from a universal algebraic object
to the differential algebra of L ie(G )-valued forms in A . The universal object in question is Weil algebra and the
corresponding morphisms are Chern-Weil homomorphisms (see Refs.[7, 9]). Weil algebra is the abstract model which
reproduces in an universal way the algebra of a connection and its curvature. The important fact is that the object
which plays the role of the universal connection in Weil algebra is the Maurer-Cartan form of the gauge group G (i.e.
the ghost field). In this way we can say that a particular Chern-Weil “immersion” ω� of the ghost field θMC (universal
connection) in the differential algebra Ω∗ (A )⊗L ie(G ) defines a particular gauge fixing connection η = ω�(θMC).
Different “incarnations” of the universal ghost θMC define in this way different gauge fixings of the theory.

We have then the G-principal fiber bundle P→ M with the connection A (i.e. with the gauge fields Aa
μ defined in

a local trivialization) and the G -principal fiber bundle A → A /G with the connection η (i.e. with the definition of
the gauge fixing and the ghost field). In order to give the last step in the unification process, it is necessary to define
a unified principal fiber bundle. We will do so by multiplying each point of the fiber bundle P→M by A . It results
the G-principal fiber bundle A ×P→A ×M3. This fiber bundle can be considered as a family (parameterized by the
space of all connections A ) of G-principal fiber bundles P→M with a universal family AU of connections A. This
means that at each point A in the space of all connections A there is a copy of the G-principal fiber bundle P→M with
connection A. The universal family AU can be considered as a universal gauge field which contains the information
about all the particular fields.

In this way, we have a unified G-principal fiber bundle A ×P→A ×M. We now wish to define a unified geometric
structure on this principal fiber bundle. It can be shown that it is possible to define an extended connection form
A ∈ Ω1(A ×P)⊗ g on this fiber bundle which is the sum of the universal family AU of connections A in the fiber
bundle P→M plus the connection form η in the fiber bundle A →A /G . The action of the extended connection A

on tangent vectors v1 + v2 ∈ TAA ⊕TpP is defined as

A(v1 + v2) = AU
(A,p)(v2)+η(v1)(p) ∈ g.

3 More formally, one can take the product A ×M and the pullback of the fiber bundle P→M by the projection q : A ×M→M. The total space
of the resulting fiber bundle is q∗(P) = A ×P.
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It can be shown that the horizontal distribution HA defined by the extended connection form A has three compo-
nents:

• the horizontal subspaces Hη defined by the connection η in the fiber bundle A →A /G ,

• the horizontal subspaces HA defined by the universal family AU of connections in each copy of the fiber bundle
P→M and

• the tangent space TG of the orbit of the action of the gauge group G on A ×P.

The horizontal distribution HA can then be decomposed as

HA(A, p) = Hη(A)⊕HA(p)⊕TG (A, p).

The presence of the last term TG (A, p) shows that the gauge group G , even if it comes from the factor A , has to
act on both A and P in order to define a horizontal subspace. This means that this geometric construction is not just a
trivial addition of connections in a product space.

BRST SYMMETRY

From the extended connection A, we can calculate the associated extended curvature F = ΔAA. Given that the
total space A × P is a product space, there is a natural bigraduation of the differential forms ((p,q)-forms ∈
Ωp(A )⊗Ωq(P)) and the total differential Δ can be decomposed in a differential δ in A and a differential d in P.
The extended curvature F has then three components

F = F
(2,0) +F

(1,1) +F
(0,2)

given by the expressions

F
(2,0) = δη +

1

2
[η , η ]≡ φ ,

F
(1,1) = δAU +dη +

[
AU , η

]≡ ψ,

F
(0,2) = dAU +

1

2

[
AU , AU]≡ FU .

The (0,2)-forms FU are the universal family of curvature forms corresponding to the universal family of connections
AU . The (2,0)-form φ is the curvature of the connection η and the (1,1)-form ψ is a mixed term which involves both
the gauge fields A and the gauge fixing connection η . This last term shows again that this geometric construction mixes
in a non trivial way the geometric structures coming from the fiber bundles P→M and A →A /G .

Without imposing the usual horizontality conditions (φ = ψ = 0 or equivalently F = FU ), it is demonstrated in
Ref.[5] that the equations for ψ and φ can be separated in horizontal and vertical components as

δVAU =−dAU η δHAU = ψ

and

δVη =−1

2
[η ,η ] δHη = φ .

If we take into account the relation between the connection η and the ghost field, and if we identify the vertical
differential δV with the BRST differential, the equations corresponding to the vertical components reproduce the
BRST transformations of the gauge and ghost fields.

PATH INTEGRAL QUANTIZATION OF YANG MILLS THEORIES

We shall now outline how this formalism can be implemented at the level of the path integral. In order to introduce the
generalized gauge fixing, we will consider the path integral as an integral over the space of paths

P(A0,π−1[A1]) = {γ : [0, 1]→A |γ(0) = A0, π(γ(1)) = [A1]},
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between a fixed initial condition A0 ∈ A and any element belonging to a final fiber π−1[A1]. In other words, the
boundary conditions are such that the final condition is defined only up to a gauge transformation. The transition
amplitude that one wants to calculate takes then the form

〈A0 | π−1[A1]〉=
∫
T ∗P(A0,π−1[A1])

exp{iS}DA Dπ, (0.1)

where S is the canonical Yang-Mills action

S =
∫

dt
∫

d3x
(
Ȧa
kπk

a −H0

(
πk
a ,B

k
a

)
−Aa

0φa
)

. (0.2)

As it is clear from the form of this action, the pairs (Aa
k ,π

k
a) are the canonical variables of the theory while Aa

0 is not

a dynamical variable, but the Lagrange multiplier for the generalized Gauss constraint φa ≈ 04.
The action of the gauge group G on each connection A – except for the fixed initial condition A0 – defines an action

on each path γ in P(A0,π−1[A1]) generated by the path group

PG = {p : [0, 1]→ G | p(0) = idG }
of continues parameterizations of elements of the gauge group G . The action of the path group PG on P(A0,π−1[A1])
defines a projection π̃

P(A0,π−1[A1])
π̃−→P([A0], [A1])

where
P([A0], [A1]) = {[γ] : [0,1]→A /G |γ(i) = [Ai], i = 0,1}

is the space of paths [γ] in the orbit space A /G . This projection π̃ sends each path γ going from A0 ∈A to an element
of the final fiber π−1[A1] to the projected path [γ] in the orbit space A /G .

In the general case (with curvature or monodromy), the connection η does not induce a section of A → A /G ,
given that the parallel transports defined by η are path depending. Nevertheless, parallel transports defined by η along
paths in A /G of the initial condition A0 ∈A defines always an induced section ση of the projection π̃ in the space of
paths:

P(A0,π−1[A1])
π̃ �� P([A0], [A1]).

ση

��

In other words, the section ση sends each path [γ] ∈ P([A0], [A1]) to its η-horizontal lift γ = ση ([γ]) ∈
P(A0,π−1[A1]) starting at A0. The local condition for belonging to the section ση is that the tangent vectors to γ have
to belong at each point A ∈ A to the horizontal subspace Hη(A) defined by the connection form η . Recalling that
Hη(A) = Ker η(A), this condition leads to the gauge fixing equation

η(γ̇(t)) = 0, ∀t.
Taking into account that strictly speaking the path integral is an integral on the space of paths (and not on the space

of fields), the section ση induced by the gauge fixing connection η suffices for getting rid of the infinite volume of the
gauge group G in the path integral.

In Ref.[5] it was shown that in order to introduce this generalized gauge fixing in the path integral, it is possible to
follow the Faddeev-Popov method. It is then necessary to introduce a Dirac’s delta of the gauge fixing condition η(γ̇) =
0 and the determinant of the operator which measures the variation of this gauge condition under an infinitesimal gauge
transformation. The Dirac’s delta of the gauge fixing condition admits an integral representation of the form

δ (η(γ̇)) =
∫

DλeiF , with F =
∫

γ

∫
M

λaη(γ̇(t))ad3xdt

4 In the covariant formalism, Aa
0 is the temporal component of the connection A = A(t)+A0(t)dt in the corresponding fiber bundle P →M over

the space-time.
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where λ is a time-evolving section of ad(P) = P×G g and the measure Dλ is

Dλ = lim
N,M

N

∏
k=1

M

∏
j=1

dλk(x j).

In Ref.[5] it is demonstrated that the variation of the gauge condition under an infinitesimal gauge transformation
defines for each path γ(t) an endomorphism Mγ(t) in L ie(G ) given by

Mγ(t)(x)ca =−ηγ(t)(γ̇(t))b f cab +δ c
a∂0,

where f cab are the structure constants of the Lie algebra g of G. By introducing the usual Grassmann’s variables (c, c̄),
the corresponding Faddeev-Popov determinant can be expressed as

Δ[γ] =
∫

D c̄DceS, where S =
∫

c̄aMγ(t)caccd
3xdt

where

Dc = lim
N,M

N

∏
k=1

M

∏
j=1

dctk(x j),

and the same for D c̄.
The gauge fixed action Sg f takes then the form

Sg f =
∫

d4x
(
Ȧa
kπk

a −H0−Aa
0φa +λaη(γ̇)a + ic̄aη(γ̇)b f cabcc− ic̄aċa

)
.

In this way the existence of a generalized notion of gauge fixing shows that the Faddeev-Popov method is still valid
even in the presence of a Gribov ambiguity.

CONCLUSIONS

An extended connection A = AU +η was defined in the G-principal fiber bundle A ×P→A ×M. To do so it it was
necessary to generalize the notion of gauge fixing from a gauge fixing section σ to a gauge fixing connection η . A
fundamental difference is that the gauge fixing connection η is globally well defined, even when the topology of the
G -principal fiber bundle A →A /G is not trivial (Gribov ambiguity).

In this way, the single geometric object A unifies the three fundamental components of Yang-Mills theories, namely
the gauge fields (connections A), the gauge fixing (connection η) and the ghost field (universal connection or canonical
vertical component of η in a local trivialization):

Extended connection A = AU +η

⎧⎨
⎩

A Gauge fields

η
{

Ghosts
Generalized gauge fixing.

From the curvature F = ΔAA of the extended connection A we derived the BRST transformations of the gauge
and ghost fields without imposing the usual horizontality conditions φ = ψ = 0. Finally, it was possible to follow the
Faddeev-Popov method in order to find the gauge fixed action Sg f corresponding to the gauge fixing condition defined
by the connection η .
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