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Abstract

The tt̄ system allows a truly perturbative treatment of the potential. Completing
previous computations, we calculate the contributions of QCD box graph correc-
tions, which make the “relativistic” O(α4) corrections in the non-Abelian case differ
from the well known corrections of the same order in QED.
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1 Introduction

The literature on the perturbative treatment of the quark-antiquark potential is very
abundant. But even for the bottom quark these calculations suffer from the drawback that
non-perturbative contributions can be estimated to be as large as the leading Coulomb
part, and thus that their perturbative inclusion is not justified. On the other hand,
phenomenological potentials with a large number of free parameters are used extensively
[1]. The situation is completely different for the top quark. With its mass of ≈ 180
GeV it is heavy enough to allow a completely perturbative treatment. The drawback
of this heavy mass is that, owing to its weak decay, individual bound state levels are
not directly observable. However, this turns into a virtue since this large decay width
effectively cuts off non-perturbative contributions in the calculation of the cross sections
near threshold [2]. For computations in this region the input of a perturbative QCD
potential is justified and it is thus desirable to investigate to which extent we are able
to calculate such a potential. Unfortunately, despite the large amount of literature, the
number of studies including reliable QCD perturbative calculations beyond the lowest
orders is actually small. For example in most cases higher order corrections are derived
from on shell scattering amplitudes [3]. This is not a consistent approach since different
powers give contributions to the same order in the energy shift of bound states. The
present article is also intended to shed some light on the calculation of spin-dependent
forces up to O(α5

s lnαs) where perturbation theory is likely to be applicable even for lighter
quarks.

Recently a consistent treatment on the basis of the Bethe-Salpeter (BS) equation
was given [4] where the level shifts themselves have been used as ordering parameter.
There it was emphasized that it would be incorrect to extrapolate from the absence of
corrections to O(α4

s) other than the tree graphs in the QED case to QCD because gluon
splitting allows new types of graphs. Therefore we will discuss here possible sources of
new corrections to that particular O(α4

s) in some detail.

2 QCD two-loop box graphs

The two-loop box graphs on which we concentrate in this letter are represented in fig. 1.
As we adopt the Coulomb gauge, the full gluon propagator (graphically represented by
a wavy line) can be split, as usual, into a Coulomb part (broken line) and a transverse
part (curly line). Contributions to the two-loop box graphs, which do not appear in fig.
1, may be checked to give higher-order corrections.

In [4] an exact zeroth-order solution has been derived for the toponium BS equation,
generalizing the Barbieri-Remiddi equation [5] to the case of unstable particles. For our
purposes it is sufficient to consider the corresponding zeroth-order wave functions χ and
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χ̄ in a non-relativistic approximation:

χ(p)nr =

√
2iω̃n

p20 − ω̃2
n

φnlm(p)S = −γ0χ̄(p)
nrγ0 , (2.1)

where ω̃n := (p2/m−En)/2− iǫ, En = −mα2/4n2 are the Bohr levels, α := (4/3)g2/4π =
(4/3)αs, φnlm the Schrödinger-Coulomb wave functions, χ and χ̄ are written as spinor
matrices with S a 4 × 4 matrix representing the spin state of the particle-antiparticle
system:

S =

{

γ5λ
− : singlet

amγλ
− : triplet (m = 0,±1 a2

m = 1)

λ± :=
1± γ0

2
. (2.2)

All the following contributions are evaluated between S and −γ0Sγ0 (times a normaliza-
tion factor 1/6).

First we will consider the QCD box graph of fig. 1a. Let p1, −p2, be the incoming
and p′1, −p′2, the outgoing momenta of the particle and antiparticle. We define the total
momentum P := p1 − p2 = p′1 − p′2, the relative momentum of the incoming particles
p := (p1 + p2)/2 and q := p′2 − p2 = p′1 − p1. Our present correction is put between BS
wave functions, in agreement with the general approach of BS perturbation theory. In
that formalism, after performing the colour and spinor indices traces, the perturbation
kernel of graph 1a can be written as 1

− iH1.a = 12 i g6
∫

d4t

(2π)4
d4k

(2π)4
(p01 − t0 +m)(p02 − k0 −m)

[(p1 − t)2 −m2][(p2 − k)2 −m2]

× 1

(t− k)2k2(q− k)2t2(q− t)2
Q(q− k,k, t− k) , (2.3)

with

Q(p,q,k) := pq− (p · k)(q · k)
k2

. (2.4)

In the centre-of-mass frame P = 0, p1 = (P0/2 + p0,p) and p2 = (−P0/2 + p0,p). The
integrations over t0 and k0 are quite simple, but the complicate angular structure seems
to be a serious obstacle to the exact evaluation of the remaining integral. Observing that
for the bound state the scales of the momenta 2 are p,q ≈ mα and p0 ≈ mα2, it is natural

1All calculations have been performed with the help of the program of symbolic manipulations FORM
[6].

2This is the reason why a simple counting of vertices fails when estimating leading-order contributions
of the Feynman graphs to the levels of bound states.
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to introduce rescalings as follows:

p0 → α2p0 ,

p → αp ,

q → α q , (2.5)

t → α t ,

k → α k .

As a consequence, the right-hand side of eq. (2.3) is easily seen to retain a single power of
α times an integral which is finite in the limit α → 0, remembering that the centre-of-mass
energy is P0 = 2m + O(α2). Therefore, the leading contribution in α of (2.3) is simply
obtained by putting α = 0 in this integral. The resulting expression is

H1.a = 162 π3α
∫ d3t

(2π)3
d3k

(2π)3
1

k2(q− k)2t2(q− t)2(t− k)2
Q(q− k,k, t− k) (2.6)

which only depends on q. The trick to simplify this expression is to write the inner
products in terms of quadratic expressions that partly cancel the denominators:

Q(q− k,k, t− k) =
1

4

[

2 q2 − k2 − t2 − (q− k)2 + (k− t)2 − (q− t)2

− t2(q− k)2

(k− t)2
+

t2(q− t)2

(k− t)2
+

k2(q− k)2

(k− t)2
− k2(q− t)2

(k− t)2

]

. (2.7)

While the original integral (2.6) is finite, the integrals one obtains from a single summand
in (2.7) are not, so the evaluation of them requires some care. In the appendix we
give the list of integrals necessary to evaluate (2.6). The divergent integrals have been
regularized with a cut-off in the integration region, but, as a check, we have verified
that the same result can be obtained within dimensional regularization. Removing the
auxiliary regulators, obviously all divergent terms cancel in the final expression, which
can be written as

H1.a = − 81

128
π(12− π2)

α3

q2
, (2.8)

where we have restored the initial definition of q (before scaling). Taking into account
the factor α3 from the wave functions, we find, as a consequence of eq. (2.8), that the
graph 1a indeed yields contributions of O(α4) to the energy levels. Therefore it must be
included in an O(α4) evaluation of the QCD potential V. Actually our result confirms
some previous qualitative estimates [7]–[9].

Graph 1b produces contributions to the energy levels that are of higher order than
1a. In fact the insertion of a transverse gluon propagator between the wave function and
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Figure 1: Two-loop box graphs.

the free quark propagator S annihilates its leading contribution. But additional powers
in the spatial momenta and consequently (see (2.5)) in powers of α remain:

S
(

±P

2
+ p

)

≈ i

±p0 + P0/2−Ep + iǫ

(

λ± − p · γ
2Ep

+ . . .

)

+ . . . , (2.9)

λ±γjS
(

±P

2
+ p

)

≈ λ±γj
i

±p0 + P0/2−Ep + iǫ

(

−p · γ
2Ep

)

+ . . . , (2.10)

with Ep :=
√
p2 +m2. However, we note that this graph contributes to the spin-

dependent part of the interaction.
Graph 1c was considered in [4], where it has been shown that the corresponding leading

contribution to the energy level shift is O(α5 lnα).
Graphs like fig. 1a and 1b with crossed Coulomb lines (fig. 1d) are irrelevant because

they vanish due to group theoretical factors.
By connecting the quark lines between the interactions in the non-Abelian vertex

correction graph and graph 1a, as shown in fig. 2, one obtains graphs which could be
named non-Abelian Lamb shift graphs. Consider for instance the graph of fig. 2a with
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only one Coulomb gluon insertion, and call t the momentum carried by the transverse
gluon, s and k the momenta of the Coulomb gluon connecting it with the upper fermion
line. Taking into account only the leading contribution to the fermion propagator (the
first term of eq. (2.9)), we obtain

H
(1)
2.a = −81 π4α4

∫

d3t

(2π)3
d3k

(2π)3
d3s

(2π)3
1

t(s− t)2k2(k + t)2s2(q− k− s)2

× 1

(t + Ep′k + Ep′kt − P0)(t + Eps + Epst − P0)
Q(s,k, t) , (2.11)

with Ep′k :=
√

(p′ − k)2 +m2, Ep′kt :=
√

(p′ − k− t)2 +m2, Eps :=
√

(p+ s)2 +m2 and

Epst :=
√

(p+ s− t)2 +m2. Scaling all momenta according to eq. (2.5), H
(1)
2.a takes the

form
H

(1)
2.a = −81π4α2I(α,q) , (2.12)

where I is the integral of eq. (2.11) after scaling. Since it can be shown that the leading
contribution of the derivative of I with respect to α is proportional to 1/α (scaling t a

second time and putting α = 0 in the integral), the leading contribution of H
(1)
2.a is

H
(1)
2.a = c2.aα

2 lnα . (2.13)

From this argument it follows that all the graphs of fig. 2 will contribute at least at the
usual Lamb shift level O(α5 lnα).

Figure 2: Non-Abelian Lamb shift graphs.

3 QCD potential and renormalization schemes

The O(α4) correction from the non-Abelian box graph fig. 1a leads to a slight enhance-
ment of the attractive Coulomb force. This is the only contribution of this type in our
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renormalization scheme, which is defined as follows: mt is the pole mass, Zgluon and
Z1F,Coulomb are defined by a subtraction at µ and 0, respectively. The updated potential
given in [4] now reads

V = − p4

4m3
− απ

m2
δ(r)− α

2m2r

(

p2 +
r(r · p)p

r2

)

+
3α

2m2r3
LS+

α

2m2r3

(

3(rS)2

r2
− S 2

)

+
4πα

3m2
S2δ(r)

−33α2

8πr
(γ + lnµr) +

α2

4πr

5
∑

j=1

[

Ei(−rmje
5

6 )− 5

6
+

1

2
ln

(

µ2

m2
j

+ e
5

3

)]

+
9α2

8mr2

− 81

128
π(12− π2)

α3

4πr
− 2α3

(16π)2r

{

272
[

π2

6
+ 2(γ + lnµr)2

]

+ 576(γ + lnµr)

}

−8

9

4παQED(µ)α

r
−
√
2GFm

2 e
−mHr

4πr
+
√
2GFm

2
Za

2
f

δ(r)

m2
Z

(

7− 11

3
S2
)

+
√
2GFm

2
Za

2
f

e−mZr

2πr

[

1−
v2f
2a2f

−
(

S2 − 3
(Sr)2

r2

)(

1

mZr
+

1

m2
Zr

2

)

−
(

S2 − (Sr)2

r2

)]

, (3.1)

where mj , mH and mZ are the quark, Higgs and Z masses.
However, the usual predictions for scattering measurements are in the MS scheme.

Thus a short remark on the coupling constant to be used seems in order. It is customary
to take the strong coupling constant αs in the MS scheme. In particular experimental
determinations are always given in terms of αMS

s (mZ) [10]. But in bound-state calculations
it is natural to use an αs defined differently. This has been done in [4]. Clearly it should
be possible to relate the two schemes.

The quark-antiquark potential in the MS scheme with only light quarks to O(αs) in
the self-energy function of the Coulomb gluon can be taken for instance from [11]. The
contribution of heavy quarks in this scheme has been calculated in [12]. We can thus
write for the potential in momentum space

VMS = −4πα

q2

[

1− α

4π

(

33

4
ln

q2

µ2
+

31

4
−

nf
∑

i=1

[

5

6
− 1

2
ln

(

q2

µ2
+

m2
j

µ2
e

5

3

)])]

. (3.2)

Comparison with the potential V gives

αBS = αMS

[

1− αMS

16π

(

31−
nf
∑

i=1

[

10

3
− 2 ln

(

1 +
m2

j

µ2
e

5

3

)])]

, (3.3)

where BS denotes our bound-state scheme. It should be emphasized that we have explic-
itly included the dependence on massive flavours in this formula. Numerically, eq. (3.3)
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means that our α is slightly smaller than the usual one, which is advantageous for our
perturbative calculation. For mt = 180 GeV, αMS

s (mZ) = 0.119 ± 0.006, we obtain for a
renormalization at µ = 1/rB(µ) (rB = 2/mα is the Bohr radius of the bound state):

µ = 17.5± 1GeV , (3.4)

αMS(µ) = 0.205± 0.01 , (3.5)

α(µ) = 0.19± 0.01 . (3.6)

Remember that the above values for α, αMS differ by a factor of 4/3 from αs.
For the comparison of the two schemes, the terms of the form αn

s /q
2 have been im-

portant. To compare to relative O(α2
s), terms up to α3

s/q
2 are needed in the potential.

While the only term of this form in our scheme has been calculated in our present work
(eq.(2.8)), we are not aware of an analogous calculation of the terms of order α2

s/q
2 in

the MS scheme. Therefore, at present the strong coupling constant in these two schemes
can only be related to O(αs).

4 Conclusions

In this note we present an analytical calculation of the contribution of the QCD box
graphs to the potential that would give rise to an O(α4) energy level shift (eq. (2.8)).
This result is new and confirms previous qualitative estimates ([7]–[9]). It provides an
example of a non-trivial contribution to O(α4) of a two-loop graph, which certainly is
not included e.g. in the running coupling constant and which is typical for a non-Abelian
theory.

While the calculated correction appears in our bound-state scheme as well as in the
more common MS scheme, some corrections of the same form have not been calculated
as yet to the required order in the latter. Thus a direct comparison of the two schemes is
out of reach, at present.

We also identified many non-Abelian graphs that give rise to O(α5 lnα) contributions.
These involve two-loop graphs as well as infinite chains of graphs, which could be called
“non-Abelian Lamb shift graphs”.

Acknowledgement: This work has been supported by the Austrian Science Foun-
dation (FWF), project P10063-PHY, within the framework of the European Union Pro-
gramme “Human Capital and Mobility”, Network “Physics at High Energy Colliders”,
contract CHRX-CT93-0357 (DG 12 COMA).
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A Appendix

In this appendix we give some of the integrals needed to obtain (2.8) from (2.6). The di-
vergent integrals are regularized with cut-offs in the integration region. For the evaluation
of these integrals within dimensional regularization we refer the reader to [13]:

∫ d3t

(2π)3
1

t2
1

(q− t)2
1

(t− k)2
=

1

8

1

qk

1

(q− k)2
, (A.1)

∫ d3t

(2π)3
1

(q− t)2
1

(t− k)2
=

1

8

1

|q− k| , (A.2)

∫

k>ǫ1 |q−k|>ǫ2

d3k

(2π)3
1

k3

1

|q− k|3 =
1

2π2

1

q3
(2 ln(q)− ln(ǫ1)− ln(ǫ2)− 1) , (A.3)

∫

|q−k|>ǫ2

d3k

(2π)3
1

k2

1

|q− k|3 =
1

2π2

1

q2
(ln(q)− ln(ǫ2)) , (A.4)

∫

k>ǫ1

d3k

(2π)3
1

k3

1

|q− k|2 =
1

2π2

1

q2
(ln(q)− ln(ǫ1) + 1) , (A.5)

∫

|q−k|>ǫ2

d3k

(2π)3
1

k

1

|q− k|3 =
1

2π2

1

q
(ln(q)− ln(ǫ2)) , (A.6)

∫

k>ǫ1

d3k

(2π)3
1

k3

1

|q− k| =
1

2π2

1

q
(ln(q)− ln(ǫ1) + 1) , (A.7)

∫

k>ǫ1 |q−k|>ǫ2

d3k

(2π)3
1

k3

1

|q− k|3 =
1

2π2

1

q3
(2 ln(q)− ln(ǫ1)− ln(ǫ2)− 1) . (A.8)

Finally a useful identity is

∫

d3k

(2π)3
d3t

(2π)3
1

k2

(

1

(q− k)2
− 1

(q− t)2

)

1

(t− k)4
=

1

32π2

1

q2
. (A.9)
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