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Abstract

Let λ = (λ1, . . . , λr) be a partition of n. An unordered λ-tabloid is a partition of the

set {1, 2, . . . , n} into r pairwise disjoint sets of sizes λ1, . . . , λr. Let F denote the field

of complex numbers and G the symmetric group of {1, 2, . . . , n}. Define Hλ to be the

permutation module of FG whose basis is the set of unordered λ-tabloids. Foulkes

conjectured in [13] that there exists an injective FG-homomorphism H(ba) → H(ab)

when a ≤ b. Independently Siemons and Wagner [27] and Stanley [29] generalized

this conjecture to ask if there exists an injective map Hλ → Hλ′ . In this thesis we

investigate these conjectures.
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Chapter 1

Introduction and Overview

Let λ = (λ1, . . . , λr) be a partition of n. An unordered λ-tabloid is a partition of the

set {1, . . . , n} into r pairwise disjoint sets of sizes λ1, . . . , λr. Let F denote the field

of complex numbers and let G denote the symmetric group of the set {1, 2, . . . , n}.

Define Hλ to be the permutation module of FG whose basis is the set of unordered

λ-tabloids. A long standing open problem is Foulkes’ Conjecture made in [13] that

there exists an injective FG-homomorphism H(ba) ↪→ H(ab) if a ≤ b.

By explicitly computing the composition factors (see Example 9 on Page 140 of

Macdonald’s Book [20]) one can easily see that this conjecture holds when a = 2

and b is arbitrary. Dent and Siemons [11] showed that the conjecture holds when

a = 3 and b ≥ a by producing a linearly independent subset of HomFG(Sλ, H(ab))

of size equal to the dimension of HomFG(Sλ, H(ba)) for each irreducible FG-module

Sλ that appears in H(ba). Briand [3] claimed to prove Foulkes’ Conjecture is true

when a ≤ 4 and b ≥ a using diagonally symmetric functions although it is our

understanding ([4] and [5]) that this proof contains a flaw and should be refined to

a ≤ 3. In [6] and [7] Brion uses arguments from algebraic geometry to show that

Foulkes’ Conjecture is true when b is large compared to a.

In [2] Black and List defined a map ψba : H(ba) → H(ab) and conjectured that

it was injective. Coker [9], Dent [10], Doran [12] and Pylyavskyy [23] then showed
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that the map ψb2 is injective. If ψTb2 denotes the adjoint of ψb2 , Coker and Dent

independently showed that all the eigenvalues of ψb2 ◦ ψTb2 are non-zero. In [12]

Doran observed that for each irreducible FG-module Sλ, the FG-homomorphism

ψba induces an F -linear map ψ̂ba : HomFG(Sλ, Hba) → HomFG(Sλ, Hba) by θT 7→

θT ◦ ψba . Using this he went on to show that ψb2 is injective. Pylyavskyy directly

showed that the map ψb2 is injective using an inductive argument. Of particular

interest to us are the computational results of Jacob’s Thesis [15] and the paper by

Müller and Neunhöffer [22]. In [15], Jacob proved that the Black and List map is

injective when a = b = 2, a = b = 3 and a = b = 4. Müller and Neunhöffer [22] then

showed that it is injective when a = b = 5.

Independently, Siemons and Wagner [27] and Stanley [29] (SWS) extended the

Black and List map in a natural way to an FG-homomorphism ψλ : Hλ → Hλ′

and conjectured this to be injective iff λ dominates its conjugate. We call this the

standard map. When λ = (r, 1s) is a hook then the standard map is the map between

the layers Mr and Mr+1 in the Boolean algebra of a set of size r + s. This is well

known (see Proposition 5.4.7 of Sagan’s book [24]) to be injective iff r > s and so

the SWS conjecture holds in this case. In [23] Pylyavskyy shows that the standard

map of (6, 2, 2, 1, 1) is not injective and refines the conjecture to say the standard

map has maximal rank. In [28] Sivek shows that this new conjecture is also false

and fails for large classes of partitions, the smallest being (4, 3, 3).

Finally, in [30] Vessenes generalizes Foulkes’ Conjecture to conjecture that there

exists an injective map H(ba) → H(dc) when a ≤ c and b ≥ d. The main result

of [30] is then to prove that this conjecture holds when a = 2. In the setting of

algebraic geometry Abdesselam and Chipalkatti [1] then proved that a given map

ψ : H(b2) → H(dc) is injective when d, c ≥ 2.

We now turn to our own efforts. This thesis has five chapters after the present

introductory one. The important results of Chapter 2 are Proposition 2.3.1 and The-

orem 2.3.4 on pages 11 and 12. These results allow us to produce homomorphisms
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between permutation modules with wanton abandon and view these as compositions

of other homomorphisms. In Chapter 3 we look at spaces of homomorphisms be-

tween tabloid spaces. We define the important ε-map and prove that it is injective.

We also prove the following result:

THEOREM 3.4.2 (page 33): Let V ∼= Sν be an irreducible submodule in the

kernel of the standard map of (ba). Then ν has at least three parts.

Chapter 4 is devoted to understanding when the standard map is injective. This

leads to the following definition of a good column of a Young diagram on page 44.

We say that the node λij is good if the hook hij has an arm at least as long as its

leg. We then say that a column is good if every node in it is good. We can now state

the main theorem of the thesis

THEOREM 4.1.15 (page 45): Let λ be a partition and µ the partition obtained by

removing a good column from λ. Suppose the standard map of µ is injective. Then

the standard map of λ is injective.

When combined with the results of Jacob, Theorem 4.1.15 shows that Foulkes’

Conjecture holds when a ≤ 4. That is

THEOREM 4.1.17 (page 45): Let a ≤ 4 and a ≤ b. Then the standard map

ψba : H(ba) → H(ab) is injective.

In Chapter 5 we look at when the standard map is not injective. Inspired by

the definition of a good column, on page 62 we define A(i, j) to be the hook whose

arm includes the ith highest removable node and whose leg includes the jth highest

removable node. We say that a partition is good if all the A(i, j) have arm at least

as long as their leg. Most of this chapter is then devoted to proving:

THEOREM 5.2.4 (page 63): Suppose that the standard map of λ is injective.

Then λ is good.

In Chapter 6 we collect together all the results in the thesis to prove Theorem

6.1.3, which shows that the standard map controls the existence of injective maps

Hλ → Hλ′ when λ has at most three parts. However when λ has four or more parts
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the situation is more complicated as Theorem 6.3.14 shows

THEOREM 6.1.3 (page 76): Let λ be a partition with at most three parts. Then

the following are equivalent:

(i) There exists an injective map Hλ → Hλ′.

(ii) The partition λ is good.

(iii) The standard map of λ is injective.

THEOREM 6.3.14 (page 86): Let µ = (a, b + 1, b2) with a ≥ 2b + 2. Then the

standard map of µ is not injective but there exists an injective map Hµ → Hµ′.

Theorem 5.2.4 tells us that a partition with an injective standard map is necce-

sarily good, while Theorem 6.1.3 says that being good is sufficient for three part

partitions to have an injective standard map. It is natural ask whether the property

of being good is always sufficent. Sivek’s Lemma 5.1.7 states that adding rows to

a partition with non-injective standard map yields a partition with non-injective

standard map. Hence when combined with the result of Müller and Neunhöffer that

ψ(55) is non-injective we see that one can produce many partitions that are good

but have non-injective standard map. However something can be saved using our

techniques. Let B(i, j) denote the unique hook whose arm lies in the highest row of

length λi and whose leg contains the removable node in a row of length λj. In Sub-

section 4.2.2 we strengthen the definition of good by saying that λ = (λm1
1 , . . . , λmrr )

is extremely good if the arm of each B(i, j) is at least as long as its leg and for each

i the standard map of (λi − λi+1)mi is injective and prove:

THEOREM 4.2.21 (page 55): Let λ be extremely good. Then the standard map

of λ is injective.

An interesting special case of Theorem 4.2.21 is the following:

COROLLARY 4.2.22 (page 55): Let λ ` n. Suppose all the parts of λ are

distinct. Then the standard map of λ is injective.

Thus the answer to the SWS conjecture seems to lie somewhere between good

and extremely good.
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Chapter 2

General results

2.1 Notation and definitions

A composition of a positive integer n is a finite sequence λ = (λ1, λ2, . . . , λr) of

positive integers such that
∑r

i=1 λi = n. A partition of n is a composition λ such

that λi ≥ λi+1 for each i. We write λ ` n to identify λ as a partition of n. If a

partition has a parts of equal length b then we write (ba) instead of (b, b, . . . , b). For

example we write (53, 2, 1) in place of (5, 5, 5, 2, 1).

The Young diagram [λ] of a partition λ is the left aligned array of nodes such

that the ith row has λi nodes. For example the Young diagram of (53, 2, 1) is

[λ] =

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦
◦

.

The node in the ith row and jth column of [λ] is denoted by λi,j. The hook hi,j

consists of the node λi,j together with the λi − j nodes to the right of it (the arm)

and the λj − i nodes below it (the leg). The arm length ai,j of hi,j is λi − j and the

leg length li,j is λj − i.

Example 2.1.1 Let λ = (53, 2, 1). Then a2,1 = 3 = l2,1 and h2,1 is illustrated below.
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◦ • • • •
◦ • ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ •
◦

.

If λ ` n define the conjugate partition λ′ = (λ′1, . . . , λ
′
s) by letting λ′i be the number

of parts of λ of length at least i. Informally, the ith row of the Young diagram of λ′

is the ith column of the Young diagram of λ. For example, (53, 2, 1)′ = (5, 4, 33).

A tableau of shape λ (or λ-tableau) is a filling without repeats of the Young

diagram of λ with the numbers 1, 2, . . . , n. The primary λ-tableau is the λ-tableau

whose first row is 1, 2, 3, . . . , λ1, second row λ1 + 1, λ1 + 2, . . . , λ1 + λ2 and so on.

The conjugate tableau t′ of the λ-tableau t is the λ′-tableau whose ith row read left

to right is the ith column of t read top to bottom.

Example 2.1.2 Let λ = (53, 2, 1). Below s and t are two λ-tableaux, with t the

primary (53, 2, 1)-tableau. Also t′ is the λ′-tableau that is the conjugate of t.

t =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

, s =

2 10 3 4 12
6 7 8 9 1
11 5 14 13 15
16 17
18

,

t′ =

1 6 11 16 18
2 7 12 17
3 8 13
4 9 14
5 10 15

.

The set of all λ-tableaux is denoted Fλ. Define an equivalence relation ∼ on Fλ by

s ∼ t iff for each i the ith rows of s, t are equal as sets. The ∼-equivalence class

that contains t is the λ-tabloid {t}. The set of all λ-tabloids is denoted by Mλ.

To distinguish between tabloids and tableaux we draw lines between the rows of a

tabloid. We regard the rows of tabloids as sets, so we draw them subject to the

convention that the elements are written in increasing order from left to right.
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Example 2.1.3 The tableaux s, t in Example 2.1.2 correspond to the following

tabloids

{t} =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

, {s} =

2 3 4 10 12
6 7 8 9 10
5 11 13 14 15
16 17
18

.

Let µ = (µ1, . . . , µs) and ν = (ν1, . . . , νu) be partitions. Then we write µ ∪ ν to

denote the composition (µ1, . . . , µs, ν1, . . . , νu). The µ ∪ ν-tabloid {t} is an ordered

(s + u)-tuple of sets (X1, . . . , Xs+u). We call these sets classes. We say that the

first s-many classes are rows and the last u-many classes are columns. As befits

their names when we draw µ ∪ ν-tabloids we draw rows horizontally and columns

vertically. For motivation as to why we would want to adopt such a convention we

refer the reader to Chapter 4.

Example 2.1.4 Let µ = (33) and ν = (5, 4). Then µ∪ ν = (33, 5, 4) and below is a

µ ∪ ν-tabloid.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

.

Throughout this thesis we are interested in the symmetric group. Thus unless

otherwise stated G will denote the symmetric group Sn. Our G acts regularly on

Fλ: For t ∈ Fλ and g ∈ G let tg be the tableau obtained from t by replacing each

node i with ig. For example if g = (1, 2, 10)(5, 12)(13, 14) then s = tg in Example

2.1.2. Now define an action of G onMλ by letting {t}g := {tg}. The point stabilizer

G{t} is isomorphic to the direct product of symmetric groups Sλ1 × Sλ2 × · · · × Sλr .

A Young subgroup Sλ is a subgroup of G isomorphic to G{t}.

Throughout this thesis F will denote a field of characteristic zero. If X is a set
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we let FX denote the vector space over F with basis X. We let Mλ denote FMλ.

Let t be a λ-tableau and t′ its conjugate λ′-tableau. Define

kt :=
∑

g∈G{t′}

sgn(g)g ∈ FG.

Then define the λ-polytabloid et := {t}kt. The Specht module Sλ is the subspace

of Mλ which is spanned by the set of all λ-polytabloids. The importance of these

modules is seen in the following result which is Theorem 4.12 on page 16 of James’

book [16].

Theorem 2.1.5 The set {Sλ | λ ` n} is a complete set of non-isomorphic irre-

ducible FG-modules.

�

2.2 The space Hλ

The results of this thesis concern a submodule Hλ ⊆ Mλ which we now introduce.

For a partition λ = (λ1, . . . , λr) let Sλ∗ ⊆ Sr be the set of all π ∈ Sr such that

λiπ = λi for all i = 1, . . . , r. We say that Sλ∗ is the twist group of λ. Our notation

suggests that Sλ∗ is a Young subgroup. Indeed, if λ has mi parts of length λi for

each i then Sλ∗ ∼= ×iSmi . For example if λ = (53, 2, 1) then λ∗ = (3, 1, 1) and so

Sλ∗ ∼= S3 × S1 × S1
∼= S3.

The twist group Sλ∗ acts onMλ by permuting the rows of equal length in all possible

ways. That is, the ith row of {t}π is the iπ−1th row of {t}. For example, let {s} and

{t} be the (53, 2, 1)-tabloids in Example 2.1.3. If σ = (12), π = (123) ∈ S3
∼= Sλ∗ we

have
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{t}σ =

6 7 8 9 10
1 2 3 4 5
11 12 13 14 15
16 17
18

, {s}π =

5 11 13 14 15
2 3 4 10 12
6 7 8 9 10
16 17
18

.

Lemma 2.2.1 The actions of G and Sλ∗ on Mλ commute.

Proof: Let g ∈ G and π ∈ Sλ∗ . Let x be in the ith row of {t} and let xg−1 = y with

y in the jth row of {t}. Then x is in the jth row of {t}g and so the jπ−1th row of

{t}gπ. Similarly x is in the iπ−1th row of {t}π and y in the jπ−1th row of {t}π.

Then x is in the jπ−1 row of {t}πg. �

Define a linear map θ on Mλ by {t}θ =
∑

π∈Sλ∗{t}π. We define Hλ to be the

image of this map. By Lemma 2.2.1 we know that θ is an FG-homomorphism and

so Hλ is an FG-submodule of Mλ.

We now describe a group A = A{t} ⊆ G{t}′ whose action on {t} agrees with

that of the twist group. Let ti,j denote the jth smallest element in the ith row

of {t} and let π ∈ Sλ∗ . Define aπ ∈ G by (ti,j)aπ = t(iπ−1,j) for all j. We define

A := {aπ | π ∈ Sλ∗} and it is easy to see that we have A ∼= Sλ∗ and {t}aπ = {t}π.

For example if {t} is the by now familiar tabloid in Example 2.1.3 we have

a(1,2) = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10) and

a(123) = (1, 11, 6)(2, 12, 7)(3, 13, 8)(4, 14, 9)(5, 15, 10).

Suppose that g = (ti,j1 , ti,j2 , . . . , ti,jr) is a permutation of the ith row of {t}. Then

(aπ)−1gaπ = (ti,j1aπ, ti,j2aπ, . . . , ti,jraπ)

= (tiπ−1,j1 , tiπ−1,j2 , . . . , tiπ−1,jr).

9



Thus a−1
π gaπ is a permutation of the (π−1)th row of {t} and so A normalizes G{t}.

Conversely let g ∈ NG(G{t}). As g−1G{t}g = G{t}g we see that g ∈ NG(G{t}) iff

G{t}g = G{t}. Then G{t} = G{s} iff {s} = {t} for π ∈ Sλ∗ . That is g ∈ NG(G{t}) iff

{t}g = {t}aπ. Thus NG(G{t}) = G{t}oA and when G acts on Mλ we the argument

above shows that NG(G{t}) is the stabilizer of
∑

π∈Sλ∗{t}π. Hence we have proved

the following;

Lemma 2.2.2 (i) NG(G{t}) = G{t} o A.

(ii) Hλ = 1GNλ.

�

Remark 2.2.3 An immediate corollary of Lemma 2.2.2 (ii) is that Hλ is a transi-

tive permutation module of FG.

2.3 Constructions of homomorphisms

In this section we give a canonical construction of FG-homomorphisms whose do-

main is a transitive permutation module. Together with the important Theorem

2.3.4 this allow us to easily define FG-homomorphisms Mλ → Mµ and view these

homomorphisms as compositions of simpler homomorphisms of the same type.

We begin with a very general construction. Let G be any finite group and let V

and W be FG-modules. Let HomF (V,W ) denote the space of F -homomorphisms

from V to W . The algebra FG acts on HomF (V,W ) by vφg = vg−1φg. The

space fixed by this action is HomFG(V,W ). As F has characteristic zero we see

that HomFG(V,W ) is the image of the map φ 7→
∑

g∈G φ
g. Suppose V = FA is

a transitive permutation module and let a ∈ A and w ∈ W . Define the F -linear

map φ : FA → W by a 7→ w and a1 7→ 0 for a1 6= a. Then φ̂ :=
∑

g∈G φ
g is an

10



FG-homomorphism. As a1φ = 0 for a1 6= a we have

aφ̂ =
∑
g∈G

ag−1φg

=
∑
g∈Ga

aφg

=
∑
g∈Ga

wg.

Now suppose that w ∈ W such that wg = w for all g ∈ Ga. Then w =
∑

g∈Gw1g for

some w1 ∈ W . Hence if ψ : FA→ W is given by aψ = 1
|Ga|w and a1ψ = 0 for a1 6= a

we see that aψ̂ = w. Finally suppose that aφ1 = aφ2. Then aφ̂1 = aφ̂2 and as FA

is cyclic φ̂1 and φ̂2 agree on all points of FA. Hence we have proved the following:

Proposition 2.3.1 Let FA be a transitive FG-permutation module generated by a

and W any other FG-module with w ∈ W . Then there exists an FG-homomorphism

φ : FA → W with aφ = w iff wg = w for all g ∈ Ga. Furthermore, this FG-

homomorphism is unique.

�

We are of course interested in the case G = Sn. Throughout we shall use Propo-

sition 2.3.1 to define homomorphisms φ : Mλ → Mµ in the following way. Fix a λ-

tabloid {tλ} and µ-tabloid {tµ}. By Proposition 2.3.1 it suffices to prescribe φ on just

{tλ}. We force the criterion of Proposition 2.3.1 by letting {tλ}φ =
∑

g∈G{tλ}
{tµ}g.

The next lemma is elementary but useful:

Lemma 2.3.2 Let φ : Mλ → Mµ be the map defined by {tλ}φ =
∑

h∈G{tλ}
{tµ}h.

Then {tλ}gφ =
∑

k∈G{tλ}g
{tµ}gk for all g ∈ G.

11



Proof: Since the stabilizer of {tλ}g is equal to g−1G{tλ}g we have

∑
k∈G{tλ}g

{tµ}gk =
∑

h∈G{tλ}

{tµ}g(g−1hg)

=
∑

h∈G{tλ}

{tµ}hg.

�

Crucial to this thesis will be our ability to control the composition of two maps

defined using Proposition 2.3.1. For the remainder of this section we fix some no-

tation. Let λ, µ, ν ` n and fix tabloids {tλ} ∈ Mλ, {tµ} ∈ Mµ and {tν} ∈ Mν .

Using Proposition 2.3.1 define two maps φ : Mλ → Mµ and θ : Mµ → Mν by

{tλ}φ =
∑

g∈G{tλ}
{tµ}g and {tµ}θ =

∑
g∈G{tµ}

{tν}g.

Lemma 2.3.3 Let v =
∑

h∈G{tµ}
{tν}h. Then we have {tλ}φ ◦ θ =

∑
g∈G{tλ}

vg.

Proof: As θ is an FG-homomorphism we have

{tλ}φ ◦ θ =
∑

g∈G{tλ}

{tµ}gθ

=
∑

g∈G{tλ}

{tµ}θg

=
∑

g∈G{tλ}

∑
h∈G{tµ}

{tν}hg

=
∑

g∈G{tλ}

vg,

with v =
∑

h∈G{tµ}
{tν}h. �

Theorem 2.3.4 Let λ, µ, ν ` n and suppose that {tλ} ∈ Mλ, {tµ} ∈ Mµ and

{tν} ∈ Mν have the property that every row of {tµ} is a subrow of at least one of

{tλ} or {tν}. Let φ and θ be as before and let ψ : Mλ → Mν be the map defined by

{tλ}ψ =
∑

g∈G{tλ}
{tν}g. Then φ ◦ θ = |G{tµ}|ψ.
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Proof: By Lemma 2.3.3 we have

{tλ}φ ◦ θ =
∑

g∈G{tλ}

∑
x∈G{tµ}

{tν}xg.

Let µ have r-many parts. Clearly we have that G{tµ} = ×ri=1Sµi , where Sµi is the

symmetric group on the elements in the ith row of {tµ}. Without loss suppose that

the rows of length µ1, . . . , µp are subrows of rows of {tλ} and the remaining rows of

{tµ} are subrows of {tν}. Thus we can write G{tµ} = H ×K where H = ×ri=p+1Sµi

and K = ×pi=1Sµi . In particular we have H ⊆ G{tν} and K ⊆ G{tλ}. Therefore we

have

{tλ}φ ◦ θ =
∑

g∈G{tλ}

∑
h∈H

∑
k∈K

{tν}hkg (1)

= |H|
∑

g∈G{tλ}

∑
k∈K

{tν}kg (2)

= |H||K|
∑

g∈G{tλ}

{tν}g (3)

= |G{tµ}|{tλ}ψ.

Here (2) follows from (1) as H ⊆ G{tν} and (3) follows from (2) as K ⊆ G{tλ}. �

2.4 The standard map

In this section we introduce the standard map ψλ : Mλ →Mλ′ . This map was first

defined by Black and List in [2] for the partitions (ba). Independently Siemons and

Wagner [27] and Stanley [29] extended this definition to an arbitrary partition. The

rest of this thesis will then be devoted to applying the tools we have developed so

far to the study of ψλ. For the λ-tabloid {t} let {t}′ be the λ′-tabloid whose ith row

consists of the ith smallest element of each row of {t}.
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Example 2.4.1 If {t} is the primary (53, 2, 1)-tabloid we have

{t} =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

, {t}′ =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

.

Definition 2.4.2 The standard map ψλ : Mλ → Mλ′ is the FG-homomorphism

given by

ψλ : {t} 7→
∑
g∈G{t}

{t}′g.

Lemma 2.4.3 The image (Mλ)ψ is a submodule of Hλ′.

Proof: As in Subsection 2.2, for π ∈ S(λ′)∗ define aπ ∈ G{t} by aπ : {t}i,j 7→ {t}iπ−1,j.

Then {t}′π = {t}′aπ. Hence {t}′π ∈ ({t}′)G{t} . As the action of the twist group

commutes with that of G we have

∑
g∈G{t}

{t}′gπ =
∑
g∈G{t}

{t}′πg =
∑
g∈G{t}

{t}′g.

�

Lemma 2.4.4 Let π ∈ Sλ∗. Then {t}πψλ = {t}ψλ.

Proof: Let aπ be the unique element of G{t}′ such that {t}π = {t}aπ. Hence

{t}πψ = {t}aπψ

=
∑

g∈G{t}aπ

{t}′aπg

=
∑
g∈G{t}

{t}′g

= {t}ψ.

�
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We are now able to show that we are only interested in the action of the standard

map on Hλ. The augmentation ideal ∆(FSλ∗) ⊆ FSλ∗ is the set of all elements∑
π∈Sλ∗ aππ such that

∑
π∈Sλ∗ aπ = 0. Define Hλ

∆ to be the subspace of Mλ spanned

by the elements {t}σ where σ ∈ ∆(FSλ∗). Then clearly FSλ∗ = 1Sλ∗
⊕

∆(FSλ∗)

and these two summands contain no common composition factor and so it easily

follows by orthogonality of idempotents that Mλ = Hλ
⊕

Hλ
∆. Of course one could

take this further and for an irreducible FSλ∗-module V with character χ define Hλ
V

to be the image of the map θχ : Mλ → Mλ given by {t} 7→
∑

π∈Sλ∗{t}χ(π−1)π.

Then we can write Mλ =
⊕

V H
λ
V .

Proposition 2.4.5 We have the inclusion Hλ
∆ ⊆ ker(ψλ).

Proof: By Lemma 2.4.4 we have ({t}π)ψλ = ({t})ψλ. Let
∑

π aπ{t}π ∈ Hλ
∆. Then

∑
π∈Sλ∗

aπ{t}π

ψλ =
∑
π∈Sλ∗

aπ({t}π)ψλ (4)

= (
∑
π

aπ)({t})ψλ (5)

= 0 · ({t})ψλ (6)

= 0.

Here (4) is due to the linearity of the standard map. Second (5) follows from (4) by

Lemma 2.4.4. Finally (6) follows from (5) as
∑

π aπ ∈ ∆(FSλ∗). �

Corollary 2.4.6 Suppose that V is an FSλ∗-module that does not contain the

trivial Sλ∗-module. Then we have Hλ
V ⊆ ker(ψλ).

Proof: Let χV denote the character of V and let [·, ·] denote the usual inner product

of Sλ∗-characters. Then we have

∑
π∈Sλ∗

χV (π−1) = [χV , 1Sλ∗ ] = 0.

15



Hence
∑

π∈Sλ∗ χV (π−1)π ∈ ∆(FSλ∗). �

We now state the computational results of Jacob’s thesis [15] and Müller and

Neunhöffer’s paper [22]. In pages 95− 100 of her thesis, Jacob proves the following

result;

Proposition 2.4.7 The standard maps of the partitions (22), (33) and (44) are

injective.

Proof (sketch): As it is an FG-map the standard map ψ yields a map ψ̂ : EndFG(H(aa))→

EndFG(H(aa)) given by θ 7→ θ ◦ ψ. As we are working in characteristic zero it is

easy to see that the map ψ̂ is injective iff the map ψ is injective. The map ψ̂ is

much easier to deal with computationally since the dimension of EndFG(H(aa)) is

much smaller than that of H(aa). Jacob then uses a computer program to produce

the matrix of ψ̂ when a = 2, 3, 4 and then computes the eigenvalues of this map, all

of which are non-zero. �

Müller and Neunhöffer use same technique to prove:

Proposition 2.4.8 The standard map of H(55) is not injective.

2.5 Lifting homomorphisms

2.5.1 General results

For m < n we regard the symmetric group Sm as the subgroup of Sn that fixes

m + 1,m + 2, . . . , n. In this section we demonstrate a method of lifting FSm-

homomorphisms to FSn-homomorphisms.

We begin by reviewing the definition of the exterior tensor product. Let H be

a group and V some FH-module. Let K be a second group and U some FK-

module. Given bases {vi}i and {uj}j of V and U respectively define the exterior

tensor product V ⊗ U to be the vector space whose basis is the set of ordered pairs

{vi⊗uj}i,j. Make V ⊗U into an F (H×K) module by letting v⊗u(h, k) = vh⊗uk.

16



Let φ : V → W be an FH-homomorphism and define φ∗ : V ⊗ U → W ⊗ U by

φ∗ : v ⊗ u 7→ vφ⊗ u. We say that φ∗ extends φ.

Lemma 2.5.1 We have ker(φ∗) = ker(φ)⊗ U . In particular φ∗ is injective iff φ is

injective.

Proof: Suppose y =
∑

i,j ai,jvi ⊗ uj ∈ V ⊗ U and define xj =
∑

i ai,jvi. This gives

y =
∑

j xj ⊗ uj and so yφ∗ =
∑

j xjφ⊗ uj. As the uj are linearly independent this

gives yφ∗ = 0 iff xjφ = 0 for each j, which in turn holds iff y ∈ ker(φ)⊗ U . �

Let H ⊆ G and let V be an FH-module. Then FG acts on the induced module

V G = V
⊗

FH FG by (v ⊗ g)g1 = v ⊗ gg1. If {gi} is a complete set of coset

representatives of H in G we may write V G =
⊕

i V ⊗ gi. To ease notation we shall

write vg in place of v ⊗ g and we identify the space V · 1 = V ⊗ 1 with V . Let

φ : V → W be an FH-homomorphism. The induced homomorphism φG : V G → WG

is defined to be the FG-homomorphism given by

vφG =
1

|Gv|
∑
g∈Gv

vφg for v ∈ V and

vg1φ
G = vφg1 ∀ g1 ∈ G.

Lemma 2.5.2 For all v1 ∈ V we have v1φ
G = v1φ.

Proof: For v1 ∈ V we have Gv1 = Hv1 and this gives

v1φ
G =

1

|Hv1 |
∑
h∈Hv1

v1φh = v1φ.

�

Lemma 2.5.3 We have ker(φG) = ker(φ)G. In particular φG is injective iff φ is

injective.
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Proof: For y =
∑

g vgg ∈ V G with vg ∈ V we have yφG =
∑

g vgφg with vgφg ∈ W ·g.

Hence the vgφg are linearly independent and so yφG = 0 iff vg ∈ ker(φ) for each g,

which in turn holds iff y ∈ ker(φ)G. �

Corollary 2.5.4 With notation as in Lemmas 2.5.3 and 2.5.1 we have ker(φ∗G) =

(ker(φ)⊗ U)G. In particular φ∗G is injective iff φ is injective.

Proof: By first Lemma 2.5.3 and then Lemma 2.5.1 we have

ker(φ∗G) = ker(φ∗)G = (ker(φ)⊗ U)G.

�

We now apply the results of this section to the homomorphisms constructed in

Section 2.3. Let FA and FB be transitive permutation modules of FH and let W

be some other FH-module. Fix a ∈ A and w ∈ W . Define φ : FA → W to be the

unique map that satisfies aφ =
∑

h∈Ha wh.

Theorem 2.5.5 The map φ∗G is a scalar multiple of the unique map (FA⊗FB)G →

(W ⊗ FB)G given by

a⊗ b 7→
∑

g∈Ga⊗b

(w ⊗ b)g.

Proof: Call the unique map θ. We have Ga⊗b = (H ×K)a⊗b = Ha ×Kb. Hence

a⊗ bθ =
∑

g∈Ga⊗b

(w ⊗ b)g

=
∑
h∈Ha

∑
k∈Kb

(w ⊗ b)(h, k)

=
∑
h∈Ha

∑
k∈Kb

wh⊗ bk

= |Kb|
∑
h∈Ha

wh⊗ b (7)

= |Kb|a⊗ bφ∗G. (8)
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Here (8) follows from (7) by Theorem 2.5.4. The module (FA⊗FB)G is cyclic with

generator (a, b) and hence (8) implies that θ = |Kb|φ∗G. �

2.5.2 Lifting homomorphisms Mµ →Mµ†

Let λ = (λ1, . . . , λr) ` n and fix 1 ≤ p ≤ r. Define two new partitions µ =

(λ1, . . . , λp) ` n1 and ν = (λp+1, . . . , λr) ` n2. Fix the λ-tabloid {t} to be the tabloid

whose first row is the set {1, 2, . . . , λ1}, whose second is {λ1 + 1, λ1 + 2, . . . , λ1 +λ2}

and so on. Then let the µ-tabloid {tX} consist of the top p rows of {t} and let the ν-

tabloid {tY } consist of the bottom (r−p) rows of {t}. Using Proposition 2.3.1 define

ϕ1 : Mλ → (Mµ ⊗Mν)G by {t} 7→ {tX} ⊗ {tY }. Then ϕ1 is an FG-isomorphism

with inverse given by {tX} ⊗ {tY } 7→ {t}.

Example 2.5.6 Let λ = (6, 4, 3, 2) ` 15 with µ = (6, 4) ` 10 and ν = (3, 2) ` 5.

Then with the notation above

{t} =

1 2 3 4 5 6
7 8 9 10
11 12 13
14 15

, {tX} =
1 2 3 4 5 6
7 8 9 10

,

{tY } =
11 12 13
14 15

.

If µ† is some other partition of n1 let λ† denote the composition obtained by adding

the parts of ν to the bottom of those of µ†. For a µ†-tabloid {sX} let {s} denote the

λ†-tabloid obtained from {sX} by adding the rows of {tY } to the bottom of those

of {sX}. Define ϕ2 : (Mµ† ⊗Mν)G →Mλ† by ({sX} ⊗ {tY }) 7→ {s}. Then ϕ2 is an

FG-isomorphism with inverse given by {s} 7→ ({sX} ⊗ {tY }).

Example 2.5.7 Let µ† = (52) and ν = (3, 2). Then λ† = (52, 3, 2). With the

notation above
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{sX} =
1 2 3 4 5
7 8 9 10 6

, {tY } =
11 12 13
14 15

,

{s} =

1 2 3 4 5
7 8 9 10 6
11 12 13
14 15

.

Theorem 2.5.8 Let φ : Mµ →Mµ† be the FSn1-homomorphism defined by

{tX} 7→
∑

g∈Sn1{tX}

{sX}g.

Then ϕ1 ◦φ∗G ◦ϕ2 is a scalar multiple of the unique FG-homomorphism Mλ →Mλ†

given by {t} 7→
∑

g∈G{t}{s}g.

Proof: We have ({t})ϕ1 = ({tX} ⊗ {tY }). By Theorem 2.5.5 and as G({tX}⊗{tY }) =

G{t} there is a scalar α such that

({tX} ⊗ {tY })φ∗G = α
∑

g∈G
({tX}⊗{tY })

({sX} ⊗ {tY })g

= α
∑
g∈G{t}

({tX} ⊗ {tY })g.

Finally (({sX} ⊗ {tY })g)ϕ2 = {s}g. Hence we have

{t}ϕ1 ◦ φ∗G ◦ ϕ2 = α
∑
g∈G{t}

{s}g.

�

Corollary 2.5.9 The map ϕ1 is an isomorphism from ker(ϕ1 ◦ φ∗G ◦ ϕ2) onto

(ker(φ∗G)⊗Mν)G.

�
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2.5.3 Lifting the standard map

Let λ = µ ∪ ν be a composition and {t} some λ-tabloid. Recall the convention of

Section 2.1; we call the µ-classes of {t} rows and draw them horizontally and we call

the ν-classes of {t} columns and draw them vertically. The twist group of µ acts

on λ-tabloids by permuting rows. For a λ-tabloid {t} let {tX} denote the µ-tabloid

that consists of the rows of {t} and let {tY } denote the ν-tabloid that consists of

the columns of {t}.

Definition 2.5.10 Let Hλ
µ be the subspace of Mλ spanned by the elements

∑
π∈Sµ∗{t}π.

Define ϕ1 : Mλ → (Mµ ⊗ Mν)G by {t} 7→ ({tX} ⊗ {tY }). Then ϕ1 is an FG-

isomorphism with inverse given by ({tX} ⊗ {tY }) 7→ {t}. Further, for π ∈ Sµ∗

we have {t}π 7→ ({tX}π ⊗ {tY }). Hence ϕ1 is an isomorphism between Mλ
µ and

(Hµ ⊗Mν)G.

Example 2.5.11 Let µ = (43, 1) and ν = (5). Then λ = (43, 1, 5). Below {t} is a

(43, 1, 5)-tabloid, with {tX} and {tY } the corresponding µ- and ν-tabloids described

above.

{t} =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

,

{tX} =

2 3 4 5
7 8 9 10
12 13 14 15
17

, {tY } =

1
6
11
16
18

.

Now let λ† = µ′ ∪ ν and as usual let {tX}′ denote the µ′-tabloid that is conjugate

to {tX}. Let {s} denote the λ†-tabloid obtained by adding the columns of {tX}′ to

the right of those of {tY }. Define the FG-isomorphism ϕ2 : (Mµ′ ⊗Mν)G → Mλ†

by ({tX}′ ⊗ {tY }) 7→ {s}.
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Example 2.5.12 Let µ = (33, 1) and ν = (5). Suppose that {tX} and {tY } are as

in Example 2.5.11. Then below are {tX}′ and {s}.

{tX}′ =

2 3 4 5
7 8 9 10
12 13 14 15
17

, {s} =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

.

Theorem 2.5.13 The map ϕ1 ◦ ψµ|∗G ◦ ϕ2 is a scalar multiple of the unique FG-

homomorphism Hλ →Mλ† given by

∑
π∈Sµ∗

{t}π 7→
∑
g∈G{t}

{s}g.

Proof: By Remark 2.2.3 we know that Hλ is a transitive permutation module of FG

and as a result all the results of Section 2.3 concerning constructions of homomor-

phisms can be applied to it. We have

∑
π∈Sµ∗

{t}πϕ1 = (
∑
π∈Sµ∗

{tX}π ⊗ {tY }).

By first Theorem 2.5.5 and then as G({tX}⊗{tY }) = G{t} there is a scalar α such that

(
∑
π∈Sµ∗

({tX}π ⊗ {tY })ψµ|∗G = α
∑

g∈G
({tX}⊗{tY })

({tX}′ ⊗ {tY })g

= α
∑
g∈G{t}

({tX} ⊗ {tY })g.

Finally as (({tX}′ ⊗ {tY })g)ϕ2 = ({tX}′ ⊗ {tY })ϕ2g = {s}g we have

(
∑
π∈Sµ∗

{t}π)ϕ1 ◦ ψµ|∗G ◦ ϕ2 = α
∑
g∈G{t}

{s}g.

�
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Corollary 2.5.14 The map ϕ1 is an isomorphism from ker(ϕ1 ◦ ψµ|∗G ◦ϕ2) into

(ker(ψµ|∗G)⊗Mν)G.

�
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Chapter 3

Generalized tabloids and

Hom-spaces

The tabloid spaces Mλ appear in the books of James [16] and Sagan [24]. In this

chapter we generalize these spaces by looking at tabloids {T} with repeated entries.

Let ν be a partition of n. Then we let Mλ,ν denote the space of all tabloids of

shape λ that contain ν1 copies of 1 and ν2 copies of 2 and so on. We first identify

these spaces with HomFG(Mν ,Mλ) by producing a homomorphism φ{T} for each

{T} that is the adjoint of the homomorphism θ{T} found in the books of James and

Sagan. We then use these spaces to study the homomorphisms θ{U} for a tabloid

{U} of shape λ and content µ in the following way. As θ = θ{U} : Mλ → Mµ is an

FG-homomorphism we obtain a map θ(ν) : HomFG(Mν ,Mλ)→ HomFG(Mν ,Mµ)

by φ{T} 7→ φ{T} ◦θ. We then relate the rank of θ(ν) with the irreducible submodules

of the kernel of θ. Finally we look at two important examples. First we define a

natural map ε : M (x,y) → M (x−1,y+1) and show that it is injective. Second we look

at the action of the twist group Sλ∗ on Mλ,ν . We then use the techniques above to

study the standard map. We show that bad partitions have a non-injective standard

map and that the kernel of the standard map ψba| for b ≥ a contains no irreducible

submodules isomorphic to a Specht module S(x,y) for all two part partitions (x, y).
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3.1 Definitions and basic results

Recall that an ordinary λ-tableau is a filling of the Young diagram [λ] with the

numbers 1, 2, . . . , n. We define an equivalence class ∼ on the set Fλ of all λ-tableau

by writing t ∼ s if s can be obtained from t by permuting elements in a row. The

λ-tabloid {t} is the ∼-equivalence class that contains the tableau t. For example {t}

is a (4, 2)-tabloid:

{t} =
1 2 3 4
5 6

.

A generalized tableau of shape λ and content ν (or (λ, ν)-tableau) is a filling of

the Young diagram of λ with ν1 copies of 1 and ν2 copies of 2 and so on. Hence an

ordinary λ-tableau is a (λ, 1n)-tableau. Letting Fλ,ν denote the set of all generalized

tableaux, we define an equivalence relation ∼ on Fλ,ν by writing T ∼ S if S can

be obtained from T by permuting elements in a row. A generalized tabloid of shape

λ and content ν (or (λ, ν)-tabloid) is then a ∼-equivalence class. The vector space

whose basis is the set of all (λ, ν)-tabloids is denoted Mλ,ν . For example {T} is a

(4, 2), (5, 1)-tabloid:

{T} =
1 1 1 2
1 1

.

We follow the books of James [16] and Sagan [24] to produce a homomorphism

θ{T} : Mλ → Mν for each (λ, ν)-tabloid {T}. Let {t} be a λ-tabloid and {T} a

(λ, ν)-tabloid, without loss we may assume t and T are row-standard. Let tij and

Tij denote the jth smallest entry of the ith row of t and T respectively. Then we

define (t)T to be the ν-tableau whose ath row consists of those tij such that Tij = a.

Finally let {r} = {(t)T}. We now define θ{T} : Mλ →Mν to be the homomorphism

given by {t} 7→
∑

g∈G{t}{r}g. For example we have

{t} =
1 2 3 6
4 5

, {T} =
1 1 1 2
1 1

, {r} =
1 2 3 4 5
6

.
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Less standard is the construction of the adjoint φ{T} of θ{T} which we now use

to identify Mλ,ν with HomFG(Mν ,Mλ). Let {r} be a ν-tabloid and {T} a (λ, ν)-

tabloid. Without loss we can assume r and T are row-standard. Define (r)T to be

the λ-tableau obtained from T by replacing the first (reading left to right then top

to bottom) copy of 1 with the first entry of the first row of r and more generally

replacing the jth copy of i with the jth entry of the ith row of r. Hence if {r} is

the primary ν-tabloid and {T} is a (λ, ν)-tabloid then we define φ{T} : Mν → Mλ

by {r} 7→
∑

g∈G{r}{t}g where {t} = ({r}){T}. For an example we have

{r} =
1 2 3 4 5
6

, {T} =
1 1 1 2
1 1

,

r =
1 2 3 4 5
6

, T =
1 1 1 2
1 1

, (r)T =
1 2 3 6
4 5

.

Theorem 3.1.1 The set {φ{T} | {T} ∈Mλ,ν} is a basis of HomFG(Mν ,Mλ).

Proof: Let {r} be the primary λ-tabloid. Let B = (bij) be a matrix of positive

integers such that the ith row sum is νi and the jth column sum is λj. Let XB

denote the set of all λ-tabloids whose jth row contains bij elements of the ith row

of {r}. Then Mλ is a union of the XB. Let {T} be the (λ, ν)-tabloid with bij copies

of j in its ith row. Then clearly the ith row of {r} intersects the jth row of {t}

with size bi,j iff the ith row of {r} intersects the jth row of {t}g with size bi,j for

all i, j. Hence every tabloid involved in {r}φ{T} lies in XB. Similarly the ith row of

{r} intersects the jth row of {t1} with size bi,j for all i, j iff there exists g ∈ G{r}

such that {t}g = {t1}. Hence every element of XB is involved in {r}φ{T}. �

Corollary 3.1.2 The set {θ{T} | {T} ∈Mλ,ν} is a basis of HomFG(Mλ,Mν).

As a result of Theorem 3.1.1 we will freely identify HomFG(Mν ,Mλ) with Mλ,ν .

Let {U} be a (λ, µ)-tabloid and let aij denote the number of copies of j in the ith

row of {U}. To ease notation let θ = θ{U}. Then for the λ-tabloid {t} we have

{t}θ =
∑
{s1} where the sum is over all µ-tabloids {s1} whose jth row contains aij
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elements from the ith row of {t}. Then θ defines a map θ(ν) : Mλ,ν → Mµ,ν by

φT 7→ φT ◦ θ. Hence we have

{r}φ{T} ◦ θ =
∑

h∈G{r}

{t}hθ

=
∑

h∈G{r}

∑
{s1}

{s1}h

=
∑
{S1}

{r}φ{S1} .

Where {S1} is the (µ, ν)-tabloid obtained from {s1} by replacing each entry x of

{s1} with row number of {r} in which x lies.

Proposition 3.1.3 We have θ(ν) : {T} 7→
∑
{S1} where the sum is over all {S1}

whose jth row contains aij entries from the ith row of {T} counting multiplicities.

Proof: Let x1, . . . , xaij be the elements that lie in the ith row of {t} and the jth row

of {s1}. If xk lies in the ath row of r then it corresponds to an a in the ith row of

{t} and an a in the jth row of {s1}. �

If λ, µ ` n we write λ ≥ µ if for each k the inequality
∑k

i=1 λi ≥
∑k

i=1 µi holds.

We call ≥ the dominance ordering of partitions of n. The relation between θ and

θ(ν) is described in the following theorem which as a corollary has the result that

motivated Müller and Neunhöffer’s paper [22].

Theorem 3.1.4 The map θ(ν) is injective iff ker(θ) contains no irreducible sub-

module U ∼= Sη such that η dominates ν.

Proof: Let η ≥ ν and suppose Sη ∼= U ⊆ ker(θ). By Young’s rule Mν contains a

submodule isomorphic to U and so there exists a non-zero FG-map φ : Mν → Mλ

whose image is U . Hence φ lies in the kernel of θ(ν). Conversely let 0 6= φ ∈

ker(θ(ν)). Then the image of φ is a non-zero submodule of Mλ which lies in the

kernel of θ. �
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As a corollary we have the following well known result that one can find as

Proposition 4.4 on page 57 of the book [21] by Mathas.

Corollary 3.1.5 Let ν = λ. Then Mλ,λ is the FG-endomorphism algebra of Mλ.

Hence θ is injective iff θ(λ) is injective.

�

3.2 The ε-map

Let (x, y) be a composition of n with x ≥ 1 and let {U} be the (x, y), (x− 1, y+ 1)-

tabloid whose top row consists of x− 1 copies of 1 and a single copy of 2 and whose

bottom row consists of y copies of 2. To ease notation we write ε = θ{U} : M (x,y) →

M (x−1,y+1). For example if x = 4 and y = 2 we have

{U} =
1 1 1 2
2 2

.

If ν = (x, y), then ε(ν) sends the (x, y), (x, y)-tabloid {T} to the sum of all

tabloids {S} obtained by moving an element from the top row of {T} into the

bottom row. For example

ε(ν) :
1 1 2 2
1 1

→ 2 · 1 2 2
1 1 1

+ 2 · 1 1 2
1 1 2

,

ε(ν) :
1 1 1 2
1 2

→ 3 · 1 1 2
1 1 2

+
1 1 1
1 2 2

,

ε(ν) :
1 1 1 1
2 2

→ 4 · 1 1 1
1 2 2

.

Lemma 3.2.1 (i) The space M (x,y),(x,y) has dimension min(x+ 1, y + 1).

(ii) The space M (x−1,y+1),(x,y) has dimension min(x, y + 1).

Proof: Define {Ti} to be the (x, y), (x, y)-tabloid that has i copies of 2 in its top
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row. Similarly define {Sj} to be the (x−1, y+1), (x, y)-tabloid with j copies of 2 in

the top row. Clearly the {Ti} and {Sj} form bases of M (x,y),(x,y) and M (x−1,y+1),(x,y)

respectively. The result now follows. �

The next result is well known and has a myriad of proofs, see for example results

2.2− 2.4 on pages 393− 394 of Siemons paper [25] or Proposition 5.4.7 on page 210

of Sagans book [24].

Theorem 3.2.2 The map ε is injective if x > y and surjective if x ≤ y.

Proof: Let {Ti} and {Sj} be as in the proof of Lemma 3.2.1. Then consider ε(ν) as

a matrix with rows indexed by {Ti} and columns by {Sj} we see it contains non-

zero entries in the entries (i, i) and (i− 1, i) entries and these are the only non-zero

entries. Hence ε(ν) has maximal rank. The result now follows from Lemma 3.2.1.�

Now let {t} be the primary λ-tabloid. Fix i < j and let λ− be the composition

obtained by subtracting one from λi and adding one to λj. Let {t}− be the λ−-

tabloid obtained from {t} by moving the largest element from the ith row into the

jth row. Define a map ε(λ, λ−) : Mλ →Mλ− by

{t} 7→
∑
g∈G{t}

{t}−g.

The main result of this section is the following:

Theorem 3.2.3 The map ε(λ, λ−) is injective iff λi > λj.

Proof: By Theorem 2.5.8 the map ε(λ, λ−) is the lift of ε to λ and so by Theorem

3.2.2 is injective iff λi > λj. �

Recall the definition of the dominance ordering of partitions on page 27. An

interesting corollary of Theorem 3.2.3 is the following generalization of Theorem 1

in the Paper [19] by Livingstone and Wagner. Other proofs can be found in the

Papers of Liebler and Vitale [18] and White [31].
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Theorem 3.2.4 Let λ ≥ µ be partitions of n. Then there is an injective FG-

homomorphism Mλ ↪→Mµ.

To prove Theorem 3.2.4 we need a lemma:

Lemma 3.2.5 Let λ ≥ µ. Then there is a chain of partitions λ = λ0 > · · · > λk = µ

such that λi+1 is obtained from λi by moving a single node from one row of the Young

diagram of λi to a lower row.

Proof: Suppose λ > µ and let λi1 be the first part of λ such that λi1 > µi1 . Similarly

let λj1 be the first part of λ such that λj1 < µj1 . Then let λ1 be the partition

obtained by moving the right most node of the i1st row of λ into the j1st row.

Clearly λ > λ1 ≥ µ. By induction there is such a sequence λ1 > λ2 > · · · > λk = µ

between λ1 and µ. Hence λ > λ1 > λ2 > · · · > λk = µ is such a sequence between

λ and µ. �

Proof Of Theorem 3.2.4: Let λ1 > λ2 > · · · > λk = µ be the chain of partitions

obtained by Lemma 3.2.5. Then by Theorem 3.2.3 for each i the map ελi is injective.

Hence the composition

ελ ◦ ελ1 ◦ · · · ◦ ελk

is an injective map from Mλ to Mµ. �

3.3 The action of the twist group

The action of the twist group Sλ∗ on Mλ commutes with the action of G. Hence Sλ∗

acts on HomFG(Mν ,Mλ) by post composition, that is θπ = θ ◦ π. The twist group

also acts on Mλ,ν by permuting rows. Our first result shows that these two actions

agree

Lemma 3.3.1 With the notation above φ{T}π = φ{T} ◦ π.
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Proof: Let {t0} = {r}{T} and {t1} = {r}({T}π). Then

{r}θ{T} ◦ π =
∑

g∈G{r}

{t0}gπ

=
∑

g∈G{r}

{t0}πg.

Hence it is enough to show {t0}π and {t1} are in the same G{r} orbit. The number

of elements in the ith row of {r} in the jth row of {t0}π is the number of i’s in the

(jπ−1)th row of {T0} which is the number of i’s in the jth row of {T0}π which is

the number of elements in the ith row of {r} in the jth row of {t1}. Hence {t0}π

and {t1} are in the same G{r} orbit. �

The subspace of HomFG(Mν ,Mλ) fixed by the action of Sλ∗ is HomFG(Mν , Hλ).

We let Hλ,ν denote the subspace of Mλ,ν fixed by Sλ∗ . The natural basis of Hλ,ν is

the set Hλ,ν that consists of the elements
∑

π∈Sλ∗{T}π. As a result of Lemma 3.3.1

we will freely associate Hλ,ν with HomFG(Mν , Hλ). We have the following analogue

of Theorem 3.1.4 whose proof follows verbatim from Theorem 3.1.4;

Theorem 3.3.2 Let θ : Hλ → Hµ be an FG-homomorphism. Then θ(ν) is injective

iff ker(θ) contains no irreducible submodule U ∼= Sη such that η dominates ν.

�

3.4 The standard map ψ(ba)(x, y)

We now apply the results of Section 3.1 to the map θ(ν) where θ = ψλ is the standard

map and ν = (x, y) is a two part partition of n. We remark that Theorem 3.4.2

is called Hermite reciprocity in Theorem 5.4.34 on page 227 of James and Kerber’s

book [17] and that the combinatorics of their proof is very similar to ours, although

they interpret the results in terms of Polya theory.
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Let {T} be a (λ, ν)-tabloid and without loss assume that T is a row-standard

tableau. Then define the conjugate tabloid {T}′ to be the tabloid whose ith column

contains the ith smallest entry from each row of {T}. For example we have

{T} =
1 1 1 1
1 1 2 2
1 2 2 2

, {T}′ =
1 1 1 1
1 1 2 2
1 2 2 2

.

Write ψ in place of ψλ(x, y). By Proposition 3.1.3 we have that {T}ψ =
∑
{S}

where the sum runs over all tabloids {S} such that each column of {S} contains one

element from each row of {T}. We say that an (ba), (x, y)-tabloid has shape α ` y if

one row contains α1 copies of 1 and one row contains α2 copies of 1 and so on. For

example the (43), (7, 5)-tabloid below has shape (4, 2, 1).

1 1 1 1
1 1 2 2
1 2 2 2

.

We now refine the dominance ordering to a linear order. Let λ and µ be partitions

of n. We write λ >L µ if the first non-zero difference λi − µi is positive. This is

called the reverse lexicographic ordering of partitions. Thus λ = (n) is the maximal

element in this ordering as λ1 − µ1 will be positive for all choices of µ and (1n) is

the smallest. If λ dominates µ then the first time that λi 6= µi we must have λi ≥ µi

and so λ >L µ. Note that the converse is false as (5, 2, 1) >L (4, 4) but (5, 2, 1) does

not dominate (4, 4).

Lemma 3.4.1 Let {T} be a (ba), (x, y)-tabloid of shape α. Suppose {S} is an

(ab), (x, y)-tabloid involved in {T}ψ of shape β. Then β′ ≥L α.

Proof: To construct the 1st column of {T}′ we pick an element from each row of

{T} following the rule that we pick a 1 if possible. To construct the 2nd column

we pick an element from each row of {T} that we have not already picked, again

following the rule that we pick a 1 if possible. In the same way we construct all the

columns of {T}′. Now suppose that {S} is a tabloid involved in {T}ψ with shape

β. To construct the 1st column of {S} we pick one element from each row of {T}
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and to construct the 2nd column we pick one element from each row that we have

not already chosen. In the same way we construct all columns of {S}. It easy to see

that (β′)1 is the number of columns of {S} that contain one copy of 1. As we choose

copies of 1 in preference in {T}′ then this is at least as big as the same number

in {T}′ which is α1 = (α′′)1. Similarly (β′)i is the number of columns of {S} that

contain i copies of 1 and again as we always choose copies of one in preference in

{T}′ it is easy to see that the first time that (β′)i 6= αi we must have that (β′)i > αi.

Hence β′ ≥L α. �

Theorem 3.4.2 Let (x, y) be a partition of ab. Then the kernel of the standard

map ψ(ba)| contains no irreducible submodules isomorphic to S(x,y).

Proof: Let M be the matrix of ψ(ba)(x, y)|. The columns and rows of M are indexed

by the sets H(ba),(x,y) and H(ab),(x,y) respectively. Order the columns by the linear

order >L by writing α left of γ if α >L γ. Order the rows by putting the row indexed

by {S1} above that of {S2} iff (α1)′ >L (α2)′, where αi is the shape of {Si}. By

Lemma 3.4.1 we see that M is upper triangular and so ψ(ba)(x, y)| injective. Hence

by Theorem 3.3.2 the kernel of ψ(ba) contains no Specht modules isomorphic to S(x,y).

�

3.5 The standard map of (a, bc)

Let λ = (a, bc) ` n with a− b < c and λ ≥ λ′. The aim of this subsection is to show

that there is no injective map Hλ → Hλ′ . We do this by showing that if r = a−b+1

and ν = (n − r, r) then Hλ,ν has larger dimension than Hλ′,ν . Let x ≤ r and let

α = (α1, . . . , αr) ` c − x. Then we define {Tα,x} to be the (λ, ν)-tabloid with x

copies of 2 in its top row, α1 copies of 2 in its bottom row, α2 copies of two in its

second to bottom row and so on. As a ≤ c we see that this definition gives a unique

tabloid. We let Xλ,ν denote the set of all these tabloids. Similarly we define the

(λ′, ν)-tabloid {Sβ,y} to be the (λ′, ν)-tabloid whose right most y columns of size
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one contain a copy of 2, whose rightmost column of size c contains β1 copies of two,

whose second-to-rightmost column contains β2 copies of two and so on. We let Xλ′,ν

denote the set of all these tabloids.

Lemma 3.5.1 With the notation above we have

Hλ,ν =<
∑
π∈Sλ∗

{T}π | {T} ∈ Xλ,ν >F and

Hλ′,ν =<
∑

σ∈S(λ′)∗

{S}σ | {S} ∈ Xλ′,ν >F .

Proof: Let {T} ∈ Mλ,ν . Then there exists some π ∈ Sλ∗ such that the number of

copies of 2 in the rows of length b of {T}π increases. Hence {T}π = {Tα,x} for some

α and x. �

We now look at the motivating example of λ = (4, 3, 3) and ν = (8, 2). Below

are all (λ, ν) and their conjugate (λ′, ν)-tabloids. Note that {Tφ,2}′ = {T(1),1}′

{T(2),0} =
1 1 1 1
1 1 1
1 2 2

7→
1 1 1 1
1 1 1
1 2 2

= {S(12),0} ,

{T(12),0} =
1 1 1 1
1 1 2
1 1 2

7→
1 1 1 1
1 1 2
1 1 2

= {S(12),0} ,

{Tφ,2} =
1 1 2 2
1 1 1
1 1 1

7→
1 1 2 2
1 1 1
1 1 1

= {S(1),1} ,

{T(1),1} =
1 1 1 2
1 1 1
1 1 2

7→
1 1 1 2
1 1 1
1 1 2

= {S(1),1} .

Theorem 3.5.2 Let λ = (a, bc) ` n with a − b < c and λ ≥ λ′. Then there is no

injective map Hλ → Hλ′.
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Proof: Let r = a− b+ 1 and let ν = (n− r, r). Importantly we have c ≥ r. Define

a map ϕ : Xλ → Xλ′ by {Tα, x} 7→ {Sα′,x}. We show that ϕ is surjective but not

injective. Firstly it is clear that {Tφ,c}′ = {T(1),c−1}′. Hence ϕ is not injective. Let

{Sβ,b} be a (λ′, ν)-tabloid. As c ≥ r ≥ x the Young diagram of β fits inside the

(cb) rectangle at the bottom of [λ′] and so the Young diagram of β′ fits inside the

(bc)-rectangle. Hence the (λ, ν)-tabloid {Tβ′,b} exists and {Tβ′,b}ψ = {Sβ,b}. Thus

ϕ is surjective. Hence by Lemma 3.5.1 the dimension of Hλ,ν is strictly larger than

that of Hλ′,ν . �

Corollary 3.5.3 Let λ = (c, ba). Suppose that a ≤ b < c and c− b < a. Then the

standard map is not injective.

�
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Chapter 4

Injective standard maps

In Section 2.4 we defined the standard map. In this chapter we look at when this

map is injective. This chapter consists of two sections. In Section 4.1 we describe

a method of adding a column to a partition that preserves the injectivity of the

standard map. We then generalize this idea in Section 4.2 where we show how to

add several columns simultaneously to a partition whilst preserving the injectivity

of the standard map.

4.1 Column removal and the modules Mλi

In this section we introduce the key idea of the chapter. Let λ be a partition and µi

the partition obtained by removing the first i columns from λ. In Subsection 4.1.1

we describe a method of viewing ψλ as a composition of more managable maps φi.

In Subsection 4.1.2 we then show that the maps φi work well with the action of the

twist groups Sλi and S(µi)∗ . In Subsection 4.1.3 we relate compositions of some of

the φi with the standard map ψµi . Finally in Subsection 4.1.4 we give a criterion

for the remaining φi to be injective.
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4.1.1 An important sequence of tabloids

We define a sequence of tabloids {t}i which will act as intermediate steps between

{t} and {t}′. Let λ = (λ1, . . . , λr) be a partition and µi be the partition obtained by

removing the first i columns from λ. Let νi = (λ′1, λ
′
2, . . . , λ

′
i), where λ′j is the jth

part of λ′. Then define the composition λi = µi ∪ νi. Note that λ0 = λ and λr = λ′.

Recall the convention of Section of 2.1; for a λi-tabloid we call the µi-classes rows

and the νi-classes columns. Define {t}i to be the λi-tabloid whose jth row consists

of the λj − i largest elements of the jth row of {t} and whose kth column consists

of the kth smallest element of each row of {t}.

Example 4.1.1 Let λ = (53, 2, 1) and suppose {t} is the primary λ-tabloid. Then

{t} =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

= {t}0 , {t}1 =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

,

{t}2 =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

, {t}3 =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

,

{t}4 =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

, {t}5 =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

= {t}′ .

In view of Theorem 2.3.4 the reason for studying the {t}i is the following:

Lemma 4.1.2 Every class of {t}i is a subclass of {t} or {t}i+1.

Proof: The jth row of {t}i is obtained from that of {t}i−1 by removing the j smallest

elements. The kth column of {t}i is equal to that of {t}i+1. �
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Define a map φi : Mλi →Mλi+1
by

φi : {t}i 7→
∑

g∈G{t}i

{t}i+1g.

Proposition 4.1.3 The map ψλ is a scalar multiple of the composition of maps

φ0 ◦ φ1 ◦ · · · ◦ φλ1−1.

Proof: Define ϕi : Mλ →Mλi by {t} 7→
∑

g∈G{t}{t}
ig and induct on the hypothesis

that ϕi factors as a scalar multiple of φ0 ◦ · · · ◦ φi−1. When i = 1 we have ϕ1 = φ0.

By Lemma 4.1.2 every class of {t}i is a subclass of {t} or {t}i+1. Thus by Theorem

2.3.4 we have that ϕi+1 is a scalar multiple of ϕi ◦ φi. By induction ϕi is a scalar

multiple of φ0 ◦ · · · ◦ φi−1 and so ϕi+1 is a scalar multiple of φ0 ◦ · · · ◦ φi. �

4.1.2 The action of the twist groups

The twist group S(µi)∗ acts naturally on Mλi by permuting rows. Define an FG-

homomorphism θµi : Mλi →Mλi by

θµi : {t} 7→
∑

π∈S(µi)∗

{t}π

and let Hλi

µi denote the image of θµi . Recall the group A from Subsection 2.2. In

studying how the twist group interacts with φ0 it will be very useful to have a

description of the action of Sλ∗ in terms of the action of G.

Lemma 4.1.4 With the notation above we have

∑
a∈A

{t}a =
∑
π∈Sλ∗

{t}π and

∑
a∈A

{t}ia = |Sλ∗ : S(µi)∗|
∑

σ∈S(µi)∗

{t}iσ.
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Proof: The jth row of {t}aπ is the set {(tj,k)aπ}k≥1 = {tjπ−1,k}k≥1. This is exactly

the jth row of {t}π. Hence {t}aπ = {t}π. Hence
∑

π∈Sλ∗{t}π =
∑

a∈A{t}a. Second,

write λ = (λm1
1 , . . . , λmrr ). Then for some s ≤ r we have

Sλ∗ = ×rj=1Smj ,

Sµi∗ = ×sj=1Smj .

Thus we may write

Sλ∗ = Sµi∗ × (×sjSmj). (9)

Let π ∈ S(µi)∗ . The kth row of {t}iaπ is the set {(tj,k)aπ}k>i = {tjπ−1,k}k>i which is

the kth row of {t}iπ. Hence {t}1aπ = {t}π. To ease notation let K = (×sjSmj). By

definition, for σ ∈ K we have {t}j,kσ = {t}j,k if j ≤ s. Hence the j row of {t}iσ is

equal to the jth row of {t}i. The kth column of {t}iaσ is the set {(t(j)σ,k)}j which

is the kth column of {t}i. Thus aσ fixes {t}i. Hence we have

∑
a∈A

{t}ia =
∑
π∈Sλ∗

{t}iaπ (10)

=
∑

π1∈Sµ∗

∑
σ∈K

{t}iaσaπ1 (11)

= |K|
∑

π1∈Sµ∗

{t}iaπ1 (12)

= |K|
∑

π1∈Sµ∗

{t}iπ1 (13)

= |Sλ∗ : S(µi)∗|
∑

π1∈Sµ∗

{t}iπ1. (14)
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Above (10) follows from definition of the group A. Second (11) follows from (10)

by (9). Third (12) follows from (11) as aσ fixes {t}i for σ ∈ K. Fourth (13) follows

from (12) by definition of the group A. Finally (14) follows from (13) by (9). �

Proposition 4.1.5 Define ϕi : Mλ → Mλi by {t} 7→
∑

g∈G{t}{t}
ig. Then the

image (Hλ)ϕi is a submodule of Hλi

µi .

Proof: Let
∑

π∈Sλ∗{t}π ∈ H
λ. Then

∑
π∈Sλ∗

{t}π

ϕi =

(∑
a∈A

{t}a

)
ϕi (15)

=
∑
a∈A

∑
g∈G{t}a

{t}iag (16)

=
∑
a∈A

∑
g∈G{t}

{t}iag (17)

=
∑
g∈G{t}

(∑
a∈A

{t}ia

)
g (18)

= |Sλ∗ : S(µi)∗| ·
∑
g∈G{t}

∑
π∈Sµ∗

{t}iπg. (19)

Here (15) is true by Lemma 4.1.4. Secondly (16) follows from (15) by Lemma 2.3.2.

To see that (17) follows from (16) note that we have {t}ia = {t}iπ for some π ∈ Sλ∗ .

Hence G{t}a = G{t}π = G{t}. Fourthly (18) follows from (17) by swapping the order

of the two sums. Fifthly (19) follows from (18) by Lemma 4.1.4. By Lemma 2.2.1

the actions of G and Sλ∗ commute and so

∑
π∈Sµ∗

{t}iπg =
∑
π∈Sµ∗

{t}igπ
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is a basis element of Hλi

µi . Hence the right hand side of (19) is an element of Hλi

µi

and so ∑
π∈Sλ∗

{t}iπ

ϕi

is an element of Hλi

µi . �

4.1.3 Induction

In this section we use the results of Subsection 4.1.2 to prove an inductive result

concerning the standard map. Let θ : Mλ1 → Mλ′ denote the map defined by

{t}1θ =
∑

g∈G{t}1
{t}′g.

Proposition 4.1.6 The standard map ψλ is a scalar multiple of the composition

φ0 ◦ θ.

Proof: Every row of {t}1 is a subrow of {t} and every column of {t}1 is a column of

{t}′. The result now follows from Theorem 2.3.4. �

We now introduce some notation. Let ψ| and φ0| denote the restriction of ψ and

φ0 respectively to Hλ. Similarly let θ| denote the restriction of θ to Hλ1

µ1 . Throughout

this section we let µ denote the partition obtained by removing the left most column

of λ.

Lemma 4.1.7 The map θ| is injective iff ψµ| is injective.

Proof: Recall the construction of ψ∗Gµ from Section 2.5. Fix a λ-tabloid {t} and let

{t}1 be as above. Define {tX} to be the µ-tabloid that consists of the rows of {t}1

and let {tY } be the tabloid that consists of the single column of {t}1. Define the

FG-isomorphism ϕ : Mλ → (Mµ ⊗M (λ′1))G by {t}1 7→ ({tX}, {tY }). Then notice

that we can obtain {t}′ by adding the columns of {tX}′ to the right of {tY }. Hence

define the FG-isomorphism ϕ2 : (Mµ′ ⊗M (λ′1))G → Mλ′ by ({tX}′, {tY }) 7→ {t}′.

Thus by Theorem 2.5.13 the map ϕ1 ◦ ψµ|∗G ◦ ϕ2 is a scalar multiple of the map

Hλ1 → Mλ′ obtained by
∑

π∈Sµ∗{t}
1π 7→

∑
g∈G{t}1}

{t}′g. This is the definition of
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θ|. Hence θ| is a scalar multiple of ϕ1 ◦ψµ|∗G ◦ϕ2 which is injective iff ψµ| is injective

by Corollary 2.5.14. �

Theorem 4.1.8 Let λ be a partition and µ the partition obtained by removing the

left-most column. Suppose that both φ0 and ψµ| are injective. Then ψλ| is injective.

Proof: By Proposition 4.1.3 we have ψλ = φ0 ◦θ. By Lemma 4.1.5 the image (Hλ)φ0

is a submodule of Hλ1

µ1 . Hence ψλ| = φ0| ◦θ|. The map φ0| is injective by hypothesis.

By hypothesis the map ψµ| is injective and so by Lemma 4.1.7 this means the map

θ| is injective. Hence ψλ| is injective. �

4.1.4 Good nodes and columns

Theorem 4.1.8 shows us that it is important to understand when the map φ0 is

injective. In this section we give such a criterion for the map φ0 to be injective. We

study the map φ0 in the same way as we studied the standard map. We again define

a sequence of tabloids {t}(i) which will act as intermediates between {t} and {t}1.

We then use Theorem 2.3.4 to view the map φ0 as a composition of maps φ(i). The

maps φ(i) will turn out to be equal to the maps ε(λ(i), λ(i+1)) of Section 3.2, where

λ(i) is the shape of {t}(i). Hence using Theorem 3.2.3 we will be able to prove the

main result of this section, Theorem 4.1.15.

Let {t} be a λ-tabloid. For 0 ≤ j ≤ λ′1 define {t}(i) inductively by letting

{t}(0) = {t} and obtaining {t}(i+1) from {t}(i) by moving the smallest element from

the (λ′1 − i)th row into the unique column of {t}(i).

Example 4.1.9 Letting {t} be the primary (53, 2, 1)-tabloid gives us

{t}(0) =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

= {t} , {t}(1) =

1 2 3 4 5
6 7 9 8 10
11 12 13 14 15
16 17
18

,
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{t}(2) =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

, {t}(3) =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

,

{t}(4) =

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17
18

, {t}(5) =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18

= {t}1 .

Lemma 4.1.10 Every class of {t}(i) is a subclass of {t} or {t}(i+1).

Proof: Every row of {t}(i) is a subrow of {t}. Every column of {t}(i) is a subcolumn

of {t}(i+1). �

Let {t} be a λ-tabloid. Let λ(i) denote the shape of {t}(i). Then using Proposition

2.3.1 define a map φ(i) : Mλ(i) →Mλ(i+1)
by

{t}(i) 7→
∑

g∈G{t}(i+1)

{t}(i)g.

Proposition 4.1.11 The map φ0 is a scalar multiple of the composition of maps

φ(0) ◦ φ(1) ◦ · · · ◦ φ(λ′1−1).

Proof: Define ρi : Mλ →Mλ(i)
by {t} 7→

∑
g∈G{t}{t}

(i)g. We induct on the hypoth-

esis that ρi is a scalar multiple of the composition φ(0) ◦ · · · ◦ φ(i−1). When i = 1

we have ρ1 = φ(0). By Lemma 4.1.10 every class of {t}(i) is a subclass of {t} or

{t}(i+1). Hence by Theorem 2.3.4 we see that ρi+1 is a scalar multiple of ρi ◦φ(i). By

induction ρi is a scalr multiple of φ(0) ◦ · · · ◦ φ(i−1) and so the result holds for ρi+1.�

Proposition 4.1.12 The map φ(i) is injective iff the length of the (λ′1 − i + 1)th

part of λ is greater than i.
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Proof: The map φ(i) is defined by

φ(i) : {t}(i) 7→
∑

g∈G{t}(i)

{t}(i+1).

We obtain {t}(i+1) from {t}(i) by moving the smallest element of the (λ′1 − i+ 1)th

row into the column. Hence φ(i) is equal to the map ε(λ(i), λ(i+1)) of Section 3.2.

The result now follows from Theorem 3.2.3. �

For a partition λ recall the definition of the hook hi,j of [λ] from Section 2.1. We

say that the node λi,j is good if the arm of the hook hi,j is at least as long as its leg.

We say that a column of [λ] is good if all the nodes in it are good.

Example 4.1.13 Let λ = (53, 2, 1). Below we have replaced the node λi,j in [λ]

with ai,j − li,j. Thus the good nodes are exactly those whose entry is non-negative.

Hence in this example the first three columns are good.

0 0 0 −1 −2
1 1 1 0 −1
2 2 2 1 0
0 0
0

.

Theorem 4.1.14 Suppose that the left-most column of the Young diagram [λ] is

good. Then the homomorphism φ0 is injective.

Proof: To ease notation we let ri := λ′1− i. The number of elements in the rith row

of {t}(i) is equal to the number of nodes right of λri,1 in the Young diagram of λ.

The number of elements in the column of {t}(i) is the number of nodes below λri,1

in the Young diagram of λ. As the first column of λ is good there are strictly more

elements in the rith row of {t}(i) than in the column of {t}(i). Hence by Theorem

4.1.12 the map φ(i) is injective. Hence the composition below is injective

φ(0) ◦ φ(1) ◦ · · · ◦ φ(λ′1) = rφ0.

�
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Theorem 4.1.15 Let λ be a partition whose left-most column is good. Let µ be the

partition obtained by removing this column. Suppose ψµ| is injective. Then ψλ| is

injective.

Proof: As the left most column is good the map φ0 is injective by Theorem 4.1.14.

The map ψµ| is injective by hypothesis. The map ψλ| is now injective by Theorem

4.1.8. �

Theorem 4.1.16 Suppose that ψaa| is injective. Then ψba | is injective for all b

such that b ≥ a. In particular Foulkes’ Conjecture holds for these values of a and b.

Proof: Let a ≤ b. Let λi,j be a node in the ith column. Then if i ≤ b− a there are

at least a nodes to the right of λi,j and at most a nodes below it. Hence the first

b − a columns of λ are good. The map ψaa| is injective by assumption. The result

now follows from Theorem 4.1.15. �

Proposition 2.4.7 shows us that if a ≤ 4 then the map ψaa | is injective. Thus we

have the following confirmation of Foulkes’ Conjecture for partitions with at most

four parts:

Theorem 4.1.17 Let a ≤ b and a ≤ 4. Then the map ψba| is injective. In partic-

ular Foulkes’ Conjecture holds for all b ≥ a.

�

4.2 Block removal

In Section 4.1 we saw how we can add a column to a partition whilst preserving the

injectivity of its standard map. In this section we stretch these ideas to their limit

and show how to remove a block of c columns simultaneously. The ideas are similar

to those in Section 4.1 and as a result we shall at times be terse in those proofs

which copy ideas from Section 4.1 and advise the reader to skip this section on the

first reading.
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Let λ be a partition and let c be an integer such that the cth and (c + 1)th

columns of [λ] have different lengths and suppose further that λp+1 = c and λp > c.

We can now define five natural subpartitions λL, λR, λT , λB, λTL of λ:

λL = (cp, λp+1, . . . , λr),

λR = (λ1 − c, λ2 − c, . . . , λp − c),

λT = (λ1, λ2, . . . , λp),

λB = (λp+1, λp+2, . . . , λr),

λTL = (cp).

The partitions defined above can (and we believe should) be viewed pictorially as

subdiagrams of [λ].

λ

,

λL λR

,

λT

λB
,

λTL

.

As is Section 4.1 we will show that the standard map of λ is a scalar multiple of a

composition of other maps. To define these other maps we need to cut a λ-tabloid

into smaller tabloids. Let {t} be a λ-tabloid. Define {t}T to be the tabloid that

consists of the top p rows of {t}. We let {t}B be the λB-tabloid that consists of the

bottom (r − p) rows of {t}. Let {t}L denote the λL-tabloid whose jth row consists

of the smallest c-many elements from the jth row of {t} for each j. We let {t}R

be the tabloid obtained from {t}T by removing the c-many smallest elements from

each row.

Example 4.2.1 Let λ = (53, 22). Then λL = (25), λR = (33), λT = (53), λB = (22)

and λTL = (23). Further, if {t} is the primary λ-tabloid we have:
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{t} =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18 19

,

{t}T =
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

, {t}B =
16 17
18 19

,

{t}L =

1 2
6 7
11 12
16 17
18 19

, {t}R =
3 4 5
8 9 10
13 14 15

.

Given tabloids {s} and {t} we write {t} ∪ {s} to denote the tabloid obtained by

adding the rows of {s} to the bottom of those of {t}. For example in Example 4.2.1

we have {t} = {t}T∪{t}B. As we did in Section 4.1.1 we define a sequence of tabloids

{t}[0], {t}[1], {t}[2], {t}[3] by first letting {t}[0] := {t}. Then let {t}[1] := {t}T ∪({t}B)′

and {t}[2] := {t}R ∪ ({t}L)′. Finally set {t}[3] := {t}′.

Example 4.2.2 Let λ = (53, 22) and suppose {t} is the primary λ-tabloid as in

Example 4.2.1. Then we have:

{t}[0] =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18 19

, {t}[1] =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18 19

,

{t}[2] =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18 19

, {t}[3] =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18 19

.

For i = 0, 1, 2 let λ[i] denote the shape of the tabloid {t}[i]. Define maps φ[i] :

Mλ[i] →Mλ[i+1]
by

φ[i] : {t}[i] 7→
∑

g∈G{t}[i]

{t}[i+1]g.
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Lemma 4.2.3 For 0 ≤ i ≤ 2 every row or column of {t}[i] is a subrow or column of

{t}[0] or {t}[i+1].

Proof: First we have {t}[1] := {t}T ∪ ({t}B)′. Hence any row of {t}[1] is a row of

{t} = {t}[0]. The jth column of ({t}B)′ consists of the j smallest element (if it

exists) or each of the rows of {t}B. The jth column of ({t}L)′ consists of the jth

smallest element of each row of {t}. As every row of {t}B is a row of {t}, this gives

us that the jth column of ({t}B)′ is a subcolumn of the jth column of ({t}L)′. Hence

any column of {t}[1] is a subcolumn of {t}[2]. Now consider {t}[2] := {t}R ∪ ({t}L)′.

The jth row of {t}R is obtained from the jth row of {t}B by removing the smallest

λi−1-many elements. Hence the jth row of {t}R is a subrow of the jth row of {t}T .

Finally the jth column of ({t}L)′ consists of the jth smallest (if it exists) element of

each row of {t}L. Now the jth column of {t}′ consists of the jth smallest element

of each row of {t}. Hence as every row of {t}L is a subrow of {t} we see that the

jth column of ({t}L)′ is a column of {t}′. Hence every row or column of {t}[2] is a

subrow or subcolumn of {t}[0] or {t}[3]. �

Proposition 4.2.4 The map ψλ is a scalar multiple of the composition φ[0] ◦ φ[1] ◦

φ[2].

Proof: Define ψi : Mλ → Mλ[i]
by {t} 7→

∑
g∈G{t}{t}

[i]g. We induct on the hypoth-

esis that ψi is a scalar multiple of the composition φ[0] ◦ · · · ◦ φ[i−1]. When i = 1 we

have ψ1 = φ[0]. By Lemma 4.2.3 every class of {t}[i] is a subclass of {t} or {t}[i+1].

Hence by Theorem 2.3.4 we see that ψi+1 is a scalar multiple of ψi◦φ[i]. By induction

ψi is a scalar multiple of φ[0] ◦ · · · ◦ φ[i−1] and so the result holds for ψi+1. �

Lemma 4.2.5 (i) The map φ[0]| is injective iff the map ψλB | is injective.

(ii) The map φ[2]| is injective iff the map ψλR | is injective.

Proof: (i) Define an FG-isomorphism ϕ1 : Mλ → (MλB ⊗MλT )G by {t} 7→ {t}B ⊗

{t}T . Notice that we obtain {t}[1] by adding the columns of ({t}B)′ to the bottom
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of {t}T and so we can define an FG-isomorphism ϕ2 : (M (λB)′ ⊗MλT )G → Mλ1
by

({t}B)′ ⊗ {t}T 7→ {t}[1]. Hence by Theorem 2.5.13 the map ϕ1| ◦ ψλB |∗G ◦ ϕ2 is a

scalar multiple of the map Hλ →Mλ[1]
given by

∑
π∈S

λB∗

{t}π 7→
∑
g∈G{t}

{t}[1]g.

This is the definition of φ[0]| and so the result follows from Corollary 2.5.9

(ii) Define the FG-isomorphism ϕ1 : Mλ[2] → (MλL ⊗MλR)G by {t}[2] 7→ {t}L⊗

{t}R. Then notice that {t}′ can be obtained by adding the columns of ({t}R)′ to

the right of {t}L and thus by Theorem 2.5.13 then map ϕ1| ◦ ψλR |∗G ◦ ϕ2 is a scalar

multiple of the map Hλ[2] →Mλ′ given by

∑
π∈S

λR∗

{t}π 7→
∑
g∈G{t}

{t}′g.

Again this is the definition of φ2| and so once more the result follows from Corollary

2.5.9. �

Theorem 4.2.6 Suppose that the maps ψλR |, ψλB | and φ[1] are all injective. Then

ψλ is injective.

Proof: By Proposition 4.2.4 we have ψλ = φ[0] ◦ φ[1] ◦ φ[2]. Hence ψλ| is a scalar

multiple of

(φ[0] ◦ φ[1] ◦ φ[2])| = (φ[0]| ◦ φ[1]) ◦ φ[2].

By Proposition 4.1.5 we have (Hλ)φ[0] ◦ φ[1] ⊆ (HλR ⊗MλL)G. Hence

(φ[0]| ◦ φ[1]) ◦ φ[2] = (φ[0]| ◦ φ[1]) ◦ φ[2]|.

By hypothesis ψλR | and ψλL| are injective and so by Lemma 4.2.5 the maps φ[0]|

and φ[2]| are injective. By hypothesis the map φ[1] is injective. Hence ψλ| is a scalar

multiple of a composition of three injective maps and so injective. �

49



4.2.1 Two more sequences of tabloids

Theorem 4.2.6 shows that if the standard maps of λR and λB are injective then to

show that the standard map ψλ| is injective it suffices to show that the map φ1 is

injective. In this subsection we address this issue.

For 0 ≤ i ≤ λi−1 define tabloids {t}[1.i] inductively by letting {t}[1.0] := {t}[1]

and obtaining {t}[1.i+1] from {t}[1.i] by moving the smallest element from each row

of {t}[1.i] into the ith column.

Example 4.2.7 Letting λ = (53, 22) and {t}[1] as in Example 4.2.2 gives us the

following tabloids;

{t}[1.0] =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18 19

= {t}[1] , {t}[1.1] =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18 19

,

{t}[1.2] =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18 19

= {t}[2] .

Let λ[1.i] denote the shape of the tabloid {t}[1.i] and define maps φ[1.i] : Mλ[1.i] →

Mλ[1.i+1]
by

φ[1.i] : {t}[1.i] 7→
∑

g∈G{t}[1.i]

{t}[1.i+1]g.

Again the combinatorial significance of the tabloids {t}[1.i] lies in the following lemma

from which Proposition 4.2.9 follows by Theorem 2.3.4.

Lemma 4.2.8 Every row of {t}[1.i] is a subrow of either {t}[1.0] or {t}[1.i+1].

Proof: The jth row of {t}[1.i] is obtained from the jth row of {t}[1.0] by removing

the i smallest elements. Hence every row of {t}[1.i] is a subrow of {t}[1.0]. The jth

column of {t}[1.i] is equal to the jth column of {t}[1.i+1] if j 6= i. The ith column of
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{t}[1.i+1] is obtained from the ith column of {t}[1.i] by adding the smallest element

from each row of {t}[1.i]. Hence every column of {t}[1.i] is a subcolumn of {t}[1.i+1].

�

Proposition 4.2.9 The map φ[1] is a scalar multiple of the composition φ[1.1] ◦

φ[1.2] ◦ · · · ◦ φ[1.r].

Proof: Define ρi : Mλ → Mλ[1.i]
by {t} 7→

∑
g∈G{t}[1]

{t}[1.i]g. We induct on the

hypothesis that ρi is a scalar multiple of the composition φ[1.0] ◦ · · · ◦ φ[1.i−1]. When

i = 1 we have ρ1 = φ[1.0]. By Lemma 4.2.8 every class of {t}[1.i] is a subclass of {t}[1]

or {t}[1.i+1]. Hence by Theorem 2.3.4 we see that ρi+1 is a scalar multiple of ρi ◦φ[i].

By induction ρi is a scalar multiple of φ[0] ◦ · · · ◦ φ[i−1] and so the result holds for

ρi+1. �

Define tabloids {t}[1.i.j] by letting {t}[1.i.0] = {t}[1.i] and obtaining {t}[1.i.j+1] from

{t}[1.i.j] by moving the smallest element of the (j + 1)st lowest row into the ith

column.

Example 4.2.10 Let λ = (53, 2) and suppose {t}[1.1] is as in Example 4.2.7. Then

we have:

{t}[1.1.0] =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18 19

= {t}[1.1] , {t}[1.1.1] =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18 19

,

{t}[1.1.2] =

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17
18 19

, {t}[1.1.3] =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17
18 19

= {t}[1.2.0] .

Now define maps φ[1.i.j] : M [1.i.j] →M [1.i.j] by

φ[1.i.j] : {t}[1.i.j] 7→
∑
g∈G{t}

{t}[1.i.j]g.
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Lemma 4.2.11 Every row of {t}[1.i.j] is a subrow of either {t}[1.i] or {t}[1.i.j+1].

Proof: If the kth row of {t}[1.i.j] is not the [(λT )′i − j]th row then the kth row of

{t}[1.i.j] is equal to the kth row of {t}[1.i]. The [(λT )′i−j]th row of {t}[1.i.j] is obtained

from the kth row of {t}[1.i] by removing the smallest element. Hence every row of

{t}[1.i.j] is a subrow of {t}[1.i]. If k 6= j the kth column of {t}[1.i.j+1] is equal to the

kth column of {t}[1.i.j]. The ith column of {t}[1.i.j+1] is obtained from the ith column

of {t}[1.i.j] by adding the smallest element from the last row of {t}[1.i.j]. Hence every

column of {t}[1.i.j] is a subcolumn of {t}[1.i.j+1]. �

Proposition 4.2.12 The map φ[1.i] is a scalar multiple of the composition

φ[1.i.0] ◦ φ[1.i.1] ◦ · · · ◦ φ[1.i.r].

Proof: Define ρj : Mλ[1.i] → Mλ[1.i.j]
by {t}[1.i] 7→

∑
g∈G{t}[1.i]

{t}[1.i.j]g. We induct

on the hypothesis that ρi is a scalar multiple of the composition φ[1.0] ◦ · · · ◦ φ1.i−1].

When i = 1 we have ρ1 = φ[1.i.0]. By Lemma 4.2.11 every class of {t}[1.i.j] is a

subclass of {t}[1.i] or {t}[1.i.j+1]. Hence by Theorem 2.3.4 we see that ρi+1 is a scalar

multiple of ρi ◦ φ[1.i.j]). By induction ρi is a scalar multiple of φ[1.0] ◦ · · · ◦ φ[1.i−1] and

so the result holds for ρi+1. �

Proposition 4.2.13 The map φ[1.i.j] is injective iff the arm of the hook hi,j is at

least as long as its leg.

Proof: The map φ[1.i.j] is defined by

φ[1.i.j] : {t}[1.i.j] 7→
∑

g∈G{t}[1.i.j]

{t}[1.i.j+1].

We obtain {t}[1.i.j+1] from {t}[1.i.j] by moving the smallest element of the last row

into the ith column. Hence φ[1.i.j] is equal to the map ε(λ[1.i.j], λ[1.i.j+1]) of Section

3.2. The result now follows from Theorem 3.2.3. �
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Recall that we say the node λi,j is good if the arm of the hook hi,j is at least as

long as its leg. We say that λTL is good if all its nodes are good (as nodes of λ).

Lemma 4.2.14 Let λTL be good. Then the map φ1 is injective.

Proof: Every node in λTL is good and so every map φ[1.i.j] is injective by Proposition

4.2.13. Hence by Proposition 4.2.12 each map φ[1.i] is injective. Thus by Proposition

4.2.9 the map φ[1] is injective. �

Theorem 4.2.15 Let the standard maps of λR| and λB| be injective and let λTL be

good. Then the standard map of λ is injective.

Proof: As λTL is good by Lemma 4.2.14 the map φ[1] is injective. Hence the result

follows from Theorem 4.2.6. �

4.2.2 Very good and extremely good partitions

In this section we introduce very good and extremely good partitions. We then

use the results of Section 4.2 to prove that the standard maps of extremely good

partitions are injective. We begin as always with some definitions. A node of

the Young diagram of [λ] is removable if there is no node immediately right or

immediately below it. Let Ai denote the ith highest removable node.

Example 4.2.16 Let λ = (83, 52, 22). The Young diagram [λ] has three removable
nodes. They are labelled A1, A2, A3 and coloured black.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ • A1

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ • A2

◦ ◦
◦ • A3

.

Let λ = (λm1
1 , . . . , λmrr ) be a partition with the λi distinct. Let A′i denote the

rightmost node in the first row of length λi in [λ].
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Example 4.2.17 Let λ = (83, 52, 22). The nodes A′1, A′2 and A′3 are labelled below
and coloured black.

◦ ◦ ◦ ◦ ◦ ◦ ◦ • A′1
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ • A′2
◦ ◦ ◦ ◦ ◦
◦ • A′3
◦ ◦

.

Let i < j and define B(i, j) to be the unique hook whose arm contains the node A′i

and whose leg includes the node Aj (We do mean Aj here). The hook B(i, j) is good

if its arm is at least as long as its leg. The partition λ is very good if for each i, j

the hook B(i, j) is good. Note that a partition is very good iff for all j the hooks

B(1, j) are good. We adopt the convention that the partitions (ba) are very good

since they have no hooks B(i, j). We say that λ is extremely good if it is very good

and for 1 ≤ i ≤ r−1 the standard map of (λi−λi+1)mi is injective and the standard

map of (λmrr ) is injective.

Example 4.2.18 Let λ = (83, 52, 22). On the left is the hook B(1, 2) and on the
right B(1, 3).

◦ ◦ ◦ ◦ • • • •
◦ ◦ ◦ ◦ • ◦ ◦ ◦
◦ ◦ ◦ ◦ • ◦ ◦ ◦
◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦
◦ ◦

,

◦ • • • • • • •
◦ • ◦ ◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ • ◦ ◦ ◦
◦ •
◦ •

.

Lemma 4.2.19 Let λ be very good. Then all the nodes of λTL are good.

Proof: Consider the node λx,y that lies in λTL. Suppose that there exists a node

λx1,y1 such that x1 ≤ x and y1 ≥ y. Then it is easy to see that if hx,y is good then

hx1,y1 is good. Now let (x, y) lie in a row of length λi and column of length λ′p.

Then as λx,y lies in λTL we have i ≤ s. It is easy to see that there exists a unique

removable node that lies in a column of length λ′p, namely Ar−p. Further as λx,y lies
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in λTL we see that Ar−p lies in λB and so r−p > i. Hence it makes sense to consider

the hook B(i, r− p). Let λx1,y1 denote the node which at the arm and leg of B(i, j)

meet. Then (x1, y1) lies in the first row of length λi and rightmost column of length

λ′p. Hence x1 ≤ x and y1 ≥ y. �

Lemma 4.2.20 Let λ = (λm1
1 , . . . , λmrr ) be extremely good. Then λR is extremely

good.

Proof: Let Bλ(i, j) and BλR(i, j) denote the hooks B(i, j) in [λ] and [λR] respectively.

Then clearly Bλ(i, j) = BλR(i, j). As λ is extremely good, for each i ≤ r − 2 the

standard map of (λi − λi+1)mi is injective and the standard map of (λr−1 − λr)mr−1

is injective. Hence λR is very good. �

Theorem 4.2.21 Let λ be extremely good. Then the standard map of λ is injective.

Proof: Proceed by induction on r. If r = 1 then λ = (λmrr ) and an extremely good

partition of this shape is injective by definition. By induction the standard map of

λR is injective. As λ is extremely good the standard map of λB is injective and by

Lemma 4.2.19 all nodes in λTL are good. Hence the standard map of λ is injective

by Theorem 4.2.15. �

Corollary 4.2.22 Suppose all the parts of λ are distinct. Then the standard map

of λ is injective.

Proof: If all the parts of λ are distinct then the hooks B(i, j) all have leg length one

and arm length at least one. �

Remark 4.2.23 Note that Theorem 4.2.15 is a much more useful result than The-

orem 4.2.21. In particular there are many partitions (e.g. (8, 8, 7, 3, 3, 3)) that are

good but not extremely and whose standard map one can show to be injective using

Theorem 4.2.15.
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Chapter 5

Non-injective standard maps

In [23] Pylyavskyy showed that some partitions have a non-injective standard map.

In [28] Sivek showed that if µ had a non-injective standard map then inserting

rows into µ produced another partition whose standard map was not injective. In

Section 5.1 we reprove Sivek’s results again using the techniques of Chapter 2 and 4.

Secondly in Section 5.2 we use Sivek’s lemma to obtain a strong necessary condition

for ψλ| to be injective. In Section 5.3 we look at the relationship between the

standard map of λ and those of the branches of λ.

5.1 The results of Sivek

In [28] Sivek shows that if a partition µ admits a non-injective standard map then

inserting a row into µ yields a partition whose standard map is not injective. Sivek

then uses this result to show that every partition can be embedded into a partition

whose standard map is not injective. In this section we use the tools we have

developed so far to give new proofs of these results.

Suppose µ = (µ1, . . . , µs) is a partition of m. For n > m let λ be the partition of

n obtained from µ by adding the part (n−m) to µ and then rearranging the parts

so they weakly decrease. For a µ-tabloid {t} let {t}+ be the λ-tabloid obtained

from {t} by adding the row {m + 1,m + 2, . . . , n} to {t} in such a way that the
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lengths of the rows of {t}+ weakly decrease and this new row is the highest of length

(n −m). Similarly for v ∈ Mµ let v+ ∈ Mλ be the vector obtained by adding the

row {m+ 1,m+ 2, . . . , n} to every tabloid involved in v.

Example 5.1.1 Let n = 10 and m = 5 with µ = (2, 13). Then λ = (5, 2, 13) and

below we have {t} and {t}+.

{t} =

1 2
3
4
5

, {t}+ =

6 7 8 9 10
1 2
3
4
5

.

Let η be the composition (n−m)∪ µ′ and let ({t}′)+ be the η-tabloid obtained by

adding the row {m+ 1,m+ 2, . . . , n} to the top of {t}′.

Example 5.1.2 Again let µ = (2, 13), n = 10 and let {t} be as in Example 5.1.1.

Then µ′ = (4, 1), η = (5, 4, 1) and we have:

{t}+ =

6 7 8 9 10
1 2
3
4
5

, ({t}′)+ =

6 7 8 9 10
1 2
3
4
5

,

({t}+)′ =

6 7 8 9 10
1 2
3
4
5

.

Define two maps φ : Mλ →Mη and θ : Mη →Mλ′ by

φ : {t}+ 7→
∑

g∈G{t}+

({t}′)+,

θ : ({t}′)+ 7→
∑

g∈G{t}′+

({t}+)′.
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Notice that the row {n+1, . . . , n+m} of ({t}′)+ is equal to a row of {t}+ and every

column of ({t}′)+ is a sub-column of a column of {t}′. Thus Theorem 2.3.4 gives us:

Lemma 5.1.3 The standard map ψλ is a scalar multiple of φ ◦ θ.

The twist group Sµ∗ is a subgroup of Sλ∗ . Define the submodule Hλ
µ to be the

subspace of Mλ spanned by the sums
∑

π∈Sµ∗{t}π. Let φ|H×M be the restriction of

φ to Hλ
µ and let ψλ|H denote the restriction of ψλ to Hλ.

Lemma 5.1.4 There exists an FG-isomorphism ϕ−1
1 : (ker(ψµ|H) ×M (n−m))G →

ker(φ|H×M) such that (v, {tY })ϕ−1
1 = v+ where {tY } is the one part tabloid {m +

1, . . . n}.

Proof: First define the FG-isomorphism ϕ1 : Mλ → (Mµ ×M (n−m))G by {t}+ 7→

({tX}, {tY }) where {tX} is the µ-tabloid obtained by removing the top row of length

(n−m) from {t} and {tY } is the tabloid that consists of this row. Now notice that

we can obtain ({t}′)+ by adding the columns of {tX}′ to the bottom of {tY }. Hence

we can define the FG-isomorphism ϕ2 : (Mµ′×M (n−m))G →Mη by ({tX}′, {tY }) 7→

({t}′)+. Thus by Theorem 2.5.13 the map (ϕ1 ◦ψµ|∗G ◦ϕ2)|H×M is a scalar multiple

of the map Hλ
µ →Mη given by

∑
π∈Sµ∗

{t}+π 7→
∑

g∈G{t}+

({t}′)+g.

Hence (ϕ1 ◦ ψµ|∗G ◦ ϕ2)H×M is a scalar multiple of φ|H×M . Thus by Corollary 2.5.9

we have the isomorphism ϕ−1 : (ker(ψµ|∗G) ×M (n−m))G → ker(φ|H×M) given by

({tX}, {tY }) 7→ {tλ}+. Hence if v ∈ ker(ψµ|∗G) then we have

(v, {tY })ϕ−1
1 = v+ ∈ ker(ϕ1 ◦ ψµ|∗G ◦ ϕ2) = ker(φ|H×M).

�

Lemma 5.1.5 Let 0 6= v ∈ Hµ. Then
∑

π∈Sλ∗ v
+π 6= 0.
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Proof: First suppose that no part of µ is equal to (n−m). Then Sλ∗ = Sµ∗ and so∑
π∈Sλ∗ v = |Sλ∗|v. So suppose that a part of µ has length (n −m). Without loss

assume µ1 = (n−m). Thus the row {m+ 1, . . . , n} appears as the top row in every

tabloid that appears in v+. Let σj be a set of coset representatives of Sµ∗ in Sλ∗ .

Then ∑
π∈Sλ∗

v+π = |Sµ∗|
∑
i

v+σi.

Let v+ =
∑

j aj{tj} with a1 6= 0. For a contradiction suppose
∑

i v
+σi = 0. Then

for σj 6= 1 we have {t1}σj = {ti} for some i with ai 6= 0. But then {m + 1, . . . , n}

appears as a row other than the first in {ti}. This is a contradiction as we have

assumed the row {m+ 1, . . . , n} is the first row in each tabloid that appears in v+.

Thus
∑

π∈Sλ∗ v
+π 6= 0. �

Lemma 5.1.6 Let v ∈ ker(ψλ) and π ∈ Sλ∗. Then vπ ∈ ker(ψλ).

Proof: Let v =
∑

g∈G ag{t}g ∈ ker(ψλ). Then we have

{t}gπψλ = {t}πgψλ (20)

= {t}πψλg (21)

= {t}ψλg (22)

= {t}gψλ. (23)

Above (20) follows as the actions of Sλ∗ and G commute. Second (21) follows from

(20) as ψλ is an FG-homomorphism. Third (22) follows from (21) by Lemma 2.4.4.
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Finally (23) follows from (22) again as ψλ is an FG-homomorphism. Hence

(vπ)ψλ =

(∑
g∈G

ag{t}gπ

)
ψλ (24)

=
∑
g∈G

ag({t}gπψλ) (25)

=
∑
g∈G

ag({t}gψλ) (26)

=

(∑
g∈G

ag{t}g

)
ψλ (27)

= 0. (28)

Above (24) follows by definition of v. Second (25) follows from (24) by linearity of

the standard map. Third (26) follows from (25) by (23). Fourth (27) follows from

(26) by linearity of ψλ. Finally (28) follows from (27) as v ∈ ker(ψλ) �

The main result of this section is the following theorem which first appeared as

Lemma 2.1 in Sivek’s Paper [28].

Theorem 5.1.7 (Sivek’s Lemma) Let λ be a partition obtained by inserting a

part into µ. Suppose that ψµ|Hµ has a nonzero kernel. Then ψλ|Hλ has a nonzero

kernel.

Proof: Let 0 6= v ∈ ker(ψµ|Hµ). Then by Lemma 5.1.4 we have v+ ∈ ker(φ|H×M).

By Lemma 5.1.3 we have ψλ|H×M is a scalar multiple of φ|H×M ◦ θ. Hence v+ ∈

ker(ψλ|H×M). By Lemma 5.1.6, for each twist element π we have v+π ∈ ker(ψλ|H×M).

Hence ∑
π∈Sλ∗

v+π ∈ ker(ψλ|H×M).

As
∑

π∈Sλ∗ π projects Mλ onto Hλ this gives

∑
π∈Sλ∗

v+π ∈ ker(ψλ|Hλ).
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Finally by Lemma 5.1.5 the element
∑

π∈Sλ∗ v
+π 6= 0. Hence the kernel of ψλ|Hλ is

non-zero. �

Remark 5.1.8 Note that if µ does not have a part of length n −m then the proof

of Sivek’s Lemma becomes much simpler as we no longer need to project the kernel

of φ|H×M onto Hλ. In fact in this case the result follows almost immediately from

Lemma 5.1.4.

Definition 5.1.9 A node of a Young diagram is bad if it is not good and has a

node to its right.

Lemma 5.1.10 Let λ dominate λ′. Suppose that a partition λ has a bad node in the

first column of [λ]. Then ψλ|Hλ is not injective.

Proof: As λ ≥ λ′ we have λ1 ≥ (λ′)1. Hence the bad node λi,j is not in a row of

length λ1. Let µ be the partition obtained from λ by removing the rows of λ so that

λi,j is in the top row µ. Then as µ1,1 is a bad node we have µ1 < µ′1 and so µ 6≥ µ′.

Thus ψµ|Hµ has a non-zero kernel. Hence ψλ|Hλ has a non-zero kernel by Sivek’s

Lemma 5.1.7. �

We can now prove a second result that appeared in Sivek’s paper [28].

Theorem 5.1.11 ([28], Theorem 2.3) Let µ be a partition that dominates its

conjugate. Then there exists a partition λ obtained from µ by adding at most one

row and/or one column to µ that also dominates its conjugate and is such that ψλ|Hλ

is not injective.

Proof: Let µ have r parts. Add a column of length µr + r+ 1 to the front of µ. Call

this new partition ν. Add a row of length µr + r + 1 to the top of ν and call this

partition λ. It is easy to see that λ dominates its conjugate and that the node λ2,r

is bad. Hence by Lemma 5.1.10 the standard map of λ is not injective. �
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5.2 Good hooks

Recall the definition of the removable nodes Ai that we made in Subsection 4.2.2.

Let i < j and define A(i, j) to be the unique hook whose arm contains the node Ai

and whose leg includes the node Aj.

Example 5.2.1 Let λ = (73, 42, 22). On the left is the hook A(1, 2) and on the right
A(1, 3).

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • • • •
◦ ◦ ◦ •
◦ ◦ ◦ •
◦ ◦
◦ ◦

,

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ • • • • • •
◦ • ◦ ◦
◦ • ◦ ◦
◦ •
◦ •

.

We denote the arm and leg lengths of A(i, j) by a(i, j) and l(i, j) respectively. We

say that A(i, j) is good if its arm length is greater than its leg length. We say that

λ is good if all A(i, j) are good. A partition is bad if it is not good.

Example 5.2.2 Recall the definition of a very good partition from Section 4.2.2.

Clearly if the hook B(i, j) is good then the hook A(i, j) is good. Hence an extremely

good partition is good.

Lemma 5.2.3 The partition λ is good iff for each i the hook A(i, i+ 1) is good.

Proof: If λ is good then the hooks A(i, i + 1) are good. Conversely suppose that

each A(i, i + 1) is good. Let j < k and consider the hook A(j, k). Then it is clear

that we have

a(j, k) =
∑
j≤i<k

a(i, i+ 1),

l(j, k) =
∑
j≤i<k

l(i, i+ 1).
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As each A(i, i + 1) is good we have a(i, i + 1) ≥ l(i, i + 1). Hence a(j, k) ≥ l(j, k)

and so A(j, k) is good. �

Theorem 5.2.4 Let λ be a partition of n. Suppose that ψλ| is injective. Then λ is

good.

Proof: Suppose that A(i1, j1) is not good. By Lemma 5.2.3 there exists some i with

i1 ≤ i ≤ j1 such that A(i, i + 1) is not good. Let µ = (λi, λ
mi+1

i+1 ). As A(i, i + 1) is

not good we have λi−λi+1 < mi+1. By Corollary 3.5.3 the standard map of µ is not

injective. Note that λ is obtained by adding rows to µ. Hence by Sivek’s Lemma

the standard map of λ is not injective. �

5.3 Restriction to Sn−1

Recall the definition of the removable node Ai of [λ] from Section 5.2. Define λ−i

to be the partition whose Young diagram is obtained by removing Ai from [λ]. We

shall say that λ−i is a branch of λ.

Example 5.3.1 Let λ = (5, 32, 1). Then λ−2 = (5, 3, 2, 1). Below left is [λ] with A2

in black and right is [λ−2].

[λ] =

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ • A2

◦

, [λ−2] =

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦
◦

.

In this short section we consider what can be said when we restrict to the subgroup

Sn−1. Subsection 5.3.1 is devoted to studying the restriction of Hλ to Sn−1. The

main result is Theorem 5.3.9. In Subsection 5.3.2 we ask what can be said about

the relationship between the standard maps ψλ and ψλ−i . Here the main results are

Theorems 5.3.17 and 5.3.20. Finally in Subsection 5.3.3 we study the restriction of

the kernel of the standard map to Sn−1 when λ has at most two removable nodes.
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Throughout this section λ = (λ1, . . . , λr) will be a partition with r-many parts

and q-many distinct parts. That is λ = (fm1
1 , . . . , f

mq
q ) for some fj and mj. Further

we regard H := Sn−1 as the subgroup of elements of G that fix n. We start by

considering the restriction of Hλ to H.

5.3.1 Branching the module Hλ

In Section 2.2 we defined the module Hλ as the image of the map θ1. In this

subsection, in order to emphasize the role of λ, we alter our notation slightly and

write θλ in place of θ1. By definition the module Hλ has basis consisting of elements

of the shape {t}θλ. Let Vi denote the subspace of Hλ spanned by those {t}θλ such

that n lies in a row of length fi in {t}. We now describe a nice set of representatives

in the spaces Vi. Let {t} denote the primary λ-tabloid and let yi denote the largest

element in the lowest row of length fi of {t}. Define ωi := (n, yi) and {t}i := {t}ωi.

Example 5.3.2 Let λ = (5, 32, 1) ` 12. With the notation above, y1 = 5, y2 = 11,

y3 = 12. This gives ω1 = (5, 12), ω2 = (11, 12) and ω3 = (12, 12) = 1. Hence we

have

{t} = {t}3 =

1 2 3 4 5
6 7 8
9 10 11
12

, {t}1 = {t}ω1 =

1 2 3 4 12
6 7 8
9 10 11
5

,

{t}2 = {t}ω2 =

1 2 3 4 5
6 7 8
9 10 12
11

.

Recall that the twist groups Sλ∗ and S(λ−i)∗ are subgroups of Sr. To ease notation

let T := Sλ∗ ∩ S(λ−i)∗ . Let the kth part of λ be the last part of length fi. Define

Stabλ∗(k) and Stab(λ−i)∗(k) to be the subgroups of Sλ∗ and S(λ−i)∗ respectively that

fix the kth row.

Lemma 5.3.3 The groups Stabλ∗(k) and Stab(λ−i)∗(k) are subgroups of T .
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Proof: Let π ∈ Sr and suppose that kπ = k. For 1 ≤ x, y ≤ r and x, y 6= k we have

λx = (λ−i)x and λy = (λ−i)y. Thus λxπ = λy iff (λ−i)xπ = (λ−i)y for all 1 ≤ x, y ≤ r.

Hence π ∈ Sλ∗ ∩ S(λ−i)∗ = T . �

Let c1, . . . , cp, k index the parts of λ of length fi and let αj = (cj, k). Thus

{αj}j is a complete set of coset representatives of Stabλ∗(k) in Sλ∗ . Similarly let

k, d1, . . . dq index the parts of length fi − 1 in λ−i and βj = (dj, k). Then {βj}j is a

complete set of coset representatives of Stab(λ−i)∗(k) in S(λ−i)∗ .

Lemma 5.3.4 We have the equalities Stabλ∗(k) = T = Stab(λ−i)∗(k).

Proof: Note that (λ−i)cj = fi 6= fi−1 = (λ−i)k. Hence αj 6∈ S(λ−i)∗ for each j. Every

element of Sλ∗ can be written hαj for some αj and some h ∈ Stabλ∗(k). By Lemma

5.3.3 we have Stabλ∗(k) ⊆ T . Thus hαj ∈ T iff αj = 1. Hence T = Stabλ∗(k).

Similarly βj 6∈ Sλ∗ for each j and for hβj ∈ S(λ−i)∗ we have that hβj ∈ T iff βj = 1.

Hence T = Stab(λ−i)∗(k). �

Lemma 5.3.5 The set {αj}j is a complete set of coset representatives of T in Sλ∗.

Proof: The {αj}j are a complete set of coset representatives of Stabλ∗(k) in Sλ∗ and

by Lemma 5.3.4 we have Sλ∗ ∩ S(λ−i)∗ = Stabλ∗(k). �

Let Mj denote the subspace of Mλ spanned by those tabloids which contain n

in the jth row of length fi. Clearly Mj is a transitive FH-permutation module. Let

{s}i denote the λ−i-tabloid obtained by removing n from {t}i. Using Proposition

2.3.1 define εj : Mλ−i → Mj to be the unique FH-homomorphism that satisfies

εj : {s}i 7→ {t}iαj.

Lemma 5.3.6 For π ∈ T we have {s}iπεj = {t}iπαj.

Proof: Before proving the result recall from Subsection 2.2 the construction of the

elements aπ. Let {s}il,m denote the mth smallest element of the lth row of {s}i.

Then for π ∈ T we define aπ to be the unique element of H defined by

aπ : {s}il,m 7→ {s}ilπ−1,m.
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Then importantly we have {s}π = {s}aπ. As π ∈ T we have kπ = k by Lemma

5.3.4. Thus as {t}l,m = {s}l,m for all l 6= k we have

aπ : {t}il,m 7→ {t}ilπ−1,m.

In particular

aπ : {t}i
(l)α−1

j ,m
7→ {t}i

(l)α−1
j π−1,m

.

Now we are ready to prove our lemma. First we have

{s}iπεj = {s}iaπεj (29)

= {s}iεjaπ (30)

= {t}iαjaπ. (31)

Here (29) is true as {s}π = {s}aπ. Second (30) follows from (29) as εj is an FH-

homomorphism. Third (31) follows from (30) by definition of εj. The lth row of

{t}iπαj is the (l)(παj)
−1th row of {t}i, that is

(
{t}iπαj

)
l,m

= {t}i
(l)α−1

j π−1,m
. (32)

Next the lth row of {t}iαj is the (l)α−1
j th row of {t}i. Thus we have

(
{t}iαj

)
l,m

= {t}i
(l)α−1

j ,m
.

Which in turn gives; (
{t}iαjaπ

)
l,m

= {t}i
(l)α−1

j π−1,m
.
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Hence for all l the lth row of {t}iπαj is equal to the lth row of {t}iαjaπ. Hence by

first (31) and then (32) we have

{s}iπεj = {t}iαjaπ = {t}iπαj.

�

Now define a map θλ,λ−i : Mλ−i → Mλ−i by {s}θλ,λ−i =
∑

π∈T{s}π. We denote

the image of θλ,λ−i by Hλ−i
T .

Lemma 5.3.7 The map εj is an FH-isomorphism between Mλ−i and Mj. Further

(Hλ−i
T )εj ⊆Mj.

Proof: The first part is well known. For the second part, let π ∈ T . By Lemma

5.3.6 we have {s}iπεj = {t}iπαj. By Lemma 5.3.4 we have that π fixes k. Hence

π ◦ αj sends k to j and so {t}iπαj ∈Mj and so {s}iπεj ∈Mj. �

Now define a map ελ,λ−i : Mλ−i → Mλ by ελ,λ−i : {s}i 7→
∑

j{t}iαj. Thus we

have ελ,λ−i =
∑

j εj. Our main result is:

Proposition 5.3.8 The map ελ,λ−i is an FH-isomorphism between Hλ−i
T and Vi.

Proof: By Lemma’s 5.3.6 and 5.3.5 we have

{s}iθλ,λ−iελ,λ−i =
∑
j

∑
π∈T

{t}iπαj

= {t}iθλ.

Then as θλ,λ−i and ελ,λ−i are FH-homomorphisms and Vi is cyclic we see that ελ,λ−i

maps Hλ−i

λ,λ−i onto Vi. To show injectivity note that by Lemma 5.3.7 the homomor-

phisms εj are injective and linearly independent and hence their sum is injective.

�
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Theorem 5.3.9 We have the decomposition

Hλ ∼=FH

r⊕
i=1

Hλ−i

T .

Proof: Clearly we have Hλ =
⊕r

i=1 Vi and the result now follows from Proposition

5.3.8. �

5.3.2 Branching the standard map

In what follows we are interested in the restriction of the standard map to Hλ and

Hλ−i
T . Thus we adopt the following convention. We consider ψλ as a map with

domain Hλ. Hence if {t} is a λ-tabloid we define ψλ : Hλ → Hλ′ by

ψλ : {t}θλ 7→
∑
g∈G{t}

({t}′)θλ′g.

We then consider the map ψλ,λ−i as a map with domain Hλ−i
T . Hence we define

ψλ,λ−i : Hλ−i
T → H(λ−i)′ by

ψλ,λ−i : {s}θλ,λ−i 7→
∑

h∈H{s}i

({s}′)θ(λ−i)′h.

Suppose that λ has q removable nodes. We write Wi for the subspace of Hλ′ spanned

by those {t1}θλ′ with n in the (q−i+1)th column of {t1}. The reason for the reverse

numbering of the Wi is that it allows us write ({t}i)′θλ′ ∈ Wi.

Lemma 5.3.10 (The push down lemma) For each i we have (Vi)ψλ ⊆
⊕

j≥iWj.

Proof: One can see that a ({t}i)′-column of length λ′j contains an element from a

{t}i-row of length λi iff j ≤ r−i+1. Hence a ({t}i)′-column of length λ′j contains an

element from the same {t}i-row as n iff j ≤ r− i+ 1. Now let g ∈ G{t}i . Then there

exists an x in the same {t}i-row as n such that xg = n. By the above discussion x

lies in the ({t}i)′-column of length λ′j for some j ≤ r− i+ 1. Hence n lies in the jth
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column of ({t}i)′g for some j ≤ r− i+ 1. Thus j = r− k+ 1 for some k with k ≥ i.

Hence ({t}i)′g ∈ Wk with k ≥ i. �

Example 5.3.11 To illustrate the proof of Lemma 5.3.10 let n = 12 and consider

{t}2 below. We see that the column of length 4 of ({t}2)′ contains an element from

all rows of {t}2. The columns of length 3 contain an element from rows of length

λ1 and λ2 and finally the column of length 2 only contains an element from rows of

length λ1.

{t}2 =

1 2 3 4
5 6 7 8
9 10 12
11

, {t}2′ =

1 2 3 4
5 6 7 8
9 10 12
11

.

Now define a map ψi : Vi → Wi by

ψi : {t}iθλ 7→
∑

h∈H{t}i

({t}i)′θλ′h.

The rest of this section is dedicated to the study of the map ψi and how it relates

to ψλ and ψλ,λ−i . Thus we fix some notation concerning the tabloid {t}i that we

will use throughout the proofs. Let n lie in a row of length l + 1 in {t}i and let

the elements that lie in the same row as n be x1, . . . , xl with xj < xj+1. Define

σj = (n, xj) with the convention that σl+1 = (n, n) = 1. Thus the σj are a complete

set of coset representatives of H{t}i in G{t}i . The main combinatorial lemma that

we need is the following:

Lemma 5.3.12 With the notation above let xj lie in a column of ({t}i)′ that has the

same length as the column that n lies in. Then there exists πj ∈ S(λ′)∗ and hj ∈ H{t}i

such that ({t}i)′σj = ({t}i)′πjhj.

Proof: Without loss assume that the column that contains xj is left of the column

that contains n. Let the column that contains xj consist of the (p + 1)-many el-

ements c1, c2, . . . , cp, xj and let the column that contains n consist of the elements
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d1, d2, . . . , dp, n. Further for each k we may assume that ck and dk lie in the same

row of {t}i. Then the left column in ({t}i)′σj consists of c1, c2, . . . , cp, n and the

right d1, d2, . . . , dp, xj. Hence let hj =
∏

k(ck, dk). Then hj ∈ H{t}i as hj doesn’t

move n and each pair ck, dk lie in the same {t}i-row. Let πj ∈ S(λ′)∗ be the twist

element that swaps the two columns. Thus the left column of ({t}i)′πj consists of

n, d1, . . . , dp and the right xj, c1, . . . , cp. Hence the left column of ({t}i)′πjhj consists

of c1, c2, . . . , cp, n and the right d1, d2, . . . , dp, xj. Thus ({t}i)′hjπj = ({t}i)′σi. �

Example 5.3.13 To illustrate the proof of Lemma 5.3.12 consider {t}2 in Example

5.3.11. With the notation above we have σ2 = (10, 12), π2 = (2, 3) and h2 =

(2, 3)(6, 7). Hence we have:

{t}2 =

1 2 3 4
5 6 7 8
9 10 12
11

, ({t}2)′ =

1 2 3 4
5 6 7 8
9 10 12
11

,

({t}2)′σ2 =

1 2 3 4
5 6 7 8
9 12 10
11

= ({t}2)′π2h2 .

Lemma 5.3.14 Let {t}iθλψλ =
∑

j wj where wj ∈ Wj. Then wi is a scalar multiple

of {t}iθλψi.

Proof: By definition of ψλ we have

{t}iθλψλ =
∑

g∈G{t}i

({t}i)′θλ′g

=
l+1∑
j=1

∑
h∈H{t}i

({t}i)′θλ′σjh

=
l+1∑
j=1

∑
h∈H{t}i

({t}i)′σjhθλ′ .

Again let n lie in a column of length p in ({t}i)′. Let J be the set of indices such

that xj lies in a column of length p in ({t}i)′σj. Then
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wi =
∑
j∈J

∑
h∈H{t}i

({t}i)′σjhθλ′ (33)

=
∑
j∈J

∑
h∈H{t}i

({t}i)′(πjhj)hθλ′ (34)

=
∑
j∈J

∑
h∈H{t}i

({t}i)′πjhθλ′ (35)

=
∑
j∈J

∑
h∈H{t}i

({t}i)′πjθλ′h (36)

=
∑
j∈J

∑
h∈H{t}i

∑
π∈S(λ′)∗

({t}i)′πjπh (37)

= |J |
∑

h∈H{t}i

∑
π∈S(λ′)∗

({t}i)′πh (38)

= |J |
∑

h∈H{t}i

({t}i)′θλ′h (39)

= |J |{t}iθλψi. (40)

Above (34) follows from (33) by using the πj ∈ S(λ′)∗ and hj ∈ H{t}i of Lemma

5.3.12. Secondly (35) follows from (34) by absorbing hj into the sum over H{t}i .

Third (36) follows from (35) as θλ′ is an FG-homomorphism. Fourth (37) follows

from (36) by definition of the map θλ′ . Fifth (38) follows from (37) by absorbing πj

into the sum over the twist group. Sixth (39) follows from (38) by definition of θλ′ .

Finally (40) follows from (39) by definition of ψi. �

Proposition 5.3.15 We have the equality ελ,λ−i ◦ ψi = ψλ,λ−i ◦ ελ′(λ′)−i.

Proof: As all the modules involved are transitive FH-permutation modules it is

enough to show that ελ,λ−i ◦ ψi and ψλ,λ−i ◦ ελ′(λ′)−i agree on the λ−i-tabloid {s}i.

To ease notation we let εµ and εµ′ denote ελ,λ−i and ελ′,(λ′)−i respectively. Similarly
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θµ and θµ′ will denote θλ,λ−i and θλ′,(λ′)−i . Then we have

({s}iθµ)εµ ◦ ψi = ({t}iθλ)ψi (41)

=
∑

h∈H{t}i

({t}i)′θλ′h (42)

=
∑

h∈H{t}i

({s}i)′θµ′εµ′h (43)

=
∑

h∈H{t}i

({s}i)′θµ′hεµ′ (44)

=
∑

h∈H{s}i

({s}i)′θµ′hεµ′ (45)

= {s}iθµψλ,λiεµ′ . (46)

First (41) follows from the definition of εµ. Second (42) follows from (41) by defi-

nition of ψi. Third (43) follows from (42) by definition of εµ′ . Fourth (44) follows

from (43) as h commutes with εµ′ . Fifth (45) follows from (44) as H{t}i = H{s}i .

Sixth (46) follows from (45) by definition of ψµ. �

Lemma 5.3.16 The map ψi is injective iff the map ψλ,λ−i is injective.

Proof: First suppose that ψλ,λ−i is injective. By Lemma 5.3.8 we have ε′i is injective.

By Proposition 5.3.15 we have εi ◦ ψi = ψλ,λ−i ◦ ε′i. Hence εi ◦ ψi is injective. By

Lemma 5.3.8 the map εi is injective and surjective. Thus the map ψi is injective.

Conversely suppose that ψi is injective. Then εi ◦ ψi is injective by Lemma 5.3.8.

Hence ψλ,λ−i ◦ ε′i is injective. Thus ψλ,λ′ is injective. �

Theorem 5.3.17 Suppose that ψλ,λ−i is injective for each i. Then the standard

map of λ is injective.
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Proof: For a contradiction suppose 0 6=
∑

k vk ∈ ker(ψλ) with vi ∈ Vi. Let i be the

smallest index such that vi 6= 0. Then by Lemma 5.3.14 we see that

vψλ = viψi +

(∑
k>i

vk

)
ψλ.

By Lemma 5.3.10 we know that (
∑

k>i vk)ψλ is a sum of tabloids none of which

are in Wi. Hence viψi = 0. Hence ψi is not injective and so by Lemma 5.3.16 the

map ψλ,λ−i is not injective. This is a contradiction as ψλ,λ−i is injective. Thus ψλ is

injective. �

Lemma 5.3.18 Let λ = (λm1
1 , . . . , λmrr ). Then ker(ψr) ⊆ ker(ψλ).

Proof: Let vr ∈ ker(ψr). By Lemma’s 5.3.10 and 5.3.14 we have that vrψ = vrψr.

Then as vr ∈ ker(ψr) we have vrψ = 0. �

Definition 5.3.19 Let P denote the set of all partitions. Write λ > µ if µ is

obtained from λ by removing the removable node in the last part of λ. Write λ� ν

if there exists a chain of partitions λ = λ(1) > · · · > λ(d) > ν.

We can now prove the following result that generalizes the result of Black and List.

Theorem 5.3.20 Let λ� ν and suppose ψλ is injective. Then ψν is injective.

Proof: First note that as we are removing the last node As we have Hλ−s
T = Hλ−s

since it is easy to see that S(λ−s)∗ ⊆ Sλ∗ . Hence ψλ,λ−i = ψλ−i . By definition of �

there exists a chain of partitions λ = λ(1) > · · · > λ(d) > ν and we induct on i that

ψλ(i) is injective. The base step is the hypothesis that ψλ is injective. By Lemma

5.3.18 we know that the kernel of the λ(i + 1)-standard map is contained in the

kernel of the λ(i)-standard map. By induction the λ(i)-standard map is injective

and so the λ(i+ 1)-standard map is injective. Hence the standard map of λ(d) = ν

is injective. �
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5.3.3 Partitions with at most two removable nodes

First suppose that λ has a single removable node. That is λ = (ba). With the

notation that we have accrued throughout this section we have H(ba) = V1 and λ−1 =

(ba−1, b−1). Then Sλ∗ = Sa and S(λ−1)∗ = Sa−1. Hence Sλ∗∩S(λ−1)∗ = S(λ−1)∗ = Sa−1.

Hence Hλ
T = Hλ−1

. Thus by Proposition 5.3.8 we have that Hλ ∼=FH Hλ1
and by

Theorem 5.3.17 the standard map ψ(ba) is injective iff ψ(ba−1,b−1) is injective. Now

suppose that λ has two removable nodes. If ψλ,λ−2 = ψλ−2 has a kernel then ψλ has

a kernel by Theorem 5.3.20. If both ψλ,λ−1 and ψλ−2 are injective then by Theorem

5.3.17 the map ψλ is injective. Finally consider the case that ψλ−2 is injective and

but ψλ,λ−1 is not injective. In this case the main result is Theorem 5.3.22 below.

Lemma 5.3.21 The map ελ,λ−2 is an FH-isomorphism from ker(ψλ,λ−2) into ker(ψ2).

Proof: Let v ∈ ker(ψλ,λ−2). Then by Proposition 5.3.15 we have

vελ,λ−2 ◦ ψ2 = vψλ,λ−2 ◦ ελ′,(λ′)−2 = 0

Conversely if w ∈ ker(ψ2) then as ελ,λ−2 is an isomorphism we have there exists

w = vε−1
λ,λ−2 ∈ Jλ,λ

−2
. Hence again by Proposition 5.3.15 we have wψλ,λ−2 = 0. �

Theorem 5.3.22 Suppose that ψλ2 is injective and ψλ,λ−1 is not injective. Then

ker(ψλ) is FH-isomorphic to a submodule of ker(ψλ,λ−1)
⊕

ker(ψλ,λ−1).

Proof: Let v = v1+v2 ∈ ker(ψλ) with vi ∈ Vi. Then by Lemma’s 5.3.10 and 5.3.14 we

may write vψλ = v1ψ1 + v1ψ
∼+ v2ψ2 where v1ψ1 ∈ W1 and v1ψ

∼, v2ψ2 ∈ W2. Hence

v1 ∈ ker(ψ1) and v1ψ
∼ = −v2ψ2. As ψ2 is injective, for v1 ∈ ker(ψ1) there exists a

unique v′1 such that v1ψ
∼ = −v2ψ2. Define an FH-homomorphism φ : V1 → V2 by

v1 7→ v′1. Hence ker(ψλ) = ker(ψ1)
⊕

im(φ). The result now follows from Lemma

5.3.21. �
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Chapter 6

The standard map of partitions

with at most four parts

In this chapter we collect together all the techniques we have amassed throughout

this thesis and apply them to partitions with at most four parts. We will obtain

full results for partitions with at most three parts and partial results for four part

partitions.

6.1 Partitions with at most three parts

When a partition has at most three parts it will turn out that that the standard

map is the best possible homomorphism as the attractive Theorem 6.1.3 shows. We

begin with an elementary lemma;

Lemma 6.1.1 The bad three part partitions are those of the shape (b+ 1, b, b).

Proof: Suppose that λ is bad. Then there is a hook A(i, j) whose leg is longer than

its arm. As λ has three parts the leg must have length two and the arm length

one. Thus the bottom two parts of λ must have equal length and the first part one

greater. �

75



Theorem 6.1.2 A partition with at most three parts has injective standard map iff

it is good.

Proof: By Theorem 5.2.4 we know that if λ is bad then the standard map of λ is

not injective. Hence it suffices to show that if λ is good and has at most three parts

then the standard map is injective. If λ has two parts then λ is extremely good and

the result holds by Theorem 4.2.21. Suppose that λ has three parts. If λ = (a, b, b)

with a ≥ b + 2 then λ is extremely good. If all three parts of λ are distinct then

λ is extremely good. Thus by Lemma 6.1.1 it remains to show that the partition

(a, a, b) with b ≤ a has injective standard map. By Theorem 4.1.17 the standard

map of (a3) is injective. Recalling Definition 5.3.19 we see (a, a, b) � (a3). Hence

by Corollary 5.3.20 the standard map of (a, a, b) is injective. �

Theorem 6.1.3 Let λ be a partition with at most three parts. Then the following

are equivalent:

(i) There exists an injective map Hλ → Hλ′.

(ii) The partition λ is good.

(iii) The standard map of λ is injective.

Proof: Part (i) implies (ii) by Theorem 5.2.4. Part (ii) implies (iii) by Theorem

6.1.2. Part (iii) clearly implies (i). �

6.2 Good partitions with four parts

In this section we look at what can be said about partitions with four parts. We

stress that we only obtain partial results in this section as we lack two base cases.

As with three part partitions we begin by grouping the partitions into three families.

Lemma 6.2.1 Let λ be a partition with at most four parts that dominates its conju-

gate. Suppose that λ is good but not extremely good. Then λ has one of the following

three shapes:
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(i) (a2, (a− 2)2) with a ≥ 4.

(ii) (a2, a− 1, a− 2) with a ≥ 4.

(iii) (a3, b) with b < a and a ≥ 4.

Proof: If λ has one or four removable nodes then λ is extremely good. Suppose λ

has three removable nodes. In this case λ has exactly two parts of equal length. If

λ2 = λ3 or λ3 = λ4 then it is easy to see that λ is good iff λ is extremely good.

Thus a good but not extremely good partition with three removable nodes has type

(ii). Finally suppose λ has two removable nodes then either three parts have equal

length or λ = (a2, b2). If the first three parts have equal length then λ is of type

(iii). If the last three parts have equal length then it is easy to see λ is good iff it

is extremely good. Thus suppose λ = (a2, b2). If λ is good but not extremely good

it is easy to see that a− b = 2 and λ has type (i). �

Lemma 6.2.2 Suppose that the standard maps of the partitions (42, 22) and (42, 3, 2)

are injective. Then for a ≥ 4 the standard maps of the partitions (a2, (a− 2)2) and

(a2, a− 1, a− 2) are injective.

Proof: Induct on a. The base step is the hypothesis. The left-most column of both

(a2, (a − 2)2) and (a2, a − 1, a − 2) are good. By induction the standard maps of

the partitions ((a− 1)2, (a− 3)2) and ((a− 1)2, a− 2, a− 3) are injective. Hence by

Theorem 4.1.15 the standard maps of the partitions (a2, (a−2)2) and (a2, a−1, a−2)

are injective. �

Proposition 6.2.3 Suppose that the standard maps of the partitions (42, 22) and

(42, 3, 2) are injective. Then a partition with at most four parts has injective standard

map iff it is good.

Proof: By Theorem 4.1.17 we know that the standard maps of (ba) are injective for

a ≤ 4 and b ≥ a. Hence by Theorem 4.2.21 all very good four part partitions are

injective. By Hypothesis (42, 22) and (42, 3, 2) are injective. Hence by Lemma 6.2.2
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the standard maps of partitions of the shape (a2, (a− 2)2) and (a2, a− 1, a− 2) are

injective. Finally by Theorem 4.1.17 the standard map of (a4) is injective. Then

(a4) � (a3, b). Hence by Corollary 5.3.20 the standard map of (a3, b) is injective.

Hence Lemma 6.2.1 shows that we have accounted for all good four part partitions.

�

6.3 Bad partitions with four parts

In this section we show that studying bad partitions with at least four parts is

difficult. We know that the standard maps of these partitions are not injective so it

remains to decide if there exists an injective map Hλ → Hλ′ . First we classify the

bad partitions with four parts into three natural families. We then show that two

of these families behave well. That is, the rank of the standard map ψλ| decides the

existence of an injective map Hλ → Hλ′ . However we then study the third family

of partitions for whom the standard map is not injective but for whom there often

exists an injective map Hλ → Hλ′ .

Lemma 6.3.1 A four part bad partition that dominates its conjugate has one of the

following three shapes:

(i) (a, b3) with b ≥ 3 and a− b < 3

(ii) (a+ 1, a2, b) with a ≥ 2,

(iii) (a, b+ 1, b, b) with b ≥ 3.

Proof: A bad partition with two removable nodes must be of type (i). In a bad

partition with three removable nodes either the hook A(1, 2) or A(2, 3) is bad. If

A(1, 2) is bad the partition has type (ii) and if A(1, 2) is bad it has type (iii). �

Proposition 6.3.2 Let λ be a partition of type (i) or (ii) as in Lemma 6.3.1. Then

there is no injective map Hλ → Hλ′.
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Proof: If λ is of type (i) then by Theorem 3.5.2 there is no injective map Hλ → Hλ′ .

The proof for type (ii) partitions is similar. Again let X and X ′ denote the bases

of Hλ and Hλ′ respectively and then follow the proof of Theorem 3.5.2. �

6.3.1 Composable sequences

In this short subsection we collect together some tools and notation that will make

our assault on the remaining type (iii) partitions a little less painful.

Definition 6.3.3 The sequence of tabloids {t}1, {t}2, . . . , {t}r is composable if:

(i) Every row of {t}i is a subrow of {t}1 or {t}i+1, and

(ii) The tabloid {t}i+1 is obtained from {t}i by moving a subset of size pi from a

set of size ni into a set of size mi with ni − pi ≥ mi.

Theorem 6.3.4 Let {t}1, {t}2, . . . , {t}r be a composable sequence of tabloids. Sup-

pose that the shape of {t}i is λi. Then the map φ : Mλ1 → Mλr given by {t}1 7→∑
g∈G{t}1

{t}rg is injective.

Proof: Let λi denote the shape of {t}i and define φi : Mλi → Mλi+1
by φi : {t}i 7→∑

g∈G{t}i
{t}i+1g. It follows by induction using Theorem 2.3.4 that the map φ is a

scalar multiple of the maps φi and by Theorem 3.2.2 each map φi is injective. �

It will be useful to have a more general version of Proposition 4.1.5. To this end

let λ and µ be partitions of n and suppose ν is a partition obtained by removing

some rows from µ. Clearly the twist group of ν is a subgroup of that of µ. Define a

map θν : Mµ →Mµ by {s} 7→
∑

π∈Sν∗{s}π. Denote the image of θν by Hµ
ν . Let {t}

and {s} be λ- and µ-tabloids respectively and suppose {s1} is a ν-tabloid obtained

from {s} by removing rows. Denote the ith smallest element of the jth column of

{s1} by xi,j. Then we have:

Lemma 6.3.5 With the notation above suppose that for each i the set {xi,j}j is a

subset of a row of {t}. Then the image of the map φ : Mλ →Mµ is a submodule of

Hµ
ν .
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Proof: The proof mimics that of Proposition 4.1.5. Let the jth smallest element in

the ith row of the tail of {t} be xi,j. Then for π ∈ Sν∗ define aπ∈G{t} by xi,jaπ =

xi,jπ−1 . Then we have {s}π = {s}aπ. Let A denote the set {aπ | π ∈ Sν∗}. By

hypothesis for each π we have aπ ∈ G{t}. Hence A ⊆ G{t}. Let σi be a complete set

of coset representatives of A in G{t}. Then we have

{t}φ =
∑
g∈G{t}

{s}g

=
∑
i

∑
a∈A

{s}aσi.

The element
∑

a∈A{s}a is in the basis of Hλ
ν which is an FG-module. Hence for

each i the element
∑

a∈A{s}aσi belongs to Hµ
ν and so {t}φ lies in Hλ

ν . �

6.3.2 The partitions [2(b+ c− 1), b+ c− 1, bc]

In this subsection we will be looking at the partitions λ = (2a, a, bc) with a = b+c−1

and c ≥ 2. It will turn out that the case a ≥ b + c − 1 can easily be derived from

this special case (cf. Subsection 6.3.3). We shall call the parts (2a), (a) and (bc) the

antidote, head and tail of λ respectively. We shall spend the rest of this subsection

proving Theorem 6.3.6:

Theorem 6.3.6 Let λ = (2a, a, bc). Suppose that the standard map of (bc) is injec-

tive. Then the standard map of λ is not injective but there exists an injective map

Hλ → Hλ′.

For the λ-tabloid {t} write {t} = {t}A ∪ {t}H ∪ {t}T , where {t}A, {t}H and {t}T

are the rows of {t} that correspond to the antidote, head and tail of λ respectively.

Call these smaller tabloids the antidote, head and tail of {t}. For example
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{t} =

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22
23 24 25 26
27 28 29 30

,

{t}A = 1 2 3 4 5 6 7 8 9 10 11 12 ,

{t}H = 13 14 15 16 17 18 , {t}T =
19 20 21 22
23 24 25 26
27 28 29 30

.

Define the tabloid {t}◦ to be {t} = {t}A ∪ {t}H ∪ ({t}T )′. We again call the parts

{t}A, {t}H and ({t}T )′ the antidote, head and tail of {t}◦. The shape λ◦ of {t}◦

is (2a, a, cb). We define the antidote, head and tail of λ◦ to be the shapes of the

tabloids parts {t}A, {t}H and ({t}T )′ respectively.

{t}◦ =

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22
23 24 25 26
27 28 29 30

.

Define a map φ : Mλ → Mλ◦ by φ : {t} 7→
∑

g∈G{t}{t}
◦g and let φ| denote its

restriction to Hλ.

Lemma 6.3.7 The map φ| is injective iff the standard map of (bc) is injective.

Proof: Let ν be the partition obtained by removing the tail from λ. Then define

the FG-isomorphism ϕ1 : Mλ → (MλT ⊗Mν)G by {t} 7→ ({t}A∪{t}H , {t}T ). Then

define the FG-isomorphism ϕ2 : (M (λT )′⊗Mν)G →Mλ◦ by ({t}A∪{t}H , ({t}T )′) 7→

{t}◦. The result now follows from Corollary 2.5.14. �

Let {t}∧ denote the tabloid obtained by moving the ith and (b + i)th largest

elements from the antidote of {t}◦ into the ith column of {t}◦. The antidote, head

and tail of {t}∧ are then the parts of {t}∧ that correspond to the antidote, head and

tail of {t}◦. The shape of {t}∧ is the composition λ∧ = [2a− 2b, a, (c+ 2)b].
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{t}∧ =

1 2 3 4 9 10 11 12
5 6 7 8 13 14 15 16 17 18
19 20 21 22
23 24 25 26
27 28 29 30

.

The twist group of λ∧ contains the twist groups of the antidote, head and tail

of λ∧. Define the map θλ∧T : Mλ∧ → Mλ∧ by {t}∧ 7→
∑

π∈S
(λ∧T )∗

{t}∧π. Then

define Hλ∧

λ∧T to be the image of θλ∧T . Now define a map ψ∼ : Mλ◦ → Mλ∧ by

{t} 7→
∑

g∈G{t}◦{t}
∧.

Lemma 6.3.8 The image of φ ◦ ψ∼ lies in Hλ∧

λ∧T .

Proof: The antidote of {t}◦ is equal to that of {t}. The ith column in the tail of

{t}∧ is obtained from that of {t}◦ by adding the ith and (b+ i)th smallest elements

of the antidote of {t}◦. Hence every row or column of {t}◦ is a subrow or column

of {t} or {t}∧. Hence the map φ ◦ ψ∼ is a scalar multiple of the map Mλ → Mλ∧

given by {t} 7→
∑

g∈G{t}{t}
∧g. Let xi,j denote the ith smallest element of the jth

column of the tail of {t}∧. For i = 1, 2 the subset {xi,j}j is a subset of the antidote

of {t}. When i > 2 the subset {xi,j}j is a subset of the (i − 2)th row of the tail of

{t}. The result now follows from Theorem 6.3.5. �

Lemma 6.3.9 The map ψ∼ is injective.

To prove Lemma 6.3.9 we produce a composable sequence as follows. For 0 ≤ i ≤ b

define the tabloid {t}i by letting {t}0 = {t}◦ and obtaining {t}i+1 from {t}i by

moving the i and (b + i)th smallest elements of the antidote of {t}i into the ith

column of {t}i. Then {t}∧ = {t}b.

{t}1 =

2 3 4 6 7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22
23 24 25 26
27 28 29 30
1
5

,
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{t}2 =

3 4 7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22
23 24 25 26
27 28 29 30
1 2
5 6

,

{t}3 =

4 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22
23 24 25 26
27 28 29 30
1 2 3
5 6 7

,

{t}4 =

9 10 11 12
13 14 15 16 17 18
19 20 21 22
23 24 25 26
27 28 29 30
1 2 3 4
5 6 7 8

= {t}∧.

Lemma 6.3.10 The sequence {t}i is composable.

Proof: The antidote of {t}i is obtained from that of {t}1 by removing the 1, 2, . . . (i−

1)th and 1 + b, 2 + b, . . . , (b+ i− 1)th smallest elements. For k 6= i the kth column

of the tail of {t}i is equal to that of {t}i−1. The ith column of the tail of {t}i+1 is

obtained from that of {t}i by adding the ith and (b+ i)th smallest elements of the

antidote of {t}i. Hence every row or column of {t}i is a subrow or subcolumn of

{t}1 or {t}i+1. Finally we have that the antidote of {t}i has length 2a− 2i and the

(i+ 1)st column of {t}i has length c. Hence we must show 2a− 2i ≥ c for 0 ≤ i ≤ b.
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To this end we have

2a− 2i ≥ 2a− 2b (47)

= 2b+ 2c− 2− 2b (48)

= 2c− 2

≥ c. (49)

Where (47) holds as i ≤ b. Second (48) follows from (47) as a = b + c− 1. Finally

(49) holds as c ≥ 2. Hence the sequence is composable. �

Proof of Lemma 6.3.9: By Lemma 6.3.10 we have that the sequence of tabloids

({t}i)bi=0 is composable. Hence by Theorem 6.3.4 the map ψ∼ is injective. �

Notice that the antidote of {t}∧ has 2(a− b) elements. Define a tabloid {t}⊥ to

be the tabloid obtained from {t}∧ in the following way. Create (a−b)-many columns

of size two from the antidote of {t}∧ by moving the ith and (a − b + i)th smallest

elements into the ith of these columns. Then move each element of the head of {t}∧

into a column of its own.

{t}⊥ =

1 2 3 4 9 10 13 14 15 16 17 18
5 6 7 8 11 12
19 20 21 22
23 24 25 26
27 28 29 30

.

Lemma 6.3.11 The shape of {t}⊥ is λ′.

Proof: Since λ = (2a, a, bc) we have λ′ = [(c + 2)b, 2a−b, 1a]. The shape of λ∧ is the

composition [2(a− b), a, (c+ 2)b]. The construction of {t}⊥ from {t}∧ then changes

changes the part 2(a− b) into (2a−b) and (a) into (1a). �

Define the map θ : Mλ∧ → Mλ′ by {t}∧ 7→
∑

g∈G{t}∧
{t}⊥g. We say that (2a−b),

(1a) and (c+ 2)b respectively are the antidote, head and tail of λ′.
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Lemma 6.3.12 The map θ injects (Hλ∧

λ∧T ) into Hλ′.

Proof: It is clear that the map θ is injective. The twist group of λ′ is the direct

product of the twist groups of the antidote, head and tail of {t}⊥. Let zi denote

the element in the ith column of the head of {t}⊥. Then the set {zi}i is the head of

{t}∧ and so by Theorem 6.3.5 we have that the twist group of the head of λ′ fixes

the image of θ. Next let yi,j denote the ith smallest element of the jth column of

the antidote of {t}⊥. The set {yi,j}i,j is the antidote of {t}∧ and so by Theorem

6.3.5 the twist group of the antidote of λ′ fixes the image of θ. Finally the tails of

{t}∧ and {t}⊥ are the same so let π be an element of the twist group of the tail of

λ′. As in the proof of Theorem 6.3.5 let xi,j denote the ith smallest element in the

jth column of the tail of {t}⊥. Then define aπ ∈ G by aπ : xi,j 7→ xi,(j)π. Then we

have {t}∧π = {t}∧aπ and {t}⊥π = {t}aπ. Then we have

{t}∧πθ = {t}aπθ

=
∑

g∈G{t}∧

{t}⊥aπg.

Hence θ maps the space fixed by the twist group of the tail of λ∧ to the space fixed

by the twist group of the tail of λ′. �

Proof of Theorem 6.3.6: Let ψ∗ denote the composition φ ◦ ψ∼ ◦ θ. Then ψ∗| =

φ| ◦ ψ∼ ◦ θ. By Lemma 6.3.8 the image of φ| ◦ ψ∼ lies in (Hλ∧

λ∧T ). Hence by Lemma

6.3.12 the image of ψ∗| lies in Hλ′ . By Lemma’s 6.3.7, 6.3.9 and 6.3.12 the maps

φ|, ψ∼ and θ| are injective. Hence ψ∗ is injective. �

6.3.3 The partitions (a, b+ c− 1, bc)

In this subsection we generalize slightly the results of Subsection 6.3.2. Thoughout

this section we fix µ = (a, b + c − 1, bc) with a = 2(b + c − 1) + r for a positive
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integer r and c ≥ 2. Let {s} be a µ-tabloid and let {t} denote the tabloid obtained

from {s} by moving the largest r elements from the antidote of {s} into the head

of {s}. Then define the map ε : Mλ → Mλ† by {s} 7→
∑

g∈G{s}{t}g. An immediate

consequence of Theorem 6.3.4 is the following:

Lemma 6.3.13 The map ε is injective.

�

Theorem 6.3.14 Let µ = (a, b + c − 1, bc) with a ≥ 2(b + c − 1) + r. Then the

standard map of µ is not injective but there exists an injective map Hµ → Hµ′.

Proof: As the hook A(2, 3) of µ is bad the standard map of µ is not injective. The

proof then mimics that of Theorem 6.3.6. Let ψ∗ denote the composition ε◦φ◦ψ∼◦θ.

Then by Lemma 6.3.13 the map ε is injective. Clearly ε maps Hµ into Hλ. The

proof that the map (φ ◦ ψ∼ ◦ θ)| is injective follows verbatim from that of Theorem

6.3.6. Now notice that the shape of {t}⊥ is µ′ instead of λ′. The result now follows.

�
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