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Abstract- Most network traffic analysis and modeling
studies lump all connections together into a single flow. Such
aggregate traffic typically exhibits long-range-dependent
(LRD) correlations and non-Gaussian marginal distribu-
tions. Importantly, in a typical aggregate traffic model, traf-
fic bursts arise from many connections being active simul-
taneously. In this paper, we develop a new framework for
analyzing and modeling network traffic that moves beyond
aggregation by incorporating connection-level information.
A careful study of many traffic traces acquired in different
networking situations reveals (in opposition to the aggregate
modeling ideal) that traffic bursts typically arise from just a
few high-volume connections that dominate all others. We
term such dominating connections alpha traflc.  Alpha traf-
fic is caused by large file transmissions over high bandwidth
links and is extremely bursty (non-Gaussian). Stripping the
alpha traffic from an aggregate trace leaves a beta traf/ic
residual that is Gaussian, LRD, and shares the same frac-
tal scaling exponent as the aggregate traffic. Beta traffic is
caused by both small and large file transmissions over low
bandwidth links. In our alpha/beta traffic model, the hetero-
geneity of the network resources give rise to burstiness and
heavy-tailed connection durations give rise to LRD. Queu-
ing experiments suggest that the alpha component dictates
the tail queue behavior for large queue sizes, whereas the
beta component controls the tail queue behavior for small
queue sizes.
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I. INTRODUCTION

NETWORK traffic analysis and modeling play a major
rale  in characterizing network performance. Models

that accurately capture the salient characteristics of traffic
are useful for analysis and simulation, and they further our
understanding of network dynamics and so aid design and
control.

Most traffic analysis and modeling studies to date have
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attempted to understand aggregate trufic,  in which all si-
multaneously active connections are lumped together into
a single flow. Typical aggregate time series include the
number of packets or bytes per time unit over some inter-
val. Numerous studies have found that aggregate traffic
exhibitsfractul  or sel’f-sitrdur  scaling behavior, that is, the
traffic “looks statistically similar” on all time scales [l].
Self similarity endows traffic with long-range-dependence
(LRD) [l]. Numerous studies have also shown that traf-
fic can be extremely bursty, resulting in a non-Gaussian
marginal distribution [2]. These findings are in sharp con-
trast to classical traffic models such as Markov or ho-
mogeneous Poisson. LRD and non-Gaussianity can lead
to much higher packet losses than predicted by classical
Markov/Poisson  queueing analyses [ 11, [3].

The discovery of self-similar behavior in traffic led im-
mediately to new fractal aggregate traffic models (see [4],
[5], for example). Fractional Guzmiun  noise (fGn),  the
most widely applied fractal model, is a Gaussian process
with strong scaling behavior. Due to its Gaussianity, it
lends itself to rigorous analytical studies of queueing be-
havior. Also, approximate fGn can be synthesized rapidly
by a variety of different techniques, including wavelets.

A strong argument for fGn in networks is that often ag-
gregate traffic can be viewed as a superposition of a large
number of independent individual ON/OFF sources that
transmit at the same rate but with heavy-tailed ON dura-
tions [6], [7]. In the limit of infinitely many sources, the
ON/OFF model converges to fGn.

Unfortunately, fGn is unrealistic for bursty non-
Gaussian traffic. For instance, when the standard deviation
of the traffic exceeds its mean, a considerable portion of an
fGn traffic synthesis is negative. These failings have moti-
vated more complicated models for aggregate traffic such
as multifractals and infinitely divisible cascades [2], [8].
However, while more statistically accurate, these models
lack network relevance in their parameterizations. In par-
ticular, they do not account for why bursts occur in network
traffic. This is precisely the question we study in this pa-
per.

We will exploit the connection-level information con-
tained in most publicly available traffic traces to target
bursts directly. This information is typically ignored in a
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classical aggregate (LRD, fractal, multifractal) ana1yses.l
The result is a new framework for analyzing and modeling
bursty network traffic.

II. CONNECTION-LEVEL TRAFFK  ANALYSIS

We define a connection as the unique four-tuple com-
prising a source IP address, destination IP address, source
port number, and destination port number.

Connection-level information enables us to conduct a
refined analysis of traffic bursts. In aggregate traffic mod-
els (including the ON/OFF model), traffic bursts arise from
a large number of connections transmitting bytes or pack-
ets simultaneously. That is, bursts stem from a kind of
“constructive interference” of many connections. With
connection-level information, we can test this hypothesis.
If it were true, then we should observe in real traffic traces
a large number of active connections during bursts. How-
ever, Figures. l(a) and (b) demonstrate that this is not the
case. Bursts in bytes-per-time generally do not coincide
with large values connections-per-time.

Quite to the contrary, a careful analysis of many real
traces [lo] reveals that generally very few high-rate con-
nections dominate during a burst. In fact in most cases
only one connection dominates. This surprising finding
has far-reaching implications for traffic analysis and mod-
eling.

To explore further, we propose a new analysis tech-
nique that exploits connection-level information to sepa-
rate a measured traffic trace into two distinct components
at a time-scale T of interest.*

1. In each T-second time bin, identify the connection(s)
that transmits the largest number of bytes.
2. If the strength of the identified connection(s) is greater
than a threshold, then label it as a dominant connection.
The (large) threshold is chosen based on the mean of the
aggregate traffic at time-scale T plus a few standard devi-
ations.

We call the traffic corresponding to the dominant con-
nections the alpha component. The residual traffic is
called the beta component. 3 Our procedure thus decom-
poses an aggregate traffic trace into

total traffic = alpha traffic + beta traffic.

See Figure 2 for real data example.

(1)

‘See [6],  [7] for connection-level studies to explain the underlying
causes of self-similar behavior.

‘While we set T = 500 ms for the analyses in this paper, our results
held for a wide range of T.

3By  analogy to the dominating alpha males and submissive beta
males observed in the animal kingdom.

We have applied the alpha/beta traffic decomposition to
many real-world traffic traces, from Auck [9]  to LBL [ 1 l]
and found tremendous consistency in our results [lo]. The
statistical properties of the components can be summarized
as follows.

Beta trufic:  At time-scales coarser than the round-trip
time, the beta component is very nearly Gaussian and
strongly LRD (i.e., approximately fGn),  provided a suf-
ficiently large number of connections are present. More-
over, the beta component carries the same fractal scaling
(LRD) exponent as the aggregate traffic (see Figure 4(a)).

Alpha trufic:  The alpha component constitutes a small
fraction of the total workload but is entirely responsible for
the bursty behavior. Alpha traffic is highly non-Gaussian.

See [lo] for a number of computationally simpler
schemes for decomposing traffic into alpha and beta com-
ponents, including a scheme based on wavelet threshold-
ing that does not require explicit connection information
to extract the alpha traffic.

III .  O R I G I N S O F A L P H A  A N D  BETA  TRAFEK

We have seen that bursts are not caused by a “conspir-
acy” of many moderate flows, but rather by solitary alpha
connections. Here we study the origins of this behavior.

A. Potential causes of bursts

To begin, we list four possible reasons for connections
to dominate and cause bursts. The first three are based on
the predominant network protocol, TCP, while the last one
blames the heterogeneity in bottleneck bandwidths.
1. Transient response to re-routing: Some connections
could be rerouted from a high-bandwidth end-to-end path
to the (lower-bandwidth) measured link. Since TCP feed-
back takes at least one round-trip time, we could expect a
transient bursty behavior for such connections.
2. Transient response to start/stop of connections: When
connections sharing a link terminate or are rerouted away
from the measured link, other competing connections will
grab their share of the bandwidth. This could potentially
lead to bursty connections, especially for those connec-
tions in TCP slow-start.
3. TCP slow-start peculiarities: Some connections could
get “lucky” during slow start in that they encounter no
packet drops for an unusually long time.
4. Heterogeneity in bottleneck bandwidths: This scenario
acknowledges the fact that connections are limited in their
transmission rates by bottlenecks somewhere in the net-
work, which may or may not be at the measured link. Bot-
tlenecks can occur through limited capacity at a router,
through shaping, or through a thin client, to give a par-
tial list. When we have a large pool of connections, we
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Fig. 1. (a) Bytes-per-time and (b) number of connections-per-time of an aggregate traffic trace [9].  (c) Number of bytes per
connection (sorted in decreasing order) during a typical burst. Clearly one connection dominates all others.
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Fig. 2. Decomposition of the traffic trace into the sum of a bursty alpha component and an fGn  beta component.
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Fig. 3. Plot of peak rate and total transfer for six end-to-end groups (which comprise all connections sharing the same pair of
source and destination hosts). Connections are sorted in decreasing order of total transfer. Note the high peak rates in the top
row - groups l-3 contain alpha connections. Note the starvation of connections and low overall peak rates in the bottom row
- groups 4-6 contain only beta connections.

would expect that the high bottleneck connections should are only a few connections that have high bottleneck band-
dominate over the low-bottleneck connections and could width.
potentially cause bursts. This scenario assumes that there



B. Dominance and bursts as end-to-end properties

We argue that the last of the above scenarios, i.e., het-
erogeneity in bottleneck bandwidths, is solely responsible
for the bursts observed in our analyses.4

Our first and most striking observation is the cluster-
ing of alpha connections according to their source-receiver
host pairs. We collect all connections with the same source
and destination hosts into an end-to-end group. If random
effects of the networking protocols were causing bursts,
then we would find the dominating alpha connections dis-
tributed randomly over the end-to-end groups. The above-
mentioned clustering indicates that the opposite is true.

More convincingly, our second observation states that if
an end-to-end group contains one alpha connection, then
all connections in that group are either alpha, or too short
to cause a burst. This demonstrates clearly that bursts are
caused by large volume connections over particular (nec-
essarily high-bandwidth) end-to-end paths.

Finally, a third observation based on a more refined
analysis gives a potential physical reason for the original
of alpha bursts. To this end, we compare for each con-
nection its total transfer load with its peak rate, which we
compute as the maximum number of bytes sent by the con-
nection during any time period of duration T. Figure 3
displays the total load versus peak rate for all connections
within six particular end-to-end groups. The groups in the
top row contain at least one alpha connection, the groups
in the bottom row none.

For all of the connections in groups 1 and 2, most of
the transfer is completed within a single time period of
T = 500 ms. We conclude that these connections were not
limited in their bandwidth consumption. In other words,
the end-to-end paths corresponding to groups 1 and 2 have
a high available bandwidth. To the contrary, the connec-
tions in groups 4-6 are obviously not getting as much
bandwidth as they could consume. None of these connec-
tions are alpha. Finally, group 3 must have limited band-
width, but at a level high enough to admit burst causing
connections - indeed, all its connections are alpha. With
such a consistent picture, we can exclude re-routing as the
main cause for bursts, since it would be highly unlikely
that all connections in a group would be systematically af-
fected by it.

In summary, we conclude that the majority of burst
causing connections are due to large jle  transfers over a
large bottleneck bandwidth end-to-end path.

4We  cannot exclude the possibility that one or more of the other sce-
narios cause an occasional burst. However, we focus here on the mech-
anisms that produce the overwhelming majority of bursts.

TABLE I
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IV CONNECTION-LEVEL TRAFFICMODELING

Our alpha/beta decomposition technique suggests an in-
tuitive and natural traffic model that takes into account
both the network topology and user behavior. A major
conclusion of our analysis is that the burstiness in net-
work traffic is caused by the heterogeneity in link speeds
and computational power within the network (including
the networking software/hardware of the clients) and user
behavior. The TCP protocols enters in its ability to grab
free bandwidth quickly in slow-start.

Consider a simplified taxonomy of a network system.
There are roughly two kinds of file sizes: large ones such
as jpeg images and small ones such as text emails. There
are also roughly two speeds of connections: fast ones
such as Ethernet or DSL lines and slow ones such as 56k
modems. We argue that only large$les overfast  links con-
tribute to alpha trafJic  (see Table I). The remaining combi-
nations aggregate together into fGn beta traffic. Therefore,
we model traffic as a sum of alpha and beta traffic as in (1)
and Figure 2. Such traffic is simple to both analyze and
synthesize.

The beta component succinctly collects all the “aver-
age” connections and is well modeled as fGn with LRD
parameter equal to that of the overall traffic. The alpha
component consists of the dominant, burst causing con-
nections and contributes low traffic volume but accounts
for all the bursts, which arrive in a pattern according to the
capabilities of network and requests of the clients routing
through the given point of measurement. The alpha burst
arrivals are not exactly Poisson but can to a first approx-
imation be modeled as such (most likely, they are com-
pound Poisson). Furthermore, the dominant connections
are uncorrelated with the overall connection arrivals and
thus can be modeled as an independent process.

Our alpha/beta model is predictive, since for a given
topology and user behavior, we can determine a priori
which connections will aggregate into the fGn background
and which connections will cause bursts. Syntheses from
our model then closely match real traffic and controlled
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Fig. 4. Statistical properties of the components. (a) The beta component determines the LRD of the overall traffic (same slopes in

a variance-time plot). (b) The alpha component is responsible for the bursts (as evidenced by the multifractal spectrum). (c)
The alpha/beta components influence queue overflow probability primarily at large/small queue sizes.

11s  simulations [lo]. For example, under heavy utilization
(when the router at which we take our measurements be-
comes itself the bottleneck link for all connections) or with
a considerably homogeneous clientele, we should and do
observe fewer bursts and more Gaussian traffic. We ob-
serve exactly the contrary in the LBL data [ 111,  since there
are not enough active connections to give a full fGn beta
component once the dominant connection is stripped away.

Finally, through queueing simulations, we have demon-
strated that the beta component determines the tail queue
probability for ,smaZZ  queue sizes, whereas the alpha com-
ponent determines the tail queue probability for large
queue sizes (see Figure 4(c)).  More experiments are un-
derway.

V. C O N C L U S I O N S

We have proposed a new framework for analyzing and
modeling network traffic that takes into account the cru-
cial connection-level information that aggregate analysis
ignores. Our alpha/beta traffic model incorporates both the
topological and user aspects of networking. The topolog-
ical variability of the network enters through the distribu-
tion of bottlenecks link speeds, which in a real world situa-
tion will depend on the particular location where the mea-
surements are taken. Client behavior will determine both
the LRD component as well as how often large files are
transferred over large bottlenecks. Currently we are ana-
lyzing more traces to further test and prove-out the model.
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