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SUMMARY 

In this paper we consider the dynamic behaviour of a firm subject to environmental 
regulation. As a social planner the government wants to reduce the level of pollution. To 
reach that aim it can, among others, set an upper limit on polluting emissions of the firm. 
The paper determines how this policy instrument influences the firm's decisions 
concerning investments and abatement efforts. 

Using standard control theory in determining the firm's optimal dynamic investment 
decisions it turns out that it is always optimal to approach a long run optimal level of 
capital. In some cases, this equilibrium is reached within finite time, but usually it will be 
approached asymptotically. Also a necessary condition is determined under which history 
dependent equilibria can occur. Some of them are saddle-point equilibria and others are 
unstable nodes or spirals (focuses). These history dependent equilibria can be identified as 
being good or bad for society. We show that it is possible to eliminate bad equilibria 
through government intervention. 

Finally, we derive conditions under which equilibrium capital stock and equilibrium 
investment rate in the regulated case decrease compared to the unregulated case. 
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1. Introduction 
Currently, an important problem of a firm is how to react on environmental regulation. On 
the other hand, the government has several policy instruments at its disposal to give the 
firm an incentive to reduce pollution or to limit pollution by direct regulation. Examples of 
contributions in this research area that links the "dynamics of the firm" with 
environmental economics are Kort1, Kort, Van Loon and Luptacik2 and Xepapadeas3. 

In this paper we establish an optimal investment policy of the firm under the restriction 
that emissions cannot exceed a certain upper bound. Our model is different from the three 
contributions mentioned in the previous paragraph with respect to the specification of the 
pollution function. In the above references1,2,3 a given abatement expenditure leads to a 
given pollution reduction, which is thus irrespective of the amount of pollution caused by 
the production process. This suggests that pollution can be driven to zero or even become 
negative, and, indeed, in these models a constraint appears that has to keep pollution non-
negative. In our formulation we adopt the more realistic assumption that marginal costs of 
abatement increase sharply as the level of pollution shrinks, which implies that driving 
pollution to zero is very expensive, if not impossible. 

In Section 2, the optimisation problem of the firm facing a pollution standard is specified 
as an optimal control problem, while Section 3 contains the mathematical analysis and the 
economic results. Section 4 concludes the paper.  

2. Model Formulation 
Consider a firm having a stock of capital goods K through which it produces output Q(K). 
Assume that 

Q(0) = 0, Q'(K) > 0, Q''(K) < 0. (1)

It is assumed that the production process generates emissions E = αQ(K), where α equals 
the emissions-to-output ratio.  

The firm has the possibility to reduce the emissions-to-output ratio α by carrying out 
abatement expenditures A. Thus, let α = α(A) and assume diminishing returns to such 
expenditures: 

α(A) > 0, α'(A) < 0, α''(A) > 0, (2)

see, e.g., Dasgupta4 or Van der Ploeg and Withagen5. 

As a practical example of such abatement expenditures consider the coal industry which, 
according to Jorgenson and Wilcoxen6 (p. 328), belongs to the most heavily regulated 
industries in the USA. It is possible to reduce sulphur dioxide emissions through 
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substitution of expensive low-sulphur for cheap high-sulphur fuel. The more the firm 
wants to reduce emissions the higher it can make the percentage of low-sulphur fuel. Now 
the extra cash outflow, that arises from switching from high-sulphur to low-sulphur coal, 
can be seen as abatement expenditures  (see Jorgenson and Wilcoxen , p. 317).  ‡ 6

Note that A = 0 is associated with the production technology that would be chosen by a 
profit maximising firm in absence of any environmental regulations. Hence the emissions-
to-output ratio associated with this technology is α(0). 

In order to prevent a scenario that involves zero pollution we assume that 

lim ( )
A

A
→∞

′ =α 0, .  lim ( )
A

A
→∞

=α 0 (3) 

The second assumption in (3) says that every desired cleaning level can be achieved if only 
the abatement efforts are high enough.  

Of course, abatement investments must always be non-negative: 

A ≥ 0. (4) 

As mentioned in the introduction, the government reduces pollution by imposing a fixed 
upper bound on emissions. Let Z be the maximum permitted volume of emissions at time 
t. The emission constraint for the firm at each instant of time is 

α(A)Q(K) ≤ Z. (5) 

Clearly, by (3), this constraint can always be met by a sufficient amount of abatement, no 
matter how large K and therefore Q(K) is. The capital stock can be increased by productive 
investments I where investment cost equal C(I) for which we assume 

C(0) = C'(0) = 0,  C''(I) > 0. (6) 

On the other hand, the capital stock decreases by depreciation at rate a. 

We assume that the firm is "small", in the sense that its product can be sold in the market 
at a fixed§ market price p, and that abatement investments face a horizontal supply curve 
so that their unit price is constant and equal to, say, v. 

With the discount rate r (r > 0), we obtain the following dynamic model of the firm: 

{ }max ( ) ( )
,I A

rte pQ K vA C I d−
∞

− −∫
0

(7)
t

                                                

 

 
‡  These expenditures refer to input substitution, i.e., measures to avoid pollution. An alternative approach 

would be to assume an „end of pipe“ technology, where pollution is created, a part of which is cleaned 
afterwards by abatement. 

§  The results would be the same, qualitatively speaking, if the firm has some market power, i.e., p = p(Q), 
p'>0, p"<0 and if the revenue function R(Q) = Qp(Q) is concave. See, e.g., Kort7 in which a related model 
is studied, but where an assumption is imposed that excludes history dependent equilibria. 
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s.t.  & , ( )K I aK K K= − =0 0 (8)

   A ≥ 0 (9)

(10)   α(A)Q(K) ≤ Z. 

Clearly, one must also have K ≥ 0 which is however automatically satisfied if I ≥ 0. We do 
not impose this constraint  since it can only be violated for extremely large values of K, 
where the emission tax forced the firm to reduce ist capital stock very quickly. Thus, the 
argument that K ≥ 0 is always automatically satisfied remains true. 

3. Mathematical Analysis and Economic Interpretations 
3.1. Solution Using the Maximum Principle: 
It is convenient to define K K Z= ( )  as the largest capital stock, for which zero abatement is 
in accordance with the emission limit:  

(11)(0)Q(K) = Z . 

Since the control A does not enter the system dynamics (8), this model can be treated by 
applying a two step approach : 8

Step 1:  For every fixed K, solve the static problem of minimising the abatement 
expenditures s.t. the environmental standard: 

{ }max
A

vA− (12) 

(13)s.t. A ≥ 0 

 α(A)Q(K) ≤ Z. (14)

The solution is easily obtained as 

A(K) = 0
A (K)Z
⎧
⎨
⎩

⎫
⎬
⎭

≤
>

⎧
⎨
⎩

⎫
⎬
⎭

≤
>
⎧
⎨
⎩

⎫
⎬
⎭

when Q K Z
Q K Z i e K Kα

α
( ) ( )
( ) ( ) . .0
0  (15)

where AZ(K) is an implicit function such that 

(16)α(AZ(K))Q(K) = Z. 

From the implicit function theorem we compute the derivatives of AZ(K) for : K K>

                                                 
  Of course, this constraint could be imposed and would lead to boundary solutions for very large values 

of K. Due to space restrictions we refrain from doing the analysis with the corresponding Lagrange 
multiplier since this case of extremely large K is not very interesting. 
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′ ′
′ >A (K) = -Z

Q K A
Q K A

( ) ( )
( ) ( )

α
α 0 

(17)

( )
( ) ( )[ ] ( ) ( )[ ]{ }′′

′
′ − ′′ + ′ + ′ ′ − ′′A (K) =Z

α

α
α α3 2

2 2 2 2

Q
QQ Q Q αα

.
 

(18)

Unfortunately, the sign of  is ambiguous because the sign of ( )  is, in 
general, unknown. 

′ − ′′α αα2′′A (K)Z

However, in the special case of an abatement effectiveness function which is exponential, 
i.e. 

α α( ) ( )A e bA= −0 (19), b ... constant 

then ( )  and ′ − ′′ =α αα2 0 ′′ <A (K) 0Z . 

Summing up the results of Step 1 we formulate  

Proposition 1: 
The optimal level of abatement only depends on the stock of capital. If K K< , the firm will 
not carry out any abatement activities. For K K> , abatement is positive and increases with 
K. In the special case of (19), abatement is a concave function of K. 

Step 2:  With A(K) computed in Step 1, solve the following control problem: 

{ }max ( ) ( ) ( )
I

rte pQ K vA K C I d−
∞

− −∫
0

t  (20)

s.t. . 
& , ( )K I aK K K= − =0 0 (21)

This leads to the Hamiltonian 

( )H pQ K vA K C I I aK= − − + −( ) ( ) ( ) λ (22), 

and the necessary optimality conditions are: 

I
I

= arg max H ,  i.e., λ = ′C I( )  (23)

(24)( )& ( ) ( )λ λ λ= − = + − ′ + ′r H r a pQ K vA KK . 

Strictly speaking, the adjoint equation (24) only holds for K K≠ , where AZ(K) is 
differentiable in K. At the kink K K= , the differential equation must be replaced by the 
differential inclusion 
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r HKλ λ ∂− ∈& . 

where ∂  denotes the generalised gradient of H w.r.t. K; see e.g. Clarke . In our case, ∂KH9K  
evaluated at K K=  is the interval between r.h.s. and l.h.s. derivative of H w.r.t. K. Thus, 
the differential inclusion becomes: 

( ) ( )[ ]& ( ), ( ) ( )λ λ λ∈ + − ′ + − ′ + ′ +r a pQ K r a pQ K vA KZ (25). 

Usually in infinite horizon problems, it is difficult to verify, that the "limiting 
transversality condition"  

lim ( )
t

rte t
→∞

− =λ 0 (26) 

is part of the necessary conditions. In this case however, it is possible to show that the 
additional assumption Q(∞) < ∞ guarantees that [ ]∂ ∂pQ K vA K C I K( ) ( ) ( )− −  is bounded 

so that the growth conditions imposed by Seierstad10 are satisfied. His theorem then 
guarantees that the optimal solution satisfies (26). Hence, we will mainly look for those 
solutions of the canonical system for which K and λ remain bounded. See also the 
discussion in Section 3.2.1. 

3.2. Qualitative Analysis in the Phase Plane: 
&K = 0To perform a phase plane analysis in the (K,I)-plane, first observe that the  isocline is 

the straight line I = aK. Next, we have to derive a differential equation for I from the 
adjoint equation (24). This is done by differentiating (23) w.r.t. time t and subsequent 
elimination of the costate λ, using (24) for . This yields: K K≠

( )[ ]&
( )

( ) ( ) ( / ( ))I
C I

r a C I pQ K for K Q Z K=
′′

+ ′ − ′ < =−1 01 α  
(27)

( )[ ]&
( )

( ) ( ) ( ) ( / ( ))I
C I

r a C I pQ K vA K for K Q Z KZ=
′′

+ ′ − ′ + ′ > =−1 01 α . 
(28)

&I = 0With these, we can compute the slope of the  isocline. It is convenient to treat the two 
cases separately. First, we consider the case of a small capital stock where the emission 
constraint is not binding, i.e., . In this case we obtain: K K<

.
 

( )
dI
dK

pQ K
r a C II&

( )
( )=

=
′′

+ ′′
<

0
0 (29)

On the other hand, when the capital stock is so large that the emission constraint is 
binding, i.e., , we obtain K K>
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( )

( ) ( ) ( )[ ] ( ) ( )[ ]
( )

dI
dK

pQ vA
r a C

p Q Q v QQ Q v Q

r a C QI

Z
& ( )=

=
′′ − ′′
+ ′′

=
′ ′′ + ′ ′′ − ′ + ′ ′′ − ′

+ ′′ ′0

3 2 2 2 2

3 2

α α α α αα

α

2α  
(30)  

Unfortunately the sign of this expression is ambiguous. This means that the slope of the 
&I = 0  isocline is also ambiguous.  

Let us now consider a steady state (K*,I*), which is defined by  

I* = aK*,  pQ'(K*) = (r+a)C'(I*) 
(31)

K K* <if ; see case (a) below. The second equation in (31) is standard (cf. Takayama11, pp. 
698-699), and says that in equilibrium marginal revenue equals marginal investment costs.  

The determinant of the Jacobian of the dynamical system (21) and (27) evaluated at the 
equilibrium can easily be computed: 

( )[ ]det J
C

a r a C pQ=
′′
− + ′′ + ′′ <

1 0
, 

(32)

which means that: 

Proposition 2: 
K K* <If  then the equilibrium is a saddle point. 

K K*>On the other hand, for , the steady state is defined by  

I* = aK*,  pQ'(K*) = (r+a)C'(I*) + vA' (K*); (33)Z

K K*see case (c) below. Here, opposite to the case , additional abatement investments are 
necessary to keep pollution equal to the standard level when capital stock increases 
marginally. Consequently, marginal abatement expenses, vA'Z(K*), have to be added to 
the marginal investment costs, which results in a smaller equilibrium compared to the 
unregulated case. Now, the dynamical system consists of (21) and (28), implying that the 
determinant of the Jacobian, evaluated at the steady state, equals 

( )[ ] ( )det
&

J
C

a r a C pQ vA r a a dI
dKZ

I
=

′′
− + ′′ + ′′ − ′′ = + − +

⎛

⎝
⎜

⎞

⎠
⎟

=

1

0

.
 (34)

&K 0Since a is the slope of the  isocline, this yields  

Proposition 3: 
 then the equilibrium (K*,I*) is  K K* >If 
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• a saddle point, if the &I  isocline hits the &K 0  isocline from above 0
• unstable, if the &I  isocline hits the &K 0  isocline from below; a necessary condition for this 0

unstability is that A"(K) < 0. 

It is now convenient to consider two different cases: one where the &I  isocline is always 
decreasing and the other where it is not. 

0

3.2.1. The case of a globally decreasing investment isocline 

Let us first consider the simplest case where the &I  isocline is always decreasing. Since it 
is clear from (17), (27) and (28) that the &I  isocline suffers a downward jump at the point 

0
0

K K= , there are three possibilities where the two isoclines intersect; see also Figure 1:  

(a) intersection for , i.e. where constraint (10) is not binding K K<

(b) intersection for K K= , i.e. at the discontinuity of the &I  isocline  0

(c) intersection for , i.e. where constraint (10) is binding K K>

Insert Figure 1 about here 

The corresponding phase diagrams are illustrated in Figure 2. Subcases (a) and (c) refer to 
ordinary saddle points while the equilibrium in subcase (b) is approached within finite 
time; (see, e.g. Feichtinger and Hartl12, pp. 397-402). 

It is convenient to treat these subcases separately: 

Insert Figure 2a about here 

Scenario a. equilibrium for : By (21) and (27), this case is characterisedK K<  by  

(35)( ) ( ) (r a C aK pQ K+ ′ > ′ )  

Clearly, since C' is increasing and Q' is decreasing, this case corresponds to the situation of 
mild emission limits (i.e. large Z) for fixed parameters r, a, p, and v. Note that, by (11), 
there is a monotonically increasing relation between  and Z K

Because marginal investment costs exceed marginal revenue for K K=  it makes economic 
sense that the equilibrium occurs for K below K . In this case constraint (10) is not binding 
in the equilibrium which is a saddle point. The long run behaviour is identical to the 
unregulated case. Only for initial capital stocks larger than K , an initial time interval exists 
where abatement expenditures are necessary to satisfy the pollution constraint. On this 
interval, the investment rate is smaller than in the unregulated case.  
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Suppose that the firm starts out with a capital stock larger than K  and that this level is 
reached at t . Then the negative effect of abatement expenditures on the investment rate 
during the interval [  can be visualised by noting that for t <  the investment level 

satisfies the following equation: 

2
)0,  t 2 t2

(36)
( ) ( ) ( )e pQ K s ds e vA K s ds C I tr a s t

t

r a s t

t

t
− + −

∞
− + −′ − ′ − ′∫ ∫( )( ) ( )( )( ) ( ) ( )

2

0=  

This expression is derived from (23), (24) and (31), and says that the net present value of 
marginal investment (NPVMI) equals zero. With other words, the additional investment 
expenditure C'(I), which is necessary to acquire an additional unit of capital stock, 
balances the future cash flow generated by this unit. This cash flow, that is corrected for 
depreciation and discounting, equals revenue from selling products made with the extra 
capital stock minus the additional abatement expenditures necessary to keep on meeting 
the pollution standard in the interval [ )t,  t 2 . 

Insert Figure 2b about here 

A few words are in order concerning the role of saddle points in our model. We know 
from Section 3.1 that the optimal solution will satisfy (26). This condition is certainly 
satisfied by the solutions converging to the saddle point so that these are our main 
candidates, as usual. We must however make sure that all the other trajectories which 
might satisfy the necessary conditions do not make sense. We do this by economic 
arguments: Apparently diverging to ∞ is not optimal (because of the convex costs), and 
converging to 0 is also suboptimal because of the fact that marginal revenue, Q'(K), is large 
for K small. According to (1) and (6) it will hold that Q'(0) > (r+a) C'(0) = 0 so that it is 
always optimal to invest when you are in (0,0). Then the solutions that are left are 
trajectories converging to saddle point, so they must be optimal 

Scenario b. equilibrium for K K= : By (21), (27) and (28), this intermediate case is 
characterised by  

(37)( ) ( ) ( ) ( ) ( ) (r a C aK pQ K r a C aK vA KZ+ ′ ≤ ′ ≤ + ′ + ′ )  

which is the case of intermediate values of Z.  

From the first inequality of (37) we infer that marginal revenue exceeds marginal 
investment costs; so it would be optimal to grow further if no abatement investments were 
necessary. But when the firm grows beyond K , then abatement investments are needed to 
meet the standard; cf. (11). Hence, marginal costs increase with the abatement costs and 



Capital Accumulation and Environmental Constraints  10 

 

the second inequality of (37) says that total marginal costs exceed marginal revenue. This 
means that it is optimal for the firm to keep the level of capital stock equal to . K

In general, investment and capital stock are smaller than in the unregulated case. 
Mathematically, the equilibrium cannot be called a saddle point, since the r.h.s. of the 
differential equation for I is discontinuous there, see (27) and (28). More precisely, 
transformation of (25) from λ to I yields: 

( )[ ] ( )[ ]&
( )

( ) ( ) ,
( )

( ) ( ) ( )I
C I

r a C I pQ K
C I

r a C I pQ K vA KZ∈
′′

+ ′ − ′
′′

+ ′ − ′ + ′
⎡

⎣⎢
⎤

⎦⎥
1 1 (38) 

It can be verified that following (27) or (28) for  or  and then, when the point K K< K K>
K K=  and I aK=  is reached, remaining there, is in accordance with the state equation (8) 
and with (38). 

Insert Figure 2c about here 

Scenario c. equilibrium for : By (21) and (28), this case is characterised by  K K>

(39)( ) ( ) ( ) ( )r a C aK vA K pQ KZ+ ′ + ′ ≤ ′ , 

which is the case of very tight emission limits (i.e. small Z). 

Here, marginal revenue exceeds marginal costs, so that it is actually optimal to grow 
beyond . In this case constraint (10) is binding in the equilibrium which is a saddle point.  K

Even when the constraint is not yet binding, investment is smaller than in the unregulated 
case. This is confirmed by the fact that also here the investment rate is determined such 
that the NPVMI equals zero. In case  and t  this leads to t 2

'≤K(0) K≤

( ) ( ) ( )e pQ K s ds e vA K s ds C I tr a s t

t

r a s t

t

− + −
∞

− + −
∞

′ − ′ − ′∫ ∫( )( ) ( )( )

'
( ) ( ) ( )

2

0 (40)=  

where  denotes the point of time at which the pollution limit becomes binding. From (40) 
we conclude that when it determines its current investment rate, the firm already takes 
into account future abatement expenditures, even when the pollution constraint is not yet 
binding. 

t2
'

In all three subcases the result, common to almost all capital accumulation models, is 
obtained: Investment is a monotonically decreasing function of capital stock 

3.2.2. The case of an investment isocline with increasing parts 
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Now, we consider the more complicated case where the &I = 0  isocline is not globally 
decreasing. This is not a pathological case but can happen for large classes of functions. 
For instance, if we assume (19) for the abatement effectiveness α and that the production 
function is almost linear, i.e., Q" ≈ 0, then the isocline is upward sloping (However, we will 
not assume Q" = 0 in the sequel): 

( )
( )

dI
dK

Q v
r a C QI&=

≈
− ′

+ ′′ ′
>

0

2

2 0
α

α
(41). 

A general result is the following: 

Lemma. Consider the region K K>  in the (K,I)-plane. Then the &I  isocline that = 0
corresponds to the regulated case is situated below the &I  isocline of the unregulated = 0
case. 

Proof: For the &I  isocline of the unregulated case we have from (27) that  = 0

pQ'(K) = (r+a)C'(I). (42)

For the &I  isocline of the regulated case we have from (28) that  = 0

pQ'(K) = (r+a)C'(I) + vA'(K). (43)

Z
′ > 0The result of the Lemma follows from (42), (43) and the fact that A ; see (17).   

The lemma has the implication that in the regulated case an equilibrium with K K>  can 
occur if and only if the saddle point equilibrium in the unregulated case occurs for K K> . 
By combining the observation of the Lemma with the fact that the &K = 0 isocline is upward 
sloping we conclude that: 

Proposition 4: 
In any "regulated equilibrium" we have a lower level of capital stock K compared to the 
"unregulated equilibrium". 

In the appendix it is shown that for certain classes of model functions, additional 
properties of the &I  isocline can be derived. In particular, an increasing part is also 
concave and whenever it is non-increasing for some capital stock 

= 0
%K K  then it is 

decreasing for all K K>
~ . Furthermore, the &I = 0  isocline converges to the K-axis as K→∞. 

Figure 3 shows a typical case in which multiple equilibria occur. 

Insert Figure 3 about here 
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In this case the abatement effectiveness function is given by (19) so that . 
Compared to the solutions depicted in Figure 2, this causes the &I

A Z
" < 0

= 0  isocline to increase on 
a certain K-interval and this, in turn, results in a second saddle-point equilibrium denoted 
by G. Furthermore, since the other equilibrium for K K> , i.e. the one along the increasing 
part of the &I  isocline is unstable, there exists a Skiba-point= 0 13, 14 KS  such that for "large" 
initial capital stocks, K KS> , it is optimal to approach the larger long run optimal 
equilibrium K . G

On the other hand, for "small" initial capital stocks, K KS< , the firm would have to carry 
out many additional abatement investments in order to reach KG . This is due to the fact 
that  on a K-interval that is bounded from below by A"< 0 K  and that contains at least all 
K-values for which the &I  isocline increases. Therefore, it is more profitable to approach 
the other equilibrium B for 

= 0
K K=  which is of the same type as the one in Figure 2b. Here, 

revenue is lower but no abatement expenditures are needed to meet the standard. 

3.2.3. A model with an investment grant 

Comparing the two saddle point equilibria of subsection 3.2.2 we conclude that 
production in G ("good" equilibrium) exceeds production in B ("bad" equilibrium), while 
in both G and B the pollution standard in binding so that pollution is equal. Hence, from a 
social point of view it is clear that equilibrium G is more preferable than equilibrium B. 
Therefore it would be worthwhile for the government to develop a policy that eliminates 
the "bad" equilibrium B (cf. Matsuyama15, pp. 639 - 642). 

This can be done by, e.g., distributing an investment grant. Receiving such a grant as a 
reward for investing makes it more profitable for the firm to expand and equilibrium G 
becomes more attractive compared to equilibrium B. If the grant rate is denoted by  g,  the 
objective of the firm becomes: 

(44)
{ }max ( ) ( )

,I A
rte pQ K vA C I gI d−

∞
− − +∫

0
t  

Performing the same calculations as before leads to the following expressions for &I : 

( )[ ]{ }&
( )

( ) ( )I
C I

r a C I g pQ K for K K=
′′

+ ′ − − ′ <
1 (45) 

( )[ ]{ }&
( )

( ) ( ) ( )I
C I

r a C I g pQ K vA K for K KZ=
′′

+ ′ − − ′ + ′ >
1 (46). 

&I = 0Comparing (45) - (46) with (27) - (28) we conclude that the  isocline shifts upwards in 
the (K, I) - plane while the slope does not change. From Figure 3 it can be easily inferred 
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that equilibrium B is eliminated if this upward shift is large enough. From (46) we 
conclude that: 

Proposition 5: 
To eliminate "bad" equilibrium B, the investment grant must satisfy the following 
inequality: 

{ }g C aK vA K pQ K r a> ′ + ′ − ′ +( ) ( ) ( ) ( )        (47) 

Due to this elimination it is clear that all trajectories will end at the "good" equilibrium G. 
Moreover, this equilibrium is shifted to the right so that production is increased in G. 

Of course, on the basis of this analysis we cannot conclude whether it pays for the 
government to distribute such a grant to the firm. To answer this question requires 
another model with the government as decision maker. Here, we just focus on the optimal 
response of a firm to government policy. 

Conclusions 
In our model, we have obtained the following results: 

 In most situations, if the capital stock is low, the investment rate should be high and 
vice versa. This is a result common to many investment models. However, in the case 
of history dependent equilibria (see below) this need not be true for all levels of capital 
stock. 

 If there is no economic incentive for voluntary abatement activities, the firm will not 
start cleaning before the emission constraint is hit. This is an argument for the 
introduction of an emission tax which, in general, affects the firms' behaviour for all 
levels of emission. 

 During the whole planning period the firm's investment level is determined such that 
marginal investment expenditures balance the future cash flow generated by this extra 
unit of investment. This means that the net present value of marginal investment 
equals zero. From this feature it could be concluded that (future) abatement 
expenditures have a negative effect on the growth of the firm. 

 It is always optimal to approach a long run optimal level of capital. In some cases, this 
equilibrium is reached within finite time, but usually it will be approached 
asymptotically. 

 History dependent equilibria may occur, i.e., the long run optimal level of capital can 
depend on the initial stock of capital. This means that for small initial capital stocks it 
can be too expensive for the firm to carry out additional abatement investments in 
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order to reach a high equilibrium capital stock and that it is more profitable to 
approach another equilibrium for which the standard is met without requiring 
abatement expenditures. A necessary condition for history dependent equilibria to 
occur is that there exists an interval of K-values on which marginal abatement efforts, 
necessary to satisfy the pollution restriction when K increases marginally, decrease 
with increasing capital stock. 

 These history dependent equilibria can be identified as being good or bad for society. It 
is possible to eliminate bad equilibria through government intervention such as 
investment grants. 

 Consider the situation where equilibrium capital stock is that large that, without 
abatement investments, the pollution standard would be violated. Then, in the 
regulated case, equilibrium capital stock and equilibrium investment rate are lower 
compared to the unregulated case. 

Clearly, this model is only a first step in modelling and analysing more complicated 
models of the firm with abatement decisions7 and subject to environmental regulations. 
Possible extensions and generalisations are: 

 The consideration of an environmental tax rather than constraint. This will be 
considered in a forthcoming paper. 

 To study a scenario where the pollution standard becomes tighter over time in order to 
give the firm some time to adjust to stronger environmental regulation, i.e., Z = Z(t) 
with . &Z < 0

 The assumption that the firm has some market power or even a monopoly. As 
mentioned in the footnote in Section 2, all the results of this paper remain valid, if price 
is not fixed but follows an inverse demand function p = p(Q). All we need to assume in 
this case is that the revenue R(Q) = Qp(Q) is a concave function of production Q, which 
is not unusual. An even weaker assumption, which would also suffice is that revenue  
p(Q(K))Q(K)  is a concave function of capital K. 

 The consideration of oligopoly rather than a polypoly. Modelling this situation will 
lead to a differential game which will not be easy to solve.  

 An important extension would be to consider that abatement expenditures not only 
have a cleaning effect on current emissions but are accumulated in a stock of abatement 
capital (filters  and other abatement devices can usually be used for some period of 
time after they are purchased). The resulting model will then have two state variables 
and it will be more difficult to obtain the same kind of analytical results that we 
derived by solving our one state variable model. 
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Appendix: 
&I = 0In order to obtain additional results for the shape of the  isocline we assume that the 

model functions belong to the following general classes: 

(Q K c e dK( ) = − −1 ) (48), c, d ... constants 

C I I( ) = β 2 2 (49),  β ... constant 

and that α α( ) ( )A e bA= −0 &I = 0 as assumed in (19). Then for K K<  the curvature of the  
isocline can be derived by applying the implicit function theorem to (29): 

dI
dK

pcd e
r aI

dK

& ( )=

−
= −

+
<

0

2
0

β
(50)

 

d I
dK

d
dK

dI
dK

pcd e
r a

I I

dK2

2
0 0

3
0

& & ( )
= =

−
=

⎡

⎣
⎢

⎤

⎦
⎥ = +

>
β

(51)
 

For K K>  we can apply the implicit function theorem to (30): 

( )
dI
dK

d e
r a

pc v

b eI

dK

dK& ( )=

−

−
=

+
− +

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥0

2

2
1β

(52) 

( )
d I
dK

d
dK

dI
dK

d dI
dK

vd e

r a b eI I I

dK
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2

2
0 0 0

3 2

3
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−

−
=

⎡

⎣
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⎤

⎦
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+ −β
 (53)

From this, we see that d I
dK I

2

2
0

0
&=

<  when dI
dK I&=

≥
0

0. This implies that, whenever 

dI
dK I&=

≤
0

0 K= % K> %&I = 0 for some K  then the  isocline decreases for all K . 

&I = 0Finally the limiting behaviour of the  isocline for K →∞  can be obtained. From (28) 
we see that &I = 0  leads to pQ'(K) = (r+a)C'(I) + vA'(K), which now reads: 

( )
pcde r a I vde

b e
dK

dK

dK
−

−

−
= + +

−
( )β

1
 (54)

Thus, if K →∞ , then I . → 0
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