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Abstract

The unitarity triangles of the 3 × 3 Cabibbo-Kobayashi-Maskawa (CKM) matrix
are studied in a systematic way. We show that the phases of the nine CKM rephasing
invariants are indeed the outer angles of the six unitarity triangles and measurable in
the CP -violating decay modes of Bd and Bs mesons. An economical notation system
is introduced for describing properties of the unitarity triangles. To test unitarity of
the CKM matrix we present some approximate but useful relations among the sides
and angles of the unitarity triangles, which can be confronted with the accessible
experiments of quark mixing and CP violation.
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In the standard electroweak model, the 3×3 Cabibbo-Kobayashi-Maskawa (CKM) matrix

V describes flavor mixing and CP violation [1]. Unitarity is the only constraint, imposed

by the model itself, upon V . Deviations from the minimal standard model may give rise

to or fake as unitarity breaking. For example, unitarity of the 3 × 3 CKM matrix will not

hold if there are fourth-family quarks or exotic charge −1/3 quarks which mix with the

standard down-type quarks. It is therefore very important to stringently test unitarity of

the CKM matrix. Recently, a lot of theoretical and experimental attention has been paid

to this subject [2-8], in particular, to the six unitarity triangles. In Ref. [4], Aleksan et al

have proved that four independent inner angles of the six triangles can provide a complete

parametrization of the CKM matrix. Their results sharpen the importance of measuring CP

violation in B-meson decays so as to determine the entire quark mixing matrix V .

In this paper we shall make a systematic study of the unitarity triangles using the rephas-

ing invariant quantities of the CKM matrix defined previously by one of the authors [9]. We

show that the phases of the nine rephasing invariants are indeed the outer angles of the six

unitarity triangles and directly related to the CP -violating asymmetries in some distinct

decay modes of Bd and Bs mesons. To fully test unitarity of the standard model we give

some useful relations among the sides and angles of the unitarity triangles, which can be

confronted with the forthcoming experiments of quark mixing and CP violation. It should

be emphasized that our starting point of view differs from that in Ref. [4], nevertheless,

some results of these two papers are in agreement with and supplementary to each other.

In addition, we give a more economical notation scheme for the six unitarity triangles and

present a practical way to check unitarity of the CKM matrix with the accessible experi-

mental data. Recognizing that a few distinct and concise parametrization forms of the CKM

matrix have been extensively applied to the studies of flavor mixing and CP violation [6-8],

the work done here is expected to provide a systematic approach to the same problem.

The unitarity triangles are defined by the following orthogonality relations:

∑

α=d,s,b

ViαV
∗
jα = 0 , (i < j) ;

∑

i=u,c,t

ViαV
∗
iβ = 0 , (α < β) .

(1)

Here and hereafter, Latin subscripts run over the up-type quarks u, c, and t; while Greek

ones run over the down-type quarks d, s, and b. It is known that there exist nine rephasing
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invariants for the 3× 3 CKM matrix V [9]:

∆iα ≡ VjβVkγV
∗
jγV

∗
kβ , (i, j, k and α, β, γ co− cyclic) . (2)

Here each ∆iα is a product of the four matrix elements in the 2 × 2 submatrix without

Viα. It is crucial for such products that either two diagonal or skew diagonal elements are

complex conjugated. The co-cyclic rule of the subscripts ensures a definite set of ∆iα. In

the subsequent discussions we shall imply co-cyclic permutation of the subscripts whenever

three different Latin and (or) Greek subscripts simultaneously appear in a formula. Note

that the phases of ∆iα, denoted by

Φiα ≡ arg∆iα , (−π < Φiα ≤ π) , (3)

are also invariant under quark phase redefinitions. In the complex plane, Φiα is not only the

relative angle of the two vectors VjβV
∗
jγ and VkβV

∗
kγ but also that of another two vectors VjβV

∗
kβ

and VjγV
∗
kγ. Thus Φiα is indeed an outer angle shared by two different unitarity triangles

(see Fig. 1). Unitarity of the 3 × 3 CKM matrix requires that all the nine quantities ∆iα

have a common imaginary part [10], defined as

J ≡ Im∆iα = |∆iα| sinΦiα , (4)

which is a measure of CP violation in the standard model. From Eqs. (3) and (4) one can

observe that all nine Φiα should have the same sign as J .

With Eqs. (2) and (3), it is straightforward to obtain the sum rules for Φiα, which are

similar to the orthogonality relations given in Eq. (1):
∑

i=u,c,t

Φiα = ±2π , (α = d, s, or b) ;

∑

α=d,s,b

Φiα = ±2π , (i = u, c, or t) ,
(5)

where the plus (minus) sign corresponds to J > 0 (J < 0). Since phase redefinitions of the

quark fields cannot change the sign of J , the sign of Φiα is definitely part of the information

on the CKM unitarity. The current data on |Vub/Vcb|, xd (B0
d − B̄0

d mixing), and ǫK (the

CP -violating parameter in the kaon system) already indicate a positive J [11]. This implies

Φiα > 0, corresponding to the anti-clockwise triangles in the complex plane (See Fig. 1).

Subsequently we shall carry out the analysis under the condition of J > 0. It is easy to

follow a parallel analysis for the case of J < 0.
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It proves convenient to use the capital form of those indices in the parentheses of Eq.

(5) to name the unitarity triangles. For example, the D triangle has three sides SuD ≡

|VusV
∗
ub|, ScD ≡ |VcsV

∗
cb|, and StD ≡ |VtsV

∗
tb|, which face three outer angles Φud, Φcd , and Φtd,

respectively. Here the rule is that the CKM matrix elements with the subscript d never

appear in the D triangle. In other words, the D triangle can only be formed by the elements

in the second and third columns of the CKM matrix. It should be noted that the six unitarity

triangles have only nine different outer angles (Φiα), although they have eighteen different

sides (|VjβV
∗
jγ| and |VjβV

∗
kβ|).

The inner angles of the unitarity triangles, denoted by3 ωiα, satisfy the sum rules of the

Euclidean geometry:
∑

i=u,c,t

ωiα =
∑

α=d,s,b

ωiα = π . (6)

They are related to the outer angles Φiα through

ωiα = π ∓ Φiα , (7)

where the minus (plus) sign corresponds to J > 0 (J < 0). From the above relations we see

that the roles of outer and inner angles are equivalent in discussing flavor mixing and CP

violation. For example, one can use Φus, Φcs, and Φts to describe the S triangle, whose inner

angles are commonly defined by α, β, and γ in the literature [12-14].

As to the magnitudes of the outer angles Φiα, Eq. (5) shows that the smaller |∆iα|, the

larger sin Φiα. In particular, we have

sinΦtb ∼ λ4 , sinΦud ∼ λ2 , (8)

where λ2 ∼ 1
20
. The magnitudes of the remaining seven sin Φiα are of order O(1).

It should be noted that one of the six relations in Eq. (5) is trivial. This implies that

only four of the nine outer angles Φiα are independent. It is easy to prove that such four

independent Φiα are enough to fully determine the magnitudes of the CKM matrix elements

|Viα|. Indeed, we have the following relations between the sides and outer angles of the

unitarity triangle K (or Γ):

SKα sin Φkβ = SKβ sinΦkα ,
SiΓ sinΦjγ = SjΓ sinΦiγ .

(9)

3Analytically, ωiα ≡ | arg(−∆∗

iα
)|.
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As a result, all nine |Viα| can be given in terms of Φiα, for example [15], from

|Viα|
2

|Viβ|2
=

SKαSIβSJα

SKβSIαSJβ

=
sin Φkα sinΦiβ sin Φjα

sin Φkβ sinΦiα sinΦjβ

(10)

and the normalization condition
∑

i=u,c,t

|Viα|
2 = 1. At this point, it is also worthwhile to give

the relations between the sides and the cosines of the outer angles:

cosΦkγ =
S2
Kγ − S2

Kα − S2
Kβ

2SKαSKβ

=
S2
kΓ − S2

iΓ − S2
jΓ

2SiΓSjΓ
. (11)

The cosines should be more sensitive to small alterations of the angles if their values are

close to π/2.

In practice, it will be convenient to choose Φus,Φcs,Φcd, and Φud as a set of four indepen-

dent parameters. These four phases are directly related to the observables of CP violation

in neutral B decays [16], and therefore can be well determined in the near future. For illus-

tration, we list in Table 1 some promising decay modes of Bd and Bs mesons, which can be

used to probe the outer angles Φiα in experiments.

We proceed with some discussions about testing unitarity of the CKM matrix. Due to

various experimental limitations and theoretical uncertainties, a perfect test of the CKM

unitarity is in reality impossible. Hence a practical or approximate check of the unitarity

conditions is worth pursuing. According to Eq. (8),

Φtb = Φud = π (12)

is a good approximation up to O(λ2). Using Eq. (12) we obtain four simple sum rules for

the outer angles Φiα:
Φtd + Φts = π +O(λ4) ,
Φub + Φcb = π +O(λ4) ,
Φus + Φub = π +O(λ2) ,
Φcd + Φtd = π +O(λ2) .

(13)

In a slightly different form, the above relations are expressed as

sin Φtd = sinΦts = sin Φcd ,
sinΦub = sinΦcb = sin Φus ,

(14)

which are valid up to O(λ2). From Eq. (12), some similar approximate relations may be

obtained, up to O(λ4), for the sides of the unitarity triangles:

SU b = SU s , ScD = StD ;
STd = STs , ScB = SuB .

(15)
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Clearly, all these approximate relations are experimentally accessible in the near future. Any

evidence which conflicts with the above relations should be a signal of unitarity breaking.

For a complete test of unitarity, one has to check at least nine independent relations,

in which at least one normalization condition is included and at least one outer (or inner)

angle is involved. Fortunately, the six elements of the first two rows in the CKM matrix

have already been measured and they satisfy the normalization conditions up to O(λ4) [5].

Except for SUb, SUs, and StD, the other sides in Eq. (15) can now be determined very well.

The relations STd = STs and ScB = SuB are consistent with the relevant data. No doubt,

a precise determination of |Vub| is possible in further experiments of B-meson decays [17].

On the other hand, measurements of the top-quark lifetime will sharpen the value of |Vtb|,

which is expected to be unity under the unitarity conditions [5]. The magnitudes of Vtd and

Vts are considerably difficult to be measured in direct decays of the top quark [18]. They

may be determined indirectly from the forthcoming precise data on B0
d − B̄0

d and B0
s − B̄0

s

mixings, respectively.

The problem is that one has not obtained any definite information on the angles of

the unitarity triangles to check the relations in Eqs. (12) and (14). Progress is therefore

dependent upon measuring CP violation in nonleptonic B decays, as illustrated in Table

1. In the literature, many approaches have been proposed to reliably extract the CKM

phase from the expected large CP asymmetries in the B-meson system [12-14, 16]. All these

discussions are useful to determine the phases Φiα.

In summary, we have explored various relations among the outer and inner angles as well

as the sides of the CKM unitarity triangles in a rephasing invariant way. The outer angles

Φiα are emphasized in describing flavor mixing and CP violation within the standard model.

To test unitarity of the 3× 3 CKM matrix, we have presented some approximate but useful

relations among the outer angles and sides, which are accessible to experiments in the near

future.

One of us (Z.Z.X.) would like to thank Professor H. Fritzsch for his hospitality and

encouragements. He is also indebted to the Alexander von Humboldt Foundation for its

financial support.
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Figure 1: The CKM unitarity triangles Γ (= D,S,B) and K (= U,C, T ) in the complex

plane. A common outer angle Φkγ is shared by both triangles. Note the relation between

the outer angle Φkγ and the inner angle ωkγ.

.

Promising decay modes Measurable weak phases Φiα

(−)

B 0
d → J/ψKS, D

+D− sin 2Φus

(−)

B 0
d → π+π− sin 2Φcs

(−)

B 0
d →

(−)

D (∗)0KS sin(Φus + Φcd − Φub)
(−)

B 0
d → D(∗)±π∓ sin(Φus − Φcs)

(−)

B 0
s → J/ψφ, D+

s D
−
s sin 2Φud

(−)

B 0
s → ρ0KS sin 2(Φcd − Φtb)

(−)

B 0
s →

(−)

D (∗)0φ sin(Φcd − Φud)
(−)

B 0
s →

(−)

D (∗)0KS sin(Φub − Φud − Φcs)

Table 1: Some promising decay modes of Bd and Bs mesons and specific rephasing

invariant weak phases Φiα, which are determinable in their CP asymmetries.
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