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Abstract

We study the distribution of the resistance fluctuations of biased resistor networks in

nonequilibrium steady states. The stationary conditions arise from the competition be-

tween two stochastic and biased processes of breaking and recovery of the elementary resis-

tors. The fluctuations of the network resistance are calculated by Monte Carlo simulations

which are performed for different values of the applied current, for networks of different size

and shape and by considering different levels of intrinsic disorder. The distribution of the

resistance fluctuations generally exhibits relevant deviations from Gaussianity, in particular

when the current approaches the threshold of electrical breakdown. For two-dimensional

systems we have shown that this non-Gaussianity is in general related to finite size effects,

thus it vanishes in the thermodynamic limit, with the remarkable exception of highly dis-

ordered networks. For these systems, close to the critical point of the conductor-insulator

transition, non-Gaussianity persists in the large size limit and it is well described by the

universal Bramwell-Holdsworth-Pinton distribution. In particular, here we analyze the role

of the shape of the network on the distribution of the resistance fluctuations. Precisely, we

consider quasi-one-dimensional networks elongated along the direction of the applied current

or trasversal to it. A significant anisotropy is found for the properties of the distribution.

These results apply to conducting thin films or wires with granular structure stressed by

high current densities.

1 Introduction and Model

Strongly correlated systems usually exhibit non-Gaussian distributions of the fluctuations of global
quantities, as a consequence of the violation of the validity conditions of the central-limit theorem.
Since correlations become important near the critical points of phase transitions, non-Gaussian
fluctuations are usually observed near criticality [1, 2, 3, 4, 5, 6, 7, 8, 9]. In these conditions, the
self-similarity of the system over all the scales, from a characteristic microscopic length up to the
size of the system, has important implications on the fluctuation distribution [2, 3, 4, 5, 6, 7, 8, 9].
On the other hand, far from criticality, the correlations among different elements of the systems
can also be important. This is particularly true for systems in non-equilibrium stationary states,
where non-Gaussian fluctuations are frequently present [1, 10, 11, 12, 13, 14, 15]. Therefore
the study of non-Gaussian fluctuations and of their link with other features of the system can
provide new insights into basic properties of complex systems [2, 3, 4, 5, 6, 7, 8, 9, 11]. On this
respect, the observation made few years ago by Bramwell, Holdsworth and Pinton (BHP) [2] of
a common behavior of the distribution of the fluctuations in two very different systems, (the
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power-consumption fluctuations in confined turbulent-flow experiments and the magnetization
fluctuations in the two-dimensional XY model in the spin-wave regime at low temperature [2,
3, 4]), has given rise to several intriguing questions about the origin of this common behavior,
stimulating many other experimental, analytical and numerical studies. Successive findings have
highlighted that many scale invariant systems display the same functional form for the distribution
of the fluctuations [3, 7, 5, 13, 14, 15]. Very recently, new light on these puzzling observations
has been given by Clusel et al. [16]. These authors, on the basis of a study of the fluctuation
properties of the 2D XY model, have proposed a criterion for universality-class-independent
critical fluctuations [16]. Actually, in the relatively simple case of the 2D XY model it is possible
a complete understanding of fluctuation phenomena. This is not possible for nonequilibrium
systems due to the lack of microscopic theories. Thus, for these systems, we can rely only on
phenomenological observations and on analogies with better understood systems.

Here, we study the distribution of the resistance fluctuations of biased resistor networks in
nonequilibrium stationary states [17]. Networks of different size and shape and with different levels
of internal disorder are considered. The resistance fluctuations are calculated by Monte Carlo
simulations for currents close to the threshold for electrical breakdown. This last phenomenon
consists of an irreversible increase of the resistance, occurring in conducting materials stressed by
high current densities and it is associated with a conductor-insulator transition [18, 19, 20, 21,
22, 23]. In our study we make use of the Stationary and Biased Resistor Network (SBRN) model
[24, 25]. This model provides a good description of many features associated with the electrical
instability of composite materials [20, 22, 24] and with the electromigration damage of metallic
lines [17, 21], two important classes of breakdown phenomena.

We describe a thin conducting film with granular structure of length L, width W and thickness
th ≪ W,L as a 2D resistor network of rectangular shape and square-lattice structure [17]. The
network of resistance R is made by NL and NW resistors in the length and width directions
respectively. Thus, the total number of resistors in the network (excluding the contacts) is:
Ntot = 2NLNW + NL − NW . The external bias (here a constant current I), is applied to the
network through electrical contacts realized by perfectly conducting bars at the left and right
hand sides of the network. The network lies on an insulating substrate at temperature T0, acting
as a thermal bath. Each resistor has two allowed states [21, 26]: (i) regular, corresponding to
a resistance rreg,n(Tn) = rref [1 + α(Tn − Tref)] and (ii) broken, corresponding to a resistance
rOP = 109rreg,n(T0) ≡ 109r0 (resistors in this state will be called defects). In the above expression
α is the temperature coefficient of the resistance (TCR), rref and Tref are the reference values for
the TCR and Tn is the local temperature. The existence of temperature gradients due to current
crowding and Joule heating effects is accounted for by taking the local temperature of the n-th
resistor given by the following expression [21]:

Tn = T0 + A[rni
2

n + (3/4Nneig)
Nneig∑

l=1

(rli
2

l − rni
2

n)] (1)

where, in is the current flowing in the nth resistor and Nneig the number of its nearest neighbors
over which the summation is performed. The parameter A represents the thermal resistance of
each resistor and sets the importance of Joule heating effects. By taking the above expression
for Tn we are assuming an instantaneous thermalization of each resistor at the value Tn [21, 26].
In the initial state of the network (no external bias) we take all the resistors identical (perfect
network). We assume that two competing biased processes act to determine the evolution of
the network [24, 25]. These two processes consist of stochastic transitions between the two
possible states of each resistor and they occur with thermally activated probabilities [26]: WDn =
exp[−ED/kBTn] and WRn = exp[−ER/kBTn], characterized by the two energies, ED and ER



Figure 1: Pattern of a network 12 × 50 stressed by a current density j = 0.32 mA. The grey
boxes show the backbone of the network, the black ones the ”dangling bonds” (branches with
zero-current, while the missing boxes correspond to the broken resistors. This pattern has been
calculated at t = 4× 104 (time expressed in iteration steps).

(where kB is the Boltzmann constant). The time evolution of the network is obtained by Monte
Carlo simulations which update the network resistance after breaking and recovery processes,
according to an iterative procedure described in detail in Ref. [24]. The sequence of successive
configurations provides a resistance signal, R(t), after an appropriate calibration of the time scale.
Depending on the stress conditions (I and T0) and on the network parameters (size, activation
energies and other parameters dependent on the material, like rref , α and A), the network either
reaches a stationary state or undergoes an irreversible electrical failure [17, 24, 25]. This latter
possibility is associated with the achievement of the percolation threshold, pc, for the fraction
of broken resistors. Therefore, for a given network at a given temperature, a threshold current
value, IB, exists above which electrical breakdown occurs [24]. For values of the current below
this threshold, the steady state of the network is characterized by fluctuations of the fraction of
broken resistors, δp, and of the resistance, δR, around their respective average values < p > and
< R >. In particular, we underline that in the vanishing current limit (random percolation) [27],
the ratio λ ≡ (ED − ER)/kBT0 determines the average fraction of defects and thus the level of
intrinsic disorder inside the network [27]. In the following we analyze the results of simulations
performed by considering networks of different size and shape stressed at room temperature,
T0 = 300 K, by a current density j ≡ I/NW = 0.32 mA. We have taken: α = 3.6 × 10−3 K−1,
Tref = 273 K, rref = 0.048 Ω, A = 2.7× 108 K/W, ED = 0.41 eV and ER = 0.35 eV. This choice
of the parameters is appropriate to describe the behavior under electromigration of metallic lines
of Al-0.5%Cu studied in Ref. [17] and it corresponds to studying a network with an intermediate
level of intrinsic disorder.

2 RESULTS AND CONCLUSIONS

Figure 1 displays the pattern of a network 12 × 50 calculated at a given time, t = 4 × 104,
(expressed in iteration steps) in the stationary regime of the network, i.e. for t > τrel, where
τrel ≈ 8 × 103 is the relaxation time for the achievement of the nonequilibrium stationary state.
The network in this figure is stressed by a current density (j = 0.32 mA) close to the breakdown
value, jB = IB/NW . The resistance evolution for the same network is reported in Fig. 2. In this
figure the grey line shows the average value of the resistance, < R >. We note that both the
average resistance and the relative variance of the resistance fluctuations, < (δR)2 > / < R >2,
depend on j. A detailed analysis of the behavior of these two quantities as a function of the
current can be found in Refs. [24, 25]. In previous works [13, 14, 15] we have analyzed the
effects on the distribution of the resistance fluctuations of the biasing current [13], of the intrinsic
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Figure 2: Resistance evolution of the network in Fig. 1. The time is expressed in arbitrary units
(iteration steps), the resistance in Ohm. The grey line shows the average value of the resistance.

disorder and of the size of the network [14, 15], by limiting ourself to discuss square networks.
Here, we focus our discussion on shape effects: precisely we analyze the effect on the distribution
of the fluctuations of scaling the size of the network separately in the two directions, i.e. of
scaling separately the width, NW and the length, NL, of the network. Figure 3(a) shows the
distributions of the resistance fluctuations obtained for two networks of size 12× 50 (big circles)
and 50×12 (triangles) stressed by the same current density. In this figure (and in the followings)
we denote with Φ the probability density function (PDF) of the distribution and with σ the root
mean square deviation from the average value. This normalized representation, by making the
distribution independent of its first and second moments, is particularly convenient to explore
the functional form of a distribution [3]. A lin-log scale is adopted for convenience to plot the
product σΦ as a function of (< R > −R)/σ. The PDFs in Fig. 3 and all the others in this
paper have been calculated by considering time series containing about 106 resistance values. For
comparison, in Fig. 3 we also report the Gaussian distribution (dashed curve) and the BHP
distribution (continuous curve) [2, 3]. The PDF obtained for the network 12× 50 (corresponding
to the signal in Fig. 2) exhibits a strong non-Gaussianity, well described by the BHP curve. By
contrast, the PDF obtained for the network 50 × 12 is nearly Gaussian. At a first insight, this
result can seem surprising: in fact the two networks are composed by nearly the same number of
resistors, moreover the dissipated electric power per unit volume, RI2/(LW ) ∝ j2, is the same in
both cases. As a consequence, the average fraction of defects p ≈ 0.19 is also the same. However,
the percolation threshold pC is different for the two networks [17]. Therefore, the nearly Gaussian
distribution of the 50×12 network is due to the higher value of pC (and thus to the higher stability)
of this network [17]. For comparison, we report in Fig. 3(b) the PDFs calculated for two square
networks 12 × 12 and 50 × 50 biased by the same current density. Again, the dissipated power
density and the average fraction of defects are the same for both networks. However, for square
N × N networks the percolation threshold is roughly independent of the size, even for biased
percolation [17]. Thus, for these networks the higher instability and the stronger non-Gaussianity
for decreasing N is mainly related with the increase in magnitude of the fluctuations associated
with the smaller size [13, 14].

The normalized PDFs of the resistance fluctuations calculated for several networks of different
size are reported in Fig. 4. Figure 4(a) displays PDFs obtained for networks elongated along
the direction of the applied current (precisely networks of a given width, NW = 12, and with
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Figure 3: Normalized PDF of the resistance fluctuations of networks of different size and stressed
by the same current density j = 0.32 mA. Precisely, in (a) the size is: 12 × 50 (big circles) and
50 × 12 (triangles); in (b): 12 × 12 (stars), 50 × 50 (plus). The solid and dashed curves refer to
the BHP and Gaussian distributions, respectively.

increasing length, NL = 50÷ 400), while Fig. 4(b) shows PDFs obtained for networks elongated
in a direction trasversal to the current applied (precisely networks of a given length, NL = 12,
and with increasing width, NW = 50 ÷ 400. We can see that for trasversal networks the PDF
is rather insensitive to the width and the small non-Gaussianity for small widths completely
vanishes already for networks with NW = 200. By contrast, for longitudinal networks, the PDF
is sensitive to the length. However, it should be noted that the PDF obtained for NL = 200
practically overlaps with that obtained for NL = 400 and both exhibit non-Gaussian tails. Since
the correlation length, ξ, for these networks is estimated to be ξ < 5, networks with NL = 400
can be considered as infinitely long. Thus, Fig. 4(a) suggests a persistent non-Gaussianity for
longitudinal networks in the limit NL → ∞, associated with the finite size of the network in
the transversal direction. Furthermore, the magnitude of this non-Gaussianity is expeceted to be
controlled by the level of intrinsic disorder.

In conclusions, we have studied the distribution of the resistance fluctuations of biased resistor
networks in nonequilibrium stationary states. We have considered networks biased by currents
close to the threshold of electrical breakdown. As a general trend, the distribution of the fluctua-
tions is found to exhibit relevant deviations from Gaussianity, which are in general related to finite
size effects [13, 14]. However, for systems close to the critical point of the conductor-insulator
transition, the non-Gaussianity persists in the large size limit [13, 14] and it is well described
by the universal Bramwell-Holdsworth-Pinton distribution. Furthermore, we have analyzed the
role of the shape of the network on the distribution of the resistance fluctuations, by considering
quasi-one-dimensional networks elongated along the direction of the applied current or trasversal
to it. A significant anisotropy is found for the properties of the distribution. These results apply
to conducting thin films or wires with granular structure stressed by high currents.
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Figure 4: Normalized PDF of the resistance fluctuations of networks of different size and stressed
by the same current density j = 0.32 mA. Precisely, in (a) the size is: 12 × 50 (big circles),
12×100 (crosses), 12×200 (full squares) and 12×400 (down triangles); in (b) the size is: 50×12
(triangles), 100 × 12 (small circles), 200 × 12 (full diamonds) and 400 × 12 (squares). The solid
and dashed curves have the same meaning of Fig. 3.
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