
A Case Study of Mapping a Software-Defined Radio (SDR)
Application on a Reconfigurable DSP Core

Behzad Mohebbi, Eliseu Chavez Filho,
Rafael Maestre, Mark Davies

Morpho Technologies Inc
19772 Mac Arthur Blvd, Irvine, CA 92612

{behzad, ecf, rafael, mdavies}@morphotech.com

Fadi J. Kurdahi
EECS Department,

University of California
Irvine, CA 92697
kurdahi@uci.edu

ABSTRACT
We present a case study involving the implementation of a complete
Wideband CDMA (WCDMA) digital receiver part of an AMR
channel onto a reconfigurable core. WCDMA is one of the two
major standards for the third generation (3G) cellular systems.
Traditionally most of the receiver components were confined to
ASIC implementation for performance, size and power consumption
reasons. The MS1 reconfigurable DSP core provides both a
microprocessor and reconfigurable fabric as well as a variety of
peripherals. The various functions of the receiver were mapped onto
different core components. The complete system was tested both in
simulation as well as on a hardware platform comprising a silicon
implementation of the MS1 DSP core.

Categories: C3 Real-time Embedded systems

General Terms: Algorithms, Design, Experimentation

Keywords: Software-Defined Radio, Reconfigurable Computing

1. Introduction
Reconfigurable computing systems represent a hybrid approach
between the paradigms of general-purpose and application-specific
systems. They combine a software programmable processor and a
reconfigurable hardware component that can be reused in different
applications. This combination allows reconfigurable systems to
achieve performance levels significantly higher than obtained with
general-purpose systems and with wider flexibility than that offered
by application-specific systems. This paper introduces the Morpho
Technologies’ MS1 reconfigurable DSP (rDSP) Core. The MS1
rDSP Core is primarily targeted for applications with inherent
parallelism, word-level granularity and computation-intensive
characteristics. Examples of key applications are baseband
processing in digital wireless communication systems, and video
compression and image processing in multimedia systems.
One of the key components in the case of mobile or airborne devices
is the Software-Defined Radio (SDR). SDR promises to
revolutionize the way such systems are implemented. SDR is the
implementation of wireless network protocol whose operation
modes can be changed after manufacturing. The relegation of more
functions to programmable DSP or DSP-like hardware enables high

performance, ubiquitous wireless terminals, infrastructure,
equipment and services that allow seamlessness across diverse
networks and integration of capabilities that encompass multiple
standards and operational paradigms.
One of the key target standards that can benefit from an SDR
approach is the third generation wireless system. Third-generation
(3G) wireless standards such as WCDMA or CDMA2000 present
computationally demanding tasks that until now have been dealt
with only by application-specific cores. These ASICs typically
perform chip-level baseband processing (e.g. the RAKE receiver) as
well as encoding/decoding of source
information (e.g. voice and video). Conventional DSPs are usually
employed for Forward Error Correction except in the case of Turbo
decoding, which is implemented in ASIC logic due to its
performance requirements. The Medium-Access Control (MAC)
layer typically runs on an off-the-shelf microcontroller core.
ASICs present several disadvantages in this context: they have to be
designed for the worst case processing scenario; they increase the
time-to-market due to the long design cycle time; they increase cost
as several ASIC cores have to be utilized in such multi-mode
application; and finally they can not adapt to new standard releases,
as it is impossible to do modifications after silicon tapeout.
We have proven in practice that a single MS1 rDSP Core is capable
of performing all the chip-level baseband processing as well as
source encoding/decoding (both voice and video) without the need
for ASIC blocks. The results are simplification of design, cost
reduction due to the simpler design, faster time to market, and
smaller silicon area and flexibility for modifications after product
delivery.

Specialize
d Blocks

I/
OInterfac

e

Basic MS1 Core

rDS
PData

Contex
tMemor
y

rDS
PFabri
c

Controlle
r Program

So
CBlocks

I/
OInterfac

e

Basic MS1 Core

rDS
PData

Contex
tMemor
y

rDS
PFabri
c

mRIS
C Program

So
C

Specialized

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
Figure 1: The MS1 Core Architecture
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010…$5.00.

103

https://core.ac.uk/display/278721196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. The MS1 rDSP Architecture
Morpho Technologies provides Reconfigurable DSP (rDSP)

solutions based on a reconfigurable array processing paradigm,
known as MS1 rDSP, which is briefly discussed here.

As in conventional reconfigurable systems [1], the MS1 Core
contains a reconfigurable block, called the RC Array, and a 32-bit
RISC processor, called the mRISC (Figure 1). The RC Array
consists of Reconfigurable Cells (RCs) interconnected by a
reconfigurable network. Both the functionality of the RCs and the
network interconnections are determined by a configuration
program, called Context. By writing the appropriate context, the
developer can use the RC Array to exploit the parallelism available
in the application. The mRISC Core Controller determines the
application’s control flow, executes the sequential tasks of the
application, and starts transfers to/from the off-core memory. The
instructions for the mRISC are stored in the Instruction Memory.

The MS1 Core also contains a Context Memory, a Data Buffer and
an I/O Controller. The Context Memory stores the context words for
the RC Array. The context words configure the operations
performed by the RCs and their interconnectivity. The Data Buffer
stores the input data to the RC Array as well as the produced results.
The Data Buffer allows data input/output to be overlapped with data
processing. The I/O Controller performs context loading from the
off-core memory into the Context Memory and data transfers
between the Data Buffer and the off-core memory. The I/O
Controller receives transfer requests from the mRISC and generates

an interrupt once the transfer is complete.

The Reconfigurable Cell is the programmable element in the
RC Array. It performs general-purpose operations as well as word-
and bit-level DSP functions. Input operands can be either internal to
the RC, or from other RCs or from the Data Buffer. Due to the
flexible interconnect structure and reconfiguration capabilities, the
RC Array can operate in several modes whereby groups of cells can
perform similar operations. The size and composition of these
groups as well as the mode of operation can be changed
dynamically, by switching contexts during runtime. The operation of
the RC Array is coordinated by the mRISC Core Controller, which
selects and switches contexts at runtime.

3. Development Tools for the MS1 Core
Programs for the MS1 Core consist of two parts: context code and
mRISC Core Controller code. Both components are automatically
generated from a single Morpho-C program, which is a C/C++
program (labeled “User Code” in Figure 2) with special
mStatements. mStatements are high-level statements that the
programmer embeds into regular C/C++ code in order to control the
operation of the MS1 Core. In a Morpho-C program, the
programmer can schedule tasks in order to overlap context loading,
data input/output and processing, in many different ways. The
Morpho-C code is preprocessed by the mTranslator. The output of
mTranslator is a plain, pre-processed C program that is recognizable
by the GNU gcc compiler. Both the mTranslator and the gcc
compiler are part of the tool set provided with the MS1 Core.
Therefore, the programming approach for the MS1 is similar to the
paradigm employed by today’s conventional DSP processors, with
additional instructions for the rDSP fabric. It is important to note
that no HDL code is generated at any point in this tool chain. This
avoids the lengthy and unpredictable tasks of hardware design such
as layout, timing closure and verification and validation.

4. The WCDMA AMR Receiver
The WCDMA AMR channel is defined in [2]. It is a channel that
supports data rates from 4.75 to 12.2 kbits/s. However, due to
algorithm availability, a GSM EFR is used as the speech codec. The
GSM EFR vocoder has the same input and the encoded parameters
as the AMR-NB vocoder in mode MR122 [3].

A top-level block diagram of the receiver chain is shown in Figure
3. The received IQ data (at 3.84 Mchips/sec x oversampling rate) is
first filtered by a 49-tap RRC FIR filter. The baseband signal is then
processed by the RAKE receiver, which performs the tasks of
despreading and demodulation, along with the correction for
channel and transmitter impairments. The output of the RAKE is
then demultiplexed to remove the various physical layer control
information such as pilot and power control bits, and passed trough
the 2nd Interleaver. After the collection of two radio frames, the 1st

Figure 2: MS1 Programming Model

Morpho
Standard Library

DCT

FIR
mTranslator

User Code

GCC/G++
CompilerGNU Linker/loader

Simulation/Validation

Morpho
Standard Library

DCT

FIR
mTranslator

User Code

GCC/G++
CompilerGNU Linker/loader

Simulation/Validation

D/AEFR
Vocoder

Speaker
3- Viterbi Decs.
CRC Dec.

8000 samples/s
13-bits/sample

12.2 kbits/s
244 bits per 20ms

51 kbits/s
510 bits per 10ms

Source decodingFEC decoding

Receiver

Depreading
and

Demodulation

RAKE

Pilot/control bits

De-
multiplexer

60 kbits/s
600 bits per 10ms

I/Q

RRC
FIR 1st Interleaver

2nd Interleaver
D/AEFR

Vocoder

Speaker
3- Viterbi Decs.
CRC Dec.

8000 samples/s
13-bits/sample

12.2 kbits/s
244 bits per 20ms

51 kbits/s
510 bits per 10ms

Source decodingFEC decoding

Receiver

Depreading
and

Demodulation

RAKE

Pilot/control bits

De-
multiplexer

60 kbits/s
600 bits per 10ms

I/QI/Q

RRC
FIR 1st Interleaver1st Interleaver

2nd Interleaver2nd Interleaver

Figure 3: The WCDMA AMR Receiver

104

interleaver is performed on the received data, after which some
control bits (DTX) are removed. The received encoded bits are then
processed by the three Viterbi decoders to correct any possible
errors caused by the channel. CRC parity decoding is performed on
the decoded bits to detect any uncorrected errors on this class of
data. The data stream is demultiplexed to its original state at 12.2
kbits/s. These bits are then processed by the GSM EFR decoder, to
recover the original PCM speech frame. A Digital-to-Analogue
Converter (DAC) processes the audio output signal, and the analog
audio signal is played through a speaker. The above mentioned tasks
are performed in a regular, time multiplexed schedule within one
symbol duration (or Spreading Factor) of 256 “chips” on the RC
array.

4.1 RAKE Receiver
The overall RAKE receiver architecture is shown in Figure 4. Each
RAKE finger demodulates one signal path. The outputs of all the
fingers are combined as a weighted sum in order to maximize the
Signal-to-Noise Ratio (SNR).
The internal functions of each RAKE finger are shown in Figure 4.
As shown, channel estimation, and clock and carrier
synchronization are performed independently for each finger. An
external path-searching algorithm provides the necessary timing
information to select the optimum sampling instant prior to

decimation. With input samples at 2x the chip rate, the Delay
Locked Loop (DLL), used for clock synchronization, is capable of
correct synchronization, in the presence of worst case expected
noise and interference, with an initial acquisition error in excess of
½ chip period. After timing correction by interpolation, the received
samples are decimated by a factor of 8, for subsequent chip rate
processing by the correlation/despreader units. Soft output data are
generated for the Dedication Physical CHannel (DPCH) and the
Common PIlot CHannel (CPICH), at the corresponding symbol
rates. Early and late correlation values are also generated for the
CPICH channel at ±½ chip periods away from the current (punctual)
sampling instant. These are used for timing synchronization
purposes.

5. Mapping of the Receiver
Starting with a MATLAB simulation model, the receiver and
transmitter were validated for functionality and performance.
Following that, a fixed point C model was written and was used as
the starting point for the mapping. The mapping consists of two
major tasks: the first one is to partition the system onto code that
runs on the mRISC controller and code that exercises the RC array.
The second task is to map the latter code onto the RC array in order
to maximize performance and/or reduce code size. The receiver was
mapped using a meet-in-the-middle strategy. A first-cut partitioning

Figure 4: The RAKE receiver

Finger #2
4 Finger #1 MRC

Interpolating
filter

Finger #N

Fs = 2x OVS

Fs = 8x OVS

I,Q

I,Q

Software Defined
Fingers

Fsymb. = 60 ks/s
Fs = 1x OVS

I,QSoftware Defined
Spreading Factor

Software Defined
Combining

Software Defined
OVS Rate

Finger #2
44 Finger #1 MRC

Interpolating
filter

Interpolating
filter

Finger #N

Fs = 2x OVS

Fs = 8x OVS

I,Q

I,Q

Software Defined
Fingers

Fsymb. = 60 ks/s
Fs = 1x OVS

I,QSoftware Defined
Spreading Factor

Software Defined
Combining

Software Defined
OVS Rate

+4

punctual

early

late

Timing
Error

Detector

-4

Loop
Filter

88

88

88

Channel Phase
Correction &
Power scaling

Carrier Freq
Correction

*

*

*

Path Delay
Compensation

path delay τ

DPCH
Despreader

Channel
Estimation

Filter

Freq
Error

Detector
CNCO Loop

Filter

Variable
Delay

Clock Frequency
Correction

TNCO

Variable
Interpolator

CPICH
Despreader

CPICH
Despreader

CPICH
Despreader

Delay

freqoutputCNCO
e snTj

=0

0

ω

ω

Timing
Oscillator

Carrier
Oscillator+4

punctual

early

late

Timing
Error

Detector

-4

Loop
Filter

88

88

88

Channel Phase
Correction &
Power scaling

Carrier Freq
Correction

*

*

*

Path Delay
Compensation

path delay τ

DPCH
Despreader

Channel
Estimation

Filter

Freq
Error

Detector
CNCO Loop

Filter

Variable
Delay

Clock Frequency
Correction

TNCO

Variable
Interpolator

CPICH
Despreader

CPICH
Despreader

CPICH
Despreader

Delay

freqoutputCNCO
e snTj

=0

0

ω

ω

Timing
Oscillator

Carrier
Oscillator

Variable
Interpolator

CPICH
Despreader

CPICH
Despreader

CPICH
Despreader

Delay

freqoutputCNCO
e snTj

=0

0

ω

ω

freqoutputCNCO
e snTj

=0

0

ω

ω

Timing
Oscillator

Carrier
Oscillator

105

of tasks was performed manually and the major tasks identified as
shown in Figure 5. Next, the tasks that are to run on the RC array
were further partitioned onto components that were individually
mapped as application kernels and encapsulated as parameterized
function calls. Next, the system level C code was modified to
incorporate the aforementioned kernels. Contrary to an ASIC
solution, the receiver tasks are now executing on a single unit (the
MS1 core) in a time-multiplexed mode. This necessitated a
scheduling of the kernels in order to ensure that all the real-time
requirements for each kernel as well as the overall receiver were
met. Additionally, the scheduling has to be applied to the
configurations (contexts) for each kernel that must be moved into
the core at the right time prior to the execution of the target kernel.
The system level scheduling of the overall process diagram of the
receiver shown in Figure 5 was adjusted to accommodate the
varying granularities of kernels. This necessitated the establishment
of buffers between blocks. Recall that the RAKE fingers operate at
symbol-rate (66.7µsec), the second interleaver at radio frame rate
(10 msec), and all the other operations at speech frame rate (20
msec). In order to maintain real-time operation of the receiver, we
chose the coarsest granularity of operation, which in this case is 20
msec as the outer loop iteration time. During that time, the RAKE
receiver would output 300 symbols while the second interleaver
would output two radio frames. Thus, all the iteration counts shown
in Figure 5 were set to produce a speech frame. The code was fine-
tuned to maximize the cycle performance. Some kernels or portions
of kernels were moved between the mRISC controller and the rDSP
fabric depending on the relative performance as well as the
communication cost between the two. Conceptually as well as
practically, the software-defined nature of the receiver made it quite
easy to make code modifications, create buffers, or change
scheduling at any time. By contrast, an ASIC implementation would
have necessitated a respin of the silicon along with all the associated
redesign and fabrication costs.

The following sections describe the receiver algorithms and the
mapping strategies employed to optimize their performance on the
MS1 core.

5.1 EFR Mapping
Consider the GSM Enhance Full Rate (GSM EFR) vocoder which
has the same input and the encoded parameters as the AMR-NB
vocoder in mode MR122 [3]. The EFR is the third defined vocoder
for GSM systems, and belongs to the Code Excited Linear
Prediction (CELP) speech compression family. The EFR with a bit
rate of 12.2kbits/sec is an Algebraic CELP (ACELP) vocoder,
where an excitation signal is built for each pulse, rather than the
selection from a codebook as a codevector, as was the case with
classical CELP vocoders. In the EFR vocoder, the codevector is
defined as ten pulses of 1 or –1, out of 40 optional subframe
locations, where the remaining 30 are set to zero. Thus, the search
operation is based on finding the best ten locations for the pulses,
and establishing whether each pulse is a 1 or a –1. This task is
performed four times per 20msec. Prior to the search and
determination of the codevector, two other speech analyses are
performed. These are Linear Prediction Coding (LPC) analysis and
pitch estimation. These are the fundamental components of the
encoder that provide the decoder with the ability to reproduce the
synthesized speech at the receiver [4]. There are more than 24
functions for the encoder and more than 12 functions for the
decoder part provided by the standard C code [5]. Amongst the
encoder functions, the search algorithm (search_10i40) by far
consumes most of the encoder processing, which is more than 22%
of the total required cycle count for the encoder. This function alone
has considerable inherent parallelism, and speed-ups of more than
4x have been achieved in executing this function on a 16-element
reconfigurable fabric. Other EFR sub-algorithms such as correlation
and filtering also exhibit considerable parallelism, which is dealt
with in the following discussions.

rake demux 2nd de-
interleaver 1st de-

interleav

d
e
m
u
x

Viterbi
(rate 1/2)

Viterbi
(rate 1/3)

Viterbi
(rate 1/3)

m
u
x EFR

Decoder DAC

300 iterations 30 iterations 2 iterations 1 iteration

1 iteration

1 iteration

1 iteration

CRC

RRC

1 iteration

153600 iterations

Airlink
channel

A/D RX

Analog
front -end

Pilot/control bits

Bad Frame Indicator

Remove

DTX Bits

1 iteration

Figure 5: Process Diagram of the AMR Receiver

106

5.2 FEC Decoder
This algorithm is known as the Viterbi Algorithm (VA) [6]. With
each received n-tuples, the decoder computes a metric or measure of
likelihood for all paths that could have been taken during that
interval and discards all but the most likely to terminate on each
node. An arbitrary decision is made if the path metrics are equal.
The metrics can be formed using either hard or soft decisions
information with little differences in implementation complexity.
Before the VA is mapped onto the MS1 core, it is necessary to
identify the possible strategies for optimal performance. One of the
major steps in the Viterbi algorithm is to update the path metrics
(pm), by the appropriate branch metrics (bm) which are executed in
a process known as Add-Compare-Select (ACS). Executing a VA on
a sequential machine would consume too many cycles and must be
sped up for acceptable overall real-time performance. In general,
additional parallelism can be introduced into the VA at the bit level,
the word level and the algorithm level [7]. At the bit level,
transformations allow introduction of bit level pipelining, such that
the critical path for each implementation runs only through a few bit
levels resulting in the possibility of significant increase in the clock
rate [8]. At the word level, using algebraic transformations, the two
operations of the ACS recursion may be identified to form an
algebraic structure called semi-ring which can represent the VA as
linear vector recursion [8]. Using this algebraic transformation, the
bottleneck of VA (the non-linear feedback in ACS) is eliminated. At
the word level, it is also possible to perform the operation of each of
the states independently, in parallel. Finally, at the algorithm level,
the asymptotic behavior of the VA can be exploited to derive
parallel processing architectures [9]. The bit level parallelism can be
incorporated into almost any arithmetic logic unit, regardless of the
particular choice of parallel architecture. However, the utilization of
word level parallelism is highly dependent on the computational
fabric and resources. For a parallel processing engine, with a
“modest” number of ACS units at each node (e.g. <10), the feasible
word level parallel execution is the concurrent state
implementations, ideally with one butterfly operation at each node.
It is also possible to assign a single state to each processing node,
which might lead to excessive intermediate data movement between
the nodes. Algorithm level parallelism offers the highest rewards in
extracting the maximum parallelism. The only two drawbacks
associated with algorithm level parallelism are, first, the increase in
processing latency and, second, the overhead associated with the
block overlap. There is usually a tradeoff between the two, where
the block overlap overhead can be reduced at the expense of greater
throughput latency.

5.3 Interleaver/Deinterleaver
Interleaving is used after the FEC encoding, for randomizing the
burst of channel errors caused by multipath fading, such that the
errors appear as random as an AWGN channel at the input to the
FEC decoder. The random appearance of errors is essential for
effective operation of the decoder. The deinterleaving operation is
required in the receiver to arrange the data into its original sequence,
which is usually the opposite operation to that of interleaving.
The channel interleaving block or bit is usually defined by
mathematical or operational algorithms (e.g. the WCDMA first and
second interleaving algorithm defined in [10]). A parallel processing
fabric, especially with reconfigurable interconnect, may be used for
limited permutation changes and bit re-ordering operations.
However, for long interleaving depths used in channel interleaving
little or no advantage can be gained from such platforms.

5.4 RAKE Receiver
Recall the RAKE receiver functionality described in Figure 4 While
current RAKE receiver implementations are done either completely
or partially in ASIC logic, the MS1 core is capable of performing
the complete RAKE functionality in software running on the MS1.
As the chip-rate implementation (i.e. the front-end despreading in
each finger) of the RAKE receiver is carried out in software, a
number of parameters that were traditionally “hard-wired” in ASICs,
can be defined by the operating condition and the required overall
performance of the system (i.e. Software Defined). For example, as
shown in Figure 4, at the expense of more processing, it is possible
to reduce the memory requirement of the input sampled data, by
operating at twice the chip rate (i.e. 2x OVS) and using an
interpolation filter, to achieve the desired time resolution for fine
timing adjustments. It is also possible to set, and change at run-time,
the desired number of RAKE fingers and the spreading factor of
each finger. Finally, Maximal Ratio Combining (MRC) is used for
path combining. Alternatively, any other combining scheme can be
integrated in the software, and selected “on-the-fly”. The most
computationally expensive portion (and fortunately, the most
amenable to acceleration) is the despreading. The spreading and
despreading of data, performed for spread spectrum modulation,
exhibit the most regular form of parallelism, where the same
operation is carried out on all the data samples, in parallel. For
example, in a WCDMA terminal, the despreading operation of a
symbol of an AMR channel requires 128 multiplications of the
received data with the appropriate complex code and the
accumulation of the multiplication results. This operation can
efficiently be spatially mapped to a group of processors where the
samples in each block are processed in parallel. The complex chips
are moved into the processors, where they are multiplied by the
despreading codes, and accumulated in each processing element.
After the operation on the final block, a final summation is then
performed of all the accumulators of the processors. Therefore,
algorithms such as despreading, correlation and FIR filtering that
can be implemented usinig a similar structure on the on a
reconfigurable processor array, should asymptotically be
implemented N times faster on N processors compared to
conventional sequential DSP engines. The reconfigurable nature of
the RC array plays a central role in the efficient execution of these
operations whereby the processors may operate in an SIMD fashion
when partial sums are accumulated on individual elements, and
switching to an MIMD mode when sums are accumulated across
elements. The above mapping example utilizes the word-level
parallelism inherently present in the correlation algorithm. Due to
the immense flexibility of the reconfigurable fabric, it is also
possible to devise alternative spatial mappings that utilize the
algorithm-level parallelism, where even higher computational gain
should be possible.
The other computationally intensive part of the receiver is the
interpolation filter. Almost all the above operations are based on a
transversal tap-delay structure that exhibits similar word and
algorithm level parallelism, as was discussed for FIR filters in the
despreading section, resulting in nearly a N times processing
advantage (N = the number of RC processors).
The other components of the RAKE receiver deal mainly with
synchronization and recovery loops. These loops occur at different
granularities and exhibit little parallelism at the word level. Our first
implementation was using mostly sequential code which resulted in
adequate but not highly optimized performance. But after closer
examination, considerable parallelism can be extracted for each loop
both at the word and, more importantly, at the algorithm level. For

107

example, a WCDMA receiver may require up to eight RAKE fingers
to run in parallel. Each of these eight fingers requires independent
recovery loops that can be executed in parallel on a reconfigurable
processing fabric. Further, at the expense of some data latency, each
algorithm can be applied to several symbols in parallel.
The final component of the RAKE receiver is the channel
estimation. Radio signals that are subject to multipath propagation
suffer attenuation from Multipath Fadings. In CDMA based air-
interfaces, a “path searcher” unit is used to estimate the delay
component, while either the common pilot or dedicated pilot
symbols are used for the estimation of the attenuation and phase
associated with each significant resolvable propagation path. The
path searcher of CDMA based systems uses correlation algorithms
based on a transversal filter which is highly parallelizable and very
similar to the despreading used in the RAKE receiver.

6. Test bed results
Recalling that the RAKE fingers operate at the symbol-rate

(66.7µsec), the second interleaver at radio frame rate (10msec), and
all the other operations at speech frame rate (20 msec), the test-bed
demonstration showed that a unified time multiplexed approach of
all the functions, based on the lowest time granularity, is a feasible
processing approach for the implementation of real-time software
defined systems. It also demonstrated that the rDSP reconfigurable
platform is capable of providing the required processing capacity for
the AMR receiver algorithms, including both the chip-rate and
symbol-rate processing units. The processing requirement of the
chip-rate algorithms (mainly the RAKE receiver) is around 70%,
and the Symbol rate (the transport layer) is 30%, of the total
processing load required by the these functions. Typically,
traditional DSPs are only capable of performing the EFR decoding
in real time (which is a very small portion of the overall receiver
processing), while the rest of the receiver tasks are performed
exclusively by ASIC blocks. Overall, a comfortable amount of
headroom was left over to accommodate any additional processing
needs, or alternatively to power down to conserve power.

Figure 6: The Hardware Testbed

The AMR receiver was fully implemented using the compilation
toolchain described in Section 3 and validated both on a cycle
accurate simulator as well as a hardware development system
shown in Figure 6. In fact, the test-bed results, and supporting cycle-
accurate simulations indicate that all the transmit/receive baseband
functions of a handset can be comfortably supported by a single
rDSP core with 16 RC processing elements.

While the above discussion was based on a circuit-switched
forward-link AMR channel, further benchmarking and cycle-
accurate simulations of a 384 kbits/s (Spreading Factor=4)
WCDMA channel, supporting packet transmission mode, showed
that the same core can support all the transmitter/receiver functions
of such channel. The 384 kbits/s channel requires a different RAKE
receiver design, to work with relatively shorter transmission
duration of packet mode, and supports Turbo encoding/decoding
and MPEG codecs. This change is accomplished by simply running
a different piece of software than for the previous channel.

7. REFERENCES
[1] W. H. Mangione-Smith et al., “Seeking Solutions in

Configurable Computing,” IEEE Computer, Dec. 1997, pp. 38-
43

[2] 3GPP TS 34.108, “Common Test Environments for User
Equipment (UE) Conformance Testing”, Release 4, Technical
Specification Group Radio Access Network, 3rd Generation
Partnership Project.

[3] 3GPP-AMR-NB With ETSI-EFR Implementation on the
StarCore SC140 Core, (AN2280/D), Rev 0, 5/2002,
Motorola application note.

[4] 3GPP TS 46.051, “Enhanced Full Rate (EFR) speech processing
functions: General description” Release 4, Technical
Specification Group Services and System Aspects, 3rd
Generation Partnership Project.I

[5] GSM 06.53: "Digital cellular telecommunications system (Phase
2+); ANSI C code for the GSM Enhanced Full Rate (EFR)
speech codec".

[6] A. J. Viterbi, “Error bounds for convolutional coding and an
asymptotically optimum decoding algorithm,” IEEE Trans.
Information Theory, vol. IT-13, pp. 260-269, April 1967.

[7] G. Fettweis, H. Meyr, “A Modular Variable Speed Viterbi
Decoding Implementation for High Data Rates,” North-
Holland Signal Processing IV, Proc. EUSIPCO ’88, pp. 339-
342, 1988

[8] G. Fettweis, H. Meyr, “High-Speed Parallel Viterbi Decoding:
Algorithm and VLSI Architecture,” IEEE Communication, pp.
46-55, May. 1991

[9] G. Fettweis, H. Meyr, “Feedforward Architectures for parallel
Viterbi Decoding,” Kluwer J. on VLSI signal processing, No. 3
pp. 105-119, 1991.

[10] 3GPP TS 25.212, “Multiplexing and channel coding (FDD)”,
Release 4, Technical Specification Group Radio Access
Network, 3GPP.

108

