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ABSTRACT 
We present a case study involving the implementation of a complete 
Wideband CDMA (WCDMA) digital receiver part of an AMR 
channel onto a reconfigurable core. WCDMA is one of the two 
major standards for the third generation (3G) cellular systems. 
Traditionally most of the receiver components were confined to 
ASIC implementation for performance, size and power consumption 
reasons. The MS1 reconfigurable DSP core provides both a 
microprocessor and reconfigurable fabric as well as a variety of 
peripherals. The various functions of the receiver were mapped onto 
different core components. The complete system was tested both in 
simulation as well as on a hardware platform comprising a silicon 
implementation of the MS1 DSP core.  

Categories: C3 Real-time Embedded systems 

General Terms: Algorithms, Design, Experimentation 

Keywords: Software-Defined Radio, Reconfigurable Computing 

1. Introduction 
Reconfigurable computing systems represent a hybrid approach 
between the paradigms of general-purpose and application-specific 
systems. They combine a software programmable processor and a 
reconfigurable hardware component that can be reused in different 
applications. This combination allows reconfigurable systems to 
achieve performance levels significantly higher than obtained with 
general-purpose systems and with wider flexibility than that offered 
by application-specific systems. This paper introduces the Morpho 
Technologies’ MS1 reconfigurable DSP (rDSP) Core. The MS1 
rDSP Core is primarily targeted for applications with inherent 
parallelism, word-level granularity and computation-intensive 
characteristics. Examples of key applications are baseband 
processing in digital wireless communication systems, and video 
compression and image processing in multimedia systems. 
One of the key components in the case of mobile or airborne devices 
is the Software-Defined Radio (SDR). SDR promises to 
revolutionize the way such systems are implemented. SDR is the 
implementation of wireless network protocol whose operation 
modes can be changed after manufacturing. The relegation of more 
functions to programmable DSP or DSP-like hardware enables high 

performance, ubiquitous wireless terminals, infrastructure, 
equipment and services that allow seamlessness across diverse 
networks and integration of capabilities that encompass multiple 
standards and operational paradigms. 
One of the key target standards that can benefit from an SDR 
approach is the third generation wireless system. Third-generation 
(3G) wireless standards such as WCDMA or CDMA2000 present 
computationally demanding tasks that until now have been dealt 
with only by application-specific cores. These ASICs typically 
perform chip-level baseband processing (e.g. the RAKE receiver) as 
well as encoding/decoding of source  
information (e.g. voice and video). Conventional DSPs are usually 
employed for Forward Error Correction except in the case of Turbo 
decoding, which is implemented in ASIC logic due to its 
performance requirements. The Medium-Access Control (MAC) 
layer typically runs on an off-the-shelf microcontroller core.  
ASICs present several disadvantages in this context: they have to be 
designed for the worst case processing scenario; they increase the 
time-to-market due to the long design cycle time; they increase cost 
as several ASIC cores have to be utilized in such multi-mode 
application; and finally they can not adapt to new standard releases, 
as it is impossible to do modifications after silicon tapeout.  
We have proven in practice that a single MS1 rDSP Core is capable 
of performing all the chip-level baseband processing as well as 
source encoding/decoding (both voice and video) without the need 
for ASIC blocks. The results are simplification of design, cost 
reduction due to the simpler design, faster time to market, and 
smaller silicon area and flexibility for modifications after product 
delivery.  
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2. The MS1 rDSP Architecture 
Morpho Technologies provides Reconfigurable DSP (rDSP) 

solutions based on a reconfigurable array processing paradigm, 
known as MS1 rDSP, which is briefly discussed here. 

As in conventional reconfigurable systems [1], the MS1 Core 
contains a reconfigurable block, called the RC Array, and a 32-bit 
RISC processor, called the mRISC (Figure 1). The RC Array 
consists of Reconfigurable Cells (RCs) interconnected by a 
reconfigurable network. Both the functionality of the RCs and the 
network interconnections are determined by a configuration 
program, called Context. By writing the appropriate context, the 
developer can use the RC Array to exploit the parallelism available 
in the application. The mRISC Core Controller determines the 
application’s control flow, executes the sequential tasks of the 
application, and starts transfers to/from the off-core memory. The 
instructions for the mRISC are stored in the Instruction Memory. 

The MS1 Core also contains a Context Memory, a Data Buffer and 
an I/O Controller. The Context Memory stores the context words for 
the RC Array. The context words configure the operations 
performed by the RCs and their interconnectivity. The Data Buffer 
stores the input data to the RC Array as well as the produced results. 
The Data Buffer allows data input/output to be overlapped with data 
processing. The I/O Controller performs context loading from the 
off-core memory into the Context Memory and data transfers 
between the Data Buffer and the off-core memory. The I/O 
Controller receives transfer requests from the mRISC and generates 

an interrupt once the transfer is complete. 

The Reconfigurable Cell is the programmable element in the 
RC Array. It performs general-purpose operations as well as word- 
and bit-level DSP functions. Input operands can be either internal to 
the RC, or from other RCs or from the Data Buffer. Due to the 
flexible interconnect structure and reconfiguration capabilities, the 
RC Array can operate in several modes whereby groups of cells can 
perform similar operations. The size and composition of these 
groups as well as the mode of operation can be changed 
dynamically, by switching contexts during runtime. The operation of 
the RC Array is coordinated by the mRISC Core Controller, which 
selects and switches contexts at runtime.  

3. Development Tools for the MS1 Core 
Programs for the MS1 Core consist of two parts: context code and 
mRISC Core Controller code. Both components are automatically 
generated from a single Morpho-C program, which is a C/C++ 
program (labeled “User Code” in Figure 2) with special 
mStatements. mStatements are high-level statements that the 
programmer embeds into regular C/C++ code in order to control the 
operation of the MS1 Core. In a Morpho-C program, the 
programmer can schedule tasks in order to overlap context loading, 
data input/output and processing, in many different ways. The 
Morpho-C code is preprocessed by the mTranslator. The output of 
mTranslator is a plain, pre-processed C program that is recognizable 
by the GNU gcc compiler. Both the mTranslator and the gcc 
compiler are part of the tool set provided with the MS1 Core. 
Therefore, the programming approach for the MS1 is similar to the 
paradigm employed by today’s conventional DSP processors, with 
additional instructions for the rDSP fabric. It is important to note 
that no HDL code is generated at any point in this tool chain. This 
avoids the lengthy and unpredictable tasks of hardware design such 
as layout, timing closure and verification and validation. 

4. The WCDMA AMR Receiver 
The WCDMA AMR channel is defined in [2]. It is a channel that 
supports data rates from 4.75 to 12.2 kbits/s. However, due to 
algorithm availability, a GSM EFR is used as the speech codec. The 
GSM EFR vocoder has the same input and the encoded parameters 
as the AMR-NB vocoder in mode MR122 [3].  

A top-level block diagram of the receiver chain is shown in Figure 
3. The received IQ data (at 3.84 Mchips/sec x oversampling rate) is 
first filtered by a 49-tap RRC FIR filter. The baseband signal is then 
processed by the RAKE receiver, which performs the tasks of 
despreading and demodulation, along with the correction for 
channel and transmitter impairments. The output of the RAKE is 
then demultiplexed to remove the various physical layer control 
information such as pilot and power control bits, and passed trough 
the 2nd Interleaver. After the collection of two radio frames, the 1st 

Figure 2: MS1 Programming Model 
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interleaver is performed on the received data, after which some 
control bits (DTX) are removed. The received encoded bits are then 
processed by the three Viterbi decoders to correct any possible 
errors caused by the channel. CRC parity decoding is performed on 
the decoded bits to detect any uncorrected errors on this class of 
data. The data stream is demultiplexed to its original state at 12.2 
kbits/s. These bits are then processed by the GSM EFR decoder, to 
recover the original PCM speech frame. A Digital-to-Analogue 
Converter (DAC) processes the audio output signal, and the analog 
audio signal is played through a speaker. The above mentioned tasks 
are performed in a regular, time multiplexed schedule within one 
symbol duration (or Spreading Factor) of 256 “chips” on the RC 
array. 

4.1 RAKE Receiver 
The overall RAKE receiver architecture is shown in Figure 4. Each 
RAKE finger demodulates one signal path. The outputs of all the 
fingers are combined as a weighted sum in order to maximize the 
Signal-to-Noise Ratio (SNR).  
The internal functions of each RAKE finger are shown in Figure 4. 
As shown, channel estimation, and clock and carrier 
synchronization are performed independently for each finger. An 
external path-searching algorithm provides the necessary timing 
information to select the optimum sampling instant prior to 

decimation. With input samples at 2x the chip rate, the Delay 
Locked Loop (DLL), used for clock synchronization, is capable of 
correct synchronization, in the presence of worst case expected 
noise and interference, with an initial acquisition error in excess of 
½ chip period. After timing correction by interpolation, the received 
samples are decimated by a factor of 8, for subsequent chip rate 
processing by the correlation/despreader units. Soft output data are 
generated for the Dedication Physical CHannel (DPCH) and the 
Common PIlot CHannel (CPICH), at the corresponding symbol 
rates. Early and late correlation values are also generated for the 
CPICH channel at ±½ chip periods away from the current (punctual) 
sampling instant. These are used for timing synchronization 
purposes. 

5. Mapping of the Receiver 
Starting with a MATLAB simulation model, the receiver and 
transmitter were validated for functionality and performance. 
Following that, a fixed point C model was written and was used as 
the starting point for the mapping. The mapping consists of two 
major tasks: the first one is to partition the system onto code that 
runs on the mRISC controller and code that exercises the RC array. 
The second task is to map the latter code onto the RC array in order 
to maximize performance and/or reduce code size. The receiver was 
mapped using a meet-in-the-middle strategy. A first-cut partitioning 

Figure 4: The RAKE receiver 
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of tasks was performed manually and the major tasks identified as 
shown in Figure 5. Next, the tasks that are to run on the RC array 
were further partitioned onto components that were individually 
mapped as application kernels and encapsulated as parameterized 
function calls. Next, the system level C code was modified to 
incorporate the aforementioned kernels. Contrary to an ASIC 
solution, the receiver tasks are now executing on a single unit (the 
MS1 core) in a time-multiplexed mode. This necessitated a 
scheduling of the kernels in order to ensure that all the real-time 
requirements for each kernel as well as the overall receiver were 
met. Additionally, the scheduling has to be applied to the 
configurations (contexts) for each kernel that must be moved into 
the core at the right time prior to the execution of the target kernel. 
The system level scheduling of the overall process diagram of the 
receiver shown in Figure 5 was adjusted to accommodate the 
varying granularities of kernels. This necessitated the establishment 
of buffers between blocks. Recall that the RAKE fingers operate at 
symbol-rate (66.7µsec), the second interleaver at radio frame rate 
(10 msec), and all the other operations at speech frame rate (20 
msec). In order to maintain real-time operation of the receiver, we 
chose the coarsest  granularity of operation, which in this case is 20 
msec as the outer loop iteration time. During that time, the RAKE 
receiver would output 300 symbols while the second interleaver 
would output two radio frames. Thus, all the iteration counts shown 
in Figure 5 were set to produce a speech frame. The code was fine-
tuned to maximize the cycle performance. Some kernels or portions 
of kernels were moved between the mRISC controller and the rDSP 
fabric depending on the relative performance as well as the 
communication cost between the two. Conceptually as well as 
practically, the software-defined nature of the receiver made it quite 
easy to make code modifications, create buffers, or change 
scheduling at any time. By contrast, an ASIC implementation would 
have necessitated a respin of the silicon along with all the associated 
redesign and fabrication costs. 

The following sections describe the receiver algorithms and the 
mapping strategies employed to optimize their performance on the 
MS1 core. 

5.1 EFR Mapping 
Consider the GSM Enhance Full Rate (GSM EFR) vocoder which 
has the same input and the encoded parameters as the AMR-NB 
vocoder in mode MR122 [3]. The EFR is the third defined vocoder  
for GSM systems, and belongs to the Code Excited Linear 
Prediction (CELP) speech compression family. The EFR with a bit 
rate of 12.2kbits/sec is an Algebraic CELP (ACELP) vocoder, 
where an excitation signal is built for each pulse, rather than the 
selection from a codebook as a codevector, as was the case with 
classical CELP vocoders. In the EFR vocoder, the codevector is 
defined as ten pulses of 1 or –1, out of 40 optional subframe 
locations, where the remaining 30 are set to zero. Thus, the search 
operation is based on finding the best ten locations for the pulses, 
and establishing whether each pulse is a 1 or a –1. This task is 
performed four times per 20msec. Prior to the search and 
determination of the codevector, two other speech analyses are 
performed. These are Linear Prediction Coding (LPC) analysis and 
pitch estimation. These are the fundamental components of the 
encoder that provide the decoder with the ability to reproduce the 
synthesized speech at the receiver [4]. There are more than 24 
functions for the encoder and more than 12 functions for the 
decoder part provided by the standard C code [5]. Amongst the 
encoder functions, the search algorithm (search_10i40) by far 
consumes most of the encoder processing, which is more than 22% 
of the total required cycle count for the encoder. This function alone 
has considerable inherent parallelism, and speed-ups of more than 
4x have been achieved in executing this function on a 16-element 
reconfigurable fabric. Other EFR sub-algorithms such as correlation 
and filtering also exhibit considerable parallelism, which is dealt 
with in the following discussions. 
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5.2 FEC Decoder 
This algorithm is known as the Viterbi Algorithm (VA) [6]. With 
each received n-tuples, the decoder computes a metric or measure of 
likelihood for all paths that could have been taken during that 
interval and discards all but the most likely to terminate on each 
node. An arbitrary decision is made if the path metrics are equal. 
The metrics can be formed using either hard or soft decisions 
information with little differences in implementation complexity. 
Before the VA is mapped onto the MS1 core, it is necessary to 
identify the possible strategies for optimal performance. One of the 
major steps in the Viterbi algorithm is to update the path metrics 
(pm), by the appropriate branch metrics (bm) which are executed in 
a process known as Add-Compare-Select (ACS). Executing a VA on 
a sequential machine would consume too many cycles and must be 
sped up for acceptable overall real-time performance. In general, 
additional parallelism can be introduced into the VA at the bit level, 
the word level and the algorithm level [7]. At the bit level, 
transformations allow introduction of bit level pipelining, such that 
the critical path for each implementation runs only through a few bit 
levels resulting in the possibility of significant increase in the clock 
rate [8]. At the word level, using algebraic transformations, the two 
operations of the ACS recursion may be identified to form an 
algebraic structure called semi-ring which can represent the VA as 
linear vector recursion [8]. Using this algebraic transformation, the 
bottleneck of VA (the non-linear feedback in ACS) is eliminated. At 
the word level, it is also possible to perform the operation of each of 
the states independently, in parallel. Finally, at the algorithm level, 
the asymptotic behavior of the VA can be exploited to derive 
parallel processing architectures [9]. The bit level parallelism can be 
incorporated into almost any arithmetic logic unit, regardless of the 
particular choice of parallel architecture. However, the utilization of 
word level parallelism is highly dependent on the computational 
fabric and resources. For a parallel processing engine, with a 
“modest” number of ACS units at each node (e.g. <10), the feasible 
word level parallel execution is the concurrent state 
implementations, ideally with one butterfly operation at each node. 
It is also possible to assign a single state to each processing node, 
which might lead to excessive intermediate data movement between 
the nodes. Algorithm level parallelism offers the highest rewards in 
extracting the maximum parallelism. The only two drawbacks 
associated with algorithm level parallelism are, first, the increase in 
processing latency and, second, the overhead associated with the 
block overlap. There is usually a tradeoff between the two, where 
the block overlap overhead can be reduced at the expense of greater 
throughput latency. 

5.3 Interleaver/Deinterleaver 
Interleaving is used after the FEC encoding, for randomizing the 
burst of channel errors caused by multipath fading, such that the 
errors appear as random as an AWGN channel at the input to the 
FEC decoder. The random appearance of errors is essential for 
effective operation of the decoder. The deinterleaving operation is 
required in the receiver to arrange the data into its original sequence, 
which is usually the opposite operation to that of interleaving. 
The channel interleaving block or bit is usually defined by 
mathematical or operational algorithms (e.g. the WCDMA first and 
second interleaving algorithm defined in [10]). A parallel processing 
fabric, especially with reconfigurable interconnect, may be used for 
limited permutation changes and bit re-ordering operations. 
However, for long interleaving depths used in channel interleaving 
little or no advantage can be gained from such platforms. 

5.4 RAKE Receiver 
Recall the RAKE receiver functionality described in Figure 4 While 
current RAKE receiver implementations are done either completely 
or partially in ASIC logic, the MS1 core is capable of performing 
the complete RAKE functionality in software running on the MS1. 
As the chip-rate implementation (i.e. the front-end despreading in 
each finger) of the RAKE receiver is carried out in software, a 
number of parameters that were traditionally “hard-wired” in ASICs, 
can be defined by the operating condition and the required overall 
performance of the system (i.e. Software Defined). For example, as 
shown in Figure 4, at the expense of more processing, it is possible 
to reduce the memory requirement of the input sampled data, by 
operating at twice the chip rate (i.e. 2x OVS) and using an 
interpolation filter, to achieve the desired time resolution for fine 
timing adjustments. It is also possible to set, and change at run-time, 
the desired number of RAKE fingers and the spreading factor of 
each finger. Finally, Maximal Ratio Combining (MRC) is used for 
path combining. Alternatively, any other combining scheme can be 
integrated in the software, and selected “on-the-fly”. The most 
computationally expensive portion (and fortunately, the most 
amenable to acceleration) is the despreading. The spreading and 
despreading of data, performed for spread spectrum modulation, 
exhibit the most regular form of parallelism, where the same 
operation is carried out on all the data samples, in parallel. For 
example, in a WCDMA terminal, the despreading operation of a 
symbol of an AMR channel requires 128 multiplications of the 
received data with the appropriate complex code and the 
accumulation of the multiplication results. This operation can 
efficiently be spatially mapped to a group of processors where the 
samples in each block are processed in parallel. The complex chips 
are moved into the processors, where they are multiplied by the 
despreading codes, and accumulated in each processing element. 
After the operation on the final block, a final summation is then 
performed of all the accumulators of the processors. Therefore, 
algorithms such as despreading, correlation and FIR filtering that 
can be implemented usinig a similar structure on the on a 
reconfigurable processor array, should asymptotically be 
implemented N times faster on N processors compared to 
conventional sequential DSP engines. The reconfigurable nature of 
the RC array plays a central role in the efficient execution of these 
operations whereby the processors may operate in an SIMD fashion 
when partial sums are accumulated on individual elements, and 
switching to an MIMD mode when sums are accumulated across 
elements. The above mapping example utilizes the word-level 
parallelism inherently present in the correlation algorithm. Due to 
the immense flexibility of the reconfigurable fabric, it is also 
possible to devise alternative spatial mappings that utilize the 
algorithm-level parallelism, where even higher computational gain 
should be possible. 
The other computationally intensive part of the receiver is the 
interpolation filter. Almost all the above operations are based on a 
transversal tap-delay structure that exhibits similar word and 
algorithm level parallelism, as was discussed for FIR filters in the 
despreading section, resulting in nearly a N times processing 
advantage (N = the number of RC processors). 
The other components of the RAKE receiver deal mainly with 
synchronization and recovery loops. These loops occur at different 
granularities and exhibit little parallelism at the word level. Our first 
implementation was using mostly sequential code which resulted in 
adequate but not highly optimized performance. But after closer 
examination, considerable parallelism can be extracted for each loop 
both at the word and, more importantly, at the algorithm level. For 
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example, a WCDMA receiver may require up to eight RAKE fingers 
to run in parallel. Each of these eight fingers requires independent 
recovery loops that can be executed in parallel on a reconfigurable 
processing fabric. Further, at the expense of some data latency, each 
algorithm can be applied to several symbols in parallel. 
The final component of the RAKE receiver is the channel 
estimation. Radio signals that are subject to multipath propagation 
suffer attenuation from Multipath Fadings. In CDMA based air-
interfaces, a “path searcher” unit is used to estimate the delay 
component, while either the common pilot or dedicated pilot 
symbols are used for the estimation of the attenuation and phase 
associated with each significant resolvable propagation path. The 
path searcher of CDMA based systems uses correlation algorithms 
based on a transversal filter which is highly parallelizable and very 
similar to the despreading used in the RAKE receiver. 

6. Test bed results 
Recalling that the RAKE fingers operate at the symbol-rate 

(66.7µsec), the second interleaver at radio frame rate (10msec), and 
all the other operations at speech frame rate (20 msec), the test-bed 
demonstration showed that a unified time multiplexed approach of 
all the functions, based on the lowest time granularity, is a feasible 
processing approach for the implementation of real-time software 
defined systems. It also demonstrated that the rDSP reconfigurable 
platform is capable of providing the required processing capacity for 
the AMR receiver algorithms, including both the chip-rate and 
symbol-rate processing units. The processing requirement of the 
chip-rate algorithms (mainly the RAKE receiver) is around 70%, 
and the Symbol rate (the transport layer) is 30%, of the total 
processing load required by the these functions. Typically,  
traditional DSPs are only capable of performing the EFR decoding 
in real time (which is a very small portion of the overall receiver 
processing), while the rest of the receiver tasks are performed 
exclusively by ASIC blocks. Overall, a comfortable amount of 
headroom was left over to accommodate any additional processing 
needs, or alternatively to power down to conserve power. 

 
Figure 6: The Hardware Testbed 

The AMR receiver was fully implemented using the compilation 
toolchain described in Section 3 and validated both on a cycle 
accurate simulator as well as a hardware development system  
shown in Figure 6. In fact, the test-bed results, and supporting cycle-
accurate simulations indicate that all the transmit/receive baseband 
functions of a handset can be comfortably supported by a single 
rDSP core with 16 RC processing elements. 

While the above discussion was based on a circuit-switched 
forward-link AMR channel, further benchmarking and cycle-
accurate simulations of a 384 kbits/s (Spreading Factor=4) 
WCDMA channel, supporting packet transmission mode, showed 
that the same core can support all the transmitter/receiver functions 
of such channel. The 384 kbits/s channel requires a different RAKE 
receiver design, to work with relatively shorter transmission 
duration of packet mode, and supports Turbo encoding/decoding 
and MPEG codecs. This change is accomplished by simply running 
a different piece of software than for the previous channel. 

7. REFERENCES 
[1] W. H. Mangione-Smith et al., “Seeking Solutions in 

Configurable Computing,” IEEE Computer, Dec. 1997, pp. 38-
43 

[2] 3GPP TS 34.108, “Common Test Environments for User 
Equipment (UE) Conformance Testing”, Release 4, Technical 
Specification Group Radio Access Network, 3rd Generation 
Partnership Project. 

[3] 3GPP-AMR-NB With ETSI-EFR Implementation on the 
StarCore SC140 Core, (AN2280/D), Rev 0, 5/2002, 
Motorola application note. 

[4] 3GPP TS 46.051, “Enhanced Full Rate (EFR) speech processing 
functions: General description” Release 4, Technical 
Specification Group Services and System Aspects, 3rd 
Generation Partnership Project.I 

[5] GSM 06.53: "Digital cellular telecommunications system (Phase 
2+); ANSI C code for the GSM Enhanced Full Rate (EFR) 
speech codec". 

[6] A. J. Viterbi, “Error bounds for convolutional coding and an 
asymptotically optimum decoding algorithm,” IEEE Trans. 
Information Theory, vol. IT-13, pp. 260-269, April 1967. 

[7] G. Fettweis, H. Meyr, “A Modular Variable Speed Viterbi 
Decoding Implementation for High Data Rates,” North-
Holland Signal Processing IV, Proc. EUSIPCO ’88, pp. 339-
342, 1988 

[8] G. Fettweis, H. Meyr, “High-Speed Parallel Viterbi Decoding: 
Algorithm and VLSI Architecture,” IEEE Communication, pp. 
46-55, May. 1991 

[9]  G. Fettweis, H. Meyr, “Feedforward Architectures for parallel 
Viterbi Decoding,” Kluwer J. on VLSI signal processing, No. 3 
pp. 105-119, 1991. 

[10]  3GPP TS 25.212, “Multiplexing and channel coding (FDD)”, 
Release 4, Technical Specification Group Radio Access 
Network, 3GPP.

 

108


