
Evaluating the Precision of Static Reference Analysis
Using Profiling

Donglin Liang, Maikel Pennings, and Mary Jean Harrold
College of Computing,

Georgia Institute of Technology
Atlanta, GA 30332, USA

{dliang,pennings,harrold}@cc.gatech.edu

Abstract
Program analyses and optimization of Java programs
require reference information that determines the in-
stances that may be accessed through dereferences. Ref-
erence information can be computed using reference anal-
ysis. This paper presents a set of studies that evaluate
the precision of some existing approaches for identify-
ing instances and for computing reference information
in a reference analysis. The studies use dynamic refer-
ence information collected during run-time as a lower
bound approximation to the precise reference informa-
tion. The studies measure the precision of an existing
approach by comparing the information computed using
the approach with the lower bound approximation. The
paper also presents case studies that attempt to identify
the cases under which an existing approach is not effec-
tive. The presented studies provide information that
may guide the usage of existing reference analysis tech-
niques and the development of new reference analysis
techniques.

1. INTRODUCTION
Program analyses and optimization of Java programs re-
quire reference information that specifies the instances
of classes1 that may be accessed through dereferences.
Reference variables in Java programs and pointer vari-
ables in C programs have many similarities. Thus, re-
searchers have suggested the use of points-to analysis
algorithms, originally developed for use in analyzing
pointers in C programs, for the computation of reference

1In the remainder of the paper, we refer to instances of
classes as instances.

information for Java programs. Recent work has pre-
sented several approaches for extending flow-insensitive
and context-insensitive points-to analysis algorithms for
analyzing Java programs [9, 11, 15]. This work has
also evaluated the performance of various extension ap-
proaches. In previous work, we showed that, by tak-
ing advantage of the simplicity of the common ways
in which Java programs are written, the efficiency and
the precision of a flow- and context-insensitive points-
to analysis algorithm can be improved significantly for
Java programs [9].

Despite these results, many issues regarding static ref-
erence analysis remain unresolved. One important issue
is determining the precision of the existing algorithms.
This information will help determine whether there is a
need to develop more precise static reference analyses.
Another important issue is identifying the cases in which
existing algorithms are imprecise. This information can
be used to develop more effective techniques for han-
dling such cases in static reference analysis to achieve a
better trade-off between precision and efficiency.

To address these issues, we must measure the precision
of a static reference-analysis algorithm. Measuring the
absolute precision of such an algorithm is difficult, how-
ever, because the problem of computing precise refer-
ence information is undecidable. Mock et al. [10] used
dynamic points-to information, collected by executing C
programs, to evaluate the precision of the static points-
to information computed by several existing points-to
analysis algorithms [4, 13, 14]. They reported that, for
the programs they studied, static points-to information
may contain a significant amount of spurious informa-
tion. Although these studies give insight into the preci-
sion of static points-to information for several existing
algorithms, they are limited to evaluation of analyses
on C programs.

To measure the precision of reference-analysis algorithms
for Java, we use a similar approach. We use dynamic

reference information, collected during run-time, as a
lower-bound approximation to the precise reference in-
formation. We then measure the precision of a reference-
analysis algorithm by comparing the information com-
puted by the algorithm with this lower-bound approx-
imation. If the comparison always yields little differ-
ence, we can conclude that the information computed
by the algorithm has high precision. If, in some cases,
the comparison yields a significant difference, we can
study these cases and develop more effective techniques
for handling them.

This paper presents a set of empirical studies, using this
approach, that evaluate the precision of static reference-
analysis algorithms using dynamic reference informa-
tion. The studies evaluate two aspects of static ref-
erence analysis: the approach for identifying instances
and the mechanism for computing the reference infor-
mation. A static reference analysis can be imprecise
because it must use a fixed number of names to identify
an unbounded number of instances created during the
execution of a program. A static reference analysis can
also be imprecise because it cannot precisely determine
whether a program path is executable. For efficiency,
an algorithm may use a small number of names to iden-
tify the instances, and use a flow-insensitive approach
that assumes any sequence of the program statements
is executable to compute reference information. Such
an algorithm may compute very imprecise information.
Our studies evaluate the precision of some existing ap-
proaches for identifying instances and computing refer-
ence information. Guided by the results of the studies,
we performed two case studies that attempt to iden-
tify the cases under which an approach is not effective.
Identifying and investigating these cases may guide the
development of new reference analyses.

One major contribution of this paper is that it presents
the results of the first set of empirical studies that evalu-
ate various approaches for identifying instances in Java
programs. One of these approaches—identifying heap-
allocated memory (e.g., instances) using the allocation
site—has been widely used in points-to analysis for C
without any empirical evaluation. Our studies show
that these approaches may be sufficiently precise for in-
stances allocated at most allocation sites in a program.
Our studies also show that using call strings to distin-
guish instances allocated at the same allocation site may
improve the precision of static reference analysis.

Another major contribution of this paper is that it presents
the results of the first set of empirical studies that com-
pare reference information computed by Andersen’s al-
gorithm, a flow-insensitive and context-insensitive algo-
rithm [1], with the reference information recorded dur-
ing the execution of the program. Our studies show that
Andersen’s algorithm may compute very precise infor-
mation for many allocation sites in some subjects, but
may compute very imprecise information for many al-

1. main() {
2. int *p, *q;

3. p = getint();

4. q = getint();

5. *p++;

6. *q++;

7. }

8. int *getint()

9. {
10. int *t;

11. t = malloc(4);

12. *t=0;

13. return t;

14. }

Figure 1: Example Program 1.

location sites in other subjects. New static reference
analysis techniques may need to be developed to com-
pute more precise information.

A third major contribution of this paper is that it presents
the results of two case studies in which we investigate
the cause of the imprecision in identifying instances and
in computing points-to information using some existing
approaches. We found that these approaches may com-
pute very imprecise information for instances that are
used to construct sophisticated data structures, such as
graphs. Therefore, to compute more precise informa-
tion, new static analysis techniques must provide more
effective mechanism for handling such data structures.

2. STATIC REFERENCE ANALYSIS
A static reference analysis must perform two tasks. The
first task is to identify the instances of various classes
that may be created in a program. We refer to an ap-
proach for performing this task as a naming scheme.
A static reference analysis must use a finite number of
names to identify the instances created during the exe-
cution of a program. Because the number of instances
created by a program may be unbounded, a name may
be used to identify more than one instance. Because a
static reference analysis computes information based on
these names, it computes the same information for the
instances identified using the same name. If different
instances identified by the same name are accessed by
the program in different ways, the points-to information
computed by the reference analysis will be imprecise.

A static reference analysis can identify instances using
an approach for identifying memory blocks allocated
from the heap in C programs. Many of the points-to
analyses for C programs, including those that have been
extended for Java programs, use an allocation site to
identify the memory blocks allocated from the heap at
this allocation site (e.g., [1, 2, 8, 7, 14]). However, be-
cause different blocks allocated at the same allocation
site may be used in different ways, this approach may
result in very imprecise information. For example, for
the program in Figure 1, a points-to analysis identifies
the memory blocks allocated at statement 11 using h 11.
Thus, it reports that statements 5 and 6 may access the
same memory location. Such information is spurious
because these two statements do not access the same
memory location during any execution.

Some points-to analyses for C programs [3] identify the
memory blocks allocated from the heap using the al-
location site plus a call string that encodes a set of n
procedure calls that are on the top of the stack when
the allocation occurs. In this way, the points-to anal-
ysis can distinguish the memory blocks allocated at an
allocation site by the call strings, and thus, can com-
pute more precise information. For example, for the
program in Figure 1, a points-to analysis uses h 11 3 to
identify the memory blocks allocated at statement 11
when getint() is called at statement 3, and uses h 11 4
to identify the memory blocks allocated at statement 11
when getint() is called at statement 4. Thus, it reports
that statements 5 and 6 do not access the same memory
location. This example shows that this naming scheme
allows the points-to analysis to compute more precise
information than using the previous naming scheme.

Identifying memory allocated from the heap using the
allocation site plus a call string may increase the num-
ber of names that identify memory locations, and thus,
may increase the cost of a points-to analysis. In addi-
tion, this approach may still result in imprecise points-to
information because memory blocks allocated from the
same allocation site may be used differently even when
the call strings are the same.

The second task that a reference analysis must perform
is to determine the potential instances that may be ac-
cessed through dereferencing a reference variable at a
statement. Given a naming scheme, a reference anal-
ysis reports a set of names that identify the memory
locations whose addresses may be stored in a reference
variable p at a statement s when a program is executed.
This set of names is typically referred to as the points-to
set of p at s. Let I be the set of all instances that may
be identified by name N in the program. A reference
analysis must include N in the points-to set of p at s
if the address of any instance in I is present in p im-
mediately before s is executed. Because the problem of
tracking the exact values for a variable is undecidable, a
reference analysis may compute imprecise information.

A reference analysis can compute the reference infor-
mation using approaches, which are used in points-to
algorithms, that determine the potential memory loca-
tions that may be accessed through each pointer derefer-
ence in C programs. Many points-to analysis algorithms
have been developed. These algorithms can be classi-
fied according to their approach for modeling control-
flow within a procedure and among procedures. A flow-
sensitive algorithm (e.g., [7, 2]) considers the execu-
tion order of program statements, and computes a set
of points-to relations at each program point. A flow-
insensitive algorithm (e.g., [1, 8, 14]) ignores the exe-
cution order of program statements, and computes one
set of points-to relations for all program points in a pro-
cedure or in the entire program. A context-sensitive al-
gorithm (e.g., [7, 8, 2]) matches procedure calls with

returns when it propagates information across proce-
dure boundaries. A context-insensitive algorithm (e.g.,
[1, 14]) treats procedure calls and returns as if they
were goto statements, and does not match procedure
calls with returns when it propagates information across
procedure boundaries.

Typically, a flow-insensitive algorithm is more efficient
but less precise than a flow-sensitive algorithm, and a
context-insensitive algorithm is more efficient but less
precise than a context-sensitive algorithm. However,
studies [8] show that a flow-insensitive and context-
insensitive algorithm may compute points-to informa-
tion that is close in precision to that computed by a
more expensive flow-sensitive and context-sensitive al-
gorithm.

3. RECORDING DYNAMIC REFERENCE
INFORMATION

We use the Java Virtual Machine Profiler Interface
(JVMPI)2 to record the dynamic information from the
execution of the subject programs. JVMPI provides a
communication channel between the Java Virtual Ma-
chine (JVM) and a profiler. Through JVMPI, the pro-
filer can register the events in which it is interested to
JVM. As JVM executes a subject program, it notifies
the profiler when a registered event occurs. The profiler
can then retrieve a variety of information related to the
event through interface functions provided by JVMPI.

Our profiler records information for two kinds of events.
The first kind of event is an instance-creation event. For
instance-creation events, when an instance is created,
our profiler records the instance ID assigned by JVM,
the type of the instance, the source line number for the
corresponding “new” statement, and the method that
contains the “new” statement. Such information is used
to map the instance to its allocation site. The profiler
can also record the n (n is a parameter for the pro-
filer) top-most callsites on the stack when the instance-
creation event occurs. Each callsite can be identified us-
ing the signature of the invoked method, the source line
number for the corresponding “call” statement, and the
signature of the method that contains the “call” state-
ment. These n callsites can be used to construct the
call string that distinguishes this instance from the in-
stances created at the same allocation site under other
calling contexts.

The second kind of event that our profiler records is a
method-call event. When a non-static method is called,
the profiler records the signature of the invoked method,
the source line number for the corresponding “call” state-
ment, and the signature of the method that contains
the “call” statement, for identifying the callsite. The
profiler also records the ID of the receiver instance on

2http://java.sun.com/products/jdk/1.2/docs/guide/jvmpi/,
Sun Microsystems, Inc.

which this method call occurs. In this way, for each exe-
cution of a subject program, the profiler records the set
of instances that may be accessed through dereference
at the callsites. We use this information to measure the
precision of a static reference analysis.

4. EMPIRICAL STUDIES
This section presents the results of several empirical
studies. The studies evaluate the precision of two ap-
proaches, discussed in Section 2, that identify instances
in reference analysis. The studies also evaluate the pre-
cision of computing reference information using an ex-
tension of Andersen’s algorithm that we presented in
previous work [9]. The extension identifies each in-
stance using the instance’s allocation site, and com-
putes reference information using a flow-insensitive and
context-insensitive approach. We implemented the ex-
tension using our Java Architecture for Bytecode Anal-
ysis (JABA)3.

4.1 Subject Programs
We performed the studies on a set of real Java pro-
grams. For each subject program, we created, accord-
ing to the description of the program, a set of test
cases that exercise different functionalities of the pro-
gram. We executed the program with each test case
and collected the dynamic information using the pro-
filer. Because our reference analysis does not analyze
library classes, our profiler does not record information
about the events that occur in library-provided code.
In addition, because many subject programs create a
large number of instances for class “java.lang.String”
and class “java.lang.StringBuffer”, recording informa-
tion about these instances may cause the profiler to
run very slowly and to consume a large amount of disk
space. Therefore, our profiler does not record informa-
tion about these instances.

Table 1 shows the subject programs that we used in our
studies. For each subject program, the table shows the
number of lines of code (Locs), the number of classes
(Cls), the number of methods (Meth), the number of
methods analyzed by our implementation of Andersen’s
algorithm (And), the number of methods executed by
all test cases (Dyn), and the value of Dyn/And in per-
centage (%). The size and coverage information shown
in the table exclude the library classes. Because some
methods in each program are not reachable from main(),
our implementation of Andersen’s algorithm may not
analyze those methods. Therefore, for each subject, the
number shown in column And is smaller than the num-
ber shown in column Meth. To better understand the
coverage, we compared the number of methods analyzed
by Andersen’s algorithm to the number of methods cov-
ered by the test cases. The table shows that, for many
subject programs, our test cases cover more than 70%

3http://www.cc.gatech.edu/aristotle/, Georgia Tech.

Subject Size Coverage
program Locs† Cls Meth And Dyn %

JavaSim 4078 37 242 72 56 78%
antlr 32030 148 1858 950 682 72%
jar 1839 8 89 36 24 67%
jas 4620 116 413 295 264 89%
javac 28191 151 1404 1266 779 62%
java cup 10155 35 372 269 206 77%
jbf 6025 45 548 184 100 54%
jess 19317 207 1132 974 757 78%
jfe 31636 310 1837 830 726 87%
jlex 7351 20 134 105 92 88%
jtar 11904 40 202 147 97 66%
kawa 27394 319 1989 1792 1331 74%
raja 6369 65 391 37 32 86%
sablecc 44521 295 2025 1598 1376 86%
toba 6417 26 196 150 105 70%

†Locs for each subject is calculated using unix
command “wc -l” on the java files.

Table 1: Sizes of the subject programs and num-

ber of methods covered by Andersen’s algorithm

and the test cases.

of the methods that have been analyzed by Andersen’s
algorithm.

Note that for raja and JavaSim, only a small fraction of
methods are analyzed by Andersen’s algorithm because
both programs contain a library and a simple driver that
uses a small subset of the library classes. Also note that
for jbf, jar, and antlr, less than 50% of the methods
are analyzed by Andersen’s algorithm. The coverage for
jbf is low because jbf contains classes that are used
for both jb and jf, but main() in the program is a
driver that exercises the functionalities for jb only. The
coverage for jar is low because jar contains a set of
classes that implement a verifying feature, but are not
used by the program. For antlr, the percentage is low
because antlr contains a set of classes that are used for
debugging purposes.

4.2 Study 1
This study evaluates the precision of identifying instances
in reference analysis using the existing naming schemes
presented in Section 2. Let I be the set of instances
identified by name N according to a naming scheme.
For any instance i ∈ I, let C[i] be the set of callsites at
which i is recorded as the receiver by the profiler; a ref-
erence analysis must report that N may be the receiver
at the callsites in C[i]. Therefore, a reference analysis
must report that N may be the receiver at the callsites
in C that is defined as the following

C =
⋃

i∈I

C[i] (1)

However, if N is reported to be the receiver at a callsite
c, we expect that any instance i ∈ I can be observed
as the receiver at c by the profiler. Thus, if C is not

1. A createA(int tag) {
2. A p = new A();

3. if(tag>=0)

4. p.setPositive();

5. else

6. p.setNegative();

7. return p;

8. }

Figure 2: Example Program 2.

the same as C[i], then the reference analysis computes
imprecise information for i.

For example, let h2 be the name that identifies the in-
stances created at statement 2 in the program in Fig-
ure 2. Suppose that instance i1 is created at statement
2 when createA() is called with a value greater than
0, and i2 is created at statement 2 when createA()

is called with a value less than 0. i1 will be the re-
ceiver for the method call at statement 4, and i2 will be
the receiver for the method call at statement 6. Thus,
C[i1] = {4} and C[i2] = {6}. A reference analysis must
report that h2 may be the receiver at the set of callsites
C = {4, 6}. Because h2 identifies both i1 and i2, we
may conclude that both instances can be receivers at
statements 4 and 6. Such information is imprecise.

Our studies compare the difference between C[i] and C
for each instance i that has been recorded for all test
cases. If C[i] is the same as C, then we say that the
naming scheme is empirically precise for i. Otherwise,
we say that the naming scheme is empirically impre-
cise for i. If a naming scheme is empirically precise for
i, then a reference analysis using this naming scheme
may compute precise information for i. However, if the
naming scheme is empirically imprecise for i, then no
reference analysis using this naming scheme can com-
pute precise information for i.

In this study, for each instance i created during the
execution of each subject program, we computed a pre-
cision reference value r[i] = |C[i]|/|C|, where C[i] and
C are defined in the previous paragraph according to a
particular naming scheme, and |C[i]| is the size of C[i]
and |C| is the size of C. r[i] shows the difference between
C[i] and C. If r[i] is 1, then the naming scheme is empir-
ically precise for i. In the study, we consider four nam-
ing schemes: level-0 naming scheme identifies instances
using the allocation site only; level-x (0 < x < 4) nam-
ing scheme identifies instances using the allocation site
plus a call string whose length is x.

Figures 3 and 4 show the distribution of the precision
reference value for each instance created during the exe-
cution of a subject. Each graph in the figure represents
the data for a subject program.4 In each graph, there

4Data for jtar, raja, and toba are not shown in
the Figures because in these programs, all the naming

are four bars in each group. From left to right, each bar
represents the data computed for level-0 through level-
3 naming schemes, respectively. A bar in the group
marked with [v, v + 0.2) (v = 0.0, 0.2,0.4, 0.6, 0.8) rep-
resents the percentage of instances whose precision ref-
erence value r[i] is in the interval [v, v + 0.2) (i.e. v ≤
r[i] < v + 0.2); a bar in the group marked with 1 repre-
sents the percentage of instances for which the naming
scheme is empirically precise.

From the figures, we can see that, for subjects such as
JavaSim and jar, each naming scheme is empirically
precise for a large percentage (> 65%) of instances cre-
ated during execution. From Table 1, we can see that
these subjects are relatively small compared to the oth-
ers. By inspecting the description and the source code
of these programs, we found that they are relatively sim-
ple, and they do not construct complicated data struc-
tures. For example, JavaSim contains a driver that sets
up an simulation environment and then simulates the
traffic of a network model. It creates only a small num-
ber of instances during the execution.

From the figures, we can also see that, for the other
subjects, each naming scheme is empirically precise for
a much lower percentage of instances created during the
execution of the programs. For example, for subject
jess, all the naming schemes are empirically precise for
less than 15% of instances.

To identify the factors that may cause such impreci-
sion in these programs, we investigated the precision
for identifying instances that are allocated at each al-
location site in these subjects. For each allocation site,
we computed the average of the precision reference val-
ues for all the instances allocated at the site. Table 2
shows the distribution of such an average for the alloca-
tion sites. In the table, each row represents the data for
a specific naming scheme and a specific subject; each
number, except the last one, in each row indicates the
number of allocation sites at which the average of the
precision reference values for the instances allocated at
each site is in [v, v + 0.1) ([v, v + 0.1) is marked at the
head of the corresponding column). The last number in
each row indicates the number of allocation sites that
create instances whose precision reference value is one.

From the table, we can see that, for many subject pro-
grams, the naming schemes may be very precise for in-
stances created at a large percentage of allocation sites;
the naming schemes may be very imprecise for instances
created at a very small number of allocation sites. For
example, for subject kawa, the level-3 naming scheme is
empirically precise for instances created at about 70%
of allocation sites in the program; for the same nam-
ing scheme, only 13 out of 495 allocation sites create
instances whose average of precision reference values is

schemes are empirically precise for more than 95% of
instances.

Figure 3: Distribution of the precision reference values for all instances .

Figure 4: Distribution of the precision reference values for all instances (continued).

from 0.0 up to 0.4.

To investigate these problematic allocation sites that
create instances whose precision reference values are
extremely low, we inspected the descriptions and the
source code of these programs. We found that most
of these programs are language processors. These lan-
guage processors typically process some text or binary
files, build an internal data structure to represent the
input, and then apply operations on this internal data
structure. Such a data structure is typically a tree or a
graph that contains many nodes. These nodes are cre-
ated at a few allocation sites and may be used in differ-
ent ways according to the information associated with
individual nodes or their relations with other nodes.

For example, in java cup, when the level-3 naming scheme
is used, 99% of the instances that have a precision refer-
ence value between 0.0 and 0.6 are created at allocation
sites that create instances for the following classes

java cup.lalr item
java cup.lalr item set
java cup.terminal set
java.lang.Vector

The instances created for java.lang.Vector are used by
instances of java cup.lalr item. The instances created
for the other classes are used for the construction of
the data structures for the parser to perform various
actions according to the production rules specified by
the program’s inputs. Depending on the content, these
instances may be accessed by the program at different
statements. Therefore, identifying these instances us-
ing the allocation sites or the allocation sites plus call
strings may result in very imprecise information. To
compute more precise information for such instances,
new naming schemes need to be developed to account
for the content of such instances.

From the data presented in Figures 3 and 4, we can also
see that, for some subject programs, using call strings
to distinguish the instances allocated at the same allo-
cation site may improve the precision of the information
computed by static reference analysis. For example, for
subject kawa, the level-0 naming scheme is empirically
precise for only 12% of the instances created during the
execution; in contrast, the level-3 naming scheme is em-
pirically precise for 28%. However, for other subjects,
such as JavaSim, jess, jlex, and toba, the improve-
ment in the precision is insignificant.

Naming (0.0, [0.1, [0.2, [0.3, [0.4, [0.5, [0.6, [0.7, [0.8, [0.9,
program scheme 0.1) 0.2) 0.3) 0.4) 0.5) 0.6) 0.7) 0.8) 0.9) 1.0) 1

Level 0 0 0 0 0 0 0 0 2 0 1 17
JavaSim Level 1 0 0 0 0 0 0 0 1 0 1 18

Level 2 0 0 0 0 0 0 0 0 1 1 18
Level 3 0 0 0 0 0 0 0 0 1 1 18
Level 0 0 1 3 11 9 26 14 20 24 21 125

antlr Level 1 0 1 0 6 9 17 16 20 23 23 139
Level 2 0 0 0 5 6 17 12 23 23 28 140
Level 3 0 0 0 4 5 16 13 21 23 32 140
Level 0 0 0 0 0 2 1 1 0 1 0 33

jar Level 1 0 0 0 0 2 1 1 0 1 0 33
Level 2 0 0 0 0 2 1 1 0 1 0 33
Level 3 0 0 0 0 2 0 1 0 1 0 34
Level 0 2 3 0 0 0 4 5 1 40 19 115

jas Level 1 0 2 0 0 0 3 5 3 40 20 116
Level 2 0 2 0 0 0 2 4 3 40 16 122
Level 3 0 1 1 0 0 1 4 4 38 17 123
Level 0 1 0 2 0 5 6 9 13 12 9 130

java cup Level 1 0 1 2 0 4 5 9 15 12 9 130
Level 2 0 0 2 0 4 5 9 15 12 10 130
Level 3 0 0 2 0 4 5 9 15 12 10 130
Level 0 2 7 10 14 14 15 31 17 33 36 272

javac Level 1 1 1 8 9 14 15 25 23 36 38 281
Level 2 1 1 6 4 11 10 25 18 37 49 289
Level 3 0 2 4 5 10 9 22 17 33 55 294
Level 0 0 2 0 2 3 1 2 9 4 5 18

jbf Level 1 0 1 0 0 3 3 2 8 5 6 18
Level 2 0 0 0 0 2 2 2 9 6 6 19
Level 3 0 0 0 0 1 3 1 9 5 6 21
Level 0 2 5 6 19 23 23 25 29 33 12 200

jess Level 1 0 2 7 16 19 19 24 30 38 18 204
Level 2 0 1 4 13 24 20 21 26 39 24 205
Level 3 0 0 3 12 22 22 21 28 37 25 207
Level 0 0 7 21 16 9 20 20 18 20 23 189

jfe Level 1 0 0 15 9 8 18 18 18 24 39 194
Level 2 0 0 10 9 6 16 20 20 21 43 198
Level 3 0 0 6 4 5 14 19 21 21 54 199
Level 0 0 0 0 1 0 2 1 5 9 6 54

jlex Level 1 0 0 0 1 0 2 1 3 10 7 54
Level 2 0 0 0 1 0 2 1 3 10 6 55
Level 3 0 0 0 1 0 1 2 3 9 7 55
Level 0 2 5 10 7 16 17 33 30 35 26 314

kawa Level 1 1 3 10 6 14 12 29 26 35 36 323
Level 2 0 3 9 3 16 10 23 20 30 42 339
Level 3 0 3 7 3 13 10 22 19 28 44 346
Level 0 1 2 5 4 4 14 11 31 31 40 318

sablecc Level 1 0 1 2 3 3 11 12 32 31 43 323
Level 2 0 0 2 2 2 11 12 34 32 43 323
Level 3 0 0 1 1 3 10 12 27 37 44 326

Table 2: Distribution of the average precision reference values for instances created at individual

allocation sites. Note that data for jtar, raja, and toba are not presented because almost all instances

in these programs have a precision reference value of one.

Figure 5: Distribution of the precision reference values for allocation sites.

In summary, naming schemes that identify instances us-
ing allocation sites or allocation sites plus a call string
may be very imprecise for a large percentage of instances
created during the execution of a program. However,
such imprecision may occur for instances allocated at
a small percentage of allocation sites in each program.
Therefore, information computed by static reference anal-
ysis using these naming schemes may be useful for rea-
soning about certain properties of the instances created
at a large percentage of allocation sites. Our case stud-
ies indicate that the instances for which the naming
schemes are highly imprecise are typically created at
a small number of allocation sites, and are often used to
construct a large complicated data structure. New nam-
ing schemes must be developed to compute more precise
reference information for such a data structure. Be-
cause such a data structure involves only the instances
created at a small portion of the allocation sites, a hy-
brid naming scheme may be the best approach: at the
large percentage of allocation sites where identifying in-
stances using existing naming schemes is sufficient, we
use the existing naming scheme; for the rest of the allo-
cation sites, we use a new naming scheme. Such a hybrid
naming scheme may yield a good trade-off between pre-
cision and efficiency. Our study also shows that using
call strings to distinguish the instances created at the
same allocation site may enable a static reference anal-
ysis to compute more precise information for instances
allocated at some allocation sites in many programs.

4.3 Study 2
This study evaluates the precision of the mechanism
that is used to compute points-to information in An-

dersen’s algorithm. Andersen’s algorithm uses the al-
location sites to identify instances. Let I be the set of
instances that are identified by name N . For any in-
stance i ∈ I, let C[i] be the set of callsites at which i
is recorded as the receiver. Andersen’s algorithm must
report that N may be a receiver at the set of callsites

C =
⋃

i∈I

C[i] (2)

However, because Andersen’s algorithm is not precise, it
may report that N may be the receiver at a larger set of
callsites C ′. We want to measure the difference between
C and C ′. The difference may serve as an indicator of
the precision of Andersen’s algorithm. C ′ may contain
callsites that are not executed by any of our test cases.
We do not consider those callsites because they may
never be reached by any execution of the program.

In this study, for each name N that identifies the in-
stances created at an allocation site, we compute a pre-
cision reference value R[N] = |C|/|C ′ ∩ Cover|, where
C and C ′ are defined in the previous paragraph and
Cover is the set of callsites that have been exercised by
at least one test case. If R[N] is close to 1, then using
this naming scheme, any other static reference analysis
may not compute significantly more precise information
for N than Andersen’s algorithm. However, if R[N] is
not close to 1, then some other static reference analy-
sis may compute more precise information for N than
Andersen’s algorithm.

Figure 5 shows the distribution of the precision reference
values computed for the allocation sites in each subject.

In the figure, from left to right, each of the first five
bars within a group represents the percentage of alloca-
tion sites whose precision reference values are in [v, v +
0.2) (v = 0.0, 0.2, 0.4, 0.6, 0.8); the sixth bar within
a group represents the percentage of allocation sites
whose precision reference values are 1. As mentioned
in Subsection 4.1, we do not consider allocation sites
for “java.lang.String” and “java.lang.StringBuffer”. To
compare the information computed by Andersen’s al-
gorithm with that collected by the profiler, we do not
consider the allocation sites not exercised by test cases.

The graph shows that, for jar, java cup, jlex, and
raja, information computed by Andersen’s algorithm is
very close to that recorded by the profiler for a large
percentage of allocation sites. However, the graph also
shows that, for other subjects (e.g., jas, javac, and
kawa), information computed by Andersen’s algorithm
are quite different from that recorded by the profiler
for a large percentage of allocation sites. The result in-
dicates that information computed by Andersen’s algo-
rithm is quite imprecise for these subjects. New reference-
analysis algorithms could be developed for computing
more precise information for these programs.

To understand the reasons why Andersen’s algorithm is
so imprecise for some subject programs, we performed
a case study on one of our subjects jess. jess is a rule
engine and scripting environment for building an expert
system.5 jess processes programs written in a language
similar to CLIPS. In the case study, we identified, in
jess, the allocation sites whose precision reference val-
ues are between 0.0 to 0.1. We then checked the source
codes of jess to see how the instances created at these
sites are used by the program. In this program, there
are 74 allocation sites whose precision reference values
are between 0.0 and 0.1. By checking the source code,
we found that these allocation sites create instances for
one of the following seven classes

jess.Context 3
jess.Funcall 1
jess.FuncallValue 6
jess.IntArrayValue 1
jess.Value 51
jess.ValueVector 6
jess.Variable 6

The number following each class name indicates the
number of allocation sites that create instances for this
class. Each number includes only those allocation sites
whose precision reference values are between (0.0, 0.1).

We further found that most of the instances of these
classes (except jess.Context) created in the program are
used to construct a parse tree for the program inputs.
The parse tree is a recursive data structure. Instances of

5http://herzberg.ca.sandia.gov/jess/.

the same type (e.g., jess.Value) in the data structure are
created at various allocation sites and are used for differ-
ent purposes. For example, an instance of jess.Value has
a field “m type” that determines how the other fields
of this instance should be used. In many places, the
program checks the value of “m type” in an instance
and accesses this instance according to the value of
“m type”. Typically, an instance of jess.Value created
at an allocation site has a specific value for “m type”.
Therefore, instances of jess.Value created at different
allocation sites are accessed differently by the program.
Andersen’s algorithm cannot distinguish different parts
of a recursive data structure, and thus, will compute
the same information for different allocation sites that
create instances for jess.Value. Therefore, Andersen’s
algorithm will compute very imprecise information for
these allocation sites. For similar reasons, Andersen’s
algorithm also computes very imprecise information for
allocation sites of classes such as jess.ValueVector and
jess.FuncallValue.

In summary, Andersen’s algorithm may compute im-
precise information for a large percentage of allocation
sites in many programs. Therefore, there is a need to
develop more precise static reference analyses. Our case
study reveals that, instances allocated at the allocation
sites for which Andersen’s algorithm computes highly
imprecise information, may often be used to compose
sophisticated data structures. Because many existing
points-to algorithms (e.g., [1, 2, 3, 8, 7, 14]) developed
for C have very limited power in distinguishing differ-
ent parts in such data structures, we expect these al-
gorithms, when being extended for Java programs, to
compute very imprecise information for these callsites.
Shape analysis techniques (e.g., [5, 6, 12]) have been
developed to compute more precise information for so-
phisticated data structures in C. The effectiveness of
these techniques on Java programs must be evaluated.
In addition, these techniques do not seem to scale to
large C programs. New reference-analysis algorithms
may need to be developed for handling such data struc-
tures in Java programs more effectively.

5. CONCLUSION
This paper presents empirical studies that evaluate the
precision of existing approaches in identifying instances
in static reference analysis and in computing points-to
information in static reference analysis. Our studies
show that

• Identifying instances using the allocation sites may
be sufficiently precise for instances allocated at
most of the allocation sites in a program.

• Using call strings to distinguish instances allocated
at a allocation site may improve the precision of
identifying instances in some programs.

• Andersen’s algorithm may compute very precise
information for most allocation sites in some sub-
jects, but it may compute very imprecise informa-
tion for most allocation sites in other subjects.

Our studies suggest that hybrid approaches for identify-
ing instances and computing points-to information may
need to be developed: for those allocation sites at which
existing approaches are precise enough, we use such ap-
proaches; for the remainder, we develop new approaches
for effectively handling each case.

We also use the results of our studies to gain insights
into possible ways in which we may develop new reference-
analysis techniques. We perform case studies to investi-
gate the characteristics of the program constructs that
cause the imprecision in existing approaches for identify-
ing instances in static reference analysis and in comput-
ing points-to information. We found that these exist-
ing approaches may be very imprecise for sophisticated
data structures. To compute more precise information,
new static reference analysis must employ more effective
techniques for handling such data structures.

In future work, we will collect additional subject pro-
grams and create more test cases to continue our em-
pirical studies. New subjects and test cases will give
us more information that may enhance the confidence
of our conclusion, and may lead to new discoveries. We
will also perform additional case studies to gain more in-
sights into the common usage patterns of references in
Java programs. Such insights may guide us to develop
effective techniques for handling such usage patterns in
static analysis. Such insights may also help us to iden-
tify the limitations of static reference analysis, and may
lead us to discover other alternatives, such as combin-
ing static analysis with dynamic analysis, for computing
more precise reference information.

6. ACKNOWLEDGEMENTS
This work was supported in part by a grant from Boe-
ing Aerospace Corporation to Georgia Tech, by Na-
tional Science Foundation awards CCR-9988294, CCR-
0096321, and EIA-0196145 to Georgia Tech, and by the
State of Georgia to Georgia Tech under the Yamacraw
Mission. Huaxing Wu helped with the creation of the
graphs, and Tongyu Li helped with the creation of the
test cases for the subjects.

7. REFERENCES
[1] L. Andersen. Program analysis and specialization for

the C programming language. Technical Report 94-19,
University of Copenhagen, 1994.

[2] R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant
context inference. In ACM, editor, POPL ’99. Proceed-
ings of the 26th ACM SIGPLAN-SIGACT on Prin-
ciples of programming languages, pages 133–146, Jan.
1999.

[3] J.-D. Choi, M. Burke, and P. Carini. Efficient
flow-sensitive interprocedural computation of pointer-
induced aliases and side effects. In Conference record of
the Twentieth Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages: pa-
pers presented at the symposium, Charleston, South
Carolina, January 10–13, 1993, pages 232–245, 1993.

[4] M. Das. Unification-based pointer analysis with direc-
tional assignments. In Proceedings of 2000 Conference
on Programming Language Design and Implementation,
June 2000.

[5] A. Deutsch. Interprocedural may-alias analysis for
pointers: Beyond k-limiting. In Proceedings of the ACM
SIGPLAN ’94 Conference on Programming Language
Design and Implementation, pages 230–241, June 1994.

[6] L. J. Hendren, J. Hummel, and A. Nicolau. Abstrac-
tions for recursive pointer data structures: Improving
the analysis of imperative programs. In Proceedings of
the ACM SIGPLAN’92 Conference on Programming
Language Design and Implementation (PLDI), pages
249–260, San Francisco, California, 17–19 June 1992.

[7] W. Landi and B. G. Ryder. A safe approximate algo-
rithm for interprocedural pointer aliasing. SIGPLAN
Notices, 27(7):235–248, July 1992. Proceedings of the
ACM SIGPLAN ’92 Conference on Programming Lan-
guage Design and Implementation.

[8] D. Liang and M. J. Harrold. Efficient points-to analysis
for whole-program analysis. In 7th ESEC/FSE, pages
199–215, Sept. 1999.

[9] D. Liang, M. Pennings, and M. J. Harrold. Extending
and evaluating flow-insensitive and context-insensitive
points-to analyses for java. In 2001 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, June 2001.

[10] M. Mock, M. Das, C. Chambers, and S. J. Eggers. Dy-
namic points-to sets: A comparison with static analyses
and potentials applications in program understanding
and optimization. In 2001 SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and En-
gineering, pages 66–72, jun 2001.

[11] A. Rountev, A. Milanova, and B. G. Ryder. Points-
to analysis for java based on annotated constraints. In
Conference on Object-oriented programming, systems,
languages, and applications, Oct. 2001.

[12] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-
analysis problems in languages with destructive updat-
ing. In Conference Record of the 23rd ACM Symposium
on Principles of Programming Languages, pages 16–31,
Jan. 1996.

[13] M. Shapiro and S. Horwitz. Fast and accurate flow-
insensitive points-to analysis. In ACM, editor, Confer-
ence record of POPL ’97, the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages: papers presented at the symposium, pages
1–14, 1997.

[14] B. Steensgaard. Points-to analysis in almost linear time.
In Conference Record of the 23rd ACM Symposium
on Principles of Programming Languages, pages 32–41,
Jan. 1996.

[15] M. Streckenbach and G. Snelting. Points-to for java: A
general framework and an empirical comparison. Tech-
nical report, University Passau, Nov. 2000.

