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Abstract
Computational techniques have revolutionized many aspects of scientific
research over the last few decades. Experimentalists use computation for
data analysis, processing ever bigger data sets. Theoreticians compute
predictions from ever more complex models. However, traditional articles
do not permit the publication of big data sets or complex models. As a
consequence, these crucial pieces of information no longer enter the
scientific record. Moreover, they have become prisoners of scientific
software: many models exist only as software implementations, and the
data are often stored in proprietary formats defined by the software. In this
article, I argue that this emphasis on software tools over models and data is
detrimental to science in the long term, and I propose a means by which
this can be reversed.
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Introduction
Computers have become an essential tool in many aspects of sci-
ence: they help with collecting and processing data from observa-
tions, evaluating theoretical models, and communicating with fellow 
scientists. In the course of the few decades in which scientists have 
used computers, computing technology has changed very rapidly. 
These changes have permitted significant progress in many fields 
of science. However, they have also lead to a shift of focus from 
scientific to technological issues, as scientists eagerly applied new 
computing technology to study ever more complex systems. The 
most visible consequence is that today high performance often 
takes priority over reliable results in computational science, even 
though few scientists would openly admit this preference.

Recently, some of the negative consequences of rushing forward 
at a fast pace have become too visible to be ignored1–3: mistakes 
due to insufficiently verified software, lack of reproducibility due to 
incomplete publication of data and codes and blind trust in software 
without a deeper understanding of the methods applied. The frenzy 
of becoming ever faster is slowly giving way to a more sober atti-
tude that reinstates reliability and verifiability as the prime values of 
science. The Reproducible Research movement4 argues that repro-
ducibility, one of the core principles of science, must be required in 
computational science as well as in other sciences, necessitating the 
publication of all software and data sets that are used in a compu-
tational study. From a somewhat different angle, the Open Science 
movement5, whose goal is access for everyone to the process of 
research, comes to the same conclusion. As a result of these efforts, 
publishing scientific data and software has become not only pos-
sible but straightforward, and journals are starting to encourage or 
even require such publication to accompany the traditional article 
that describes a study’s methods and results.

If the code and the input data of a computational study are pub-
lished, anyone could repeat the computation and verify that it pro-
duces the published results. This is often referred to as replicability. 
At this time there is no agreement on whether replicability is a use-
ful characteristic of a scientific study; the references 6 and 7 show 
two opposing points of view. Replicability limits fraud by proving 
that the authors can actually compute the results that they show 
in an article. It can also be seen as a proof of quality assurance, 
because it demonstrates that the authors have recorded their com-
plete computational workflow, which is not yet common practice. 
However, replicability does not mean that the authors did what they 
describe in their article, nor does it help the readers to develop a bet-
ter understanding of the methods that were applied. Minimal repli-
cability (such as making available a virtual machine image that runs 

the computation) doesn’t imply openness either, as readers cannot 
apply the published methods to different situations, or analyze the 
data using their own methods.

Replicability is clearly not the same as the traditional notion of repro-
ducibility in science. The latter requires that other scientists design 
their own experiments or computations, which incorporate the 
key elements of the original work but differ in points considered 
unimportant, and obtain similar results. In contrast to replication, 
reproduction of a scientific study adds new information that helps 
to identify what matters and what doesn’t matter for obtaining a 
specific result. Making a computational study reproducible thus 
requires explaining the methods behind it in a way that clearly 
states which aspects are considered important.

The central question in computational science is: why should we 
trust the results of a non-trivial computation? We all know from 
experience that software has bugs, and we also know that the use 
of computers is subject to frequent human mistakes. Moreover, 
computational scientists should be aware of the complexity of their 
software, and thus should be concerned that it might not do what 
they believe it does. Creating trust in computational results requires 
validation at all possible levels: we need replicability and reproduc-
ibility, and also an increased effort to explain our computational 
models and methods to our peers. The fundamental problem is that 
scientific software is much too complicated to be an efficient way to 
communicate these models and methods, and no other precise rep-
resentation is available. A detailed understanding of what a given 
piece of software does is often limited to the software’s authors.

In this article I will explain why the current situation is unsatisfac-
tory, and propose approaches for improving it. I will illustrate my 
explanations with examples from my own field of research, which 
is biomolecular simulation. However, after many discussions with 
computational scientists from other application domains, I con-
clude that the situation is very similar wherever computers are used 
for tasks that are impossible to do manually.

In order to make my point clear, I will first give a summary of the 
role of models in science, and of the role of computation in scien-
tific models. This will set the stage for the following discussion on 
the current state of scientific software. I will then propose concrete 
actions that can be taken to improve the situation and outline the 
benefits that we can expect from them.

Models
The central concept presented in this article is the notion of the 
scientific model. The role of models in science has been the subject of 
much debate among philosophers of science8. A good general over-
view written by a scientist for scientists9 and an illustration in the con-
text of physics education10 have been given by Hestenes. A scheme of 
the process of scientific research (see Figure 1) illustrates the funda-
mental role of scientific models: science can be summarized as a pro-
cess whose inputs are the data obtained from scientific observations, 
and whose output is a set of models with the associated validation 
information. As more data become available, new model/validation 
pairs are produced, which may be refinements of older models, but 
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also completely new models. The defining characteristic of a sci-
entific model is that it can be used to deduce verifiable statements 
about observable aspects of nature, which makes it possible to test 
and refine a model using new data from subsequent observations.

Models do not necessarily need to be quantitative. The metabolic path-
ways in biochemistry are a well-known example for non-quantitative 
models. However, in the context of computational science, nearly 
all models are quantitative, as they predict numbers that are com-
pared to the numbers obtained from the actual measurements. In the 
following, I will limit the discussion to quantitative models.

The models most frequently discussed in the context of scientific 
research are those for the systems in nature that we try to understand. 
However, we also use physical models to describe the instruments 
we use to make observations, and non-physical phenomenologi-
cal models to account for the aspects that we do not understand in 
detail. The most common models in the last category are the statisti-
cal error models, such as the very frequently (and usually silently) 
made assumption that an observed value is the “real” value plus 
an “experimental error” described by a Gaussian probability dis-
tribution. Computational studies exploring models for systems in 
nature are called “simulations” and are often performed on models 
believed to be accurate, with the goal of obtaining information that 
is difficult or impossible to obtain from the observation. Simula-
tions that include a model for the scientific instruments are often 
labeled as “virtual experiments”. Computational studies applying 
statistical models to the data are called “data analysis” and typically 
have the goal of determining a set of model parameters that best 
describe the data resulted from the observation or simulation. The 
arguments I present in this paper apply to all of these categories.

Many scientific models are formulated in the framework of a theory 
which defines the general rules for a large class of models. An 
example is classical mechanics, which is a theory describing the 
dynamics of systems of point masses or finite-volume rigid bodies. 
Within the framework of classical mechanics, a model for a concrete 

system can be defined by a single function called a Hamiltonian. 
Theories play an important role in the most mature fields of science 
(e.g. physics) but are not essential for defining models. Younger dis-
ciplines, e.g. systems biology, construct models in a more ad hoc 
fashion without a clear underlying theory. Yet another approach is 
the construction of models derived from several theories in a mul-
tidisciplinary setting, e.g. in climate research. For the aspects that I 
discuss in this article, it does not matter if a model is developed in 
the context of some theory.

Computable models are the models that are of prime interest in com-
putational science. A computable model is a computable function, 
as defined in computability theory11, whose result can be compared 
to data from observations. Since validation requires the compari-
son of concrete results with observed data, one would expect that 
all quantitative models in science are computable models. Surpris-
ingly, this is not the case. In fact, most mathematical models used 
in science are not computable.

Consider, for example, the description of the solar system in terms 
of classical mechanics that goes back to Isaac Newton: a set of 
point masses (the sun and the planets) interacting through Newton’s 
law of gravitation and moving according to Newton’s laws of 
motion. The latter are differential equations for the positions and 
velocities of the celestial bodies. Together with a set of parameters 
obtained from observation (for example, the positions and veloci-
ties of all celestial bodies at a given moment in time), these equa-
tions determine the positions and velocities at any time in the past 
or the future. However, they do not provide a recipe for comput-
ing the actual numbers that could be compared to observations. An 
additional approximation is needed to obtain a computable model. 
For the simplest case of a system of only two celestial bodies, an 
analytical solution of the differential equations can be obtained. This
solution contains transcendental functions (sines and cosines), which 
are computable to any desired precision. However, when three or more 
celestial bodies are included in the model, no analytical solution 
is available and the differential equations must be approximated 

Figure 1. A scheme of the process of scientific research. The main input is data from observations, the main output are models with 
associated domains of validation.
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by finite difference equations12. The development of computable 
approximations to the Newtonian model of celestial dynamics 
remains an active topic of research (see e.g.13). More generally, one 
can consider the whole field of numerical analysis as dedicated to 
constructing computable approximations to non-computable math-
ematical models.

It may seem surprising that most mathematical models used in the 
most mature domains of science do not strictly speaking deserve 
the label “scientific”, because they cannot make predictions that are 
immediately comparable to observed data. The explanation is that 
computation was for a long time considered a menial task not wor-
thy of the attention of a distinguished mathematician or scientist, 
who should concentrate on mathematical and logical reasoning. As 
Dowek14 explains in a fascinating account of the interplay of rea-
soning and computation in mathematics and logic in the course of 
history, the important role of computation in formal reasoning has 
become clear only during the 20th century. While today it is gener-
ally accepted by mathematicians and logicians, most theoreticians in 
the natural sciences still consider computation an inferior approach 
to exploring scientific models, which is only used out of necessity 
when other techniques have failed. I suspect that this lack of inter-
est by “real theoreticians” for the computational aspects of science 
might have contributed to the problems that I have outlined in the 
introduction. This would also explain why computational training 
is still largely absent from the science curricula around the world.

Scientific models can be written down in many ways: mathemati-
cal equations, diagrams, plain language, etc. The same model can 
be represented by different notations. For example, in principle 
any mathematical equation could be replaced by a verbal descrip-
tion. Computable models can be expressed in any Turing-complete 
formal language, and in particular in any of the commonly used 
programming languages, making them the most precise and unam-
biguous scientific models. The very fact that a program runs and 
produces results proves that the model specification is complete 
and unambiguous, assuming that the computing system itself (hard-
ware, operating system, compiler, etc.) works correctly and that the 
programming language it is written in has clearly defined semantics 
(which, unfortunately, is not the case for widely used languages 
such as C15. The utility of computation in the process of understand-
ing and documenting science has been pointed out by Sussman and 
Wisdom16, but is not yet widely recognized in the scientific com-
munity. A nice illustration from an engineering domain (the design 
of musical instruments) is given by Mairson17, who designed a com-
putable notation for describing the geometrical constructions that 
have been used for a few centuries to construct string instruments. 
His notation is meant to be both a set of instructions for a computer 
and a precise and unambiguous description for human readers.

A final important point about computable models is the importance 
of correctly identifying, understanding and documenting approxima-
tions. Scientists frequently make approximations to computational 
models without recognizing them as such, and therefore do not doc-
ument these approximations in their publications. A good example 
is the use of finite-precision floating-point numbers in place of real 
numbers. Most scientists would consider this a technical necessity 
in implementing a model on a computer, and therefore an imple-
mentation detail of computational software. However, floating-point 

numbers have properties that differ significantly from real numbers 
(for example, addition and multiplication are non-associative), and 
the finite precision necessarily changes the results of the computa-
tions. Making such approximations explicit would also encourage 
the consideration of alternatives, e.g. the use of interval arithmetic. 
In general, any modification to a computer program that changes 
its results implies an approximation to the original computational 
model. This also includes techniques such as lossy compression of 
output data, which again are usually considered implementation 
details.

In summary, computational science involves working with com-
putable scientific models, which are either constructed from first 
principles or more frequently as approximations to non-computable 
models. A publication describing a computational study should 
contain a full description of the models that were actually used in 
the computations. For the models derived as approximations, this 
means that the final approximation, though preceding steps in the 
derivation, should also be given in order to document the process. 
Computable models can be expressed unambiguously in a Turing-
complete formal language. A suitable Turing-complete language 
should be the preferred form for publishing models.

Tools and methods
Scientists use a variety of tools to gather observational data, explore 
the predictions of models and perform comparisons between them. 
I use the term “tool” in a general sense that includes both physi-
cal objects (e.g. microscopes, lasers, etc.) and mathematical theo-
rems or procedures (e.g. calculus or algebra), but not mathematical 
axioms and definitions, which form the language of mathematics 
rather than its toolbox. Both computers and the software that runs 
on them are thus considered tools. Tools are evaluated by how well 
they help us in getting a job done, which leads to criteria such as 
precision, performance, efficiency, convenience and price. In scien-
tific publications, the tools are described in the “Methods” section. 
A computational method corresponds to running one or more soft-
ware tools with specific input parameters.

People using tools, not only in science, develop a mental model of 
how the tools work and what they do. Such mental models are mostly 
empirical and are developed by training and experience. They are 
personal and not formalized in any way. There is no fundamental dif-
ference in how we form mental models of a car, a microscope, and a 
text editor running on a computer. Our mental models are limited to 
the aspects of the tools that we have to know, and they do not include 
the tools’ inner workings or construction details. For example, to 
drive a car, we need to understand accelerating, braking and steer-
ing, but not the process of combustion in the engine. Similarly, we 
can use a microscope or a text editor with far less knowledge than it 
takes to design and build one. However, the domain of application 
and the precision that we can expect from the results are part of the 
mental models that scientists need to have for their tools.

While tools are indispensable for conducting science, they are not 
considered as part of the outputs of science, which consist of vali-
dated models. Articles documenting scientific studies describe the 
tools and methods that were used in the experiments or computa-
tions in order to permit readers to judge the pertinence of the con-
clusions drawn from the outputs. The development of new tools 
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is also described in scientific publications because these tools are 
important products of the scientific research process. Nevertheless, 
these two aspects (tools and outputs) should be kept separate. The 
conclusion of a scientific study needs to be independent of a spe-
cific tool to deserve the name “scientific”. Another scientist should 
be able to reach the same conclusion using different tools, which is 
part of the requirement of reproducibility.

In computational science, the distinction between models and methods 
is not always very clear, because both take the form of algorithms. 
Some disciplines, e.g. bioinformatics, are very methods-oriented 
and rarely refer to models. A bioinformatician is more likely to pro-
pose a “method to predict protein folding” than a “model for protein 
folding”. This is partly due to differences in scientific jargon among 
disciplines, but it also reflects deeper issues concerning the role of 
computing in science. The global minimum of a knowledge-based 
potential for proteins is clearly a scientific model for a native struc-
ture. It is even a computable model in the sense of computability 
theory, in that there are known algorithms that can find the global 
minimum in finite time to any specified precision. However, that 
finite time is so long on today’s computers that the global minimum 
cannot be computed in practice. Bioinformaticians therefore con-
struct heuristic methods that find structures close to the global mini-
mum rapidly in the majority of cases. If these heuristic methods are 
deterministic, they should be considered approximations to the orig-
inal model. This is not an option for heuristic methods that involve 
random choices, because they do not produce a unique result for a 
given input and therefore do not qualify as scientific models.

It is important to distinguish the use of randomness in heuristics 
from the use of probabilistic models, i.e. models that predict observ-
able quantities as averages over probability distributions. The latter 
are in the same category as the global-minimum example discussed 
above: the numbers they predict are well-defined and computable, 
even though their computation is often beyond the limits of today’s 
computing technology. By contrast, a method such as k-means 
clustering, whose initialization step requires an arbitrary random 
choice, yields a different result each time it is applied, and there is 
no reason to attribute any meaning to the statistical distribution of 
these results. In fact, the distribution used in the initialization step is 
hardly ever documented because it is considered irrelevant. The role 
of such heuristics in computational science remains to be clarified.

The double role of scientific software
The dominant role of software in our lives is the role of tools. A com-
puter program does something: play videos, manage bank accounts, 
simulate protein dynamics, etc. A software is developed explicitly 
for doing something, and is evaluated by how well it performs the 
task. In most situations where software is used, there is a clear dis-
tinction between the software as a tool and the content that the tool 
works on. A video player is distinct from the movies it plays, and 
this distinction is visible to everyone: there is one file on the com-
puter for each movie, and one file (or set of files) for the video 
player. The same video player can play many movies, and for each 
movie file there are multiple computer programs that can play them. 
The same clear distinction holds between the software that man-
ages bank accounts and the databases that contain the actual data. 
However, it does not hold for the simulation of protein dynamics. 

A simulation is the computation of a prediction from a model, but 
there is no computer file that holds a model for protein dynamics, 
and another file that holds a simulation program. The model is an 
integral part of the simulation program. The files read by that pro-
gram contain some of the parameters of the model (e.g. the initial 
structure of the protein), but not the model itself. There is no clear 
separation between the tool and the model it operates on.

This fusion between models and tools in computational science is 
problematic because models and tools have very different roles in 
science and are evaluated according to very different criteria. Blur-
ring the distinction leads to a number of undesirable consequences:

Lack of understanding: In the theoretical sciences, researchers 
should know and understand in detail the models they apply. These 
models are shared by a research community, and formalized using 
a suitable standard notation to reduce ambiguity in communica-
tion. Scientists do not have the same detailed understanding of their 
tools. Researchers using scientific software (as opposed to those 
who develop it) work with an empirical mental model of that soft-
ware, as explained above. When scientific models are hidden inside 
the software, the higher level of understanding required for them 
becomes very difficult to develop. As a consequence, research-
ers cannot make an informed decision between different models 
and often choose the more convenient or more efficient program, 
regardless of the model that it implements.

Lack of verification: New tools should be tested by running them 
on well-known models as test cases, for which they should produce 
exactly the same results. New models should be tested by com-
paring them with well-known ones, using exactly the same tools. 
Software that inextricably combines complex models and complex 
technology becomes nearly impossible to evaluate. Moreover, for-
mal proofs can be used to validate software tools against a formal 
specification. But formal proofs cannot handle scientific models 
(they are validated against observations), and therefore they cannot 
handle tools with built-in models either. Tools can only be validated 
using formal proofs if they work on models that are external.

Interdependence: Models and tools should evolve independently: 
models are improved with the progress of science, whereas compu-
tational tools are improved following changes in computing tech-
nology, or simply by investing more efforts. When the models are 
part of the tools, it becomes difficult to distinguish an improved tool 
from an improved model. Moreover, changes to the tools for techni-
cal reasons (i.e. accelerating a computation using Graphics Process-
ing Units (GPUs)) often require approximations to the embedded 
models, which tend to remain undocumented because they are not 
recognized as such.

All these consequences can be observed in the field of protein simu-
lations. It is generally accepted in the protein simulation community 
that it is impossible to obtain the same numbers for a given system 
from two different simulation programs (lack of verification). Most 
scientists understand that this is due to no two programs implement-
ing exactly the same model. However, few if any practitioners are 
able to explain how exactly these models differ (lack of understand-
ing). It is also considered inevitable that different versions of the 
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same program, or even two executables compiled with different 
compilers or compiler options, produce slightly different results for 
what should be the same model (interdependence).

It is important to understand the practical differences between a 
computable scientific model and a software tool. From the point of 
view of theoretical computer science, both are programs and both 
are expressed in a Turing-complete language. However, the model 
specifies just the result of a computation. The software tool defines 
how to perform a computation efficiently on data read from and writ-
ten to permanent storage, within the constraints of a given physical 
computer. This requires handling aspects such as the use of resources 
(memory, CPUs), I/O, and possibly parallelization. A practically use-
ful software tool also requires attention to the user interface, to file 
formats, and other tool-specific characteristics. In a typical scientific 
software tool that integrates models, the vast majority of the source 
codes is dedicated to these technical aspects, to the point that it can 
be difficult to identify the models in the source code.

It is interesting to analyze why the fusion of models and software 
tools is possible and how it occurred. In the cases of video play-
ers and bank account management cited above, the separation of 
tools and data seems evident. The tools consist of instructions for 
the computer, the data is ultimately just a sequence of numbers. 
Anyone who has written simple programs is able to see at a glance 
the difference between software (text files containing instructions 
in a programming language) and data (tables of numbers and text 
for the bank accounts, compressed binary files for movies). The 
archetype of a scientific model is a set of mathematical equations. 
This seems much more similar to a program than to data, all the 
more since most programming languages provide syntax for math-
ematical formulae that look similar to written maths. Moreover, 
as explained above, computable models actually require a Turing-
complete notation. A programming language is thus a natural fit: 
it is very straightforward to translate a computational model into 
a program code. On the other hand, it is not at all straightforward 
to write a program that reads in a scientific model as it would read 
in “normal” data. So it seems that scientific models are in fact pro-
grams rather than data.

However, the distinction between “program” and “data” doesn’t 
stand up to scrutiny. Programs are data. They are stored in files, can 
be copied around, e-mailed, etc., just like any other piece of data. 
Compilers read source code files as data and transform them into 
executables, which is just a conversion of data into another form. 
The distinction between programs and data that seems so obvious to 
computational science practitioners is just a historical accident. The 
programming language Fortran18, which made large-scale scientific 
computing possible in the late 1950s, made this distinction for prac-
tical reasons: it allowed the development of simple and efficient 
compilers. Lisp19, another programming language developed in the 
late 1950s for research in artificial intelligence, made the opposite 
choice: a program is just a particular interpretation of a data struc-
ture. Lisp programmers routinely assemble data structures and then 
execute them as programs. However, early Lisp implementations 
were slow compared to Fortran, and thus never became popular 
in computational science, with the notable exception of computer 
algebra systems.

In the early days of computational science, a theoretician would 
define a model with pencil and paper, and then write a program to 
do a specific computation based on that model, such as comput-
ing an integral or solving a differential equation numerically. The 
computation on the computer simply replaced the earlier practice 
of manual computation. Models were published in journal articles, 
just like in the pre-computing era. A computer program was con-
sidered an implementation of the model and testing the program 
involved comparing its output with results from analytical manipu-
lation of the model for suitable input values.

With the rapid increase of computational power, scientists could 
handle ever more complex models, and in particular models far too 
complex to be managed with pencil and paper. But scientific publi-
cation remained in the pencil-and-paper world for a few more dec-
ades, because electronic communication became feasible only with 
the rise of the Internet in the 1990s. Scientists could thus work with 
computational models that were too complex for publication, and as 
a result they stopped publishing their models. With the separation 
of models and programs being discouraged by the computational 
tools, and in the absence of any motivation to formulate compu-
tational models independently from programs for communication, 
the fusion of models and programs became almost inevitable.

Software as a notation for scientific knowledge
In the previous section, I have explained the undesirable conse-
quences of the fact that computational models are often insepara-
bly intertwined with the software tools that work on them. There 
is another important problem resulting from the fusion of tools and 
models, which is related to the different time scales on which science 
and computing technology evolve at the moment. This problem could 
disappear in the unlikely case that progress in computing technology 
slows down in the future, but it currently requires immediate atten-
tion if we want to preserve the scientific heritage of the last decades.

Knowledge has a finite lifetime. Even if information storage media 
could be preserved forever, the meaning of the information they 
contain is ultimately lost because the semantic context in which 
it was encoded cannot be recorded. The best examples are histori-
cal written documents that nobody can read today, because the lan-
guages and writing systems used at the time have disappeared20.

Written human languages are the most stable semantic contexts we 
have: they change on a time scale of centuries to millennia. Sci-
entific jargon and scientific notations are even more short-lived. 
Journal articles written 100 years ago are difficult to understand 
for today’s scientists. The original writings of Galileo or Newton 
can be understood only by scholars specialized in the history of sci-
ence. The time scale on which original publications remain under-
standable is a few decades. This doesn’t mean that knowledge is 
lost rapidly. As the original writings become less and less clear, the 
aspects that are recognized as particularly important are constantly 
reformulated in review articles, monographs, and textbooks. This 
is why the insights of Galileo and Newton are still accessible to 
today’s physicists.

Software as a notation for knowledge representation has a much 
shorter lifetime than scientific writing and mathematical notation. 
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There are two approaches to understanding software: (1) studying 
it theoretically, by reading the source code and the documentation, 
and (2) observing its behavior, by running the program. Practice 
has shown that both approaches must be combined for a success-
ful understanding of non-trivial software. Reading the source code 
permits making hypotheses about what the program does, which 
are then checked by running it on suitable input data. Source code 
remains intelligible as long as the language it is written in remains 
in active use. Depending on the language, this implies a time scale 
of a few years to at best one or two decades. Running a piece of 
non-trivial software without modifications is rarely possible after 
more than a few years. Software requires regular “maintenance” 
to remain usable. This maintenance consists in updating the source 
code and the installation procedures to adapt them to changes in 
the computing environment (compilers, operating systems, etc.) and 
in the dependencies (libraries, etc.). Maintenance is expensive and 
economically feasible only for widely used programs. Moreover, it 
generally proceeds in parallel with improvements in the models and 
methods implemented by the software. Today’s working version of 
a piece of scientific software does not necessarily reflect the models 
and methods that were implemented in its predecessor used a few 
years ago for an important computational study. Technical solutions 
such as the use of version control systems and archiving the exact 
code used for a specific scientific study can help to alleviate this 
problem, but they are not a panacea: they do not provide a code 
that works 30 years from now and implements today’s models and 
methods.

The consequence of the different time scales on which scientific 
knowledge and computing technology evolve is that we are losing 
scientific knowledge encoded in the form of software faster than 
it can be integrated into the reformulation process of science. For 
many computational studies performed during the last decades, it 
is already impossible to find the exact models and methods that 
were used. By applying the recommendations of the Reproduc-
ible Research movement, i.e. by publishing and archiving software 
and data, we can preserve the original expressions of this scientific 
knowledge, but not the semantic context.

This knowledge rot problem concerns not only models and meth-
ods that are embedded in scientific software, but also data stored in 
formats that are proprietary and thus defined by the software that 
reads and writes them. When the software becomes unusable, the 
data becomes unreadable. This aspect is much more widely recog-
nized and there is a general consensus among experts in scientific 
data management that proprietary data formats are unsuitable for 
publishing and archiving purposes. The same attitude should be 
adopted with respect to models.

Shifting the focus from tools to models
Solving the problems that I have discussed above would require 
most of all a shift of focus in computational science. Instead of con-
centrating on tools, which then subsume models and imprison data, 
we should focus on models and data as the primary items of interest 
for science. Before thinking about the question “How can I best do 
this computation?”, we must first consider the questions “What data 
and models does this computation depend on?” and “What will be 
the result of this computation?”

Such a shift of focus does not happen overnight. On the contrary, I 
would expect it to take many years, or maybe decades. In the fol-
lowing, I will outline some concrete steps to make it happen. First, 
I will discuss short-term actions that can be taken immediately and 
do not require profound changes to the scientific software and work-
flows that we use today. These actions will improve the understand-
ing of the models implemented in scientific software, and will make 
it possible to discuss models in the scientific literature. I will then 
describe a second set of actions which require a serious research and 
development effort, but also offer significant benefits in return: the 
possibility to turn scientific models into first-class digital objects 
that can be published and archived, and the possibility to verify  
scientific software by formal proofs.

The main short-term action that must be taken is a thorough docu-
mentation of the scientific models that are implemented in a piece 
of software. Such documentation should explain the models in plain 
words and in mathematical notation, and point the reader to the 
relevant parts of the source code. Moreover, it should discuss how 
compilation and installation options and data in input files affect 
the models. As a guideline for deciding if a given feature belongs 
to the model or the tool, consider the interpretation of the results 
of the computation. Anything that changes these results in a way 
that must be understood for their interpretation is part of the model. 
Computational studies should cite the model documentation of the 
software that was used, and provide the values of all relevant com-
piler and installation options and input parameters.

A related short-term action is writing reference implementations 
of scientific models in the form of programs optimized for clarity 
rather than performance or flexibility. Such reference implementa-
tions are at the same time a precise documentation of the model 
and executable programs whose results can be used to validate the 
results of more complex software written to be used as a tool. Writ-
ing reference implementations, like writing better documentation, 
takes time, and therefore one condition for making it happen is the 
creation of suitable incentives.

Further useful actions can be taken to improve scientific software 
without introducing any profound changes. User interfaces, a cat-
egory which includes command-line options and the syntax of input 
files, can be redesigned to clearly separate model-related information 
(typically model parameters) from tool-related information. A clear 
distinction helps users to better understand the techniques they apply. 
Software developers can also aim for better modularity with respect 
to models: the source code of the program can be restructured to con-
centrate model-related aspects in as few source code files as possible.

Reaping the full benefits of a separation between models and tools 
requires more profound changes to the structure of scientific software. 
Models and tools must become distinct entities, which are developed, 
tested and published independently. Tools read in model specifica-
tions as input data. Such an approach is technically feasible today, due 
to the enormous progress that computer science has made since the 
1950s. Domain-specific languages can be designed for the defini-
tion of scientific models, and translated by tools based on compiler 
technology into efficient code for today’s and tomorrow’s comput-
ers. A significant amount of research and development remains to 
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be done, but it is justified by the improvements in the quality of 
computational science that it will make possible.

The most immediate benefit is that models will become well-defined 
citable entities. A model that has been specified in a formal machine-
readable notation can be published and cited via a Digital Object 
Identifier (DOI). Tools can be written to define, explore, modify and 
evaluate models. In particular, tools that are very similar in spirit to 
today’s computer algebra systems can be used to create approxima-
tions and combinations of scientific models. Theoreticians will be 
able to work with computable models in electronic form just like they 
used to work with mathematical models on paper in the past. Formal 
model specifications are not subject to the rapid evolution in com-
puting technology, and can therefore be expected to be much more 
stable over time than today’s models embedded in software tools.

Formalized models can also play an important role in future human 
interfaces to science, as used for communicating results and teach-
ing students. It is foreseeable that static publications such as today’s 
articles will be replaced by dynamic and interactive presentation 
and visualization techniques (see 21 and 22 for examples). Creat-
ing such presentations on top of executable models ensures con-
sistency between explanations and applications. With models being 
digital objects with clear semantics and a stable reference through 
a DOI, they become accessible to content mining and bibliometric 
analysis. It will be possible to compile databases of models used 
in published studies, which can then be annotated with validation 
information. The output of science shown in Figure 1 will become 
more formalized than it is now, which is likely to improve the qual-
ity of science overall.

Another important gain in reliability can be expected from soft-
ware technology. The automatic program verification methods 
that are currently developed (see e.g. 23 for a non-trivial practical 
application) will become available for scientific software24. These 
approaches use automated proofs to verify that a program’s output 
conforms to its specification. These cannot be applied to today’s sci-
entific software because it has no formal, and thus machine-readable, 
specification. The reason for this are the integrated models. Math-
ematical proof techniques cannot validate a model, because its 
validity is determined by comparison to observational data. How-
ever, given a formalized model, mathematical proof techniques can 
verify that a software tool correctly implements this model. This 
is probably the single most important element for improving trust 
in scientific software and thus computational science. However, to 
make this happen, a much closer collaboration of computational 
scientists and computer scientists would be required in the future.

Floating-point arithmetic
The specificity of floating-point arithmetic deserves a special dis-
cussion, both because of its central role in much of scientific soft-
ware and because of its reputation of being the source of intractable 
problems.

First of all, it is worth pointing out that floating-point arithmetic can be 
defined as rigorously as integer arithmetic. The IEEE 754 standard25 
provides a well-defined data representation at the bit level and a set 
of well-defined deterministic operations. Much of the mysterious 

behavior attributed to floating-point arithmetic is due to the fact that 
programmers and programming language designers reason about 
floating-point numbers as if they were real numbers, in particular 
assuming associativity for addition and multiplication. This hap-
pens partly by mistake (a lack of understanding of floating-point 
arithmetic), and partly out of the desire to create more opportunities 
for code optimization by compilers (see the discussion in 23).

Unfortunately, none of the programming languages currently popu-
lar for scientific computing define the semantics of floating-point 
operations precisely enough to give the programmer a full control 
over the result of a calculation. As a consequence, the output of any 
program using floating-point arithmetic depends on choices made 
by compiler writers. Thus a scientific model specified with precise 
floating-point semantics cannot be implemented correctly using 
today’s scientific programming languages. This situation is in fact a 
consequence of the attitude that I have described in the introduction: 
computational science is so much focused on the performance of 
the computations and so little on the correctness of the results that 
there is no incentive for language designers and implementors to 
improve the situation.

However, this does not mean that the actions I have described above 
are doomed to fail. The goal is to change the currently dominant 
attitudes. This should also lead to the development of program-
ming tools that provide full control over floating-point operations. 
Moreover, it is not at all evident that floating-point numbers will 
continue to occupy a dominant role in scientific computing in the 
long run. Their popularity is mainly due to the at least apparent 
ease they offer for constructing computable approximations to the 
scientific models of the pre-computing era, which use real num-
bers to describe continuous physical quantities. It is well possible 
that other number representations will be used in the future. The 
recently proposed DEC64 format26, which aims to replace both 
integers and floating-point numbers, shows that there is still interest 
in improving number handling in computer software.

Related ideas and approaches
The problem that technical details tend to swamp the result-relevant 
aspects in program source code is not specific to scientific comput-
ing. Among the many software engineering approaches that aim to 
improve the situation, Model-Driven Engineering27 is the one most 
similar to the approach that I have outlined. It introduces the notion 
of a model as the specification of what a program is supposed to 
do. Program generators then produce an efficient implementation. 
However, like all of software engineering, Model-Driven Engineer-
ing has the goal of producing better tools. The models are little 
more than tool specifications, and are normally not accessible to the 
users of the finished software.

Several scientific software packages are based on domain-specific 
languages (DSLs) that allow users to write down certain aspects of 
their problem in a notation that is more compact and familiar than 
a programming language. An example is the FEniCS package for 
solving differential equations28, whose DSL provides a means to 
write a differential equation in a notation that is close to traditional 
mathematics. However, the focus is on the mathematical equations 
rather than on the computable model, which consists of more than 
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just the equations (boundary conditions, meshes, etc.). The distinc-
tion between the DSL and the implementation language is made 
for convenience of notation, not for a separation of concerns. This 
characteristic is shared by the other scientific DSLs that I am aware 
of. These DSLs have the goal of facilitating the technically most 
challenging part of encoding science in a computer program, but 
they do so clearly in the context of tool development.

Orchard and Rice29 propose an “agenda for programming language 
research” in computational science which addresses many of the 
topics discussed here from the point of view of programming lan-
guage research. Their agenda represents a continuation of the DSL 
approach described in the last paragraph. The authors insist particu-
larly on the separation of concerns between scientific models and 
software implementation details, and propose a path of evolution for 
existing scientific software. Their article contains many references 
to prior work of interest.

Murray-Rust and Murray-Rust’s “Reproducible Declaratron”30 pro-
poses and implements ideas which are similar in many respects to 
what I have outlined in this article. Their approach is based on a 
long-term effort towards making scientific documents more precise 
and at the same time machine-readable by adding semantic markup. 
For example, in the plain-text sentence “the experiment was run at 
a temperature of 21 degrees”, the temperature specification would 
be replaced by XML elements indicating the type of quantity (tem-
perature), the value (21), and the unit (degrees Celsius), with each 
part having a clearly defined meaning written down in a dictionary. 
The “Reproducible Declaratron” adds computation to this frame-
work, applying the principle that formulae and algorithms are data. 
The authors do not make an explicit distinction between comput-
able models and computational tools. They do make the distinction 
between a “formula” and a “computation”, which for the examples 
they discuss is very similar to the model-tool distinction, but is lim-
ited to models derived from mathematical equations. An outstanding 
feature of their approach is that it moves formulae and computations 
from computational tools into scientific publications.

Finally, my own ActivePapers project31 provides a framework for 
computational science that does a first step in the direction I advo-
cate in this paper: it shifts the focus from doing computations to 
publishing computational methods and results. An ActivePaper is 
a publishable and citable package of data sets, including execut-
able codes as another kind of data. Every data set in a published 

ActivePaper has an automatically resolvable reference. Moreover, 
the framework was explicitly designed to include code transforma-
tion and code generation. However, suitable domain-specific model 
languages and tools that work on them remain to be developed.

Conclusion
In the preceding sections, I have explained that (1) the way we cur-
rently perform and publish computational science is unsatisfactory 
and that (2) we can and should improve our attitudes and technology. 
The situation I have described is a symptom of a lack of exchange 
between the natural sciences and research in computer science. 
Today’s computational scientists see computer science as an engi-
neering discipline that provides them with ever increasing number 
crunching power. Their own training in computational techniques is 
usually limited to managing the practicalities of working with soft-
ware tools. From the other side of the fence, computer scientists see 
scientific computing as almost synonymous with high-performance 
computing.

In the past centuries, much of the progress in science was due to an 
interplay between mathematics and physics in a domain of research 
now called “mathematical physics”. It was conducted by scientists 
who were at the same time application-oriented mathematicians 
and mathematically minded physicists. Science in the 21st century 
would benefit from a similar approach at the interface between 
computation and theoretical science. Computational scientists 
would discover that computers are not only convenient slaves to 
which they can offload laborious computations, but also tools that 
can improve our understanding of scientific models. Computer sci-
entists would discover how computation plays a fundamental role 
in our efforts in understanding natural phenomena.
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relevant situation in astronomy.

More importantly, I think it is clear from my article that Newton's solar system model is merely an
example. My claim that "most" mathematical models are not computable can clearly not rely on this
one example. What motivates this statement is the importance of numerical analysis in science, as
I explain in the immediately preceding sentence. 

 NoneCompeting Interests:

 20 June 2014Reviewer Report

https://doi.org/10.5256/f1000research.4790.r5205

© 2014 Hestenes D. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution Licence

work is properly cited.

 David Hestenes
Professor Emeritus, Department of Physics, Arizona State University, Tempe, AZ, USA

I approve of the changes made to the article, and have no further comments.

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Version 1

 27 May 2014Reviewer Report

https://doi.org/10.5256/f1000research.4263.r4684

© 2014 Jansson P et al. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution Licence

work is properly cited.

 Patrik Jansson
Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

 Cezar Ionescu
Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

This position paper addresses the current state of computational science (the term is not defined, but
appears to mean the use of computational models as an essential means of scientific investigation).  As
the author says, "the central question in computational science is: why should we trust the results of a
non-trivial computation?".  At the moment, the answer appears to be: "we probably shouldn't", clearly an
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non-trivial computation?".  At the moment, the answer appears to be: "we probably shouldn't", clearly an
unsatisfactory state of affairs.

This is a point which has been made before, and the paper references a number of previous attempts to
come to grips with it. The author's own approach is based on the introduction of an interesting conceptual
distinction: between models and tools.  It is then argued that many of the problems in today's
computational science arise because of "blurring the distinction".

That the distinction is not unproblematic is illustrated by the following difficulty. On page 4, tools are
defined to be "both physical objects and mathematical theorems or procedures (e.g. calculus or algebra)".
 Later, we read: "the conclusion of a scientific study needs to be independent of a specific tool to deserve
the name 'scientific'". On the previous page, however, we have the example of a description of the solar
system as a set of differential equations. This seems to be crucially dependent on calculus. Is it therefore
not scientific?

As this example shows, the paper is sure to provide food for thought and for debate. We find that it does
contribute to highlighting and clarifying the problems we encounter in computational science, and as such
it deserves to be published and to reach a wider audience.

There is one error which must be corrected before that, however: namely, on page 3, where the functions
"sin" and "cos" are said to be uncomputable, by virtue of being transcendent. In fact, it is well known that
they are computable (as are all functions that can be expressed by power series, which is one of the
examples in Turing's 1936 paper). If the author has a different notion of computability in mind, then it
should be stated explicitly. (See the labels [Approx0], [Approx1] and [Approx2] below for some more
details.)
Another somewhat strange statement (but not an error) is that "heuristic methods that involve random
choices [...] do not produce a unique result for a given input and therefore do not qualify as scientific
models".  One would think that they do, in fact, produce a unique result: namely a probability distribution,
and that computer simulations can be used to sample this distribution to whatever precision necessary.

There are, additionally, a number of infelicities which might be addressed before publication, such
anthropomorphic expressions ("computers help with collecting..., evaluating, ..., and communicating"
instead of "computers are used for collecting ..., evaluating, ..., and communicating"), or the
less-than-helpful figure 1, which does not seem to bring anything over its one line description in the
caption.

Some detailed comments:
Abstract: "As a consequence, these crucial pieces of information have disappeared from the
scientific record." We suggest some reformulation. It is not that they have first been there and
later "disappeared" but rather they were absent all along and now (with more complexity
developing) they are increasingly difficult (or impossible) to generate from what is in "the scientific
record".
 
[Approx0] "But this solution contains transcendental functions (sines and cosines), which are not
computable and therefore must be replaced by computable approximations, e.g. power-series
expansions." Reformulate: perhaps move the text from [Approx2] up and reformulate.  "... there are
known algorithms that can find ... in finite time to any specified precision."
 

[Approx1] "they cannot make predictions that are immediately comparable to observed data": All
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[Approx1] "they cannot make predictions that are immediately comparable to observed data": All
observed data is of finite precision so it can be claimed that comparing model results to   observed
data is often (but not always) feasible.
 
"The very fact that a program runs and produces results proves that   the model specification is
complete and unambiguous, ..." The semantics of some languages (like C) is ambiguous
(non-deterministic).
 
"... the importance of correctly identifying, understanding and documenting approximations." We
strongly agree with this part and think it would be worth pointing to interval arithmetic as one way to
handle this problem.
 
[Approx2] "It is even a computable model in the sense of computability theory, in that there are
known algorithms that can find the global minimum in finite time to any specified precision."   Note
that this looks inconsistent within the paper: earlier (at [Approx0]) you claim that sin and cos are not
computable, but with this definition they are.
 
It would be preferable to skip "of course" here: "This doesn’t mean of course that knowledge is lost
rapidly." := "This doesn’t mean that knowledge is lost rapidly."
 
"tools that very similar in spirit" := "tools that are very similar in spirit".

 No competing interests were disclosed.Competing Interests:

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

Author Response 05 Jun 2014
, Synchrotron SOLEIL, Division Experiences, Gif sur Yvette, FranceKonrad Hinsen

The referees raise some interesting points, which I hope to have addressed in the revised version
of my article.

Concerning the use of calculus in defining mathematical models through differential equations, it is
important to distinguish between axioms and definitions on one hand, and theorems and their
applications on the other hand. I have added a short sentence to make this distinction explicit.
Theorems and procedures are tools, and scientific models should indeed not depend on them.
Axioms and definitions are simply the semantic context for mathematical equations, i.e. the
language in which mathematical models are written. Newton's equations are based on the concept
of a derivative, but do not rely on any particular theorem or technique from calculus.

The referees are right about the computability of sines and cosines. I have corrected this statement
in the revision.

I have also added a paragraph at the end of the "Tools and methods" section to clarify the
distinction between probabilistic models and heuristics involving arbitrary or random choices,
which wasn't as carefully explained as it should have been.

Minor points that I have addressed in the revision are:
the ambiguity of languages like C
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the ambiguity of languages like C
interval arithmetic as an alternative to floating-point arithmetic
typos and stylistic issues

 NoneCompeting Interests:

 16 May 2014Reviewer Report

https://doi.org/10.5256/f1000research.4263.r4793

© 2014 Hestenes D. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution Licence

work is properly cited.

 David Hestenes
Professor Emeritus, Department of Physics, Arizona State University, Tempe, AZ, USA

This is an exceptional paper in many ways. First, it is extremely well written and well organized. Second, it
deals with an important, complex subject, providing a careful, novel analysis and parsing of
terms. Though the subject cuts across many scientific domains, the author demonstrates clear
competence in each. Finally, I think Hinsen is right in advocating primacy of models over tools (as he has
so carefully defined them).

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Comments on this article
Version 2

Author Response 27 Apr 2015
, Rue Charles Sadron, 45071 Orléans, FranceKonrad Hinsen

I am vaguely familiar with some of the modeling languages you cite, but not enough to judge how close
they come to the ideal that I describe in my article. The one I have looked at most closely is Modelica, but
it's so complex that it is hard to make any statements about it without also making a fool of myself. My
impression is that Modelica is most similar to DSLs for the specification of simulations, for which I cited
FEniCS as an example. The main difference between FEniCS and Modelica, other than complexity, is that
Modelica is a more standardized language with multiple implementations. If there is any other important
distinction, don't hesitate to point it out.

I think that these efforts are quite clearly a step in the right direction, but another step needs to be taken:
the step towards scientific models as data that can be analyzed and manipulated, in addition to being
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I think that these efforts are quite clearly a step in the right direction, but another step needs to be taken:
the step towards scientific models as data that can be analyzed and manipulated, in addition to being
simulated. For example, I would like to be able to store in a computer-readable file Newton's equations of
motion together with the conditions on the quantities that enter, e.g. masses being positive. In another file, I
would define Newton's law of gravitation. From these two files, I want to be able to derive general
properties, such as energy conservation. In yet another file, I would define a model for the solar system by
referring to the first two files, and adding parameters. Finally I would define a discretization for numerical
analysis, and an algorithm for computing solutions using floating-point arithmetic, making for two more
files. The last one is what a generic simulator would read in and work on.

To the best of my knowledge, none of the existing DSLs for simulations allow me to do all that.

 No competing interests were disclosed.Competing Interests:

Reader Comment 27 Apr 2015
, French National Institute for Research in Computer Science and Control (INRIA),Nicolas Rougier

France

Thank you very much for this nice article. As a researcher in computational neuroscience, what you explain
here applies very much to my own domain, even if we have some specificities.

One effort worth mentioning in computational neuroscience is the Brian simulator
(http://briansimulator.org) that allows to describe a computational model directly as a set of differential
equations with unit checking. It does not prevent you from making errors but it is a rather simple and
intuitive safeguard (and the motto of the Brian project is "a simulator should not only save the time of
processors, but also the time of scientists").

One bigger difference may be the validation of the models. In neuroscience, we have a lot of experimental
data, from single cell recording up to behavioural task performances. This makes it relatively "easy" to
validate a model provided you use the proper data. This may explain why we have today something like
hundreds model of area V1 (primary visual area in the occipital cortex) and most have been validated on
experimental data. But none of them is The scientific community accepted model of V1. One reason may
be that in order to build a precise model of some structure of the brain, we have to use over-simplified
models of other structures such that they interact with the one we try to model.

Also, one specificities is that computational neuroscience generally deals with neural networks, i.e. parallel
and distributed computing. However, most of the time, you'll use a single processor (desktop computer)
and only simulates this parallelism such that there is a real danger of making shortcuts in your model (to
save some CPU cycles). One example is the k-winner takes all algorithm. Considering a set of n neurons
with some activities, you want the most k activated ones to keep their activity while silencing the others.
From a serial point of view, it is rather easy: just sort the n activities and set the (n-k) lesser values to 0. But
this is a clear break of the distributed nature of your model. Said differently, you could not do something
like this if you had one processor/neuron and nothing else. To do it in the "right" way, you have to change
your paradigm (and consider the dynamic neural field theory in this case).

I also agree when you say "Models and tools must become distinct entities, which are developed, tested

and published independently" but up to the extents where researchers still understand the limits of the

Page 16 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019



 

and published independently" but up to the extents where researchers still understand the limits of the
tools they're using. There is for example this nice   demonstrating misuse of tools by scanning deadpaper
salmons in fMRI (functional Magnetic Resonance Imaging) and showing nonetheless some activities.

 No competing interests.Competing Interests:

Reader Comment 10 Jan 2015
, ImagineMade LLC, USAMichael O'Keefe

Thank you, nice article. Of course, no article can cover all areas but given your position of advocating for
separation between tool and model, I was surprised to see no citation of the modeling language work that
has been going on since the 1970s culminating in languages such as Modelica (https://modelica.org/),
Ptolemy II, Systems Biology Modeling Language, gPROMS, etc. I would be interested to hear your insights
on those efforts as to whether they are a step in the right direction for your vision and/or how they
meet/don't meet your criterion. Kind regards.

 No competing interests were disclosed.Competing Interests:
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