
Syracuse University Syracuse University 

SURFACE SURFACE 

Northeast Parallel Architecture Center College of Engineering and Computer Science 

2000 

MPJ: MPI-like message passing for Java MPJ: MPI-like message passing for Java 

Bryan Carpenter 
Syracuse University, Northeast Parallel Architectures Center 

Vladimir Getov 
University of Westminster, School of Computer Science 

Glenn Judd 
Brigham Young University, Computer Science Department 

Anthony Skjellum 
MPI Software Technology, Inc. 

Geoffrey C. Fox 
Syracuse University, Northeast Parallel Architectures Center 

Follow this and additional works at: https://surface.syr.edu/npac 

 Part of the Programming Languages and Compilers Commons 

Recommended Citation Recommended Citation 
Carpenter, Bryan; Getov, Vladimir; Judd, Glenn; Skjellum, Anthony; and Fox, Geoffrey C., "MPJ: MPI-like 
message passing for Java" (2000). Northeast Parallel Architecture Center. 64. 
https://surface.syr.edu/npac/64 

This Article is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized 
administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Fnpac%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/64?utm_source=surface.syr.edu%2Fnpac%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


MPJ: MPI-like Message Passing for JavaBryan Carpenter1, Vladimir Getov2�, Glenn Judd3,Anthony Skjellum4 and Geo�rey Fox11NPAC, Syra
use University, Syra
use, USA2S
hool of Computer S
ien
e, University of Westminster, London, UK3Computer S
ien
e Department, Brigham Young University, Provo, USA4MPI Software Te
hnology, In
., Starkville, USAAbstra
tRe
ently, there has been a lot of interest in using Java for parallel programming.E�orts have been hindered by la
k of standard Java parallel programming APIs. Toalleviate this problem, various groups started proje
ts to develop Java message pass-ing systems modelled on the su

essful Message Passing Interfa
e (MPI). OÆ
ial MPIbindings are 
urrently de�ned only for C, Fortran, and C++, so early MPI-like envi-ronments for Java have been divergent. This paper relates an e�ort undertaken by aworking group of the Java Grande Forum, seeking a 
onsensus on an MPI-like API, toenhan
e the viability of parallel programming using Java.1 Introdu
tion and Ba
kgroundA likely prerequisite for parallel programming in a distributed environment is a good messagepassing API. Java 
omes with various ready-made pa
kages for 
ommuni
ation, notably aneasy-to-use interfa
e to BSD so
kets, and the Remote Method Invo
ation (RMI) me
hanism.Interesting as these interfa
es are, it is questionable whether parallel programmers will�nd them espe
ially 
onvenient. So
kets and remote pro
edure 
alls have been around forapproximately as long as parallel 
omputing has been fashionable, and neither of them hasbeen popular in that �eld. Both of these 
ommuni
ation models are optimized for 
lient-server programming, whereas the parallel 
omputing world is mainly 
on
erned with a moresymmetri
 model, where 
ommuni
ations o

ur in groups of intera
ting peers.This peer-to-peer model of 
ommuni
ation is 
aptured in the su

essful Message Pass-ing Interfa
e (MPI) standard, established in 1994 [15℄. MPI dire
tly supports the SingleProgram Multiple Data (SPMD) model of parallel 
omputing, wherein a group of pro
esses
ooperate by exe
uting identi
al program images on lo
al data values. Reliable point-to-point 
ommuni
ation is provided through a shared, group-wide 
ommuni
ator, instead ofso
ket pairs. MPI allows numerous blo
king, non-blo
king, bu�ered or syn
hronous 
ommu-ni
ation modes. It also provides a library of true 
olle
tive operations (broad
ast is the mosttrivial example). An extended standard, MPI-2 [16℄, allows for dynami
 pro
ess 
reationand a

ess to memory in remote pro
esses.�Corresponden
e to: Vladimir Getov, S
hool of Computer S
ien
e, University of Westminster, HarrowHA1 3TP, U.K.Contra
t grant sponsor: National S
ien
e Foundation, Division of Advan
ed Computational Infras-tru
ture and Resear
h; Contra
t grant number 9872125.Contra
t grant sponsor: Higher Edu
ation Funding Coun
il for England (U.K.) under the NFF ini-tiative. 1



The MPI standard do
uments provided a language-independent spe
i�
ation as well aslanguage-spe
i�
 (C and Fortran) bindings [15℄. While the MPI-2 release of the standardadded a C++ binding [16℄, no Java binding has been o�ered or is planned by the MPIForum. With the evident su

ess of Java as a programming language, and its inevitable usein 
onne
tion with parallel as well as distributed 
omputing, the absen
e of a well-designedlanguage-spe
i�
 binding for message-passing with Java will lead to divergent, non-portablepra
ti
es. Indeed MPI-like binding for Java were developed independently by several teams.These will be brie
y reviewed in the next se
tion.Over the last three years supporters of the Java Grande Forum [8℄ have been workinga
tively to address some of the issues involved in using Java for te
hni
al 
omputation.The goal of the forum has been to develop 
onsensus and re
ommendations on possible en-han
ements to the Java language and asso
iated Java standards, for large-s
ale (\Grande")appli
ations. Through a series of ACM-supported workshops and 
onferen
es the forum hashelped stimulate resear
h on Java 
ompilers and programming environments. The Message-Passing Working Group of the Java Grande Forum was formed just over a year ago as aresponse to the appearan
e of the various APIs for message-passing. An immediate goalwas to dis
uss a 
ommon API for MPI-like Java libraries. An initial draft for a 
ommonAPI spe
i�
ation was distributed at Super
omputing '98 [5℄. Sin
e then the working groupmet in San Fran
is
o and Syra
use, and a Birds of a Feather meeting was held at Super
om-puting '99. Minutes of meetings are available at [9, 10℄. To avoid 
onfusion with standardspublished by the original MPI Forum the nas
ent API is 
alled MPJ (Message Passinginterfa
e for Java).2 Earlier WorkAt the time the working group was 
reated there were several known e�orts towards the de-sign of early MPI-like interfa
es for Java with three fully fun
tional but di�erent implement-ations|mpiJava [3℄, JavaMPI [17℄, and MPIJ [12℄. The implementation of mpiJava is basedon the use of native methods to build a wrapper to existing MPI library (MPICH). A 
ompa-rable approa
h has been followed in the development of JavaMPI, but the JavaMPI wrapperswere automati
ally generated by a spe
ial-purpose 
ode generator. A large subset of MPI-like fun
tions 
alled MPIJ is implemented in pure Java within the DOGMA system forJava-based parallel programming. MPI Software Te
hnology, In
. announ
ed a 
ommer
iale�ort to develop a message-passing framework and parallel support environment for Java
alled JMPI [6℄. Some of these \proof-of-
on
ept" implementations have been availablesin
e 1997 with su

essful ports on 
lusters of workstations running Solaris, Windows NT,Irix, AIX, HP-UX, Ma
OS, and Linux, as well as the IBM SP2, SGI Origin-2000, FujitsuAP3000, and Hita
hi SR2201 parallel platforms.2.1 The mpiJava wrapperThe mpiJava software [3℄ implements a Java binding for MPI proposed late in 1997. TheAPI is modeled as 
losely as pra
ti
al on the C++ binding de�ned in the MPI 2.0 standard,spe
i�
ally supporting the MPI 1.1 subset of that standard. In some 
ases the extra runtimeinformation available in Java obje
ts allows argument lists to be simpli�ed relative to theC++ binding. In other 
ases restri
tions of Java, espe
ially the fa
t that all arguments arepassed by value in Java, for
es some 
hanges to argument lists. But in general mpiJavaadheres 
losely to earlier standards.The implementation of mpiJava is through JNI wrappers to native MPI software. In-terfa
ing Java to MPI is not always trivial. We often see low-level 
on
i
ts between theJava runtime and the interrupt me
hanisms used in MPI implementations. The situation isimproving as JDK matures, and the mpiJava software now works reliably on top of SolarisMPI implementations and various shared memory platforms. A port to Windows NT (basedon WMPI) is available, and other ports are in progress.2



Other work in progress in
ludes development of demonstrator appli
ations, and Java-spe
i�
 extensions su
h as support for dire
t 
ommuni
ation of serializable obje
ts.2.2 JavaMPI|automati
 generation of MPI wrappersIn prin
iple, the binding of existing MPI library to Java using JNI amounts to either dy-nami
ally linking the library to the Java virtual ma
hine, or linking the library to the obje
t
ode produ
ed by a stand-alone Java 
ompiler. Compli
ations stem from the fa
t that Javadata formats are in general di�erent from those of C. Java implementations will have to useJNI whi
h allows C fun
tions to a

ess Java data and perform format 
onversion if ne
es-sary. Su
h an interfa
e is fairly 
onvenient for writing new C 
ode to be 
alled from Java,but is not adequate for linking existing native 
ode.Clearly an additional interfa
e layer must be written in order to bind a lega
y libraryto Java. A large library like MPI has over a hundred exported fun
tions, therefore it ispreferable to automate the 
reation of the additional interfa
e layer. The Java-to-C interfa
egenerator (JCI) [7℄ takes as input a header �le 
ontaining the C fun
tion prototypes of thenative library. It outputs a number of �les 
omprising the additional interfa
e: a �le ofC stub-fun
tions; �les of Java 
lass and native method de
larations; shell s
ripts for doingthe 
ompilation and linking. The JCI tool generates a C stub-fun
tion and a Java nativemethod de
laration for ea
h exported fun
tion of the MPI library. Every C stub-fun
tiontakes arguments whose types 
orrespond dire
tly to those of the Java native method, and
onverts the arguments into the form expe
ted by the C library fun
tion.As the JavaMPI bindings have been generated automati
ally from the C prototypes ofMPI fun
tions, they are very 
lose to the C binding. However, there is nothing to preventfrom parting with the C{style binding and adopting a Java-style obje
t{oriented approa
hby grouping MPI fun
tions into a hierar
hy of 
lasses.2.3 MPIJ|MPI-like implementation in pure JavaMPIJ is a 
ompletely Java-based implementation of MPI whi
h runs as part of the Dis-tributed Obje
t Group Meta
omputing Ar
hite
ture (DOGMA) system. MPIJ implementsa large subset of MPI-like fun
tionality in
luding all modes of point-to-point 
ommuni
ation,intra-
ommuni
ator operations, groups, and user-de�ned redu
tion operations. Notable 
a-pabilities that are not yet implemented in
lude pro
ess topologies, inter-
ommuni
ators,and user-de�ned data types but these are arguably needed for lega
y 
ode only.MPIJ 
ommuni
ation uses native marshaling of primitive Java types. On Win32 plat-forms this te
hnique allows MPIJ to a
hieve 
ommuni
ation speeds 
omparable to, andin some instan
es ex
eeding, native MPI implementations [13℄. Our performan
e evalua-tion experiments show that Java 
ommuni
ation speed would be greatly in
reased if nativemarshaling were a 
ore Java fun
tion.A key feature of a pure Java MPI-like implementation is the ability to fun
tion on applet-based nodes. In MPIJ, this provides a 
exible method for 
reating 
lusters of workstationswithout the need to install any system or user software related to the message-passingenvironment on the parti
ipating nodes.3 The MPJ API Spe
i�
ation3.1 RationaleThe MPI standard is expli
itly obje
t-based. The C and Fortran bindings rely on \opaqueobje
ts" that 
an be manipulated only by a
quiring obje
t handles from 
onstru
tor fun
-tions, and passing the handles to suitable fun
tions in the library. The C++ binding spe
i-�ed in the MPI-2 standard 
olle
ts these obje
ts into suitable 
lass hierar
hies and de�nes3



Status

Datatype

Group

Comm

Request

MPJ

mpj Intercomm

Intracomm

Prequest

package

Graphcomm

Cartcomm

Figure 1: Prin
ipal 
lasses of MPJmost of the library fun
tions as 
lass member fun
tions. The draft MPJ API spe
i�
ationfollows this model, lifting the stru
ture of its 
lass hierar
hy dire
tly from the C++ binding.The initial spe
i�
ation builds dire
tly on the MPI-1 infrastru
ture provided by the MPIForum, together with language bindings motivated by the C++ bindings of MPI-2. Thepurpose of this phase of the e�ort is to provide an immediate, ad ho
 standardization for
ommon message passing programs in Java, as well as to provide a basis for 
onversionbetween C, C++, Fortran 77, and Java. Eventually, support for other parts of MPI-2 alsobelong here, parti
ularly dynami
 pro
ess management1. The position of the working groupwas that the initial MPI-
entri
 API should subsequently be extended with more obje
t-oriented, Java-
entri
 features, although the exa
t requirements for this later phase havenot yet been established.The major 
lasses of the MPJ spe
i�
ation are illustrated in Figure 1. The 
lass MPJonly has stati
 members. It a
ts as a module 
ontaining global servi
es, su
h as initial-ization, and many global 
onstants in
luding the default 
ommuni
ator COMM WORLD. Themost important 
lass in the pa
kage is the 
ommuni
ator 
lass Comm. All 
ommuni
ationfun
tions in MPJ are members of Comm or its sub
lasses. As usual in MPI, a 
ommuni
atorstands for a \
olle
tive obje
t" logi
ally shared by a group of pro
essors. The pro
esses
ommuni
ate, typi
ally by addressing messages to their peers through the 
ommon 
ommu-ni
ator. A 
lass that will be important in the following dis
ussion is the Datatype 
lass.This des
ribes the type of the elements in the message bu�ers passed to send, re
eive, andall other 
ommuni
ation fun
tions.3.2 Example and data typesIn general the point-to-point 
ommuni
ation operations are realized as methods of the Comm
lass. The basi
 point-to-point 
ommuni
ation operations are send and re
eive. Their use isillustrated in Figure 2. Consider, for example, the MPJ analogue of the operation MPI SEND.The method prototype is:void Comm.send(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag)1Given its spartan implementation in the non-Java spa
e, we may not need the whole of MPI-2.4



import mpj.* ;
lass Hello {stati
 publi
 void main(String[℄ args) {MPJ.init(args) ;int myrank = MPJ.COMM_WORLD.rank() ;if(myrank == 0) {
har [℄ message = "Hello, there".toCharArray() ;MPJ.COMM_WORLD.send(message, 0, message.length, MPJ.CHAR, 1, 99) ;}else {
har [℄ message = new 
har [20℄ ;MPJ.COMM_WORLD.re
v(message, 0, 20, MPJ.CHAR, 0, 99) ;System.out.println("re
eived:" + new String(message) + ":") ;}MPJ.finish();}} Figure 2: Example MPJ programbuf send bu�er arrayoffset initial o�set in send bu�er
ount number of items to senddatatype data type of ea
h item in send bu�erdest rank of destinationtag message tagThe data part of the message 
onsists of a sequen
e of 
ount values, ea
h of the typeindi
ated by datatype. The a
tual argument asso
iated with buf must be an array withelements of 
orresponding type. The value offset is a subs
ript in this array, de�ning theposition of the �rst item of the message.The elements of buf may have primitive type or 
lass type. If the elements are ob-je
ts, they must be serializable obje
ts. If the datatype argument represents an MPI-
ompatible basi
 type, its value must be 
onsistent with the element type of buf. Thus,the basi
 data type values in
luded in the MPJ API spe
i�
ation are MPJ.BYTE, MPJ.CHAR,MPJ.SHORT, MPJ.BOOLEAN, MPJ.INT, MPJ.LONG, MPJ.FLOAT, MPJ.DOUBLE, and MPJ.OBJECT.If the datatype value is MPJ.OBJECT the obje
ts in the bu�er are transparently serializedand unserialized inside the 
ommuni
ation operations.The datatype argument is not redundant in the 
urrent spe
i�
ation of MPJ, be
ausethe proposal in
ludes support for an analogue of MPI derived types. The derived types ofMPJ are restri
ted to have a unique base type, one of the nine types enumerated above. If thedatatype argument of a 
ommuni
ation fun
tion represents an MPJ derived type, its basetype must agree with the Java element type of the asso
iated buf argument. Alternatively,if it was de
ided to remove derived types from MPJ, datatype arguments 
ould be removedfrom many fun
tions, and Java runtime inquiries 
ould be used internally to extra
t theelement type of the bu�er2.2Or methods like send 
ould be overloaded to a

ept bu�ers with elements of the nine basi
 types. Thedisadvantage of this approa
h is that it leads to a major proliferation in the number of methods.
5



3.3 MPJ as an MPI-like language bindingMPJ does not have the status of an oÆ
ial language binding for MPI. But, as a matter ofinterest, this se
tion will 
ompare some surfa
e features of the Java API with standard MPIlanguage bindings.All MPJ 
lasses belong to the pa
kage mpj. Conventions for 
apitalization, et
, in 
lassand member names generally follow the re
ommendations of Sun's Java 
ode 
onventions[19℄. In general these 
onventions are 
onsistent with the naming 
onventions of the MPI2.0 C++ standard. Ex
eptions to this rule in
lude the use of lower 
ase for the �rst lettersof method names, and avoidan
e of unders
ore in variable names.With MPI opaque obje
ts repla
ed by Java obje
ts, MPI destru
tors 
an be absorbedinto Java obje
t destru
tors (finalize methods), 
alled automati
ally by the Java garbage
olle
tor. MPJ adopts this strategy as the general rule. Expli
it 
alls to destru
tor fun
tionsare typi
ally omitted from the Java user 
ode. An ex
eption is made for the Comm 
lasses.In MPI the destru
tor for a 
ommuni
ator is a 
olle
tive operation, and the user mustensure that 
alls are made at 
onsistent times on all pro
essors involved. Automati
 garbage
olle
tion would not guarantee this. Hen
e the MPJ Comm 
lass has an expli
it free method.Some options allowed for derived data types in the C and Fortran bindings are absentfrom MPJ. In parti
ular, the Java virtual ma
hine does not support any 
on
ept of a globallinear address spa
e. Therefore, physi
al memory displa
ements between �elds in obje
ts areunavailable or ill-de�ned. This puts some limits on the possible uses of any analogues of theMPI TYPE STRUCT type 
onstru
tor. In pra
ti
e the MPJ stru
t data type 
onstru
torhas been further restri
ted in a way that makes it impossible to send mixed basi
 data typesin a single message. However, this should not be a serious problem, sin
e the set of basi
data types in MPJ is extended to in
lude serializable Java obje
ts.Array size arguments are often omitted in MPJ, be
ause they 
an be pi
ked up withinthe fun
tion by reading the length member of the array argument. A 
ru
ial ex
eption isfor message bu�ers, where an expli
it 
ount is always given. Message bu�ers aside, typi
alarray arguments to MPI fun
tions (e.g., ve
tors of request stru
tures) are small arrays. Ifsubse
tions of these must be passed to an MPI fun
tion, the se
tions 
an be 
opied to smallerarrays at little 
ost. In 
ontrast, message bu�ers are typi
ally large and 
opying them isexpensive, so it is worthwhile to pass an extra size argument to sele
t a subset. (Moreover,if derived data types are being used, the required value of the 
ount argument is alwaysdi�erent to the bu�er length.) C and Fortran both have ways of treating a se
tion of anarray, o�set from the beginning of the array, as if it was an array in its own right. Java doesnot have any su
h me
hanism. To provide the same 
exibility in MPJ, an expli
it integeroffset parameter also a

ompanies any bu�er argument. This de�nes the position in theJava array of the �rst element a
tually treated as part of the bu�er.The C and Fortran languages de�ne a straightforward mapping (or \sequen
e asso
i-ation") between their multidimensional arrays and equivalent one-dimensional arrays. InMPI a multidimensional array passed as a message bu�er argument is generally treatedlike a one-dimensional array with the same element type. O�sets in the bu�er (su
h aso�sets o

urring in derived data types) behave like o�sets in the e�e
tive one-dimensionalarray. In Java the relationship between multidimensional arrays and one dimensional ar-rays is di�erent. An \n-dimensional array" is equivalent to a one-dimensional array of(n � 1)-dimensional arrays. In the MPJ interfa
e message bu�ers are always treated asone-dimensional arrays. The element type may be an obje
t, whi
h may have array type.Hen
e, multidimensional arrays 
an appear as message bu�ers, but the interpretation andbehaviour is signi�
antly di�erent.Unlike the standard MPI interfa
es, MPJ methods do not return expli
it error 
odes.Instead, the Java ex
eption me
hanism is used to report errors.
6



3.4 Complete draft APIThe appendix of this paper lists the publi
 interfa
es of all the 
lasses. Of 
ourse this onlyde�nes syntax. A more 
omplete des
ription of the semanti
s of all methods is available in[5℄.4 Open IssuesThe API des
ribed in [5℄ is not assumed to be \�nal". It was originally presented as astarting point for dis
ussion. In this se
tion we will mention some areas we 
onsider to beopen to improvement.4.1 Derived data typesIt is un
lear whether a Java interfa
e should support MPI-like derived data types. A pro-posal for a Java-
ompatible subset of derived types is in
luded in the draft spe
i�
ationdo
ument [5℄, but deleting it would simplify the API signi�
antly. In parti
ular datatypearguments for bu�ers 
ould be dropped.One fa
tor in favor of in
luding MPI-like derived data types in MPJ is the support forlega
y MPI appli
ations. The possible need to intera
t with native 
ode that uses deriveddata types is probably best supported by in
luding derived data types in the MPJ APIspe
i�
ation.It has been argued that the fun
tionality of derived data types is already provided byJava obje
ts, and supporting both only adds unneeded 
omplexity. But in fa
t there aregood reasons to retain some additional fun
tionality of derived data types. Any s
ienti�

ode, written in Java or otherwise, will bene�t from the ability to eÆ
iently and 
onvenientlysend se
tions (subsets) of program arrays. In MPI, this is one of the most useful roles of theso-
alled derived data types, and MPJ obje
t data types do not address this requirement.The dis
ussion of whether derived data types are to be supported in MPJ should thereforebe 
losely linked with the dis
ussion of how true \s
ienti�
" (multi-dimensional) arrays,allowing Fortran-90-like se
tioning operations, should be handled.4.2 Multidimensional arraysSome spe
i�
 support for 
ommuni
ating multidimensional arrays would be desirable. In the
urrent proposal, sending a multidimensional array involves either sending one row at a timeor using Java obje
t serialization, both of whi
h will introdu
e performan
e bottlene
ks. Forinstan
e, our experien
e has shown that MPIJ sends a 200x200 array of doubles over FastEthernet mu
h faster when multidimensional array support is in
luded than when individualrows are sent. More detailed analysis of this problem is presented in [4, 13℄.Trying to �x the problem for standard Java multidimensional arrays is probably thewrong approa
h. There is a deeper problem that the Java \array-of-arrays" model for mul-tidimensional arrays is not espe
ially well-suited for \s
ienti�
" 
omputation. This issue isbeing a
tively addressed by other groups in the Java Grande Forum. In parti
ular the workby IBM on the Array pa
kage [18℄, whi
h has been adopted by the Java Grande Numeri
sworking group, is very relevant. A more 
omplete MPJ spe
i�
ation should probably in-
lude me
hanisms for eÆ
iently 
ommuni
ating standardized \s
ienti�
" arrays, and theirse
tions.In fa
t, if a standard like the Array pa
kage were adopted, and if it supported des
riptionof array se
tions (without 
opying elements), it is quite likely that the remaining argumentsin favour of keeping an MPI-like derived data type me
hanism would go away.
7



4.3 Overloaded 
ommuni
ation operationsIt has been suggested that many of the 
ommuni
ation operations should be overloaded toprovide simpli�ed variants that omit arguments like offset, 
ount (and possibly datatype).This suggestion is not in
luded in the 
urrent proposal, but it 
ould be added. The primaryargument in favor is that it simpli�es user 
ode. For instan
e,MPJ.COMM_WORLD.send(message, 0, message.length, MPJ.CHAR, 1, 99);be
omesMPJ.COMM_WORLD.send(message, MPJ.CHAR, 1, 99);The obvious 
ounter-argument is that this very signi�
antly in
reases the total number ofmethods in the API. A possible 
ompromise is to provide overloaded versions only of spe
i�

ommon fun
tions su
h as point-to-point 
ommuni
ation fun
tions (the argument againstthis, in turn, is that it looks in
onsistent).4.4 Other issuesThe 
urrent draft MPJ spe
i�
ation supports all MPI-like error handling using the Javaex
eption model. An alternative suggestion that has been put forward is that all MPJ ex-
eptions be derived from two 
lasses: MPJEx
eption and MPJRuntimeEx
eption. Sub
lassesof MPJEx
eption would represent errors that the user would be required to 
at
h whereassub
lasses of MPJRuntimeEx
eption would represent un
ommon or unusual errors. It hasalso been suggested that 
ertain MPJ ex
eptions 
ould 
arry sub-ex
eptions when the 
auseof the error is another ex
eption. Whether, or not, to utilize MPI-like user-de�ned andprede�ned error handlers is also an open question. In prin
iple, these error handlers 
ouldstill serve a purpose in addition to the ex
eption me
hanism mentioned above.It has been suggested that the spe
i�
ation of user-de�ned operations 
ould be sim-pli�ed. In the 
urrent proposal, whi
h is modelled after a pro
edural approa
h, a more
omplex or unique operation 
an be 
reated in two phases. Initially users de�ne fun
tionsand then 
reate a new operation 
lass (Op). This results in the 
reation of an extra 
lass(UserDefinedOperation) whi
h is not really ne
essary. An alternative approa
h would beto simply have users de�ne sub
lasses of the 
lass Op with a named method (for example,
all). This design would also eliminate the overhead asso
iated with method invo
ation.A pro�ling interfa
e for MPJ has not yet been de�ned. A possible general design ap-proa
h is for pro�ling 
lass and method names to exa
tly mat
h those of the non-pro�ling
lasses and methods. Implementors would then pla
e the 
ompiled binary �les in di�erentlo
ations. As Java linking is always dynami
, this would allow users to enable or disablepro�ling simply sele
ting the appropriate 
ode base (e.g. by 
hanging the CLASSPATHenvironment variable).5 Dis
ussion and Con
lusionAn initial goal of the Java Grande Message Passing working group was to promote a stan-dardized MPI binding for Java. It be
ame apparent that this road was likely to produ
e a
ollision of interest with the existing MPI 
ommunity, and the name of the new API was
hanged to MPJ. MPJ was designated an \MPI-like" spe
i�
ation. The 
urrent spe
i�
a-tion is available in [5℄. This spe
i�
ation is essentially 
omplete and self-
ontained, but asdis
ussed in se
tion 4, it is not ne
essarily 
onsidered \�nal".Be
ause the proposed API was designed on obje
t-oriented prin
iples, most of the orig-inal MPI spe
i�
ation a
tually maps very naturally into Java. So long as one a

epts theJava Grande premise that Java is an ex
ellent basis for te
hni
al 
omputing, an MPI-likeapproa
h to parallel 
omputing seems very promising|more promising than some haveassumed. But there remain non-obvious issues about supporting basi
 MPI fun
tionality.8



Some of the more diÆ
ult ones boil down to the la
k of a good model of s
ienti�
 arraysin Java. This issue is somewhat outside the purview of this working group, but is beinga
tively dis
ussed by the Java Grande Numeri
s working group [11℄.Referen
e implementations of the MPJ spe
i�
ation are 
urrently (Mar
h, 2000) underdevelopment. An implementation based on JNI wrappers to native MPI will be 
reated byadapting the mpiJava wrappers [3℄. While this is a good approa
h in some situations, it hasvarious disadvantages and 
on
i
ts with the ethos of Java, where pure-Java, write-on
e-run-anywhere software is the order of the day. A design for a pure-Java referen
e implementationof MPJ has also been outlined [2℄. In this 
ase, design goals were that the system shouldbe as easy to install on distributed systems as we 
an reasonably make it, and that it besuÆ
iently robust to be usable in an Internet environment.Ba
k in 1994, MPI-1 was originally designed with relatively stati
 platforms in mind. Tobetter support 
omputing in volatile Internet environments, modern message passing designsfor Java will have to support (at least) features su
h as dynami
 spawning of pro
ess groupsand parallel 
lient/server interfa
es as introdu
ed in the MPI-2 spe
i�
ation. In addition,a natural framework for dynami
ally dis
overing new 
ompute resour
es and establishing
onne
tions between running programs already exists in Sun's Jini proje
t [1℄, and one lineof investigation is into MPJ implementations operating in the Jini framework.Closely modelled as it is on the MPI standards, the existing MPJ spe
i�
ation shouldbe regarded as a �rst phase in a broader program to de�ne a more Java-
entri
 high perfor-man
e message-passing environment. In future a deta
hment from lega
y implementationsinvolving Java on top of native methods will be emphasized. We should 
onsider the possibil-ity of layering the messaging middleware over standard transports and other Java-
ompliantmiddleware (like CORBA). In a sense, the middleware developed at this level should o�era 
hoi
e of emphasis between performan
e or generality, while always supporting portabil-ity. We note an opportunity to study and standardize aspe
ts of real-time and fault-awareprograms, drawing on the 
on
epts learned in the MPI/RT a
tivity [14℄. For performan
e,we should seek to take advantage of what has been learned sin
e MPI-1 and MPI-2 were �-nalized, or ignored in MPI standardization for various reasons|for instan
e drawing on thebody of knowledge 
ompleted within the MPI/RT Forum. From here we may at least gleandesign hints 
on
erning 
hannel abstra
tions, and the more dire
t use of obje
t-orienteddesign for message passing than was seen in MPI-1 or MPI-2. The value of this type ofmessaging middleware in the embedded and real-time Java appli
ation spa
es should alsobe 
onsidered.Of 
ourse, a primary goal in the above mentioned, both 
urrent and future work, shouldbe the aim to o�er MPI-like servi
es to Java programs in an upward 
ompatible fashion.The purposes are twofold: performan
e and portability.6 A
knowledgementsThe authors would like to thank all the a
tive members of the Java Grande Message-PassingWorking Group for the fruitful dis
ussions of the topi
s 
overed in this paper.Referen
es[1℄ Ken Arnold, Bryan O'Sullivan, Robert S
hei
er, Jim Waldo, and Ann Wollrath. TheJini Spe
i�
ation. Addison Wesley, 1999.[2℄ Mark Baker and Bryan Carpenter. MPJ: A proposed Java message-passing API andenvironment for high performan
e 
omputing. In International Workshop on Java forParallel and Distributed Computing, Can
un, Mexi
o, May 2000. To be presented.[3℄ Mark Baker, Bryan Carpenter, Geo�rey Fox, Sung Hoon Ko, and Xinying Li.mpiJava: A Java interfa
e to MPI. In First UK Workshop on Java for9



High Performan
e Network Computing, September 1998. mpiJava Home Page:http://www.npa
.syr.edu/proje
ts/p
r
/HPJava/mpiJava.html.[4℄ Bryan Carpenter, Geo�rey Fox, Sung Hoon Ko, and Sang Lim. Obje
t serialization formarshalling data in a Java interfa
e to MPI. In ACM 1999 Java Grande Conferen
e.ACM Press, June 1999.[5℄ Bryan Carpenter, Vladimir Getov, Glenn Judd, Anthony Skjellum, and Geo�rey Fox.MPI for Java: Position Do
ument and Draft Spe
i�
ation. Te
hni
al report, JavaGrande Forum, November 1998. http://www.javagrande.org/reports.htm.[6℄ George Crawford III, Yoginder Dandass, and Anthony Skjellum. The JMPI
ommer
ial message passing environment and spe
i�
ation: Requirements, de-sign, motivations, strategies, and target users, De
ember 1997. http://www.mpi-softte
h.
om/publi
ations/JMPI 121797.html.[7℄ Vladimir Getov, Paul Gray, Sava Mint
hev, and Vaidy Sunderam. Multi-language pro-gramming environments for high performan
e java 
omputing. S
ienti�
 Programming,7(2):139{146, 1999.[8℄ Java Grande Forum. http://www.javagrande.org.[9℄ Java Grande Message Passing Working Group. Minutes of Jun 14, 1999 meeting in SanFran
is
o. http://www.npa
.syr.edu/proje
ts/java-mpi/jul99/msg00000.html.[10℄ Java Grande Message Passing Working Group. Minutes of O
t 1, 1999 meeting inSyra
use. http://www.npa
.syr.edu/proje
ts/java-mpi/o
t99/msg00000.html.[11℄ Java Grande Numeri
s Working Group. http://math.nist.gov/javanumeri
s/.[12℄ Glenn Judd, Mark Clement, and Quinn Snell. DOGMA: Distributed Obje
t GroupMeta
omputing Ar
hite
ture. Con
urren
y: Pra
ti
e and Experien
e, 10(11/13):977{983, 1998. MPIJ Home Page: http://


.
s.byu.edu/DOGMA/.[13℄ Glenn Judd, Mark Clement, Quinn Snell, and Vladimir Getov. Design issues for eÆ
ientimplementation of mpi in java. In Pro
eedings of ACM 1999 Java Grande Conferen
e,pages 58{65. ACM Press, 1999.[14℄ Arkady Kanevsky, Anthony Skjellum, and Anna Rounbehler. MPI/RT|an emerg-ing standard for high-performan
e real-time systems. In 31st Hawaii InternationalConferen
e on System S
ien
es, volume III, January 1998. MPI/RT Home Page:http://www.mpirt.org.[15℄ Message Passing Interfa
e Forum. MPI: A message-passing interfa
e standard. Inter-national Journal of Super
omputer Appli
ations, 8(3/4), 1994.[16℄ Message Passing Interfa
e Forum. MPI-2: Extension to the message passing interfa
e.Te
hni
al report, University of Tennessee, July 1997. http://www.mpi-forum.org.[17℄ Sava Mint
hev and Vladimir Getov. Towards portable message passing in Java: BindingMPI. In M. Bubak, J. Dongarra, and J. Wa�sniewski, editors, Re
ent Advan
es in PVMand MPI, volume 1332 of Le
ture Notes in Computer S
ien
e, pages 135{142. SpringerVerlag, 1997. JavaMPI Home Page: http://perun.hs
s.wmin.a
.uk/JavaMPI/.[18℄ Jose Moreira, Sam Midki�, Manish Gupta, and Ri
k Lawren
e. High performan
e
omputing with the array pa
kage for Java: A 
ase study using data mining. In Super-
omputing 99, November 1999.[19℄ Sun Mi
rosystems. Java 
ode 
onventions. http://java.sun.
om/do
s/
ode
onv/.10



A Publi
 Interfa
e of Classes in MPJ Draft Spe
i�
a-tionA.1 MPJpubli
 
lass MPJ {publi
 stati
 Intra
omm COMM_WORLD;publi
 stati
 Datatype BYTE, CHAR, SHORT, BOOLEAN, INT, LONG,FLOAT, DOUBLE, OBJECT, PACKED, LB, UB ;publi
 stati
 int ANY_SOURCE, ANY_TAG ;publi
 stati
 int PROC_NULL ;publi
 stati
 int BSEND_OVERHEAD ;publi
 stati
 int UNDEFINED ;publi
 stati
 Op MAX, MIN, SUM, PROD, LAND, BAND,LOR, BOR, LXOR, BXOR, MINLOC, MAXLOC ;publi
 stati
 Datatype SHORT2, INT2, LONG2, FLOAT2, DOUBLE2 ;publi
 stati
 Group GROUP_EMPTY ;publi
 stati
 Comm COMM_SELF ;publi
 stati
 int IDENT, CONGRUENT, SIMILAR, UNEQUAL ;publi
 stati
 int GRAPH, CART ;publi
 stati
 ErrHandler ERRORS_ARE_FATAL, ERRORS_RETURN ;publi
 stati
 int TAG_UB, HOST, IO ;// Buffer allo
ation and usagepubli
 stati
 void bufferAtta
h(byte [℄ buffer) throws MPJEx
eption {...}publi
 stati
 byte [℄ bufferDeta
h() throws MPJEx
eption {...}// Environmental Managementpubli
 stati
 String [℄ init(String[℄ argv) throws MPJEx
eption {...}publi
 stati
 void finish() throws MPJEx
eption {...}publi
 stati
 String getPro
essorName() throws MPJEx
eption {...}publi
 stati
 double wtime() throws MPJEx
eption {...}publi
 stati
 double wti
k() throws MPJEx
eption {...}publi
 stati
 boolean initialized() throws MPJEx
eption {...}...}A.2 Commpubli
 
lass Comm {// Communi
ator Management 11



publi
 int size() throws MPJEx
eption {...}publi
 int rank() throws MPJEx
eption {...}publi
 Group group() throws MPJEx
eption {...} // (se
tion "Group management" of spe
)publi
 stati
 int 
ompare(Comm 
omm1, Comm 
omm2) throws MPJEx
eption {...}publi
 Obje
t 
lone() {...}publi
 void free() throws MPJEx
eption {...}// Inter-
ommuni
ationpubli
 boolean testInter() throws MPJEx
eption {...}publi
 Inter
omm 
reateInter
omm(Comm lo
alComm, int lo
alLeader,int remoteLeader, int tag) throws MPJEx
eption {...}// Ca
hingpubli
 Obje
t attrGet(int keyval) throws MPJEx
eption {...}// Blo
king Send and Re
eive operationspubli
 void send(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) throws MPJEx
eption {...}publi
 Status re
v(Obje
t buf, int offset, int 
ount,Datatype datatype, int sour
e, int tag) throws MPJEx
eption {...}// Communi
ation Modespubli
 void bsend(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) throws MPJEx
eption {...}publi
 void ssend(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) throws MPJEx
eption {...}publi
 void rsend(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) throws MPJEx
eption {...}// Nonblo
king 
ommuni
ationpubli
 Request isend(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) throws MPJEx
eption {...}publi
 Request ibsend(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) throws MPJEx
eption {...}publi
 Request issend(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) throws MPJEx
eption {...}publi
 Request irsend(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) throws MPJEx
eption {...}publi
 Request ire
v(Obje
t buf, int offset, int 
ount,Datatype datatype, int sour
e, int tag) throws MPJEx
eption {...}// Probe and 
an
el 12



publi
 Status iprobe(int sour
e, int tag) throws MPJEx
eption {...}publi
 Status probe(int sour
e, int tag) throws MPJEx
eption {...}// Persistent 
ommuni
ation requestspubli
 Prequest sendInit(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) throws MPJEx
eption {...}publi
 Prequest bsendInit(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) throws MPJEx
eption {...}publi
 Prequest ssendInit(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) throws MPJEx
eption {...}publi
 Prequest rsendInit(Obje
t buf, int offset, int 
ount,Datatype datatype, int dest, int tag) throws MPJEx
eption {...}publi
 Prequest re
vInit(Obje
t buf, int offset, int 
ount,Datatype datatype, int sour
e, int tag) throws MPJEx
eption {...}// Send-re
eivepubli
 Status sendre
v(Obje
t sendbuf, int sendoffset, int send
ount, Datatype sendtype,int dest, int sendtag,Obje
t re
vbuf, int re
voffset, int re
v
ount, Datatype re
vtype,int sour
e, int re
vtag) throws MPJEx
eption {...}publi
 Status sendre
vRepla
e(Obje
t buf, int offset, int 
ount, Datatype datatype,int dest, int sendtag,int sour
e, int re
vtag) throws MPJEx
eption {...}// Pa
k and unpa
kpubli
 int pa
k(Obje
t inbuf, int offset, int in
ount, Datatype datatype,byte [℄ outbuf, int position) throws MPJEx
eption {...}byte[℄ pa
k(Obje
t inbuf, int offset, int in
ount, Datatype datatype)throws MPJEx
eption {...}publi
 int unpa
k(byte [℄ inbuf, int position,Obje
t outbuf, int offset, int out
ount, Datatype datatype)throws MPJEx
eption {...}publi
 int pa
kSize(int in
ount, Datatype datatype) throws MPJEx
eption {...}// Pro
ess Topologiesint topoTest() throws MPJEx
eption {...}// Environmental Managementpubli
 stati
 void errorhandlerSet(Errhandler errhandler) throws MPJEx
eption {...}publi
 stati
 Errhandler errorhandlerGet() throws MPJEx
eption {...}void abort(int error
ode) throws MPJEx
eption {...}...}
13



A.3 Intra
omm and Inter
ommpubli
 
lass Intra
omm extends Comm {publi
 Obje
t 
lone() { ... }publi
 Intra
omm 
reate(Group group) throws MPJEx
eption {...}publi
 Intra
omm split(int 
olour, int key) throws MPJEx
eption {...}// Colle
tive 
ommuni
ationpubli
 void barrier() throws MPJEx
eption {...}publi
 void b
ast(Obje
t buffer, int offset, int 
ount,Datatype datatype, int root) throws MPJEx
eption {...}publi
 void gather(Obje
t sendbuf, int sendoffset, int send
ount, Datatype sendtype,Obje
t re
vbuf, int re
voffset, int re
v
ount, Datatype re
vtype,int root) throws MPJEx
eption {...}publi
 void gatherv(Obje
t sendbuf, int sendoffset, int send
ount, Datatype sendtype,Obje
t re
vbuf, int re
voffset, int [℄ re
v
ount, int [℄ displs,Datatype re
vtype, int root) throws MPJEx
eption {...}publi
 void s
atter(Obje
t sendbuf, int sendoffset, int send
ount, Datatype sendtype,Obje
t re
vbuf, int re
voffset, int re
v
ount, Datatype re
vtype,int root) throws MPJEx
eption {...}publi
 void s
atterv(Obje
t sendbuf, int sendoffset, int [℄ send
ount, int [℄ displs,Datatype sendtype,Obje
t re
vbuf, int re
voffset, int re
v
ount, Datatype re
vtype,int root) throws MPJEx
eption {...}publi
 void allgather(Obje
t sendbuf, int sendoffset, int send
ount, Datatype sendtype,Obje
t re
vbuf, int re
voffset, int re
v
ount, Datatype re
vtype)throws MPJEx
eption {...}publi
 void allgatherv(Obje
t sendbuf, int sendoffset, int send
ount, Datatype sendtype,Obje
t re
vbuf, int re
voffset, int [℄ re
v
ounts, int [℄ displs,Datatype re
vtype) throws MPJEx
eption {...}publi
 void alltoall(Obje
t sendbuf, int sendoffset, int send
ount, Datatype sendtype,Obje
t re
vbuf, int re
voffset, int re
v
ount, Datatype re
vtype)throws MPJEx
eption {...}publi
 void alltoallv(Obje
t sendbuf, int sendoffset, int [℄ send
ount, int [℄ sdispls,Datatype sendtype,Obje
t re
vbuf, int re
voffset, int [℄ re
v
ount, int [℄ rdispls,Datatype re
vtype) throws MPJEx
eption {...}publi
 void redu
e(Obje
t sendbuf, int sendoffset, Obje
t re
vbuf, int re
voffset,int 
ount, Datatype datatype, Op op, int root) throws MPJEx
eption {...}publi
 void allredu
e(Obje
t sendbuf, int sendoffset, Obje
t re
vbuf, int re
voffset,int 
ount, Datatype datatype, Op op) throws MPJEx
eption {...}publi
 void redu
eS
atter(Obje
t sendbuf, int sendoffset,Obje
t re
vbuf, int re
voffset,int [℄ re
v
ounts, Datatype datatype,Op op) throws MPJEx
eption {...}publi
 void s
an(Obje
t sendbuf, int sendoffset, Obje
t re
vbuf, int re
voffset,int 
ount, Datatype datatype, Op op) throws MPJEx
eption {...}// Topology Constru
tors 14



publi
 Graph
omm 
reateGraph(int [℄ index, int [℄ edges,boolean reorder) throws MPJEx
eption {...}publi
 Cart
omm 
reateCart(int [℄ dims, boolean [℄ periods,boolean reorder) throws MPJEx
eption {...}...}publi
 
lass Inter
omm extends Comm {publi
 Obje
t 
lone() { ... }// Inter-
ommuni
ationpubli
 int remoteSize() throws MPJEx
eption {...}publi
 Group remoteGroup() throws MPJEx
eption {...}publi
 Intra
omm merge(boolean high) throws MPJEx
eption {...}...}A.4 Oppubli
 
lass Op {Op(UserFun
tion fun
tion, boolean 
ommute) throws MPJEx
eption {...}void finalize() {...}...}A.5 Grouppubli
 
lass Group {// Group Managementpubli
 int size() throws MPJEx
eption {...}publi
 int rank() throws MPJEx
eption {...}publi
 int [℄ translateRanks(Group group1, int [℄ ranks1) throws MPJEx
eption {...}publi
 stati
 int 
ompare(Group group1, Group group2) throws MPJEx
eption {...}publi
 stati
 Group union(Group group1, Group group2) throws MPJEx
eption {...}publi
 stati
 Group interse
tion(Group group1, Group group2) throws MPJEx
eption {...}publi
 stati
 Group differen
e(Group group1, Group group2) throws MPJEx
eption {...}publi
 Group in
l(int [℄ ranks) throws MPJEx
eption {...}publi
 Group ex
l(int [℄ ranks) throws MPJEx
eption {...}publi
 Group rangeIn
l(int [℄ [℄ ranges) throws MPJEx
eption {...}publi
 Group rangeEx
l(int [℄ [℄ ranges) throws MPJEx
eption {...}publi
 void finalize() {...}...} 15



A.6 Statuspubli
 
lass Status {publi
 int index ;// Blo
king Send and Re
eive operationspubli
 int getCount(Datatype datatype) throws MPJEx
eption {...}publi
 int getSour
e() throws MPJEx
eption {...}publi
 int getTag() throws MPJEx
eption {...}// Nonblo
king 
ommuni
ationpubli
 int getIndex() throws MPJEx
eption {...}// Probe and Can
elpubli
 boolean testCan
elled() throws MPJEx
eption {...}// Derived datatypespubli
 int getElements(Datatype datatype) throws MPJEx
eption {...}...}A.7 Request and Prequestpubli
 
lass Request {// Nonblo
king 
ommuni
ationpubli
 Status wait() throws MPJEx
eption {...}publi
 Status test() throws MPJEx
eption {...}publi
 Request() throws MPJEx
eption {...}publi
 void finalize() {...}publi
 boolean isVoid() throws MPJEx
eption {...}publi
 stati
 Status waitAny(Request [℄ arrayOfRequests) throws MPJEx
eption {...}publi
 stati
 Status testAny(Request [℄ arrayOfRequests) throws MPJEx
eption {...}publi
 stati
 Status [℄ waitAll(Request [℄ arrayOfRequests) throws MPJEx
eption {...}publi
 stati
 Status [℄ testAll(Request [℄ arrayOfRequests) throws MPJEx
eption {...}publi
 stati
 Status [℄ waitSome(Request [℄ arrayOfRequests) throws MPJEx
eption {...}publi
 stati
 Status [℄ testSome(Request [℄ arrayOfRequests) throws MPJEx
eption {...}// Probe and 
an
elpubli
 void 
an
el() throws MPJEx
eption {...}...}publi
 
lass Prequest extends Request { 16



// Persistent 
ommuni
ation requestspubli
 void start() throws MPJEx
eption {...}publi
 stati
 void startAll(Request [℄ arrayOfRequests) throws MPJEx
eption {...}...}A.8 Datatypepubli
 
lass Datatype {// Derived datatypespubli
 Datatype 
ontiguous(int 
ount) throws MPJEx
eption {...}publi
 Datatype ve
tor(int 
ount, int blo
klength, int stride) throws MPJEx
eption {...}publi
 Datatype hve
tor(int 
ount, int blo
klength, int stride) throws MPJEx
eption {...}publi
 Datatype indexed(int [℄ arrayOfBlo
klengths,int [℄ arrayOfDispla
ements) throws MPJEx
eption {...}publi
 Datatype hindexed(int [℄ arrayOfBlo
klengths,int [℄ arrayOfDispla
ements) throws MPJEx
eption {...}publi
 stati
 Datatype stru
t(int [℄ arrayOfBlo
klengths,int [℄ arrayOfDispla
ements,Datatype [℄ arrayOfTypes) throws MPJEx
eption {...}publi
 int extent() throws MPJEx
eption {...}publi
 int size() throws MPJEx
eption {...}publi
 int lb() throws MPJEx
eption {...}publi
 int ub() throws MPJEx
eption {...}publi
 void 
ommit() throws MPJEx
eption {...}publi
 void finalize() {...}...}A.9 Classes for virtual topologiespubli
 
lass Cart
omm extends Intra
omm {publi
 Obje
t 
lone() { ... }// Topology Constru
torsstati
 publi
 dimsCreate(int nnodes, int [℄ dims) throws MPJEx
eption {...}publi
 CartParms get() throws MPJEx
eption {...}publi
 int rank(int [℄ 
oords) throws MPJEx
eption {...}publi
 int [℄ 
oords(int rank) throws MPJEx
eption {...}publi
 ShiftParms shift(int dire
tion, int disp) throws MPJEx
eption {...}publi
 Cart
omm sub(boolean [℄ remainDims) throws MPJEx
eption {...}publi
 int map(int [℄ dims, boolean [℄ periods) throws MPJEx
eption {...}17



}publi
 
lass CartParms {// Return type for Cart
omm.get()publi
 int [℄ dims ;publi
 booleans [℄ periods ;publi
 int [℄ 
oords ;}publi
 
lass ShiftParms {// Return type for Cart
omm.shift()publi
 int rankSour
e ;publi
 int rankDest ;}publi
 
lass Graph
omm extends Intra
omm {publi
 Obje
t 
lone() {...}// Topology Constru
torspubli
 GraphParms get() throws MPJEx
eption {...}publi
 int [℄ neighbours(int rank) throws MPJEx
eption {...}publi
 int map(int [℄ index, int [℄ edges) throws MPJEx
eption {...}}publi
 
lass GraphParms {// Return type for Graph
omm.get()publi
 int [℄ index ;publi
 int [℄ edges ;}

18


	MPJ: MPI-like message passing for Java
	Recommended Citation

	tmp.1285694644.pdf.pOPH_

