

Open Peer Review

Any reports and responses or comments on the
article can be found at the end of the article.

OPINION ARTICLE

 Computational science: shifting the focus from tools to
 models [version 2; peer review: 2 approved]

Konrad Hinsen 1,2

Centre de Biophysique Moléculaire (UPR4301 CNRS), Rue Charles Sadron, 45071 Orléans, France
Synchrotron SOLEIL, Division Expériences, St Aubin, 91192 Gif sur Yvette, France

Abstract
Computational techniques have revolutionized many aspects of scientific
research over the last few decades. Experimentalists use computation for
data analysis, processing ever bigger data sets. Theoreticians compute
predictions from ever more complex models. However, traditional articles
do not permit the publication of big data sets or complex models. As a
consequence, these crucial pieces of information no longer enter the
scientific record. Moreover, they have become prisoners of scientific
software: many models exist only as software implementations, and the
data are often stored in proprietary formats defined by the software. In this
article, I argue that this emphasis on software tools over models and data is
detrimental to science in the long term, and I propose a means by which
this can be reversed.

 Konrad Hinsen ()Corresponding author: research@khinsen.fastmail.net
 The author declares to have no competing interests.Competing interests:

 The author(s) declared that no grants were involved in supporting this work.Grant information:
 © 2014 Hinsen K. This is an open access article distributed under the terms of the , whichCopyright: Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article
are available under the terms of the (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 Hinsen K. How to cite this article: Computational science: shifting the focus from tools to models [version 2; peer review: 2 approved]
F1000Research 2014, :101 ()3 https://doi.org/10.12688/f1000research.3978.2

 07 May 2014, :101 () First published: 3 https://doi.org/10.12688/f1000research.3978.1

1,2

1

2

 Reviewer Status

 Invited Reviewers

version 2
published
17 Jun 2014

version 1
published
07 May 2014

 1 2

report

report

report

report

, Arizona State University,David Hestenes

Tempe, AZ, USA
1

, Chalmers University ofPatrik Jansson

Technology, Gothenburg, Sweden
, Chalmers University ofCezar Ionescu

Technology, Gothenburg, Sweden

2

 07 May 2014, :101 (First published: 3
)https://doi.org/10.12688/f1000research.3978.1

 17 Jun 2014, :101 (Latest published: 3
)https://doi.org/10.12688/f1000research.3978.2

v2

Page 1 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/278386419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://f1000research.com/articles/3-101/v2
https://f1000research.com/articles/3-101/v2
https://orcid.org/0000-0003-0330-9428
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.12688/f1000research.3978.2
https://doi.org/10.12688/f1000research.3978.1
https://f1000research.com/articles/3-101/v2
https://f1000research.com/articles/3-101/v1
https://doi.org/10.12688/f1000research.3978.1
https://doi.org/10.12688/f1000research.3978.2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.3978.2&domain=pdf&date_stamp=2014-06-17

Introduction
Computers have become an essential tool in many aspects of sci-
ence: they help with collecting and processing data from observa-
tions, evaluating theoretical models, and communicating with fellow
scientists. In the course of the few decades in which scientists have
used computers, computing technology has changed very rapidly.
These changes have permitted significant progress in many fields
of science. However, they have also lead to a shift of focus from
scientific to technological issues, as scientists eagerly applied new
computing technology to study ever more complex systems. The
most visible consequence is that today high performance often
takes priority over reliable results in computational science, even
though few scientists would openly admit this preference.

Recently, some of the negative consequences of rushing forward
at a fast pace have become too visible to be ignored1–3: mistakes
due to insufficiently verified software, lack of reproducibility due to
incomplete publication of data and codes and blind trust in software
without a deeper understanding of the methods applied. The frenzy
of becoming ever faster is slowly giving way to a more sober atti-
tude that reinstates reliability and verifiability as the prime values of
science. The Reproducible Research movement4 argues that repro-
ducibility, one of the core principles of science, must be required in
computational science as well as in other sciences, necessitating the
publication of all software and data sets that are used in a compu-
tational study. From a somewhat different angle, the Open Science
movement5, whose goal is access for everyone to the process of
research, comes to the same conclusion. As a result of these efforts,
publishing scientific data and software has become not only pos-
sible but straightforward, and journals are starting to encourage or
even require such publication to accompany the traditional article
that describes a study’s methods and results.

If the code and the input data of a computational study are pub-
lished, anyone could repeat the computation and verify that it pro-
duces the published results. This is often referred to as replicability.
At this time there is no agreement on whether replicability is a use-
ful characteristic of a scientific study; the references 6 and 7 show
two opposing points of view. Replicability limits fraud by proving
that the authors can actually compute the results that they show
in an article. It can also be seen as a proof of quality assurance,
because it demonstrates that the authors have recorded their com-
plete computational workflow, which is not yet common practice.
However, replicability does not mean that the authors did what they
describe in their article, nor does it help the readers to develop a bet-
ter understanding of the methods that were applied. Minimal repli-
cability (such as making available a virtual machine image that runs

the computation) doesn’t imply openness either, as readers cannot
apply the published methods to different situations, or analyze the
data using their own methods.

Replicability is clearly not the same as the traditional notion of repro-
ducibility in science. The latter requires that other scientists design
their own experiments or computations, which incorporate the
key elements of the original work but differ in points considered
unimportant, and obtain similar results. In contrast to replication,
reproduction of a scientific study adds new information that helps
to identify what matters and what doesn’t matter for obtaining a
specific result. Making a computational study reproducible thus
requires explaining the methods behind it in a way that clearly
states which aspects are considered important.

The central question in computational science is: why should we
trust the results of a non-trivial computation? We all know from
experience that software has bugs, and we also know that the use
of computers is subject to frequent human mistakes. Moreover,
computational scientists should be aware of the complexity of their
software, and thus should be concerned that it might not do what
they believe it does. Creating trust in computational results requires
validation at all possible levels: we need replicability and reproduc-
ibility, and also an increased effort to explain our computational
models and methods to our peers. The fundamental problem is that
scientific software is much too complicated to be an efficient way to
communicate these models and methods, and no other precise rep-
resentation is available. A detailed understanding of what a given
piece of software does is often limited to the software’s authors.

In this article I will explain why the current situation is unsatisfac-
tory, and propose approaches for improving it. I will illustrate my
explanations with examples from my own field of research, which
is biomolecular simulation. However, after many discussions with
computational scientists from other application domains, I con-
clude that the situation is very similar wherever computers are used
for tasks that are impossible to do manually.

In order to make my point clear, I will first give a summary of the
role of models in science, and of the role of computation in scien-
tific models. This will set the stage for the following discussion on
the current state of scientific software. I will then propose concrete
actions that can be taken to improve the situation and outline the
benefits that we can expect from them.

Models
The central concept presented in this article is the notion of the
scientific model. The role of models in science has been the subject of
much debate among philosophers of science8. A good general over-
view written by a scientist for scientists9 and an illustration in the con-
text of physics education10 have been given by Hestenes. A scheme of
the process of scientific research (see Figure 1) illustrates the funda-
mental role of scientific models: science can be summarized as a pro-
cess whose inputs are the data obtained from scientific observations,
and whose output is a set of models with the associated validation
information. As more data become available, new model/validation
pairs are produced, which may be refinements of older models, but

 Amendments from Version 1

A mistaken statement about the computability of transcendental
functions has been corrected. The distinction between
mathematical language and mathematical tools has been made
explicitly. The distinction between probabilistic models and non-
deterministic heuristics has been clarified.

See referee reports

REVISED

Page 2 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

also completely new models. The defining characteristic of a sci-
entific model is that it can be used to deduce verifiable statements
about observable aspects of nature, which makes it possible to test
and refine a model using new data from subsequent observations.

Models do not necessarily need to be quantitative. The metabolic path-
ways in biochemistry are a well-known example for non-quantitative
models. However, in the context of computational science, nearly
all models are quantitative, as they predict numbers that are com-
pared to the numbers obtained from the actual measurements. In the
following, I will limit the discussion to quantitative models.

The models most frequently discussed in the context of scientific
research are those for the systems in nature that we try to understand.
However, we also use physical models to describe the instruments
we use to make observations, and non-physical phenomenologi-
cal models to account for the aspects that we do not understand in
detail. The most common models in the last category are the statisti-
cal error models, such as the very frequently (and usually silently)
made assumption that an observed value is the “real” value plus
an “experimental error” described by a Gaussian probability dis-
tribution. Computational studies exploring models for systems in
nature are called “simulations” and are often performed on models
believed to be accurate, with the goal of obtaining information that
is difficult or impossible to obtain from the observation. Simula-
tions that include a model for the scientific instruments are often
labeled as “virtual experiments”. Computational studies applying
statistical models to the data are called “data analysis” and typically
have the goal of determining a set of model parameters that best
describe the data resulted from the observation or simulation. The
arguments I present in this paper apply to all of these categories.

Many scientific models are formulated in the framework of a theory
which defines the general rules for a large class of models. An
example is classical mechanics, which is a theory describing the
dynamics of systems of point masses or finite-volume rigid bodies.
Within the framework of classical mechanics, a model for a concrete

system can be defined by a single function called a Hamiltonian.
Theories play an important role in the most mature fields of science
(e.g. physics) but are not essential for defining models. Younger dis-
ciplines, e.g. systems biology, construct models in a more ad hoc
fashion without a clear underlying theory. Yet another approach is
the construction of models derived from several theories in a mul-
tidisciplinary setting, e.g. in climate research. For the aspects that I
discuss in this article, it does not matter if a model is developed in
the context of some theory.

Computable models are the models that are of prime interest in com-
putational science. A computable model is a computable function,
as defined in computability theory11, whose result can be compared
to data from observations. Since validation requires the compari-
son of concrete results with observed data, one would expect that
all quantitative models in science are computable models. Surpris-
ingly, this is not the case. In fact, most mathematical models used
in science are not computable.

Consider, for example, the description of the solar system in terms
of classical mechanics that goes back to Isaac Newton: a set of
point masses (the sun and the planets) interacting through Newton’s
law of gravitation and moving according to Newton’s laws of
motion. The latter are differential equations for the positions and
velocities of the celestial bodies. Together with a set of parameters
obtained from observation (for example, the positions and veloci-
ties of all celestial bodies at a given moment in time), these equa-
tions determine the positions and velocities at any time in the past
or the future. However, they do not provide a recipe for comput-
ing the actual numbers that could be compared to observations. An
additional approximation is needed to obtain a computable model.
For the simplest case of a system of only two celestial bodies, an
analytical solution of the differential equations can be obtained. This
solution contains transcendental functions (sines and cosines), which
are computable to any desired precision. However, when three or more
celestial bodies are included in the model, no analytical solution
is available and the differential equations must be approximated

Figure 1. A scheme of the process of scientific research. The main input is data from observations, the main output are models with
associated domains of validation.

Page 3 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

by finite difference equations12. The development of computable
approximations to the Newtonian model of celestial dynamics
remains an active topic of research (see e.g.13). More generally, one
can consider the whole field of numerical analysis as dedicated to
constructing computable approximations to non-computable math-
ematical models.

It may seem surprising that most mathematical models used in the
most mature domains of science do not strictly speaking deserve
the label “scientific”, because they cannot make predictions that are
immediately comparable to observed data. The explanation is that
computation was for a long time considered a menial task not wor-
thy of the attention of a distinguished mathematician or scientist,
who should concentrate on mathematical and logical reasoning. As
Dowek14 explains in a fascinating account of the interplay of rea-
soning and computation in mathematics and logic in the course of
history, the important role of computation in formal reasoning has
become clear only during the 20th century. While today it is gener-
ally accepted by mathematicians and logicians, most theoreticians in
the natural sciences still consider computation an inferior approach
to exploring scientific models, which is only used out of necessity
when other techniques have failed. I suspect that this lack of inter-
est by “real theoreticians” for the computational aspects of science
might have contributed to the problems that I have outlined in the
introduction. This would also explain why computational training
is still largely absent from the science curricula around the world.

Scientific models can be written down in many ways: mathemati-
cal equations, diagrams, plain language, etc. The same model can
be represented by different notations. For example, in principle
any mathematical equation could be replaced by a verbal descrip-
tion. Computable models can be expressed in any Turing-complete
formal language, and in particular in any of the commonly used
programming languages, making them the most precise and unam-
biguous scientific models. The very fact that a program runs and
produces results proves that the model specification is complete
and unambiguous, assuming that the computing system itself (hard-
ware, operating system, compiler, etc.) works correctly and that the
programming language it is written in has clearly defined semantics
(which, unfortunately, is not the case for widely used languages
such as C15. The utility of computation in the process of understand-
ing and documenting science has been pointed out by Sussman and
Wisdom16, but is not yet widely recognized in the scientific com-
munity. A nice illustration from an engineering domain (the design
of musical instruments) is given by Mairson17, who designed a com-
putable notation for describing the geometrical constructions that
have been used for a few centuries to construct string instruments.
His notation is meant to be both a set of instructions for a computer
and a precise and unambiguous description for human readers.

A final important point about computable models is the importance
of correctly identifying, understanding and documenting approxima-
tions. Scientists frequently make approximations to computational
models without recognizing them as such, and therefore do not doc-
ument these approximations in their publications. A good example
is the use of finite-precision floating-point numbers in place of real
numbers. Most scientists would consider this a technical necessity
in implementing a model on a computer, and therefore an imple-
mentation detail of computational software. However, floating-point

numbers have properties that differ significantly from real numbers
(for example, addition and multiplication are non-associative), and
the finite precision necessarily changes the results of the computa-
tions. Making such approximations explicit would also encourage
the consideration of alternatives, e.g. the use of interval arithmetic.
In general, any modification to a computer program that changes
its results implies an approximation to the original computational
model. This also includes techniques such as lossy compression of
output data, which again are usually considered implementation
details.

In summary, computational science involves working with com-
putable scientific models, which are either constructed from first
principles or more frequently as approximations to non-computable
models. A publication describing a computational study should
contain a full description of the models that were actually used in
the computations. For the models derived as approximations, this
means that the final approximation, though preceding steps in the
derivation, should also be given in order to document the process.
Computable models can be expressed unambiguously in a Turing-
complete formal language. A suitable Turing-complete language
should be the preferred form for publishing models.

Tools and methods
Scientists use a variety of tools to gather observational data, explore
the predictions of models and perform comparisons between them.
I use the term “tool” in a general sense that includes both physi-
cal objects (e.g. microscopes, lasers, etc.) and mathematical theo-
rems or procedures (e.g. calculus or algebra), but not mathematical
axioms and definitions, which form the language of mathematics
rather than its toolbox. Both computers and the software that runs
on them are thus considered tools. Tools are evaluated by how well
they help us in getting a job done, which leads to criteria such as
precision, performance, efficiency, convenience and price. In scien-
tific publications, the tools are described in the “Methods” section.
A computational method corresponds to running one or more soft-
ware tools with specific input parameters.

People using tools, not only in science, develop a mental model of
how the tools work and what they do. Such mental models are mostly
empirical and are developed by training and experience. They are
personal and not formalized in any way. There is no fundamental dif-
ference in how we form mental models of a car, a microscope, and a
text editor running on a computer. Our mental models are limited to
the aspects of the tools that we have to know, and they do not include
the tools’ inner workings or construction details. For example, to
drive a car, we need to understand accelerating, braking and steer-
ing, but not the process of combustion in the engine. Similarly, we
can use a microscope or a text editor with far less knowledge than it
takes to design and build one. However, the domain of application
and the precision that we can expect from the results are part of the
mental models that scientists need to have for their tools.

While tools are indispensable for conducting science, they are not
considered as part of the outputs of science, which consist of vali-
dated models. Articles documenting scientific studies describe the
tools and methods that were used in the experiments or computa-
tions in order to permit readers to judge the pertinence of the con-
clusions drawn from the outputs. The development of new tools

Page 4 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

is also described in scientific publications because these tools are
important products of the scientific research process. Nevertheless,
these two aspects (tools and outputs) should be kept separate. The
conclusion of a scientific study needs to be independent of a spe-
cific tool to deserve the name “scientific”. Another scientist should
be able to reach the same conclusion using different tools, which is
part of the requirement of reproducibility.

In computational science, the distinction between models and methods
is not always very clear, because both take the form of algorithms.
Some disciplines, e.g. bioinformatics, are very methods-oriented
and rarely refer to models. A bioinformatician is more likely to pro-
pose a “method to predict protein folding” than a “model for protein
folding”. This is partly due to differences in scientific jargon among
disciplines, but it also reflects deeper issues concerning the role of
computing in science. The global minimum of a knowledge-based
potential for proteins is clearly a scientific model for a native struc-
ture. It is even a computable model in the sense of computability
theory, in that there are known algorithms that can find the global
minimum in finite time to any specified precision. However, that
finite time is so long on today’s computers that the global minimum
cannot be computed in practice. Bioinformaticians therefore con-
struct heuristic methods that find structures close to the global mini-
mum rapidly in the majority of cases. If these heuristic methods are
deterministic, they should be considered approximations to the orig-
inal model. This is not an option for heuristic methods that involve
random choices, because they do not produce a unique result for a
given input and therefore do not qualify as scientific models.

It is important to distinguish the use of randomness in heuristics
from the use of probabilistic models, i.e. models that predict observ-
able quantities as averages over probability distributions. The latter
are in the same category as the global-minimum example discussed
above: the numbers they predict are well-defined and computable,
even though their computation is often beyond the limits of today’s
computing technology. By contrast, a method such as k-means
clustering, whose initialization step requires an arbitrary random
choice, yields a different result each time it is applied, and there is
no reason to attribute any meaning to the statistical distribution of
these results. In fact, the distribution used in the initialization step is
hardly ever documented because it is considered irrelevant. The role
of such heuristics in computational science remains to be clarified.

The double role of scientific software
The dominant role of software in our lives is the role of tools. A com-
puter program does something: play videos, manage bank accounts,
simulate protein dynamics, etc. A software is developed explicitly
for doing something, and is evaluated by how well it performs the
task. In most situations where software is used, there is a clear dis-
tinction between the software as a tool and the content that the tool
works on. A video player is distinct from the movies it plays, and
this distinction is visible to everyone: there is one file on the com-
puter for each movie, and one file (or set of files) for the video
player. The same video player can play many movies, and for each
movie file there are multiple computer programs that can play them.
The same clear distinction holds between the software that man-
ages bank accounts and the databases that contain the actual data.
However, it does not hold for the simulation of protein dynamics.

A simulation is the computation of a prediction from a model, but
there is no computer file that holds a model for protein dynamics,
and another file that holds a simulation program. The model is an
integral part of the simulation program. The files read by that pro-
gram contain some of the parameters of the model (e.g. the initial
structure of the protein), but not the model itself. There is no clear
separation between the tool and the model it operates on.

This fusion between models and tools in computational science is
problematic because models and tools have very different roles in
science and are evaluated according to very different criteria. Blur-
ring the distinction leads to a number of undesirable consequences:

Lack of understanding: In the theoretical sciences, researchers
should know and understand in detail the models they apply. These
models are shared by a research community, and formalized using
a suitable standard notation to reduce ambiguity in communica-
tion. Scientists do not have the same detailed understanding of their
tools. Researchers using scientific software (as opposed to those
who develop it) work with an empirical mental model of that soft-
ware, as explained above. When scientific models are hidden inside
the software, the higher level of understanding required for them
becomes very difficult to develop. As a consequence, research-
ers cannot make an informed decision between different models
and often choose the more convenient or more efficient program,
regardless of the model that it implements.

Lack of verification: New tools should be tested by running them
on well-known models as test cases, for which they should produce
exactly the same results. New models should be tested by com-
paring them with well-known ones, using exactly the same tools.
Software that inextricably combines complex models and complex
technology becomes nearly impossible to evaluate. Moreover, for-
mal proofs can be used to validate software tools against a formal
specification. But formal proofs cannot handle scientific models
(they are validated against observations), and therefore they cannot
handle tools with built-in models either. Tools can only be validated
using formal proofs if they work on models that are external.

Interdependence: Models and tools should evolve independently:
models are improved with the progress of science, whereas compu-
tational tools are improved following changes in computing tech-
nology, or simply by investing more efforts. When the models are
part of the tools, it becomes difficult to distinguish an improved tool
from an improved model. Moreover, changes to the tools for techni-
cal reasons (i.e. accelerating a computation using Graphics Process-
ing Units (GPUs)) often require approximations to the embedded
models, which tend to remain undocumented because they are not
recognized as such.

All these consequences can be observed in the field of protein simu-
lations. It is generally accepted in the protein simulation community
that it is impossible to obtain the same numbers for a given system
from two different simulation programs (lack of verification). Most
scientists understand that this is due to no two programs implement-
ing exactly the same model. However, few if any practitioners are
able to explain how exactly these models differ (lack of understand-
ing). It is also considered inevitable that different versions of the

Page 5 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

same program, or even two executables compiled with different
compilers or compiler options, produce slightly different results for
what should be the same model (interdependence).

It is important to understand the practical differences between a
computable scientific model and a software tool. From the point of
view of theoretical computer science, both are programs and both
are expressed in a Turing-complete language. However, the model
specifies just the result of a computation. The software tool defines
how to perform a computation efficiently on data read from and writ-
ten to permanent storage, within the constraints of a given physical
computer. This requires handling aspects such as the use of resources
(memory, CPUs), I/O, and possibly parallelization. A practically use-
ful software tool also requires attention to the user interface, to file
formats, and other tool-specific characteristics. In a typical scientific
software tool that integrates models, the vast majority of the source
codes is dedicated to these technical aspects, to the point that it can
be difficult to identify the models in the source code.

It is interesting to analyze why the fusion of models and software
tools is possible and how it occurred. In the cases of video play-
ers and bank account management cited above, the separation of
tools and data seems evident. The tools consist of instructions for
the computer, the data is ultimately just a sequence of numbers.
Anyone who has written simple programs is able to see at a glance
the difference between software (text files containing instructions
in a programming language) and data (tables of numbers and text
for the bank accounts, compressed binary files for movies). The
archetype of a scientific model is a set of mathematical equations.
This seems much more similar to a program than to data, all the
more since most programming languages provide syntax for math-
ematical formulae that look similar to written maths. Moreover,
as explained above, computable models actually require a Turing-
complete notation. A programming language is thus a natural fit:
it is very straightforward to translate a computational model into
a program code. On the other hand, it is not at all straightforward
to write a program that reads in a scientific model as it would read
in “normal” data. So it seems that scientific models are in fact pro-
grams rather than data.

However, the distinction between “program” and “data” doesn’t
stand up to scrutiny. Programs are data. They are stored in files, can
be copied around, e-mailed, etc., just like any other piece of data.
Compilers read source code files as data and transform them into
executables, which is just a conversion of data into another form.
The distinction between programs and data that seems so obvious to
computational science practitioners is just a historical accident. The
programming language Fortran18, which made large-scale scientific
computing possible in the late 1950s, made this distinction for prac-
tical reasons: it allowed the development of simple and efficient
compilers. Lisp19, another programming language developed in the
late 1950s for research in artificial intelligence, made the opposite
choice: a program is just a particular interpretation of a data struc-
ture. Lisp programmers routinely assemble data structures and then
execute them as programs. However, early Lisp implementations
were slow compared to Fortran, and thus never became popular
in computational science, with the notable exception of computer
algebra systems.

In the early days of computational science, a theoretician would
define a model with pencil and paper, and then write a program to
do a specific computation based on that model, such as comput-
ing an integral or solving a differential equation numerically. The
computation on the computer simply replaced the earlier practice
of manual computation. Models were published in journal articles,
just like in the pre-computing era. A computer program was con-
sidered an implementation of the model and testing the program
involved comparing its output with results from analytical manipu-
lation of the model for suitable input values.

With the rapid increase of computational power, scientists could
handle ever more complex models, and in particular models far too
complex to be managed with pencil and paper. But scientific publi-
cation remained in the pencil-and-paper world for a few more dec-
ades, because electronic communication became feasible only with
the rise of the Internet in the 1990s. Scientists could thus work with
computational models that were too complex for publication, and as
a result they stopped publishing their models. With the separation
of models and programs being discouraged by the computational
tools, and in the absence of any motivation to formulate compu-
tational models independently from programs for communication,
the fusion of models and programs became almost inevitable.

Software as a notation for scientific knowledge
In the previous section, I have explained the undesirable conse-
quences of the fact that computational models are often insepara-
bly intertwined with the software tools that work on them. There
is another important problem resulting from the fusion of tools and
models, which is related to the different time scales on which science
and computing technology evolve at the moment. This problem could
disappear in the unlikely case that progress in computing technology
slows down in the future, but it currently requires immediate atten-
tion if we want to preserve the scientific heritage of the last decades.

Knowledge has a finite lifetime. Even if information storage media
could be preserved forever, the meaning of the information they
contain is ultimately lost because the semantic context in which
it was encoded cannot be recorded. The best examples are histori-
cal written documents that nobody can read today, because the lan-
guages and writing systems used at the time have disappeared20.

Written human languages are the most stable semantic contexts we
have: they change on a time scale of centuries to millennia. Sci-
entific jargon and scientific notations are even more short-lived.
Journal articles written 100 years ago are difficult to understand
for today’s scientists. The original writings of Galileo or Newton
can be understood only by scholars specialized in the history of sci-
ence. The time scale on which original publications remain under-
standable is a few decades. This doesn’t mean that knowledge is
lost rapidly. As the original writings become less and less clear, the
aspects that are recognized as particularly important are constantly
reformulated in review articles, monographs, and textbooks. This
is why the insights of Galileo and Newton are still accessible to
today’s physicists.

Software as a notation for knowledge representation has a much
shorter lifetime than scientific writing and mathematical notation.

Page 6 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

There are two approaches to understanding software: (1) studying
it theoretically, by reading the source code and the documentation,
and (2) observing its behavior, by running the program. Practice
has shown that both approaches must be combined for a success-
ful understanding of non-trivial software. Reading the source code
permits making hypotheses about what the program does, which
are then checked by running it on suitable input data. Source code
remains intelligible as long as the language it is written in remains
in active use. Depending on the language, this implies a time scale
of a few years to at best one or two decades. Running a piece of
non-trivial software without modifications is rarely possible after
more than a few years. Software requires regular “maintenance”
to remain usable. This maintenance consists in updating the source
code and the installation procedures to adapt them to changes in
the computing environment (compilers, operating systems, etc.) and
in the dependencies (libraries, etc.). Maintenance is expensive and
economically feasible only for widely used programs. Moreover, it
generally proceeds in parallel with improvements in the models and
methods implemented by the software. Today’s working version of
a piece of scientific software does not necessarily reflect the models
and methods that were implemented in its predecessor used a few
years ago for an important computational study. Technical solutions
such as the use of version control systems and archiving the exact
code used for a specific scientific study can help to alleviate this
problem, but they are not a panacea: they do not provide a code
that works 30 years from now and implements today’s models and
methods.

The consequence of the different time scales on which scientific
knowledge and computing technology evolve is that we are losing
scientific knowledge encoded in the form of software faster than
it can be integrated into the reformulation process of science. For
many computational studies performed during the last decades, it
is already impossible to find the exact models and methods that
were used. By applying the recommendations of the Reproduc-
ible Research movement, i.e. by publishing and archiving software
and data, we can preserve the original expressions of this scientific
knowledge, but not the semantic context.

This knowledge rot problem concerns not only models and meth-
ods that are embedded in scientific software, but also data stored in
formats that are proprietary and thus defined by the software that
reads and writes them. When the software becomes unusable, the
data becomes unreadable. This aspect is much more widely recog-
nized and there is a general consensus among experts in scientific
data management that proprietary data formats are unsuitable for
publishing and archiving purposes. The same attitude should be
adopted with respect to models.

Shifting the focus from tools to models
Solving the problems that I have discussed above would require
most of all a shift of focus in computational science. Instead of con-
centrating on tools, which then subsume models and imprison data,
we should focus on models and data as the primary items of interest
for science. Before thinking about the question “How can I best do
this computation?”, we must first consider the questions “What data
and models does this computation depend on?” and “What will be
the result of this computation?”

Such a shift of focus does not happen overnight. On the contrary, I
would expect it to take many years, or maybe decades. In the fol-
lowing, I will outline some concrete steps to make it happen. First,
I will discuss short-term actions that can be taken immediately and
do not require profound changes to the scientific software and work-
flows that we use today. These actions will improve the understand-
ing of the models implemented in scientific software, and will make
it possible to discuss models in the scientific literature. I will then
describe a second set of actions which require a serious research and
development effort, but also offer significant benefits in return: the
possibility to turn scientific models into first-class digital objects
that can be published and archived, and the possibility to verify
scientific software by formal proofs.

The main short-term action that must be taken is a thorough docu-
mentation of the scientific models that are implemented in a piece
of software. Such documentation should explain the models in plain
words and in mathematical notation, and point the reader to the
relevant parts of the source code. Moreover, it should discuss how
compilation and installation options and data in input files affect
the models. As a guideline for deciding if a given feature belongs
to the model or the tool, consider the interpretation of the results
of the computation. Anything that changes these results in a way
that must be understood for their interpretation is part of the model.
Computational studies should cite the model documentation of the
software that was used, and provide the values of all relevant com-
piler and installation options and input parameters.

A related short-term action is writing reference implementations
of scientific models in the form of programs optimized for clarity
rather than performance or flexibility. Such reference implementa-
tions are at the same time a precise documentation of the model
and executable programs whose results can be used to validate the
results of more complex software written to be used as a tool. Writ-
ing reference implementations, like writing better documentation,
takes time, and therefore one condition for making it happen is the
creation of suitable incentives.

Further useful actions can be taken to improve scientific software
without introducing any profound changes. User interfaces, a cat-
egory which includes command-line options and the syntax of input
files, can be redesigned to clearly separate model-related information
(typically model parameters) from tool-related information. A clear
distinction helps users to better understand the techniques they apply.
Software developers can also aim for better modularity with respect
to models: the source code of the program can be restructured to con-
centrate model-related aspects in as few source code files as possible.

Reaping the full benefits of a separation between models and tools
requires more profound changes to the structure of scientific software.
Models and tools must become distinct entities, which are developed,
tested and published independently. Tools read in model specifica-
tions as input data. Such an approach is technically feasible today, due
to the enormous progress that computer science has made since the
1950s. Domain-specific languages can be designed for the defini-
tion of scientific models, and translated by tools based on compiler
technology into efficient code for today’s and tomorrow’s comput-
ers. A significant amount of research and development remains to

Page 7 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

be done, but it is justified by the improvements in the quality of
computational science that it will make possible.

The most immediate benefit is that models will become well-defined
citable entities. A model that has been specified in a formal machine-
readable notation can be published and cited via a Digital Object
Identifier (DOI). Tools can be written to define, explore, modify and
evaluate models. In particular, tools that are very similar in spirit to
today’s computer algebra systems can be used to create approxima-
tions and combinations of scientific models. Theoreticians will be
able to work with computable models in electronic form just like they
used to work with mathematical models on paper in the past. Formal
model specifications are not subject to the rapid evolution in com-
puting technology, and can therefore be expected to be much more
stable over time than today’s models embedded in software tools.

Formalized models can also play an important role in future human
interfaces to science, as used for communicating results and teach-
ing students. It is foreseeable that static publications such as today’s
articles will be replaced by dynamic and interactive presentation
and visualization techniques (see 21 and 22 for examples). Creat-
ing such presentations on top of executable models ensures con-
sistency between explanations and applications. With models being
digital objects with clear semantics and a stable reference through
a DOI, they become accessible to content mining and bibliometric
analysis. It will be possible to compile databases of models used
in published studies, which can then be annotated with validation
information. The output of science shown in Figure 1 will become
more formalized than it is now, which is likely to improve the qual-
ity of science overall.

Another important gain in reliability can be expected from soft-
ware technology. The automatic program verification methods
that are currently developed (see e.g. 23 for a non-trivial practical
application) will become available for scientific software24. These
approaches use automated proofs to verify that a program’s output
conforms to its specification. These cannot be applied to today’s sci-
entific software because it has no formal, and thus machine-readable,
specification. The reason for this are the integrated models. Math-
ematical proof techniques cannot validate a model, because its
validity is determined by comparison to observational data. How-
ever, given a formalized model, mathematical proof techniques can
verify that a software tool correctly implements this model. This
is probably the single most important element for improving trust
in scientific software and thus computational science. However, to
make this happen, a much closer collaboration of computational
scientists and computer scientists would be required in the future.

Floating-point arithmetic
The specificity of floating-point arithmetic deserves a special dis-
cussion, both because of its central role in much of scientific soft-
ware and because of its reputation of being the source of intractable
problems.

First of all, it is worth pointing out that floating-point arithmetic can be
defined as rigorously as integer arithmetic. The IEEE 754 standard25
provides a well-defined data representation at the bit level and a set
of well-defined deterministic operations. Much of the mysterious

behavior attributed to floating-point arithmetic is due to the fact that
programmers and programming language designers reason about
floating-point numbers as if they were real numbers, in particular
assuming associativity for addition and multiplication. This hap-
pens partly by mistake (a lack of understanding of floating-point
arithmetic), and partly out of the desire to create more opportunities
for code optimization by compilers (see the discussion in 23).

Unfortunately, none of the programming languages currently popu-
lar for scientific computing define the semantics of floating-point
operations precisely enough to give the programmer a full control
over the result of a calculation. As a consequence, the output of any
program using floating-point arithmetic depends on choices made
by compiler writers. Thus a scientific model specified with precise
floating-point semantics cannot be implemented correctly using
today’s scientific programming languages. This situation is in fact a
consequence of the attitude that I have described in the introduction:
computational science is so much focused on the performance of
the computations and so little on the correctness of the results that
there is no incentive for language designers and implementors to
improve the situation.

However, this does not mean that the actions I have described above
are doomed to fail. The goal is to change the currently dominant
attitudes. This should also lead to the development of program-
ming tools that provide full control over floating-point operations.
Moreover, it is not at all evident that floating-point numbers will
continue to occupy a dominant role in scientific computing in the
long run. Their popularity is mainly due to the at least apparent
ease they offer for constructing computable approximations to the
scientific models of the pre-computing era, which use real num-
bers to describe continuous physical quantities. It is well possible
that other number representations will be used in the future. The
recently proposed DEC64 format26, which aims to replace both
integers and floating-point numbers, shows that there is still interest
in improving number handling in computer software.

Related ideas and approaches
The problem that technical details tend to swamp the result-relevant
aspects in program source code is not specific to scientific comput-
ing. Among the many software engineering approaches that aim to
improve the situation, Model-Driven Engineering27 is the one most
similar to the approach that I have outlined. It introduces the notion
of a model as the specification of what a program is supposed to
do. Program generators then produce an efficient implementation.
However, like all of software engineering, Model-Driven Engineer-
ing has the goal of producing better tools. The models are little
more than tool specifications, and are normally not accessible to the
users of the finished software.

Several scientific software packages are based on domain-specific
languages (DSLs) that allow users to write down certain aspects of
their problem in a notation that is more compact and familiar than
a programming language. An example is the FEniCS package for
solving differential equations28, whose DSL provides a means to
write a differential equation in a notation that is close to traditional
mathematics. However, the focus is on the mathematical equations
rather than on the computable model, which consists of more than

Page 8 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

http://fenicsproject.org/

5. Wikipedia, Open science. — Wikipedia, the free encyclopedia. 2014.
Reference Source

6. Gent I, Kotthoff L: Recomputation.org home page.
Reference Source

7. Drummond C: Replicability is not reproducibility: nor is it good science. 2009.
Reference Source

8. Frigg R, Hartmann S: Models in science. In The Stanford Encyclopedia of
Philosophy (Fall 2012 Edition). E. N. Zalta, Ed. 2012.
Reference Source

9. Hestenes D: Notes for a modeling theory. In Proceedings of the 2006 GIREP
conference: Modelling in Physics and Physics Education, E. van den Berg, A. Ellermeijer,

just the equations (boundary conditions, meshes, etc.). The distinc-
tion between the DSL and the implementation language is made
for convenience of notation, not for a separation of concerns. This
characteristic is shared by the other scientific DSLs that I am aware
of. These DSLs have the goal of facilitating the technically most
challenging part of encoding science in a computer program, but
they do so clearly in the context of tool development.

Orchard and Rice29 propose an “agenda for programming language
research” in computational science which addresses many of the
topics discussed here from the point of view of programming lan-
guage research. Their agenda represents a continuation of the DSL
approach described in the last paragraph. The authors insist particu-
larly on the separation of concerns between scientific models and
software implementation details, and propose a path of evolution for
existing scientific software. Their article contains many references
to prior work of interest.

Murray-Rust and Murray-Rust’s “Reproducible Declaratron”30 pro-
poses and implements ideas which are similar in many respects to
what I have outlined in this article. Their approach is based on a
long-term effort towards making scientific documents more precise
and at the same time machine-readable by adding semantic markup.
For example, in the plain-text sentence “the experiment was run at
a temperature of 21 degrees”, the temperature specification would
be replaced by XML elements indicating the type of quantity (tem-
perature), the value (21), and the unit (degrees Celsius), with each
part having a clearly defined meaning written down in a dictionary.
The “Reproducible Declaratron” adds computation to this frame-
work, applying the principle that formulae and algorithms are data.
The authors do not make an explicit distinction between comput-
able models and computational tools. They do make the distinction
between a “formula” and a “computation”, which for the examples
they discuss is very similar to the model-tool distinction, but is lim-
ited to models derived from mathematical equations. An outstanding
feature of their approach is that it moves formulae and computations
from computational tools into scientific publications.

Finally, my own ActivePapers project31 provides a framework for
computational science that does a first step in the direction I advo-
cate in this paper: it shifts the focus from doing computations to
publishing computational methods and results. An ActivePaper is
a publishable and citable package of data sets, including execut-
able codes as another kind of data. Every data set in a published

ActivePaper has an automatically resolvable reference. Moreover,
the framework was explicitly designed to include code transforma-
tion and code generation. However, suitable domain-specific model
languages and tools that work on them remain to be developed.

Conclusion
In the preceding sections, I have explained that (1) the way we cur-
rently perform and publish computational science is unsatisfactory
and that (2) we can and should improve our attitudes and technology.
The situation I have described is a symptom of a lack of exchange
between the natural sciences and research in computer science.
Today’s computational scientists see computer science as an engi-
neering discipline that provides them with ever increasing number
crunching power. Their own training in computational techniques is
usually limited to managing the practicalities of working with soft-
ware tools. From the other side of the fence, computer scientists see
scientific computing as almost synonymous with high-performance
computing.

In the past centuries, much of the progress in science was due to an
interplay between mathematics and physics in a domain of research
now called “mathematical physics”. It was conducted by scientists
who were at the same time application-oriented mathematicians
and mathematically minded physicists. Science in the 21st century
would benefit from a similar approach at the interface between
computation and theoretical science. Computational scientists
would discover that computers are not only convenient slaves to
which they can offload laborious computations, but also tools that
can improve our understanding of scientific models. Computer sci-
entists would discover how computation plays a fundamental role
in our efforts in understanding natural phenomena.

Competing interests
The author declares to have no competing interests.

Grant information
The author(s) declared that no grants were involved in supporting
this work.

Acknowledgements
The author would like to thank Dominic Orchard for comments on
a draft of this article.

References

1. Merali Z: Computational science: ...Error. Nature. 2010; 467(7317): 775–777.
PubMed Abstract | Publisher Full Text

2. Peng RD: Reproducible research in computational science. Science. 2011;
334(6060): 1226–1227.
PubMed Abstract | Publisher Full Text | Free Full Text

3. Joppa LN, McInerny G, Harper R, et al.: Computational science. Troubling trends
in scientific software use. Science. 2013; 340(6134): 814–815.
PubMed Abstract | Publisher Full Text

4. Stodden V: Reproducible research: Tools and strategies for scientific
computing. Comput Sci Eng. 2012; 14(4): 11–12.
Publisher Full Text

Page 9 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

http://en.wikipedia.org/wiki/Open_science
http://en.wikipedia.org/wiki/Open_science
http://recomputation.org/
http://recomputation.org/
http://www.csi.uottawa.ca/~cdrummon/pubs/ICMLws09.pdf
http://www.csi.uottawa.ca/~cdrummon/pubs/ICMLws09.pdf
http://plato.stanford.edu/entries/models-science/
http://plato.stanford.edu/entries/models-science/
http://www.activepapers.org/
http://www.ncbi.nlm.nih.gov/pubmed/20944712
http://www.ncbi.nlm.nih.gov/pubmed/20944712
http://dx.doi.org/10.1038/467775a
http://www.ncbi.nlm.nih.gov/pubmed/22144613
http://www.ncbi.nlm.nih.gov/pubmed/22144613
http://dx.doi.org/10.1126/science.1213847
http://www.ncbi.nlm.nih.gov/pmc/articles/3383002
http://www.ncbi.nlm.nih.gov/pubmed/23687031
http://www.ncbi.nlm.nih.gov/pubmed/23687031
http://dx.doi.org/10.1126/science.1231535
http://dx.doi.org/10.1109/MCSE.2012.82

and O. Slooten, Eds. 2006.
Reference Source

10. Hestenes D: Modeling games in the Newtonian world. Am J Phys. 1992; 60(8):
732–748.
Publisher Full Text

11. Wikipedia, Computable function — Wikipedia, the free encyclopedia. 2014.
Reference Source

12. Wikipedia, Three-body problem — Wikipedia, the free encyclopedia. 2014.
Reference Source

13. Marmaras B, Wang JJ: Simulation and visualization of few-body systems and
the differential precession of Mercury. Comput Sci Eng. 2014; 16(1): 42–50.
Publisher Full Text

14. Dowek G: Les métamorphoses du calcul: une étonnante histoire de
mathématiques. Paris: Édition Le Pommier. 2007.
Reference Source

15. Regehr J: A Guide to Undefined Behavior in C and C++.
Reference Source

16. Sussman GJ, Wisdom J: The role of programming in the formulation of ideas.
MIT Artificial Intelligence Laboratory, Tech. Rep. AIM-2002–018. 2002.
Reference Source

17. Mairson HG: Functional geometry and the traité de lutherie: Functional pearl.
In Proceedings of the 18th ACM SIGPLAN International Conference on Functional
Programming ser. ICFP ’13. New York, NY USA: ACM. 2013; 123–132.
Publisher Full Text

18. Backus JW, Beeber RJ, Best S, et al.: The Fortran automatic coding system.
In Papers Presented at the February 26–28, 1957, Western Joint Computer
Conference: Techniques for Reliability, ser. IRE-AIEE-ACM ’57 (Western). New York,
NY USA: ACM. 1957; 188–198.
Publisher Full Text

19. McCarthy J: Recursive functions of symbolic expressions and their
computation by machine, part I. Commun ACM. 1960; 3(4): 184–195.
Publisher Full Text

20. Wikipedia, Undeciphered writing systems. — Wikipedia, the free encyclopedia.
2014.
Reference Source

21. Victor B: Scientific communication as sequential art. 2011.
Reference Source

22. Victor B: Explorable explanations. 2011.
Reference Source

23. Boldo S, Jourdan JH, Leroy X, et al.: A formally-verified C compiler supporting
floating-point arithmetic. In ARITH, 21st IEEE International Symposium on
Computer Arithmetic. IEEE Computer Society Press. 2013; 107–115.
Publisher Full Text

24. Ionescu C, Jansson P: Testing versus proving in climate impact research. In
18th International Workshop on Types for Proofs and Programs (TYPES 2011), ser.
Leibniz International Proceedings in Informatics (LIPIcs), N. A. Danielsson and
B. Nordström, Eds., vol. 19. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. 2013; 41–54.
Publisher Full Text

25. 754-2008 - IEEE standard for floating-point arithmetic.
Publisher Full Text

26. Crockford D: DEC64 number format. 2014.
Reference Source

27. Schmidt DC: Guest editor’s introduction: Model-driven engineering. Computer.
2006; 39(2): 25–31.
Publisher Full Text

28. Logg A, Mardal KA, Wells G: Automated Solution of Differential Equations by
the Finite Element Method. ser. Lecture Notes in Computational Science and
Engineering. 2012; 84.
Publisher Full Text

29. Orchard D, Rice A: A computational science agenda for programming language
research. In International Conference on Computational Science, 2014.
Reference Source

30. Murray Rust P, Murray Rust D: Reproducible physical science and the declaratron.
In Implementing Reproducible Research, V. Stodden, F. Leisch, and R. D. Peng, Eds.
Chapman and Hall/CRC. 2014.
Reference Source

31. Hinsen K: A data and code model for reproducible research and executable
papers. Pro Comput Sci. 2011; 4: 579–588.
Publisher Full Text

Page 10 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

http://modeling.asu.edu/R&E/Notes_on_Modeling_Theory.pdf
http://modeling.asu.edu/R&E/Notes_on_Modeling_Theory.pdf
http://dx.doi.org/10.1119/1.17080
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Three-body_problem
http://en.wikipedia.org/wiki/Three-body_problem
http://dx.doi.org/10.1109/MCSE.2013.73
http://www.editions-lepommier.fr/ouvrage.asp?IDLivre=235
http://www.editions-lepommier.fr/ouvrage.asp?IDLivre=235
http://blog.regehr.org/archives/213
http://blog.regehr.org/archives/213
http://hdl.handle.net/1721.1/6707
http://hdl.handle.net/1721.1/6707
http://dx.doi.org/10.1145/2544174.2500617
http://dx.doi.org/10.1145/1455567.1455599
http://dx.doi.org/10.1145/367177.367199
http://en.wikipedia.org/wiki/Undeciphered_writing_systems
http://en.wikipedia.org/wiki/Undeciphered_writing_systems
http://worrydream.com/ScientificCommunicationAsSequentialArt/
http://worrydream.com/ScientificCommunicationAsSequentialArt/
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/ExplorableExplanations/
http://dx.doi.org/10.1109/ARITH.2013.30
http://dx.doi.org/10.4230/LIPIcs.TYPES.2011.41
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dec64.com/
http://dec64.com/
http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/10.1007/978-3-642-23099-8
https://www.cl.cam.ac.uk/%7Edao29/publ/iccs14-orchard-rice.pdf
https://www.cl.cam.ac.uk/%7Edao29/publ/iccs14-orchard-rice.pdf
https://osf.io/w6fp4/osffiles/Murray_Rust_chapter.pdf/version/1/download/
https://osf.io/w6fp4/osffiles/Murray_Rust_chapter.pdf/version/1/download/
http://dx.doi.org/10.1016/j.procs.2011.04.061

Open Peer Review

 Current Peer Review Status:

Version 2

 30 June 2014Reviewer Report

https://doi.org/10.5256/f1000research.4790.r5180

© 2014 Jansson P et al. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution Licence

work is properly cited.

 Patrik Jansson
Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

 Cezar Ionescu
Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

The author has acted on almost all of the comments we provided and we are happy with the result. The
only remaining problem is the following sentence:

"It may seem surprising that most mathematical models used in the most mature domains of science do
not strictly speaking deserve the label “scientific”, because they cannot make predictions that are
immediately comparable to observed data."

In the new context where sin and cos are explained to be computable to any desired precision, the
conclusion of non-computability of "most mathematical models" no longer follows. (Data measurements
are also of limited precision.) This does not make the sentence false (it is now indeed very surprising), but
it probably needs reformulation.

 No competing interests were disclosed.Competing Interests:

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

Author Response 30 Jun 2014
, Rue Charles Sadron, 45071 Orléans, FranceKonrad Hinsen

For the case of Newton's equations, solutions are computable only for the two-body problem. The
two-body problem is of purely pedagogical interest today, as astronomical observations are so
precise that they require taking into account at least the sun and all the planets, sometimes even
the bigger moons. The computability of the two-body problem makes no practical difference:
Newton's equations for the solar system do not have computable solutions for any practically

relevant situation in astronomy.

Page 11 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

https://doi.org/10.5256/f1000research.4790.r5180
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

relevant situation in astronomy.

More importantly, I think it is clear from my article that Newton's solar system model is merely an
example. My claim that "most" mathematical models are not computable can clearly not rely on this
one example. What motivates this statement is the importance of numerical analysis in science, as
I explain in the immediately preceding sentence.

 NoneCompeting Interests:

 20 June 2014Reviewer Report

https://doi.org/10.5256/f1000research.4790.r5205

© 2014 Hestenes D. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution Licence

work is properly cited.

 David Hestenes
Professor Emeritus, Department of Physics, Arizona State University, Tempe, AZ, USA

I approve of the changes made to the article, and have no further comments.

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Version 1

 27 May 2014Reviewer Report

https://doi.org/10.5256/f1000research.4263.r4684

© 2014 Jansson P et al. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution Licence

work is properly cited.

 Patrik Jansson
Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

 Cezar Ionescu
Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

This position paper addresses the current state of computational science (the term is not defined, but
appears to mean the use of computational models as an essential means of scientific investigation). As
the author says, "the central question in computational science is: why should we trust the results of a
non-trivial computation?". At the moment, the answer appears to be: "we probably shouldn't", clearly an

Page 12 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

https://doi.org/10.5256/f1000research.4790.r5205
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5256/f1000research.4263.r4684
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

non-trivial computation?". At the moment, the answer appears to be: "we probably shouldn't", clearly an
unsatisfactory state of affairs.

This is a point which has been made before, and the paper references a number of previous attempts to
come to grips with it. The author's own approach is based on the introduction of an interesting conceptual
distinction: between models and tools. It is then argued that many of the problems in today's
computational science arise because of "blurring the distinction".

That the distinction is not unproblematic is illustrated by the following difficulty. On page 4, tools are
defined to be "both physical objects and mathematical theorems or procedures (e.g. calculus or algebra)".
 Later, we read: "the conclusion of a scientific study needs to be independent of a specific tool to deserve
the name 'scientific'". On the previous page, however, we have the example of a description of the solar
system as a set of differential equations. This seems to be crucially dependent on calculus. Is it therefore
not scientific?

As this example shows, the paper is sure to provide food for thought and for debate. We find that it does
contribute to highlighting and clarifying the problems we encounter in computational science, and as such
it deserves to be published and to reach a wider audience.

There is one error which must be corrected before that, however: namely, on page 3, where the functions
"sin" and "cos" are said to be uncomputable, by virtue of being transcendent. In fact, it is well known that
they are computable (as are all functions that can be expressed by power series, which is one of the
examples in Turing's 1936 paper). If the author has a different notion of computability in mind, then it
should be stated explicitly. (See the labels [Approx0], [Approx1] and [Approx2] below for some more
details.)
Another somewhat strange statement (but not an error) is that "heuristic methods that involve random
choices [...] do not produce a unique result for a given input and therefore do not qualify as scientific
models". One would think that they do, in fact, produce a unique result: namely a probability distribution,
and that computer simulations can be used to sample this distribution to whatever precision necessary.

There are, additionally, a number of infelicities which might be addressed before publication, such
anthropomorphic expressions ("computers help with collecting..., evaluating, ..., and communicating"
instead of "computers are used for collecting ..., evaluating, ..., and communicating"), or the
less-than-helpful figure 1, which does not seem to bring anything over its one line description in the
caption.

Some detailed comments:
Abstract: "As a consequence, these crucial pieces of information have disappeared from the
scientific record." We suggest some reformulation. It is not that they have first been there and
later "disappeared" but rather they were absent all along and now (with more complexity
developing) they are increasingly difficult (or impossible) to generate from what is in "the scientific
record".

[Approx0] "But this solution contains transcendental functions (sines and cosines), which are not
computable and therefore must be replaced by computable approximations, e.g. power-series
expansions." Reformulate: perhaps move the text from [Approx2] up and reformulate. "... there are
known algorithms that can find ... in finite time to any specified precision."

[Approx1] "they cannot make predictions that are immediately comparable to observed data": All

Page 13 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

[Approx1] "they cannot make predictions that are immediately comparable to observed data": All
observed data is of finite precision so it can be claimed that comparing model results to observed
data is often (but not always) feasible.

"The very fact that a program runs and produces results proves that the model specification is
complete and unambiguous, ..." The semantics of some languages (like C) is ambiguous
(non-deterministic).

"... the importance of correctly identifying, understanding and documenting approximations." We
strongly agree with this part and think it would be worth pointing to interval arithmetic as one way to
handle this problem.

[Approx2] "It is even a computable model in the sense of computability theory, in that there are
known algorithms that can find the global minimum in finite time to any specified precision." Note
that this looks inconsistent within the paper: earlier (at [Approx0]) you claim that sin and cos are not
computable, but with this definition they are.

It would be preferable to skip "of course" here: "This doesn’t mean of course that knowledge is lost
rapidly." := "This doesn’t mean that knowledge is lost rapidly."

"tools that very similar in spirit" := "tools that are very similar in spirit".

 No competing interests were disclosed.Competing Interests:

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

Author Response 05 Jun 2014
, Synchrotron SOLEIL, Division Experiences, Gif sur Yvette, FranceKonrad Hinsen

The referees raise some interesting points, which I hope to have addressed in the revised version
of my article.

Concerning the use of calculus in defining mathematical models through differential equations, it is
important to distinguish between axioms and definitions on one hand, and theorems and their
applications on the other hand. I have added a short sentence to make this distinction explicit.
Theorems and procedures are tools, and scientific models should indeed not depend on them.
Axioms and definitions are simply the semantic context for mathematical equations, i.e. the
language in which mathematical models are written. Newton's equations are based on the concept
of a derivative, but do not rely on any particular theorem or technique from calculus.

The referees are right about the computability of sines and cosines. I have corrected this statement
in the revision.

I have also added a paragraph at the end of the "Tools and methods" section to clarify the
distinction between probabilistic models and heuristics involving arbitrary or random choices,
which wasn't as carefully explained as it should have been.

Minor points that I have addressed in the revision are:
the ambiguity of languages like C

Page 14 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

the ambiguity of languages like C
interval arithmetic as an alternative to floating-point arithmetic
typos and stylistic issues

 NoneCompeting Interests:

 16 May 2014Reviewer Report

https://doi.org/10.5256/f1000research.4263.r4793

© 2014 Hestenes D. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution Licence

work is properly cited.

 David Hestenes
Professor Emeritus, Department of Physics, Arizona State University, Tempe, AZ, USA

This is an exceptional paper in many ways. First, it is extremely well written and well organized. Second, it
deals with an important, complex subject, providing a careful, novel analysis and parsing of
terms. Though the subject cuts across many scientific domains, the author demonstrates clear
competence in each. Finally, I think Hinsen is right in advocating primacy of models over tools (as he has
so carefully defined them).

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Comments on this article
Version 2

Author Response 27 Apr 2015
, Rue Charles Sadron, 45071 Orléans, FranceKonrad Hinsen

I am vaguely familiar with some of the modeling languages you cite, but not enough to judge how close
they come to the ideal that I describe in my article. The one I have looked at most closely is Modelica, but
it's so complex that it is hard to make any statements about it without also making a fool of myself. My
impression is that Modelica is most similar to DSLs for the specification of simulations, for which I cited
FEniCS as an example. The main difference between FEniCS and Modelica, other than complexity, is that
Modelica is a more standardized language with multiple implementations. If there is any other important
distinction, don't hesitate to point it out.

I think that these efforts are quite clearly a step in the right direction, but another step needs to be taken:
the step towards scientific models as data that can be analyzed and manipulated, in addition to being

Page 15 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

https://doi.org/10.5256/f1000research.4263.r4793
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

I think that these efforts are quite clearly a step in the right direction, but another step needs to be taken:
the step towards scientific models as data that can be analyzed and manipulated, in addition to being
simulated. For example, I would like to be able to store in a computer-readable file Newton's equations of
motion together with the conditions on the quantities that enter, e.g. masses being positive. In another file, I
would define Newton's law of gravitation. From these two files, I want to be able to derive general
properties, such as energy conservation. In yet another file, I would define a model for the solar system by
referring to the first two files, and adding parameters. Finally I would define a discretization for numerical
analysis, and an algorithm for computing solutions using floating-point arithmetic, making for two more
files. The last one is what a generic simulator would read in and work on.

To the best of my knowledge, none of the existing DSLs for simulations allow me to do all that.

 No competing interests were disclosed.Competing Interests:

Reader Comment 27 Apr 2015
, French National Institute for Research in Computer Science and Control (INRIA),Nicolas Rougier

France

Thank you very much for this nice article. As a researcher in computational neuroscience, what you explain
here applies very much to my own domain, even if we have some specificities.

One effort worth mentioning in computational neuroscience is the Brian simulator
(http://briansimulator.org) that allows to describe a computational model directly as a set of differential
equations with unit checking. It does not prevent you from making errors but it is a rather simple and
intuitive safeguard (and the motto of the Brian project is "a simulator should not only save the time of
processors, but also the time of scientists").

One bigger difference may be the validation of the models. In neuroscience, we have a lot of experimental
data, from single cell recording up to behavioural task performances. This makes it relatively "easy" to
validate a model provided you use the proper data. This may explain why we have today something like
hundreds model of area V1 (primary visual area in the occipital cortex) and most have been validated on
experimental data. But none of them is The scientific community accepted model of V1. One reason may
be that in order to build a precise model of some structure of the brain, we have to use over-simplified
models of other structures such that they interact with the one we try to model.

Also, one specificities is that computational neuroscience generally deals with neural networks, i.e. parallel
and distributed computing. However, most of the time, you'll use a single processor (desktop computer)
and only simulates this parallelism such that there is a real danger of making shortcuts in your model (to
save some CPU cycles). One example is the k-winner takes all algorithm. Considering a set of n neurons
with some activities, you want the most k activated ones to keep their activity while silencing the others.
From a serial point of view, it is rather easy: just sort the n activities and set the (n-k) lesser values to 0. But
this is a clear break of the distributed nature of your model. Said differently, you could not do something
like this if you had one processor/neuron and nothing else. To do it in the "right" way, you have to change
your paradigm (and consider the dynamic neural field theory in this case).

I also agree when you say "Models and tools must become distinct entities, which are developed, tested

and published independently" but up to the extents where researchers still understand the limits of the

Page 16 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

and published independently" but up to the extents where researchers still understand the limits of the
tools they're using. There is for example this nice demonstrating misuse of tools by scanning deadpaper
salmons in fMRI (functional Magnetic Resonance Imaging) and showing nonetheless some activities.

 No competing interests.Competing Interests:

Reader Comment 10 Jan 2015
, ImagineMade LLC, USAMichael O'Keefe

Thank you, nice article. Of course, no article can cover all areas but given your position of advocating for
separation between tool and model, I was surprised to see no citation of the modeling language work that
has been going on since the 1970s culminating in languages such as Modelica (https://modelica.org/),
Ptolemy II, Systems Biology Modeling Language, gPROMS, etc. I would be interested to hear your insights
on those efforts as to whether they are a step in the right direction for your vision and/or how they
meet/don't meet your criterion. Kind regards.

 No competing interests were disclosed.Competing Interests:

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more

The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com

Page 17 of 17

F1000Research 2014, 3:101 Last updated: 16 MAY 2019

http://blogs.scientificamerican.com/scicurious-brain/2012/09/25/ignobel-prize-in-neuroscience-the-dead-salmon-study/

