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BRIGGS, GOEREE, BLACKHOUSE, O’BRIENPROBABILISTIC COST-EFFECTIVENESS: GERD MANAGEMENTCLINICAL APPLICATIONS

Probabilistic Analysis of Cost-Effectiveness
Models: Choosing between Treatment Strategies

for Gastroesophageal Reflux Disease

Andrew H. Briggs, DPhil, Ron Goeree, MA, Gord Blackhouse, MBA, Bernie J. O’Brien, PhD

When choosing between mutually exclusive treatment op-
tions, it is common to construct a cost-effectiveness frontier
on the cost-effectiveness plane that represents efficient
points from among the treatment choices. Treatment options
internal to the frontier are considered inefficient and are ex-
cluded either by strict dominance or by appealing to the prin-
ciple of extended dominance. However, when uncertainty is
considered, options excluded under the baseline analysis
may formpart of the cost-effectiveness frontier. By adopting a
Bayesian approach, where distributions for model parame-
ters are specified, uncertainty in the decision concerning

which treatment option should be implemented is addressed
directly. The approach is illustrated using an example from a
recently published cost-effectiveness analysis of different
possible treatment strategies for gastroesophageal reflux dis-
ease. It is argued that probabilistic analyses should be en-
couragedbecause theyhavepotential to quantify the strength
of evidence in favor of particular treatment choices.

It is now increasingly common for economic evalua-
tions to be conducted alongside clinical trials. Re-

cent research attention has been focused on how to
handle uncertainty in these so-called stochastic cost-
effectiveness analyses where patient-level data are
available on the costs and effects of treatment options.1–3

However, the majority of economic evaluations still
employ a decision analytic modeling framework to
synthesize data from a number of sources.4 Such cost-
effectiveness models are often described as determinis-
tic analyses. Although the limitations of simple
univariate sensitivity analysis are well known, this re-
mains the most popular technique for handling uncer-
tainty in cost-effectiveness models.

Probabilistic sensitivity analysis is an alternative ap-
proach that involves specifying distributions for input
parameters in the model and employing Monte Carlo
simulation to sample from these distributions, allow-
ing the joint effect of parameter uncertainty to be as-
sessed.5,6 A number of commentators have suggested
that probabilistic sensitivity analysis methods be used
to handle uncertainty in cost-effectiveness models,1,7

including the US panel on cost-effectiveness analysis.8

Despite these recommendations, few probabilistic

analyses of cost-effectiveness models have been under-
taken. The relative paucity of probabilistic analyses
may be due to the increased complexity of the ap-
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proach and a lack of clarity concerning which distribu-
tions for input parameters are appropriate.

The aim of this article is to demonstrate the use of
probabilistic sensitivity analysis to handle uncertainty
in a cost-effectiveness decision problem relating to al-
ternative treatment options for gastroesophageal reflux
disease (GERD). We argue that adopting a Bayesian ap-
proach to uncertainty offers both technical and concep-
tual advantages over traditional sensitivity analyses. In
particular, a Bayesian approach allows a more intuitive
interpretation of probability—we show how the study
question of whether a treatment is cost-effective can be
answered directly in the form of a probability that the
intervention is cost-effective. Furthermore, we demon-
strate this approach in the case of multiple treatment
options for GERD, rather than the standard 2-treatment
approach that is the norm in the majority of analyses.

The article is structured as follows. In the next sec-
tion we give a brief introduction to the decision prob-
lem, the structure of the model, and the results of the
previously published cost-effectiveness model—
where uncertainty was handled through standard de-
terministic sensitivity analysis methods. The section
that follows demonstrates how the model can be made
probabilistic by specifying distributions for the input
parameters following standard principles of Bayesian
methods. The assumptions and calculations involved
in specifying these distributions are discussed in de-
tail. Results of the probabilistic analysis are then pre-
sented on the cost-effectiveness plane and summarized
through the use of cost-effectiveness acceptability
curves. These results, and the general probabilistic ap-
proach to cost-effectiveness modeling, are discussed in
the final section of the article.

TREATMENT STRATEGIES FOR GERD

In this section, a model for assessing the cost-
effectiveness of 6 management strategies for the treat-
ment of GERD is briefly outlined. Full details of the
model were presented in detail in a previous publica-
tion.9 First, the structure and assumptions concerning
the decision model are discussed. Second, the results
of the deterministic analysis are presented. Finally, the
limitations of the originally reported univariate sensi-
tivity analysis are highlighted.

A Model for Assessing the Cost-Effectiveness
of GERD Treatment

GERD is a common condition that results from re-
gurgitation of acid from the stomach into the esopha-
gus. The most frequent symptom of GERD is heartburn,

and the majority of patients with GERD require
pharmacotherapy to reduce acid secretion. Currently,
the choice of first-line antisecretory therapy is between
the H2-receptor antagonists (H2RAs), such as ranitidine
and cimetidine, and proton pump inhibitors (PPIs),
such as omeprazole. Although they have higher acqui-
sition costs, PPIs have been found to be more effica-
cious than H2RAs in terms of both the rate and speed of
healing.10,11

The objective of the original study was to compare,
over a 1-year period, the expected costs and outcomes
of alternative drug treatment strategies for the manage-
ment of patients with erosive esophagitis confirmed by
endoscopy, but without complications such as Barrett’s
esophagus or stricture. Outcomes are quantified in
terms of GERD recurrence and weeks per year without
GERD as indicated by data from clinical trials on heal-
ing and recurrence of esophagitis.

Treatment Strategies and Model Structure

Six strategies involving different combinations of
first-line agents and change of therapy conditional on
failure to heal or recurrence of GERD were modeled.

Strategy A: Intermittent PPI. Acute treatment with a PPI
for 8 weeks and then no further treatment with pre-
scription medication until recurrence.

Strategy B: Maintenance PPI. Acute treatment with a PPI
for 8 weeks then continuous maintenance treatment
with a PPI (same dose).

Strategy C: Maintenance H2RA. Acute treatment with an
H2RA for 8 weeks and then continuous maintenance
treatment with an H2RA (same dose).

Strategy D: Step-down maintenance prokinetic agent (PA).
Acute treatment with a PA for 12 weeks and then con-
tinuous maintenance treatment with a lower dose of
PA.

Strategy E: Step-down maintenance H2RA. Acute treat-
ment with a PPI for 8 weeks and then continuous main-
tenance treatment with an H2RA.

Strategy F: Step-down maintenance PPI. Acute treatment
with a PPI for 8 weeks and then continuous mainte-
nance treatment with a lower dose PPI.

Treatment options A to F represent clinical strate-
gies rather than single-drug treatments for the manage-
ment of erosive esophagitis where the physician is as-
sumed to increase the dose of a drug or switch to
another drug if the patient fails to respond to the first-
line treatment. The logic of these assumptions with re-
gard to stepping up dosage or switching can be found in
Table 1. The structure of the decision tree that was de-
veloped is shown in Figure 1 and is based on the treat-
ment strategies and step-up switching algorithms in Ta-
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ble 1. The model is recursive in two 6-month periods;
hence, probabilities of recurrence in the period to 12
months are conditional upon recurrence or non-
recurrence in the period from 0 to 6 months.

Treatment Outcomes

For GERD, the most commonly used formulation of
outcome for economic evaluation has been either
esophagitis-free or symptom-free time in a period of
follow-up. The advantage of such a measure is that it
combines 2 important aspects of efficacy: (1) the speed
with which esophagitis is healed and (2) the likelihood
of esophagitis recurring. In this analysis, the primary
outcome measure is GERD-free time during the 12-
month period of the model, defined as the time when
the esophagitis is healed. A meta-analysis of healing
and recurrence studies published to November 1997
was undertaken to estimate healing and recurrence
probabilities together with associated GERD-free time.
Full details of this analysis are given in the original
study.9

Resource Use and Unit Costs

Generic prices were used for drugs when a generic
equivalent was available, employing the “best avail-
able price” from the Ontario Drug Benefit (ODB)
program12 together with a 10% pharmacy markup
charge. A dispensing fee of Can$4.11 was used (i.e.,
ODB program fee of Can$6.11 less a Can$2.00 patient
copayment).

Cost estimates for physician fees were taken from
the physician fee schedule for Ontario,13 and procedure
costs, such as endoscopy, were estimated from a hospi-
tal participating in the Ontario Case Costing Project in
Southwestern Ontario.14

To estimate the costs associated with the manage-
ment of patients with symptoms of GERD recurrence,
information on clinical practice patterns and resource
utilization was obtained by convening an expert physi-
cian panel and using a modified Delphi technique.15

Estimated resource utilization was then combined
with unit cost information to give the average cost asso-

Strategy  A:  Intermittent PPI Strategy B:  Maintenance PPI

Healing Maintenance  1ST Recurrence  Healing  Maintenance  1ST Recurrence

PPI No therapy PPI to heal PPI PPI DD PPI to heal
 unhealed   unhealed

DD PPI PPI DD PPI to heal DD PPI PPI DD PPI to heal

Strategy C: Maintenance H2RA Strategy D:  Step-Down Maintenance PA

Healing  Maintenance  1ST Recurrence  Healing  Maintenance  1ST Recurrence

H2RA H2RA DD H2RA PA LD PA PA to heal
  unhealed   unhealed

PPI H2RA PPI to heal PPI LD PA PPI to heal

  unhealed   unhealed
DD PPI PPI DD PPI to heal DD PPI PPI DD PPI to heal

Strategy E: Step-Down Maintenance H2RA Strategy F:  Step-Down Maintenance PPI

Healing  Maintenance  1ST Recurrence  Healing  Maintenance  1ST Recurrence

PPI H2RA PPI to heal PPI LD PPI PPI to heal
  unhealed   unhealed

DD PPI PPI DD PPI to heal DD PPI PPI DD PPI to heal

Note: PPI = proton pump inhibitor (e.g., omeprazole 20 mg OD).
DD PPI = double dose proton pump inhibitor (e.g., omeprazole 40 mg OD).
LD PPI = low dose proton pump inhibitor (e.g., omeprazole 10 mg OD).
H2 RA = H2 receptor antagonists (e.g., ranitidine 150 mg BID).
DD H2 RA = double dose H2 receptor antagonists (e.g., ranitidine 300 mg BID).
PA = prokinetic agent (e.g., cisapride 10 mg QID).
LD PA - low dose prokinetic agent (e.g., cisapride 10 mg BID).
Reprinted with permission from Goeree et al. (1999), Adis International.

Table 1. Step-Up and Switching Algorithms Conditional on Healing Failure or Recurrence
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ciated with each recurrence under each management
strategy.

Results of the Deterministic
Cost-Effectiveness Analysis

The decision tree model outlined above was evalu-
ated to estimate the expected costs and the expected
weeks without GERD in the 12-month period of the
model. The analysts of the original study took the con-
ventional approach to examining the cost-effectiveness
of the alternative strategies.16–18 First, it was determined
whether any strategies were simply dominated by
other strategies having both lower costs and greater
therapeutic effects. Second, it was determined whether
any strategies were dominated through the principles
of extended dominance (i.e., whether linear combina-
tions of other strategies can produce greater benefit at
lower cost).19 Finally, among nondominated treatment
options, incremental cost-effectiveness ratios were cal-
culated by comparing each option to the next more
costly and more effective intervention. This process

produces an “efficiency frontier” of increasingly more
costly and more effective strategies. The results of the
analysis are presented on the cost-effectiveness (CE)
plane in Figure 2, which also shows the efficiency
frontier.

The figure clearly shows that step-down mainte-
nance PA (strategy D) is dominated by maintenance
H2RA (strategy C), intermittent PPI (strategy A), and
step-down maintenance H2RA (strategy E). The effi-
ciency frontier is given by the lines joining strategies C
(the origin), A, E, and B. Strategy F is internal to this
frontier, indicating that it also can be ruled out through
the principle of extended dominance (i.e., a linear com-
bination of strategies E and B would strongly dominate
F). The slope of the frontier at any point reflects incre-
mental cost-effectiveness—the additional cost at
which additional effects can be purchased.

Limitations of Conventional Sensitivity Analysis

Parameter estimates employed in the model are not
known with certainty; therefore, it is important to ex-

Endoscopically
Proven Erosive
Esophagitis

Healed No Prescription Therapy

Strategy A: PPI

Strategy B: PPI

Strategy C: H2RA

Strategy D: PA

Step up therapy (Table 1)

Healed Maintenance PPI

Not Healed

Step up therapy (Table 1)

Healed Maintenance H2RA

Not Healed

Healed Maintenance Low Dose PA

Step up therapy (Table 1)

Not Healed

Recurrence
(step up therapy --

see Table 1)

Recurrence
(step up therapy --

see Table 1)

No Recurrence No Recurrence

Step up therapy (Table 1)
0-6 MONTHS 6-12 MONTHS

Strategy E: PPI

Strategy F: PPI

Healed

Healed

Not Healed

Not Healed
Step up therapy (Table 1)

Step up therapy (Table 1)

Maintenance H2RA

Maintenance Low Dose PPI

Not Healed

Figure 1. Decision tree for the management of erosive esophagitis. PPI = proton pump inhibitor; H2RA = H2-receptor antagonist; PA =
prokinetic agent. Reprinted with permission from Goeree et al. (1999), Adis International.
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plore the implications of parameter uncertainty for the
results of the analysis. In particular, given the impor-
tance of excluding dominated interventions from the
analysis before calculating the frontier, the extent to
which particular strategies are part of (or can be ex-
cluded from) the frontier should be assessed.

In the original analysis, the authors examined the ef-
fect of a number of the parameters in their model using
conventional sensitivity analysis techniques. They
showed how the uncertainty in the parameter values
chosen for the baseline analysis might affect the fron-
tier. The sensitivity analysis that the authors presented
was much less arbitrary than that of many reported
cost-effectiveness analyses because the outcome ranges
chosen were the 95% confidence intervals (CIs) from
the reported meta-analyses of healing and recurrence
rates. The authors reported that

there were marked differences in expected costs, recur-
rences and weeks with GERD when using the lower
and upper CIs for both healing and recurrence rates.
However, there were no changes in the relative ranking
of strategies for either costs or outcomes. The basic con-
clusions of the base-case analysis were not altered by
using the lower or upper 95% CIs for healing or recur-
rence rates.9(pp689,691)

Despite this convincing argument, we might still be
concerned that the full effects of uncertainty are more
important than the authors suggest. It is well known7,8

that conventional univariate sensitivity analysis,
whereby individual parameters are varied while main-

taining all remaining parameters at their baseline
value, is likely to underestimate uncertainty because,
in reality, parameters will not vary in isolation.

A BAYESIAN APPROACH TO
PROBABILISTIC SENSITIVITY ANALYSIS

In this section, the general appeal of adopting a
Bayesian approach to probabilistic analysis of cost-
effectiveness models is presented. In the past, the use of
probabilistic sensitivity analysis has been employed
without reference to the statistical framework of the ap-
proach.5,6 We argue that probabilistic sensitivity analy-
sis (and indeed decision analysis itself) is naturally
Bayesian and adopting this approach offers both tech-
nical and conceptual advantages. Particular emphasis
is given to the choice of distributions for the different
types of parameters commonly encountered in cost-
effectiveness models, and it is argued that Bayesian
methods provide the solution to which distributions
should be used for parameters estimated from different
types of data.

Probabilistic Analysis

Probabilistic sensitivity analysis involves specify-
ing distributions for model parameters to represent un-
certainty in their estimation and employing Monte
Carlo simulation to select values at random from those
distributions.5,6 In this way, probabilistic models allow
the effects of joint uncertainty across all the parameters
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Figure 2. Baseline cost-effectiveness results on the cost-effectiveness plane showing the “efficient frontier.” PPI = proton pump inhibitor;
H2RA = H2-receptor antagonist; PA = prokinetic agent; GERD = gastroesophageal reflux disease; GFW = GERD-free week.
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of the model to be considered. Note that for standard
frequentist analyses (such as practiced in almost all
clinical trials), parameters to be estimated from the data
are considered to have true values that do not vary.
Probabilities attached to CIs relate to the long-run cov-
erage probabilities of the intervals if the same experi-
ment were to be repeated many times.

By contrast, in probabilistic modeling, parameters
are considered random variables, which can take a
range of values described by the specified distribution.
Although these distributions will represent “degrees of
belief” in the parameters of interest, it does not neces-
sarily follow that the analysis will become automati-
cally “subjective” (the great fear of many of those who
object to Bayesian methodology). When data are lack-
ing and it becomes necessary to engage experts to pro-
vide information on prior distributions, then a number
of experts should be consulted in order that the distri-
butions reflect uncertainty between experts rather than
representing the subjective beliefs of a single expert.
Eddy et al.20,21 outlined just such an approach to syn-
thesizing data based on Bayesian methods that they
termed the “confidence profile” technique.

Choosing Distributions for the Parameters

Parameters in decision models represent summary
values related to the average experience across a popu-
lation of (potential) patients. Therefore, the relevant
uncertainty to capture in the formation of a distribution
for the parameter is 2nd-order uncertainty related to
the sampling distribution of the parameter, not the vari-
ability in the values observed in a particular population
(1st-order uncertainty; see Stinnett and Paltiel3 for fur-
ther discussion). Although an assumption of normality
for parameters is widely used in statistics, it is worth re-
membering that the assumption is based on
asymptotics (the central limit theorem) and that the
normal distribution has no bounds on values it can
take. In practice, parameters of the model will have log-
ical limitations on the values they can take. In this sec-
tion, we discuss 4 different types of parameters com-
monly employed in cost-effectiveness models:
probabilities, resource items, unit costs, and relative
risks. For each, we discuss the nature of the data in-
forming parameter estimates, the logical bounds on the
parameter, and the way in which Bayesian methods
can help to select distributions for parameters.

Probability Parameters

Probabilities for cost-effectiveness models are often
based on the observed proportions of the event of inter-
est (e.g., the number of successfully treated cases). At

an individual level, a treated patient is classed as either
a success or a failure; therefore, the data can be consid-
ered as independent Bernoulli trials leading to a bino-
mial form of the data likelihood. With such data, it is
natural to use the proportion of successful patients as
the estimate of the corresponding probability in the
model. However, in considering the distribution of that
probability, note that the binomial distribution is a
discrete distribution related to the sample size of the
study generating the data, whereas it makes sense to
model the distribution of probability in the model as
continuous.

Standard frequentist methods for estimating a CI for
a proportion involve calculating the binomial estimate
of variance and assuming a normal sampling distribu-
tion in order to generate the interval

( )p p p n p p p n− × − + × −196 1 196 1. ( ) , . ( )

(where p is the proportion and n is the sample size).22

Although this method gives a good approximation to
the true CI when p is not close to 0 or 1, the assumption
of normality is not appropriate for probabilistic sensi-
tivity analysis. This is because the probability is known
to be bounded on the interval 0-1 whereas the normal
distribution will (eventually) generate values outside
this interval in a Monte Carlo simulation because it is
unbounded.

One solution to this is to make the transformation to
the logistic scale, which is unbounded, assume nor-
mality on this scale, then transform back to the original
0-1 probability scale, as described by Doubilet et al.6 in
their early contribution on the use of probabilistic
methods for clinical decision making. Although this
provides a solution to the problem of bounding, it turns
out to be a reasonably sophisticated problem to choose
the parameters for the normal distribution on the logit
scale in order to match the desired mean and standard
deviation on the probability scale (see the derivations
in Appendix A of Doubilet et al.6 for details).

Fortunately, Bayesian methods provide a straight-
forward method for moving from the discrete binomial
likelihood to the continuous uncertainty concerning
the probability parameter. The beta distribution is a
continuous distribution on the interval 0-1 and is con-
jugate to the binomial distribution. This means that if it
is possible to represent prior belief using a beta distri-
bution, then the integration of that prior belief with the
binomial data has a closed form, with the result that the
posterior distribution of the probability will also follow
a beta distribution. Fortunately, by varying the 2 pa-
rameters of the beta distribution, a wide variety of pos-
sible shapes to the distribution over the interval can be
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obtained: skewed, symmetric, uniform, near normal,
and even U-shaped. One parameterization of the beta
distribution, beta(r,n), has a similar interpretation to r
successes from n trials. A 2nd common parameter-
ization is beta(α,β), whereα= r andα+β=n. The mean
and variance of beta(r,n) distribution are given by

mean
r
n

sd
r n r
n n

= = −
+

( )
( )

.2 1

Furthermore, if we can specify a prior distribution as
beta(r ′, n ′ – r ′), then following an observation of r suc-
cesses and n – r failures in n trials, the application of
Bayes’s theorem yields the result that the posterior dis-
tribution is beta(r ′+ r,n′ – r ′+n – r). Where no prior in-
formation exists as to the probability, it is appropriate
to use an “uninformative” or reference prior. Although
beta(1,1), which yields a uniform distribution over the
interval 0-1, seems an intuitively obvious choice of
prior, in fact what constitutes uninformative in this
context is not as straightforward as it appears,23 and
beta(0.5,0.5), which yields a U-shaped distribution, is
also a popular choice for a reference prior. Because un-
informative priors will be dominated by the data, the
issue of which uninformative prior to employ is un-
likely to be of practical importance when data are avail-
able to update that prior.

Resource Item Parameters

All economic analyses are concerned with the use of
resources. The numbers of resource items that a patient
uses can be considered a count variable. The Poisson
distribution with parameter λ (which gives both the
mean and variance of the distribution) is often used to
model count data. If we are interested in the distribu-
tion of the mean resource use for a group of patients, we
could use the Poisson estimate of variance to obtain a
standard error for the mean resource use, relying on the
central limit theorem to give a normal sampling distri-
bution. However, this may be problematic for smaller
samples due to a nonnegligible probability that the nor-
mal distribution could take a value less than 0 when it
is clear that mean resource use cannot be negative.

Again, the Bayesian approach provides a solution.
The gamma distribution is conjugate to the Poisson dis-
tribution, is constrained to be positive, and is fully con-
tinuous. Therefore, the gamma distribution for the
mean resource use can be specified without fear of gen-
erating inconsistent values in a probabilistic analysis.

Unit Cost Parameters

Unit costs are applied to resource volumes in order
to evaluate all resource use on a common (monetary)

scale. Note that the unit of analysis for such costs is dif-
ferent from that for other parameters—unit costs are
typically calculated across a broad group of patients.
The unit cost of a surgical procedure or stay in a partic-
ular ward will typically be given at the level of the hos-
pital (or similar provider unit). By contrast, the unit
cost of a drug or device may be set provincially or na-
tionally and may not vary at all within the context of a
country-specific cost-effectiveness analysis. Further-
more, the unit cost of a resource item is strictly continu-
ous, unlike the data on resource use considered above.
Because unit costs are constrained to be positive, a
gamma distribution could be used to represent uncer-
tainty in these costs. However, it is less clear that unit
costs will be highly variable than the resource items
they are employed to value, which means that a normal
distribution may be safely employed. It is perhaps tell-
ing that most economic analyses conducted alongside
clinical trials treat unit costs as fixed rather than
stochastic.

Relative Risk Parameters

It is very common for economic models to include
relative risks as parameters. This mirrors the fact that
relative risk is often the primary outcome in clinical tri-
als. Methods for calculating CIs for relative risk esti-
mated in such trials assume that the central limit theo-
rem will lead to the natural logarithm of relative risk
(which is additive) being normally distributed such
that CIs can be determined in the standard way. A CI for
a relative risk is then obtained by exponentiating the
CIs on the log scale. This standard approach to CI esti-
mation clearly suggests an equivalent approach to
specifying a log-normally distributed parameter for rel-
ative risk to be used in a probabilistic sensitivity analy-
sis. Furthermore, because the normal distribution is
self-conjugate (a normal prior and a normal data likeli-
hood generate a normal posterior distribution), the ap-
plication of Bayes theorem on a normally distributed
parameter is especially straightforward.

A PROBABILISTIC ANALYSIS OF
TREATMENT STRATEGIES FOR GERD

In this section, we describe how a probabilistic sen-
sitivity analysis of this decision problem was under-
taken in order to more fully account for uncertainty in
the choice of treatment strategy for GERD. Within the
model, there are 3 main categories of parameters:
model probabilities relating to the healing and recur-
rence rates of GERD symptoms, parameters relating to
the level of resource consumption by patients with
GERD symptoms, and unit costs of those resources.
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Each of these parameter categories are discussed in de-
tail below, and a full list of the parameters of the model
is given in Table 2. Note that the outcome variables in
the model—weeks free of GERD—are completely de-
termined by the healing and recurrence rates and,
therefore, are endogenous variables in the model.9

Parameter Distributions

Distributions for the Healing
and Recurrence Probabilities

All patients begin the model with GERD. Following
first-line therapy, there is a probability that their GERD
will have healed. Once GERD has healed, there is then
the probability that it will recur. The healing and recur-
rence probabilities were estimated from the literature.
Consider that at an individual level, a patient with
GERD has either been healed or has experienced a re-
currence. Therefore, the clinical investigation of heal-
ing and recurrence can be considered as leading to a bi-
nomial form of the data likelihood as described above;
hence, a beta distribution was chosen to represent un-
certainty in the healing/recurrence parameters.

The original study went to some lengths to present a
rigorous meta-analysis of healing and recurrence prob-
abilities. This method resulted in estimates of constant
hazards for healing probabilities and estimates of pro-
portions of patients recurring in 2 periods—0 to 6
months following healing and 6 to 12 months following
healing—together with associated estimates of stan-
dard error. Due to the random-effects assumption, this
is more conservative than the Bayesian updating ap-
proach described above, which would be equivalent to
simply pooling all the studies directly. Therefore, beta
distributions were fitted by method of moments23: the
mean and standard errors from the meta-analysis were
equated to the estimates of mean and standard error of
the beta distribution given, and these equations were
then solved to give the appropriate beta distribution
parameters (see the appendix for this derivation). De-
tails of the distributions for the healing hazards and the
recurrence probabilities fitted by this method are given
in Table 3.

Distributions for Resource Use Assumptions

In contrast to the rigorous meta-analytic approach
employed to summarize the wealth of information on
the healing and recurrence rates associated with differ-
ent drug interventions for GERD, the information on re-
source use, particularly the level of investigations re-
ceived by patients following a recurrence, was
extremely sparse. Although in the original study a

Delphi panel of experts was convened in order to esti-
mate the likely experience of patients, the purpose of
the panel was to forge consensus, and no information
on the variance of estimates that emerged prior to con-
sensus of the experts remains. Therefore, the assump-
tions concerning the distributions of estimated re-
source use parameters are much more arbitrary.

For the estimated number of visits to general practi-
tioners and for endoscopic investigation, a gamma dis-
tribution was assumed. This is because the number of
visits is constrained to be positive and the gamma dis-
tribution is only defined for positive values. Again a
method-of-moments approach to fitting was employed
such that the mean of the gamma distribution was
equal to the point estimates of the visits generated by
the expert panel and assuming that the standard error
was half that value (i.e., assuming the coefficient of
variation was 0.5; see the appendix for the derivation).

For the proportions of patients receiving the various
investigative procedures, it was assumed that the ex-
pert panel had related its estimates to a hypothetical co-
hort of 100 patients. Therefore, a beta distribution was
again employed as if the event rates given by the expert
panel were per 100. Given the considerable experience
of the panel with GERD treatment, it is likely that this
approach is conservative.

It is assumed that variation in medication use is neg-
ligible, such that all patients obtain their prescriptions
and all prescriptions accord with the treatment strate-
gies under evaluation. The chosen distributions for the
resource use parameters are presented in Table 4.

Unit Costs of Resources

The 2nd component of uncertainty in cost is the po-
tential uncertainty in the unit cost estimates employed
to value resource items. We do not believe that it is ap-
propriate to handle uncertainty in drug prices
probabilistically, since, at the point of the evaluation,
drug prices are determined by the manufacturers.
Hence, although drug prices might be considered vari-
able (because they are under the control of the manu-
facturer and may change over time), they are not uncer-
tain. Of course, there may be some uncertainty
concerning which drugs it is appropriate to prescribe,
but that is part of the decision problem and is best han-
dled outside of the probabilistic component of the anal-
ysis. Therefore, drug prices were not varied in this
analysis.

A separate issue relates to the use of scheduled infor-
mation of the cost of resource items in Ontario, Canada,
where the original study was carried out. Although
there is certainly an issue concerning whether sched-
uled reimbursement values for resources reflect the
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Table 2. Parameters in the Model

Name Value Description

Healing hazards
hPA 0.045 Hazard for healing on PA
hH2 0.068 Hazard for healing on H2RAs
hDDH2 0.091 Hazard for healing on double-dose

H2RAs
hPPI 0.215 Hazard for healing on PPIs
hDDPPI 0.209 Hazard for healing on double-dose

PPIs
Corresponding transition probabilities

pPA 0.42 Probability of healing on PA
(at 12 weeks)

pH2 0.42 Probability of healing on H2RAs (at
8 weeks)

pDDH2 0.52 Probability of healing on double-
dose H2RAs (at 8 weeks)

pPPI 0.82 Probability of healing on PPIs (at
8 weeks)

pDDPPI 0.81 Probability of healing on double-
dose PPIs (at 8 weeks)

Recurrence variables
p06PL 0.67 Probability of recurrence on placebo

(0-6 months)
p06PA 0.23 Probability of recurrence on PA

(0-6 months)
p06H2 0.38 Probability of recurrence on H2RAs

(0-6 months)
p06PPI 0.12 Probability of recurrence on PPIs

(0-6 months)
p06LDPPI 0.25 Probability of recurrence on low-

dose PPIs (0-6 months)
p06SU 0.12 Probability of recurrence after

surgery (0-6 months)
p612PL 0.23 Probability of recurrence on placebo

(0-6 months)
p612PA 0.13 Probability of recurrence on PA

(6-12 months)
p612H2 0.18 Probability of recurrence on H2RAs

(6-12 months)
p612PPI 0.08 Probability of recurrence on PPIs

(6-12 months)
p612LDPPI 0.13 Probability of recurrence on

low-dose PPIs (6-12 months)
Symptom-week variables

SWPA 2.280 Symptom weeks on PA
SWH2 1.521 Symptom weeks on H2RAs
SWDDH2 1.816 Symptom weeks on double dose of

H2RAs
SWPPI 2.386 Symptom weeks on PPIs
SWDDPPI 2.383 Symptom weeks on double dose of

PPIs
SWSU 0.539 Symptom weeks after surgery

Unit cost variables
Fee $4.11 Dispensing fee
H2RA 0.44 150 mg H2RA
CIS 0.61 10 mg prokinetic agent
PPI 2.42 20 mg PPI
LDPPI 1.93 10 mg PPI
GPGA $48.20 General practitioner general

assessment
GPRA $28.10 General practitioner reassessment
GPMA $16.25 General practitioner minor

assessment
GERA $38.65 Gastroenterologist reassessment
GEPA $23.10 Gastroenterologist partial

assessment
UGIE $118.22 Upper gastrointestinal endoscopy
UGIS $141.43 Upper gastrointestinal series
CST $84.81 Cardiac stress test
ECG $42.77 Electrocardiogram
BS $135.10 Barium swallow
NF $2462.60 Laparoscopic fundal plication

Resource use variables
nGPR1 2.5 Visits to general practitioner (1st

recurrence)
nGER1 1.5 Visits to gastroenterologist (1st

recurrence)
nBSR1 0.1 Percentage getting a barium swallow

(1st recurrence)
nCSTR1 0.0 Percentage getting cardiac stress test

(1st recurrence)
nECGR1 0.0 Percentage getting electrocardiogram

(1st recurrence)
nUGIER1 0.1 Percentage getting upper gastro-

intestinal endoscopy (1st recurrence)
nUGISR1 0.1 Percentage getting upper gastro-

intestinal series (1st recurrence)
nGPR2 2.5 Visits to general practitioner (2nd

recurrence)
nGER2 1.5 Visits to gastroenterologist (2nd

recurrence)
nBSR2 Percentage getting a barium swallow

(2nd recurrence)
nCSTR2 0.0 Percentage getting cardiac stress test

(2nd recurrence)
nECGR2 0.0 Percentage getting electrocardiogram

(2nd recurrence)
nUGIER2 0.6 Percentage getting upper gastro-

intestinal endoscopy
(2nd recurrence)

nUGISR2 0.1 Percentage getting upper gastro-
intestinal series (2nd recurrence)

Note: PPI = proton pump inhibitor; H2RA = H2-receptor antagonist; PA =
prokinetic agent.

Table 2 Continued

Name Value Description
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Recurrence probability

Drug dose Healing hazard 0-6 months 6-12  months

None (placebo)

(Note different

scale from rest of

0.00 0.20 0.40 0.60 0.80 1.00

mean = .67
se = 0.06

0.00 0.10 0.20 0.30 0.40 0.50

mean = .23
se = 0.05

PA

0.00 0.06 0.12 0.18 0.24 0.30

mean = .045
se = 0.006

0.00 0.10 0.20 0.30 0.40 0.50

mean = .230
se = 0.020

0.00 0.06 0.12 0.18 0.24 0.30

mean = .13
se = 0.02

Regular dose

H2RA

0.00 0.06 0.12 0.18 0.24 0.30

mean = 0.068
se = 0.006

0.00 0.10 0.20 0.30 0.40 0.50

mean = .38
se = 0.05

0.00 0.06 0.12 0.18 0.24 0.30

mean = .18
se = 0.04

Double dose

H2RA

0.00 0.06 0.12 0.18 0.24 0.30

mean = 0.091
se = 0.012

Low-dose PPI

0.00 0.10 0.20 0.30 0.40 0.50

mean = .25
se = 0.04

0.00 0.06 0.12 0.18 0.24 0.30

mean = .13
se = 0.02

Regular dose

PPI

0.00 0.06 0.12 0.18 0.24 0.30

mean = 0.215
se = 0.009

0.00 0.10 0.20 0.30 0.40 0.50

mean = .12
se = 0.03

0.00 0.06 0.12 0.18 0.24 0.3

mean = .08
se = 0.01

Double-dose

PPI

0.00 0.06 0.12 0.18 0.24 0.30

mean = 0.209
se = 0.018

column!)

Table 3. Distributions for Healing Hazards and Recurrence Probabilities

Note: PA = prokinetic agent; H2RA = H2-receptor antagonist; PPI = proton pump inhibitor.
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Resource item First recurrence Second recurrence

Visits to GP
(Gamma distribution)

0.00 2.00 4.00 6.00 8.00 10.00

mean = 2.5
se = 1.6

0.00 2.00 4.00 6.00 8.00 10.00

mean = 2.5
se = 1.6

Visits to gastroenterologist
(Gamma distribution)

0.00 2.00 4.00 6.00 8.00 10.00

mean = 1.5
se = 0.6

0.00 2.00 4.00 6.00 8.00 10.00

mean = 1.5
se = 0.6

Proportion getting a barium
swallow

0.00 0.04 0.08 0.12 0.16 0.20

mean = .07
se = 0.03

Proportion getting cardiac stress
test

0.00 0.04 0.08 0.12 0.16 0.20

mean = .035
se = 0.018

0.00 0.04 0.08 0.12 0.16 0.20

mean = .01
se = 0.01

Proportion getting ECG

0.00 0.04 0.08 0.12 0.16 0.20

mean = .035
se = 0.018

0.00 0.04 0.08 0.12 0.16 0.20

mean = .01
se = 0.01

Proportion getting upper GI
endoscopy

0.00 0.04 0.08 0.12 0.16 0.20

mean = .10
se = 0.03

0.00 0.20 0.40 0.60 0.80 1.00

mean = .63
se = 0.05

Proportion getting upper GI
series

0.00 0.04 0.08 0.12 0.16 0.20

mean = .07
se = 0.03

0.00 0.04 0.08 0.12 0.16 0.20

mean = .08
se = 0.03

Table 4. Distributions for Resource Use Parameters

Note: GP = general practitioner; ECG = electrocardiogram; GI = gastrointestinal.

 

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

http://mdm.sagepub.com


true opportunity cost of those resources, it is not clear
how such uncertainty could be represented in this
model. Therefore, all unit costs were taken as being de-
terministic and were not ascribed distributions in this
analysis. Although there are some problems with this
approach,24 this is not conceptually different from the
approach taken in stochastic cost-effectiveness analy-
sis alongside clinical trials where it is typical for unit
costs to be treated as fixed.

Results of the Probabilistic Analysis

Having specified distributions for all the relevant
parameters of the model, the probabilistic analysis was
undertaken by randomly sampling from each of the pa-
rameter distributions and calculating the expected
costs and expected weeks free of GERD for that combi-
nation of parameter values. This process formed a sin-
gle replication of the model results, and a total of
10,000 replications were performed in order to exam-
ine the distribution of the resulting cost and outcomes
for each strategy. The results of these 10,000 replica-
tions from the model are presented on the cost-
effectiveness plane in Figure 3 together with the base-
line estimate of the efficient frontier.

It is clear that for each of the individual replications,
an efficient frontier could be calculated together with
the incremental cost-effectiveness ratios for treatments
on the frontier. In particular, Figure 3 shows how it may
not be possible to rule out strategy F, the strategy based

on step-down maintenance PPI, since it potentially
forms part of the frontier in many replications. Note,
however, that it is not possible to gain a clear view from
Figure 3 as to how often strategy F forms part of the
frontier: this is because there can be substantial
covariance between the simulations plotted in the fig-
ure. Table 5 summarizes the proportion of the 10,000
simulations in which each strategy forms part of the
cost-effectiveness frontier. It is immediately clear from
this table (as it was from Figure 3) that strategy D can be
ruled out. By contrast, it turns out that strategy F forms
part of the frontier in 27% of simulations, and it is not
clear how this result should be interpreted.

If the shadow price for a week free of GERD symp-
toms (the maximum willingness to pay or ‘ceiling ra-
tio’) were known, it would be possible to choose be-
tween all of the treatment strategies, not just identify
those that form the efficient frontier. Therefore, condi-
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Figure 3. Results of 10,000MonteCarlo simulation evaluations of the gastroesophageal reflux disease (GERD)model presented on the cost-
effectiveness plane. PPI = proton pump inhibitor; H2RA = H2-receptor antagonist; PA = prokinetic agent.

Table 5. Percentage of Times Each Strategy Formed
Part of the Cost-Effectiveness Efficiency Frontier

Strategy Percentage of Times on the Frontier

A 72
B 100
C 76
D 0
E 98
F 27
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tional upon knowing the ceiling ratio, there is only 1
treatment of choice from the 6 strategies under evalua-
tion, and the proportion of times that an intervention is
the treatment of choice from the 10,000 replications of
the model gives the strength of evidence in favor of that
treatment. Although it is possible to identify the effi-
cient frontier, calculate the incremental cost-effective-
ness ratios, and choose 1 strategy from the 6 available
for each of the 10,000 replications, a much more
straightforward approach exists.

The net benefit framework has been argued to offer
many advantages for handling uncertainty in cost-
effectiveness analysis25 and overcomes the particular
problem associated with negative incremental cost-
effectiveness ratios.26 A further property is that
whereas average cost-effectiveness ratios have no
meaningful interpretation, average net benefits have
the useful property that the incremental net benefit be-
tween any 2 treatments can be calculated from the dif-
ference between their individual average net benefits.25

Therefore, the treatment of choice from the 6 strategies
under evaluation will be the treatment with the greatest
average net benefit. This must be the case, as only that
treatment will have a positive incremental net benefit
when compared to any other treatment alternative. The
proportion of times a strategy has the highest net bene-
fit among the 10,000 replications of the model gives the
strength of evidence in favor of that strategy being cost-
effective. This ability of the net benefit framework to

handle multiple mutually exclusive treatment options
is a very strong advantage of the approach, as pointed
out by the authors in their original article.25

Of course, in reality the shadow price of a week free
of GERD symptoms is not known. However, by plotting
out, for all possible values of the ceiling ratio (Rc), the
proportion of times the intervention has the greatest net
benefit, much can be learned concerning the implica-
tions of the estimated uncertainty for the treatment de-
cision. Figure 4 shows the result of just such an exercise
for the probabilistic evaluation of the GERD model pre-
sented in Figure 3. These curves are conceptually the
same as the use of acceptability curves to summarize
uncertainty on the cost-effectiveness plane in a
2-treatment decision problem.2

As expected, strategy D does not feature in Figure 4,
indicating that it is never a contender for cost-
effectiveness. Strategy F does feature, although it never
achieves more than 13% of simulations, suggesting it is
cost-effective, even at the most favorable ceiling ratio
(about $260 per day free of GERD symptoms). In these
situations, Stinnett and Mullahy25 suggested that we
look to the principle of stochastic dominance in order
to rule out interventions. Because average net benefits
are separable (in contrast to cost-effectiveness ratios), if
it can be shown that the cumulative distribution of one
treatment option is always greater than that of another
option, the original treatment is said to dominate. This
means that a utility-maximizing decision maker
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should always prefer the 1st strategy to the 2nd no mat-
ter what their risk preference. This condition is known
as 1st-order stochastic dominance. A slightly weaker
form is 2nd-order stochastic dominance, which allows
the cumulative density functions over net benefit to
cross, but holds that a treatment dominates another if
the area under its cumulative density function is al-
ways greater than that under the alternative strategy. In
Figures 5 and 6, we take the most favorable value of the
ceiling ratio from the perspective of strategy F and plot

the cumulative density functions of strategies B, E, and
F. It turns out that we cannot quite rule out strategy F
under 1st-order stochastic dominance, but strategy F is
very clearly ruled out under the 2nd-order condition.

DISCUSSION

Probabilistic sensitivity analysis methods have been
proposed for decision analysis and cost-effectiveness
models for some time. Despite this, the vast majority of
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Figure 5. Cumulative density functions over net benefit (Rc = $260 per day free of gastroesophageal reflux disease symptoms).
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published economic evaluations do not make use of
probabilistic methods. Although a number of authors
have begun to emphasize the advantages of adopting a
Bayesian perspective in probabilistic modeling,27–29

many probabilistic analyses do not adopt a Bayesian
approach, and for such studies the choice of distribu-
tions to represent uncertainty in parameters may ap-
pear rather ad hoc.30–36 Furthermore, the Bayesian ap-
proach may afford a more intuitive interpretation of the
probabilistic sensitivity results that has been high-
lighted as lacking in a review of the use of medical deci-
sion analysis models.37

Adopting a Bayesian approach to the probabilistic
analysis of the model of GERD management allows the
intuitive interpretation often afforded to acceptability
curves as showing the probability that the intervention
is cost-effective. Note that the curves all sum to 1 on the
vertical axis (this clearly must be the case, since only 1
strategy is chosen for each value of the ceiling ratio and
for each replication of the model). It is immediately ap-
parent from Figures 3 and 4 that strategy D is always
dominated. The acceptability curves in Figure 4 clearly
show that initial concern that strategy F might form
part of the frontier and might therefore be a cost-
effectiveness choice in some situations was unwar-
ranted. In fact, the conditions necessary for strategy F to

be considered the most cost-effective option rarely
arose in the simulations. Appealing to the principle of
stochastic dominance (2nd-order) shows strategy F to
be clearly rejected even under the most favorable as-
sumptions concerning the ceiling ratio (Figs. 5, 6). This
illustrates how by employing probabilistic methods
that directly quantify the strength of evidence in favor
of alternative treatment options, it is possible to be con-
fident about excluding particular strategies, in contrast
to the traditional sensitivity analysis approaches.

Although this sort of presentation of the choice be-
tween mutually exclusive treatments in the face of
many options is a natural extension of the use of cost-
effectiveness acceptability curves in the 2-treatment
case, the issue arises of how exactly decision makers
should use this information to choose between the re-
maining strategies that form part of the frontier. One ap-
proach (as illustrated in Fig. 7) would be to say that, for
any given value of the ceiling ratio, the optimal deci-
sion would be to choose the strategy that is most likely
to be cost-effective. But, of course, this decision rule
gives the exact same treatment recommendations as the
baseline estimates in Figure 2, where uncertainty was
not considered.

The conventional approach to statistical decision
making is based on the adoption of a 5% type I error
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rate. We might therefore adopt a decision rule that a
more effective and more expensive treatment strategy
should replace the currently provided treatment only if
it can be shown to be significantly more cost-effective.
This approach to decision making is illustrated in Fig-
ure 7 and gives markedly different cutoff points for de-
cision maker’s ceiling ratios for the different strategies
to be considered cost-effective. For example, the most
effective therapy, maintenance PPI, would only be con-
sidered the appropriate treatment option if decision
makers had an underlying willingness to pay of $480
per week free of GERD symptoms, assuming that F is
not part of the choice set.

Note that under a 5% significance decision rule, nei-
ther strategy A nor E would be considered significantly
cost-effective to be a clear decision choice. However, it
is clear that strategy C is not cost-effective (at the 5% er-
ror rate) for a shadow price greater than $26 per week
free of GERD symptoms. Recall that strategy A involves
healing with PPI without maintenance and strategy E
involves healing with PPI and then maintenance using
H2RAs. The choice between these strategies is between
no maintenance and maintenance with H2RAs follow-
ing healing. If the shadow price of a week free of GERD
symptoms is between $26 and $480 per week free of
GERD symptoms, then we know that strategies B, C, D,
and F are not cost-effective. We cannot distinguish
strategies A and E at conventional significance levels,
so for purposes of decision making it should be clear
that the strategy to heal with PPI should be adopted, but
that it is unlikely to be important whether, subsequent
to healing, no maintenance or maintenance with
H2RAs is undertaken. This is illustrated in Figure 7 by
combining the 2 strategies in 1 acceptability curve.

It is important to recognize, however, the arbitrary
nature of the conventional (and frequentist) decision
rule. Consider whether instead of placing the “burden
of proof” for cost-effectiveness on more expensive and
more effective strategies, it is the cheaper but less effec-
tive strategies that would be used only if they were
shown to be significantly cost-effective. Although not
shown in Figure 7, it should be clear from the above ex-
position that this change in the burden of proof would
result in a new set of threshold values such that strategy
B would be the treatment of choice unless the shadow
price were below $170 per week free of GERD symp-

toms; between $17.50 and $170 per week free of GERD
symptoms, either strategy A or E would be considered
cost-effective; and below a shadow price of $17.50, ei-
ther A or C would be the strategy of choice.

Of course the arbitrary nature of such decision mak-
ing under uncertainty emphasizes the inadequacies of
such a simple decision rule—Claxton38 argued that sig-
nificance testing of this sort is irrelevant. Instead, he
suggested that decision making be concerned funda-
mentally with expected values. That is not to say that
the decisions should be made on the basis of the base-
line point estimates as presented in Figure 2 without
reference to uncertainty in obtaining those estimates.
Rather, the expected returns to obtaining further infor-
mation should be assessed in order to determine
whether it is worth commissioning more research to
obtain improved estimates of the decision parameters.
Such an approach would require estimates of the loss
function associated with incorrect decision making,
the size of the population relevant to the decision, the
lifetime of the technologies associated with each man-
agement strategy, and the returns to sampling. Each is
itself subject to a great deal of uncertainty, and the
methods for incorporating all this information into a
single overall analysis are currently under develop-
ment. We have not attempted such an analysis in this
article, although we recognize that it is a possible ex-
tension to the work presented here and that such an
analysis would be considered a fully Bayesian decision
model.

In summary, probabilistic modeling of deterministic
models is a practical solution to the problems of con-
ventional sensitivity analysis. Adopting a Bayesian ap-
proach encourages analysts and users to think carefully
about the state of evidence relating to the parameters of
the model. Single-parameter specifications are
straightforward to apply in a Bayesian framework and
provide a simple way to update parameter distribu-
tions as new data become available. The use of accept-
ability curves to present information on the probability
of multiple treatment options is a natural extension of
the 2-alternative case usually presented in the litera-
ture. Much current research interest is focused on ex-
pected value of information methods. It is clear that
such methods will have to be predicated on a well-
specified probabilistic model.
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APPENDIX

The model that formed the basis of this article is available
for download from the World Wide Web at www.ihs.ox.
ac.uk/herc/downloads.

Two formats are available: a spreadsheet model (Microsoft
Excel 2000) and a TreeAge DATA™ model (version 4.0). Both
models use the same parameters and naming conventions re-
ported in this article and both are fully probabilistic. Full de-
tails of the modeling assumptions and parameters are given
in the original (deterministic) article,9 and readers are ad-
vised to familiarize themselves with this article to aid under-
standing of the model structure.

Note that the model implemented in TreeAge DATA™ is
complete and can be run as either a deterministic model or a
probabilistic model. An evaluation copy of DATA is available
from www.treeage.com.

The spreadsheet model implemented in Excel has been
stripped of the simulation results to reduce the file size and to
facilitate speed of downloading. When opening the file, the
simulation results can be generated by pressing the “Run
Monte Carlo Simulation” button on the 1st page, which em-
ploys a visual basic macro to record simulation results. Note
that no calculations are embodied in this macro—the macro
simply implements a loop to repeatedly copy the results of
calculations into the spreadsheet.

The purpose of this appendix is to describe in more detail
the fitting of distributions in the probabilistic modeling exer-
cise and the sampling from those distributions in relation to
the 2 software platforms employed to illustrate the model.

Beta Distribution

As described in the article, obtaining parameters for a
beta(r,n) distribution is straightforward when modeling a
probability from binomial data because the parameters have
an interpretation as r = events and n = total sample size. This
is the default parameterization of the beta distribution in
DATA; however, this only works with integer values of r and
n. For the method-of-moments fitting described in this arti-
cle, it is necessary to choose the “real numbered parameters”
version of the beta distribution: beta(α, β), where α = r and
α + β = n.

Method-of-moments fitting involves equating the means
and variances observed in the data to the expressions for the
mean and variance of the distribution and solving for the pa-
rameters of that distribution. Therefore, for observed mean,µ,
and standard error, s, we formulate the expressions

µ = = −
+

r
n

s
r n r
n n

2
2 1
( )
( )

and rearrange to give

n
s

r n

= − −

=

µ µ

µ

( )1
12 .

So, for example, the instantaneous hazard for the prokinetic
agent in the model was estimated to be 0.045 with a standard
error of 0.006. Using the above expressions generates parame-
ters for the beta distribution of approximatelyn= 1194 and r=
54, or α = 54 and β = 1140 (these are approximate due to
rounding—the models use full accuracy).

Gamma Distribution

Parameters involving numbers of visits to health care pro-
fessionals (primary care physicians and gastroenterologists)
were modeled using the gamma distribution, which has 2 pa-
rameters, α and β. The same method-of-moments approach
was used to obtain these parameters. The mean and variance
of the gamma(α, β) distribution are given by

mean = =α
β

α
β

, var 2 .

Setting these equal to the corresponding estimates, and then
rearranging, gives expressions for the parameters

α µ β µ= =
2

2 2s s
, .

For example, visits to the general practitioner after a recur-
rence of GERD are estimated to occur with a mean 2.5 visits
and a standard error of 1.6, which is modeled in the DATA
model as gamma(4,1.6).

Note, however, that the parameterization of the gamma
distribution in Excel is slightly different from that commonly
found in other packages. Excel uses exactly the same distribu-
tion but has parameterized β as 1/β, which means that in Ex-
cel the appropriate version of the expression for the parame-
ters is

α µ β
µ

= =
2

2

2

s
s

, .

For the same example of general practitioner visits after re-
currence of GERD, the same distribution modeled in Excel is
gamma(4,0.625).

Generating Random Draws
from the Specified Distribution

In DATA, there is no need to be concerned about drawing
random values from the specified distribution because, hav-
ing specified the parameters, the software takes care of simu-
lation. In Excel (and many other software packages), there is
no direct simulation function. However, it is straightforward
to use the distribution functions provided together with the
random number generator function to obtain random draws.
The upper panel of Figure A1 shows a cumulative distribu-
tion function (cdf) for a (standard normal) distribution—the
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values of the distribution are shown on the horizontal axis,
and the vertical axis shows the proportion of the probability
density function (pdf) falling below that value. The vertical
access therefore has a scale of 0 to 1, and the cdf can be
thought of as a function that maps the 0-to-1 scale onto the
scale of the pdf. We can use the cdf together with a uniform
random variate to obtain a random draw from the pdf simply
by generating a random value between 0 and 1 and reading
across from the vertical access to the curve to obtain a value
from the pdf (see Fig. A1). Repeating this process a large num-
ber of times generates random values from the pdf shown at
the bottom of Figure A1.

In Excel, the required functions for the cdfs of distribu-
tions have an INV suffix (because we are using the inverse of
the cdf) and each function has 3 arguments—for example,

BETAINV(p,α, β) and GAMMAINV(p,α, β)–and the function
returns a value,q. The 1st argument represents the proportion
of the pdf up to the value q, and the 2 remaining arguments
are the parameters of the distribution function. The function
RAND() in Excel generates a uniform random variate on the
interval 0 to 1. Hence, to obtain a random draw from the beta
and gamma distributions specified in the preceding sections,
we use the BETAINV(RAND(),54,1140) and GAMMAINV
(RAND(),4,0.625) in Excel.

Note that a 0-1 switch is used in the Excel model to allow the user to choose
between a probabilistic and a deterministic version of the model. This
switch is located in cell B3 of the <Parameters> worksheet. Setting this cell
to 1 allows the user to observe simulated values in real time—pressing the
<F9> key draws another set of random values for the parameters.
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