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Abstract. Dense packings composed of irregular polyhedral partialesinvestigated by numerical simulations under
guasistatic triaxial compression. The Contact Dynamicthotkis used for this investigation with 40 000 particlese Effect

of particle shape is analyzed by comparing this packing wiglacking of similar particle size distribution but with spical
particles. We analyze the origin of the higher shear sttengtthe polyhedra packing by considering various anisgtrop
parameters characterizing the microstructure and foarsinission. Remarkably, we find that the polyhedra packagy h
a lower fabric anisotropy in terms of branch vectors (joinime particle centers) than the sphere packing. In contrast
the polyhedra packing shows a much higher force anisotrdmghwis at the origin of its higher shear strength. The force
anisotropy in the polyhedra packing is shown to be relatebdegdormation of face-face contacts. In particular, moseféace
contacts belong to strong force chains along the major ipdhstress direction whereas vertex-face and edge-edgaate

are correlated with weak forces and oriented on average dlenminor principal stress direction in steady shearing.
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INTRODUCTION .
During the last two decades, granular media composed of -

circular particles (in 2D) and spheres (in 3D) have been
a subject of systematic research. In particular, various
microscopic features such as fabric anisotropy [1], force

transmission|[2| 13,14,]5,/ 6] and friction mobilization

[7] have been anal_yze(_j numerically.and experimentallyF|GURE 1. Examples of polyhedra used in the simulations.
Hence, an emerging issue today is how robust these

findings are with respect to particle properties such as

shape and size distributior [8,19, 10]. ing a collection of deformable or undeformable particles
In this paper, we study numerically granular materialsgf various shapes by different algorithrhsl[13].
composed of polyhedral particles. We use the contact \we generate two numerical samples. The first sam-
dynamics method to simulate the slow shear of theseme (S1) is composed of 36933 polyhedra. The particle
materials in comparison to sphere packings with similarshapes are taken from a library of 1000 digitalized ballast
particle size distribution. The facetted shapes give risgyrains provided by the French Railway Company SNCF.
to a rich microstructure where the partiCIeS touch atF|gm shows several examp|es of the po|yhedra| partides
their faces, edges and vertices. We analyze the fabrigsed in the simulations. We used the following size dis-
and force anisotropies and their link with the stress-tripution: 50% of diametedmin = 2.5 cm, 34% of diam-
strain behavior. We show that face-face contacts play ater 375 cm, 16% of diametednax= 5 cm, wheredmin
major role in force transmission and statics of polyhedrgs defined as two times the largest distance between the
by accommodating long force chains that are basicallyparycenter and the vertices of the particle. The second
unstable in a packing composed of spheres. sample (S2) is composed of 19998 spheres with exactly
the same size distribution as in S1. Hiyy. 2 shows a snap-
shot of the sample S1 in equilibrium state after deposi-
NUMERICAL PROCEDURES tion and isotropic compression under a constant stress of
0o = 10* Pa in a rectangular box at zero gravity.
The simulations were carried out by means of the contact The coefficient of friction is 0.5 between the particles
dynamics (CD) method with irregular polyhedra parti- and 0 with the walls. The initial value of the solid fraction
cles [11/12]. We used LMGC90 which is a multipurposeis p ~ 0.6 in both samples. Both samples have a nearly
software developed in our laboratory, capable of model-
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FIGURE 3. The normalized shear stregsp as a function of
shear straitgq for the polyhedra packing S1 and sphere packing
S2.

FIGURE 2. A snapshot of the packing S1 (polyhedra). The
walls are not shown.

square bottom of side such tHatz | and an aspectratio FIGURE 4. Geometry of a contact between two polyhedra.
H/L ~ 2, whereH is the height. The isotropic samples
were subjected to vertical compression by downward
displacement of the top wall at a constant velocity of g, + 03)/3, and the stress deviatge= (01 — d3) /3. For
1 cm/s for a constant confining stregg acting on the  our system of perfectly rigid particles, the stress state is
lateral walls. characterized by the mean strgssind the normalized
shear stresg/ p.
The cumulative strain componersg are defined by

HdH’ LdU Ll
_ ) ] ] &= W,SZZ/ 7,53:/ I (3)

In this section, we compare the stress-strain behavior Ho Lo lo

between the packings of polyhedra (packing S1) andyhere Ho, Io and Lo are the initial height, width and

spheres (packing S2). For the estimation of the stresfngth of the simulation box, respectively, anti =

SHEAR STRENGTH

tensor, we use the internal moment tenbbr of each Ho—H, Al =lg—1 and AL = Lo — L are the cor-
particle i defined by [14]; responding cumulative displacements. The cumulative
i coc shear strain is defined kzy = €1 — &3.
ap — Z farp, @) Figure[3 displays the evolution af/ p for the pack-

oc! ings S1 and S2 as a functiongf For both packings, we

where f¢ is the a component of the force exerted on observe a classical behavior characterized by a harden-
particle i at the contact ¢ is the 8 component of the ing behavior followed by (slight) softening and a stress

position vector of the same contact ¢, and the summatioR!ateau. The higher level af/ p for the polyhedra pack-
runs over all contact neighbors of particle i. ing reflects the organization of the microstructure and the

It can be shown that the internal moment of a collec-féatures of force transmission that we analyze below.

tion of rigid particles is the sum of the internal moments
of individual particles[[14]. The stress tensar for a

packing of volumeé/ is simply given by GEOMETRICAL ANISOTROPY

1 i1 cae For the analyses that will be discussed below, we intro-
0= V_Z/M V2 Z/ falp, @ duce the local framén’,t’) wheren' is the unit vector
IS ce . .
along the branch andt’ is an orthonormal unit vector ;
wheref° is the branch vector joining the centers of the figurel4. We set
two touching particles at the contact €=/, (4)
Under triaxial conditions with vertical compression, where/ is the length of the branch vector.

we haveoy > 0, = o3, where theoy are the stress  We define the angular averages associated with the
principal values. We extract the mean strgss (01 +  branch vectorg. Let .7 (Q) be the set of branch vectors
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function P and (¢(Q)) for the samples S1 and S2 in the - S2
residual state. 0.2 -
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pointing in the directio = (6, ) up to a solid angle 01M
dQ and N¢(Q) its cardinal. The angular averages are
defined as follows: P pmmmmmees PR [
Ne(Q) 1 0 0.1 02 0.3 0.4
< c ce(Q) FIGURE 6. Evolution of anisotropies, g with & for pack-

whereN. is the total number of contacts, aitlis the ings S1and S2.

actual values of branch vector length, for contacte-
spectively.
Under the axisymmetric conditions of our simulations,
these two funct|ons.are mdependenthlg.[_B displays We consider the components of the contact force by
a polar representation of these functions in éiplane
for polyhedra (S1) and spheres (S2) gt= 0.3. We (8)
observe an anisotropic behavior of the unit inter-center
vectorPq(0) in both cases. A weak anisotropy of branch We refer tofy and fy asradial and orthoradial com-
vector can be seen for S1. The magnitude of anisotropponents of the contact force. As the angular orientation
is larger for spheres compared to polyhedra except fopf the branch vector, we distinguish the angular distri-
(£)(0) which is weakly anisotropic for polyhedra. butions of radial forcegf,,)(Q) and orthoradial forces
The simple shapes of the above functions can béefy)(Q). These two functions can be expanded on a base
approximated by harmonic approximation. Consideringof spherical harmonics. At leading order, we have [8, 15]
only the functions compatible with the symmetries of the
problem (independent with respect ¢oand rr-periodic
as a function oB) we have

FORCE ANISOTROPY

f= fn/n/ + ft/t/.

fo{ 1+ay [3cog6—1] },

fo 2y SIN20. ©)

1 wherea,y anday, are the anisotropy parameters, afad
Pa(6) = Z-{1+a[3 co$0-1]},  (6)  tne mean force. The anisotropias anda, are plotted
0(8) = lof1+a [3 col0 — 1} @) in figure[7 as a function ofy. The radial force anisotropy

a,y increases as the fabric anisotropy, and tends to a
wherea, g are the anisotropy parametefgjs the mean plateau. But, in contrast to fabric anisotropy, its value
branch vector length. The probability density functionis higher for polyhedra than for spheres. This means
Pa(6) is normalized to 1. The harmonic fits are shownthat the large force anisotropy is correlated with particle

in figure[B for the two functions in the critical state.
The evolution of the anisotropies with are displayed
in Fig.[@ for S1 and S2. We see thais systematically

shape rather than with fabric anisotropy. The orthoradial
force anisotropyy has a similar behavior except that it
takes considerably higher values in the case of polyhedra

larger for spheres than for polyhedra. The branch veceompared to spheres due to large friction developed by
tor length anisotropyy is negligible for spheres. The face to face contacts [10,/15].

low anisotropy of the polyhedra packing results from a The anisotropies, a;, ay anday are interesting de-
particular organization of the force network in correla- scriptors of granular microstructure and force transmis-
tion with the orientations of each contacts (edge-to-facesion as they underlie the shear stress. Indeed, it can be
vertex-to-edge...) in the packing [10, 15]. shown that the general expression of the stress tensor Eq.
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FIGURE 7. Evolution of anisotropiesy, ay with & for
packings S1 and S2.
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FIGURE 8. The normalized shear streggp as a function
of shear strairgg for the packings S1 and S2 both from direct
simulation data and theoretical prediction of Eq (10).

(@) under some approximations leads to the following13.

simple “stress-force-fabric" relationi [, 8,/ 15]:

~ _

z (10)

(a+a +ay+ay),

oTla

CONCLUSION

The objective of this paper was to isolate the effect of
particle shape with respect to shear strength in 3D gran-
ular media by comparing two similar packings with dif-
ferent particle shapes. A novel finding of this work is
that the origin of enhanced shear strength in a poly-
hedra packing compared to a sphere packing lies in
force anisotropy induced by particle shape. The fabric
anisotropy associated with the network of branch vec-
tors is lower in the polyhedra packing. In other words,
the force anisotropy, partially underlying shear strength
is mainly controlled by the fabric anisotropy in a sphere
packing. This mechanism breaks down to some extent
in a packing of polyhedra where force anisotropy results
mainly from the “facetted" particle shape.
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