
Fast Concurrent Object Localization and Recognition

Tom Yeh
MIT EECS, CSAIL
Cambridge, M.A., USA

tomyeh@mit.edu

John J. Lee
Google Inc.

New York, N.Y., USA
jjl@jjl.nu

Trevor Darrell
U.C. Berkeley EECS, ICSI
Berkeley, C.A., USA

trevor@eecs.berkeley.edu

Abstract

Object localization and recognition are important prob-
lems in computer vision. However, in many applications,
exhaustive search over all object models and image loca-
tions is computationally prohibitive. While several meth-
ods have been proposed to make either recognition or lo-
calization more efficient, few have dealt with both tasks si-
multaneously. This paper proposes an efficient method for
concurrent object localization and recognition based on a
data-dependent multi-class branch-and-bound formalism.
Existing bag-of-features recognition techniques which can
be expressed as weighted combinations of feature counts
can be readily adapted to our method. We present ex-
perimental results that demonstrate the merit of our algo-
rithm in terms of recognition accuracy, localization accu-
racy, and speed, compared to baseline approaches includ-
ing exhaustive search, implicit-shape model (ISM), and ef-
ficient subwindow search (ESS). Moreover, we develop two
extensions to consider non-rectangular bounding regions—
composite boxes and polygons—and demonstrate their abil-
ity to achieve higher recognition scores compared to tradi-
tional rectangular bounding boxes.

1. Introduction

In many object localization and recognition applications,
exhaustive search over all object models and/or image win-
dows can be too time-consuming to be practical. To im-
prove localization efficiency, it is desirable to reduce the
number of windows that need to be processed. Previous ap-
proaches have identified clusters of promising local features
and searched over windows around these clusters [4], and/or
used local features to vote for object locations and verify
the voted locations though back-projection [12]. Recently,
branch-and-bound approaches have been revisited in the
computer vision literature, and have been shown to greatly
speed up object detection [10] using contemporary object
category recognition representations, e.g., visual word his-
tograms. These methods all significantly improve localiza-

tion speed, but for problems involving many possible object
models, may rely on a linear scan of all the models, which
can be costly when the number of models is large.

To improve efficiency for large-scale recognition prob-
lems, tree-based data structures have been proposed to
index a large number of object models, such as the
measurement-decision tree technique [14], the vocabulary
tree technique [13], and the random-forests technique [2].
These data structures typically assume an image represen-
tation based on histograms of local features. Given a single
image feature, these data structures can quickly lookup a
set of relevant object models. After all image features are
considered, the most probable object model can often be de-
termined as the one that has been looked up most frequently.
Graph-based data structures have been proposed which or-
ganize 1-vs-1 SVM classifiers into a directed acyclic graph
(DAG-SVM) so that only a small subset of SVMs need to be
evaluated [15]. These methods improve recognition speed
significantly, but assume localization is either already given
or irrelevant.

There have been many efforts in the literature on concur-
rent recognition and segmentation; for instance, [18] uses
graph partitioning to recognize patches containing body
parts, find the best configuration of these detected parts
for a given object model, and return a segmentation mask
based on this configuration, and [17], which learns gen-
erative probabilistic models for recognition and segmenta-
tion capable of dealing with significant with-in class vari-
ations. These methods assume the object has been local-
ized somewhere in the middle of an image. The topic con-
current detection and segmentation has be explored by [9],
which proposes a probabilistic method called OBJCUT that
combines bottom-up and top-down cues to detect and seg-
ment a single instance of a given object category, such as
cows and horses, by [16], which applies OBJCUT to de-
tect and segment multiple objects (i.e., faces), and by [6],
which searchers over affine invariant regions in images for
matches consistent with a given object model and uses an
efficient algorithm for merging matched regions into seg-
mentation masks. However, these methods either assume

280978-1-4244-3991-1/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on March 04,2010 at 14:41:08 EST from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/278307703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the class model is known or require repeated applications
over all class models.

In this paper, we deal with the problem of concurrent ob-
ject localization and recognition. In Section 2.1 we describe
a multi-class formalism of branch-and-bound to simulta-
neously find optimal bounding regions and search object
models. We introduce a data-dependent region hypothesis
sampling scheme to more efficiently select promising candi-
date regions. Existing bag-of-features recognition schemes
such as the Vocabulary Tree [13] and the Spatial Pyramid
Match Kernel [11], which can be expressed as weighted
combinations of feature counts, can be readily adapted to
our method. Additionally, in Section 2.2 we describe meth-
ods to search for multiple objects and to incorporate geo-
metric verification. In Section 2.3 we present experimental
results to demonstrate the relative merit of our algorithm
in terms of recognition accuracy, localization accuracy, and
speed, in comparison with six baseline approaches such as
exhaustive search, the implicit shape model (ISM) [12], and
the efficient subwindow search (ESS) [10]. Finally, we ex-
tend our method to non-rectangular bounding regions in two
ways—composite boxes (Section 3.1) and polygons (Sec-
tion 3.2)—and present examples demonstrating their abil-
ity to find higher recognition scores compared to traditional
bounding boxes for a variety of object types.

2. Concurrent localization and recognition

In this section we present an algorithm for fast concur-
rent localization and recognition (CLR). GivenN local fea-
tures extracted from an input image and a set ofM possible
object models, the objective of concurrent localization and
recognition is to simultaneously find a bounding region r in
the image and an object model i that jointly maximizes a
prediction score fi for the i-th object model (recognition)
based on only the features inside r (localization). This pre-
diction score can be either the output of an SVM classifier
(e.g., Pyramid Match Kernel [8]) for classification problems
or the output of a tree-based index (e.g., Vocabulary Tree
[13]) for instance recognition problems. In both types of
problems, the value of f can be derived by accumulating
the partial scores contributed by individual input features.
Thus, we can compute f incrementally as features are added
to or subtracted from a candidate bounding region during
the optimization process, which is the key to the efficiency
of our algorithm.

Formally, we express the input (N local features) as a
set of N triplets T : {(xj , yj , �vj)|1 ≤ j ≤ N}, where
(xj , yj) marks the location of each feature and �vj is anM -
dimensional vector whose i-th element �v(i) stores the par-
tial score this feature would contribute to the total prediction
score fi of the i-th object model. Then, the optimization ob-

jective can be given as follows:

arg max
r,i

∑

j∈T (r)

�vj(i) (1)

where T (r) denotes the indices of the subset of triplets in T

spatially bounded by the region r.
To compute �vj for object instance retrieval problems, let

us consider the typical process of evaluating a tree-based in-
dex such as a Vocabulary Tree [13]. Given an input feature
fj , we can quickly look up a visual word and retrieve a set
of object images indexed by this word. The object model as-
sociated with each object image receives some partial score
based on the corresponding word counts. After all the fea-
tures are considered, we tally all the partial scores received
by each object model and determine the most probable ob-
ject model. Thus, to facilitate this process in the formalism
above, let W (j) be the set of id’s of the object images in-
dexed by the word looked up by fj . Let k be the id of an
image, lk its object model label, and ck the word count.
Then, the i-th element of �vj can be calculated as

�vj(i) =
∑

k∈W (j)

h(lk = i)ck (2)

where h(x) evaluates to 1 if x is true and 0 if otherwise.
Similarly, to compute �vj for object classification prob-

lems, let us consider a typical classification scheme based
pm linear SVMs such as the Pyramid Match Kernel [8].
Suppose an SVM classifier has been previously trained for
the object class i. To evaluate the margin of this SVM given
an input image, we need to first compare this image to each
training image that is the support vector of this SVM and
obtain a set of similarity scores. Then we compute the sum
of these scores weighted by support vector weights and add
the corresponding SVM offset βi. Since an image similar-
ity score is essentially the aggregate of the partial similar-
ity scores contributed by individual image features, we can
directly express the margin as a weighted sum of these par-
tial similarity scores. Thus, to apply the desired formalism,
let �αk be a vector containing the support vector weights of
the k-th training image, where the i-th element denotes its
weight in the i-th SVM. Then, the partial score contributed
by a local image feature fj to the overall score (margin) of
the i-th SVM can be calculated as

�vj(i) =
∑

k∈W (j)

h(lk = i)ck �αk(i). (3)

2.1. Multi-class data-dependent branch-and-bound

To solve the problem stated above, we develop a multi-
class, data-dependent branch-and-bound method, which is
also illustrated in Figure 1 and Algorithm 1. Branch-and-
bound is a well-known search technique that is capable of

281

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on March 04,2010 at 14:41:08 EST from IEEE Xplore. Restrictions apply.

C

X+X-

Y-

Y+

b+ b-

Figure 1. Searching for the best bounding box and object la-
bel in a concurrent localization and recognition task (Section
2.1). X−,X+, Y −, and Y +, are the four candidate sets that spec-
ify a set of candidate bounding boxes (any rectangle that can be
drawn within the highlighted regions). b+ and b− are the largest
and smallest candidate bounding boxes respectively definable by
these four candidate sets. C is the candidate set specifying the
candidate object models. In this example, only a subset of models
have remained (colored book titles). To branch, we split Y − into
halves because it is the largest set (data-dependent sampling).

finding the global optimal solution. In computer vision,
this technique has been applied in geometric matching [3],
segmentation [7], localization [10], structural SVM learn-
ing [1], and in this paper is applied to concurrent local-
ization and recognition. Two components critical to the
branch-and-bound technique are the mechanism for branch-
ing (dividing the search space into disjoint subspaces), and
the criterions for bounding (estimating the upper and lower
bounds of the optimal value that can be discovered within
each subspace).

We initially consider bounding regions which are tradi-
tional rectangles similar to [10], although later in Section
3 we introduce two extensions that consider more flexible,
non-rectangular regions. Also, rather than uniformly sam-
pled image coordinates, we define the space of bounding re-
gion hypotheses in a data-dependent manner, using the ac-
tual locations of feature points to determine the four edges
of a bounding box. Thus, our search space consists of five
variables: c, x−, x+, y−, y+, where c is the object model la-
bel, x− and x+ are the two extreme points of the box along
the horizontal direction, and y− and y+ are the extreme
points along the vertical direction. The time complexity of
exhaustive search would be O(mn4).

Since the search space consists of five variables: x−, x+,
y−, y+ , and c, we define a subspace S by a set of five candi-
date sets X−, X+, Y −, Y +, and C corresponding to each
variable. A candidate set specifies a set of feature points

Algorithm 1 Localize and recognize an object in an input
image I concurrently (Section 2.1).
function LOCALIZEANDRECOGNIZE(I)

X−

0 , X+
0 , Y −

0 , Y +
0 ← all points in I

Sort X’s and Y ’s along x and y axis
C0 ← all object model labels
S0 ← {X

−

0 , X+
0 , Y −

0 , Y +
0 , C0}

P ← empty priority queue
Insert S0 into P

while S ← POP(P) do
if ∀V ∈ S, |V | = 1 then
return S

end if
(S1,S2)← SPLIT(S)
Insert S1 to P with key fc(S1)
Insert S2 to P with key fc(S2)

end while
end function
function SPLIT(S : {X−, X+, Y −, Y +, C})
Let V be the largest candidate set
if V = C then
Let Sc denote {X−, X+, Y −, Y +, c} w
wSort all c ∈ V by pc(Sc)
V1 ← top half of all Cis
V2 ← bottom half of all Cis

else
V1 ← first half of V
V2 ← second half of V

end if
S1 ← copy of S with V1 removed
S2 ← copy of S with V2 removed
return (S1,S2)

end function

or labels a variable can take on. We initialize X’s and Y ’s
to be the set of all feature points (not the set of all image
coordinates as in [10]); C is the set of all possible labels.
At each iteration, the branching operation picks a candidate
set and splits it into halves, resulting in two new subspaces.
Then, the bounding operation estimates the bounds of the
new subspaces. These bounds are used to prioritize the sub-
spaces stored in a queue. The subspace with the highest
upper bound will be moved to the top of the queue and will
be processed at the next iteration. When it is no longer pos-
sible to split the top subspace (every candidate set has only
one member), a solution is found. The global optimality
of this solution is guaranteed because all the subspaces re-
maining in the queue must have upper bounds below that of
this solution.
Here we give the details of the branching operation. To

split a subspace S into two smaller subspaces S1 and S2, we
choose the largest candidate set and split it into two equal-

282

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on March 04,2010 at 14:41:08 EST from IEEE Xplore. Restrictions apply.

size subsets. For X’s, we split the set horizontally, where
points in one set are strictly to the left of the points in an-
other set. For Y ’s, we split the set vertically, where points
in one set are strictly above the points in another set. For C,
we split it according to the upper-bound estimates, where
object models in one set possess higher upper-bounds esti-
mates than do those in the other set. After a candidate set
is split into halves, V1 and V2, we first create two copies
of S. Then, from each copy we remove the members in
each half to obtain Si : {X−

i , X
+
i , Y

−

i , Y
+
i , Ci}, i = 1, 2.

For instance, if Y − is split, in order to obtain S1, we re-
move points in V1 not only from Y −

1 but also from X1’s
as well. A benefit of our data-dependent branching scheme
when compared to a uniform sampling of the image coordi-
nates is that fewer degenerate or redundant hypotheses will
be considered. This efficiency advantage will be empiri-
cally demonstrated in Section 2.3.
Next we provide the details of the bounding operation.

First we need to determine the largest and smallest bound-
ing region definable by a given subspace S and its the can-
didate sets X−, X+, Y −, Y + , and C. The largest rect-
angular box b+ discoverable must be the one defined by
the left-most point in X−, the right-most point in X+, the
bottom-most point in Y −, and the top-most point in Y +.
Similarly, the smallest box b− discoverable must be the one
defined by the right-most point inX−, the left-most point in
X+, the top-most point in Y −, and the bottom-most point
in Y +. For each object model label c ∈ C, our goal is to
find a box between b+ and b− that includes as many points
with positive values (�vj(c) > 0) and exclude as many points
with negative values (�vj(c) < 0) as possible at dimension
c. Also, we know that this box cannot contain more positive
values than does b+ and cannot contain fewer negative val-
ues than does b−. Thus, we can calculate the upper-bound
pc of the subspace S for the object model c as follows:

pc(S) =
∑

j∈T (b+)

h+(�vj(c)) +
∑

j∈T (b−)

h−(�vj(c)) (4)

where h+(x) and h−(x) are functions that evaluate to x if
x is positive or negative respectively, and 0 if otherwise.
Similarly, the lower-bound is attained by including as many
negative values and excluding as many positive values as
possible, Thus, the object-specific lower-bound qc can be
obtained by

qc(S) =
∑

j∈T (b−)

h+(�vj(c)) +
∑

j∈T (b+)

h−(�vj(c)). (5)

Finally, we compute the overall upper-bound p(S) and
lower-bound q(S) for the subspace S by taking the maxi-
mum and minimum of the individual pc’s and qc’s for the
object candidates in C respectively. The lower bound mea-
surements are useful for pruning the search space, discard-
ing those subspaces whose upper-bounds are lower than the

Figure 2. Concurrent localization and recognition of multi-
ple objects with geometric post-verification (Section 2.2). Our
method quickly find the best bounding box and label. Then, only
the geometric model corresponding to the label is evaluated to pre-
dict the object center (black circle). Here, all centers are inside the
bounding boxes, thus they are spatially consistent.

lower-bounds of known subspaces. Note that for SVM clas-
sification problems, we need to adjust the bound estimates
by the offset values of respective SVMs as follows:

p′c = pc + βc , q′c = qc + βc . (6)

2.2. Multi-instance CLR and geometric verification

To deal with multi-instance localization and recognition,
we optionally let our search algorithm continue to run even
after it has discovered an optimal solution. To avoid redun-
dant detections, we remove features used in previous de-
tections. We also add an optional post-verification step to
check the spatial consistency between features enclosed by
an optimal bounding region, by applying the implicit shape
model (ISM) [12] of the identified object using these fea-
tures. If these features are consistent, the hypothesis made
by our algorithm and ISM should be consistent; we would
expect the localization predicted by ISM would be within
the bounding box found by our method. If not, we can re-
ject the current hypothesis and try the second best bound-
ing box, until it passes the ISM verification step. Figure 2
shows an example of concurrent multi-instance localization
and recognition with ISM post-verification.

2.3. Experiments

To properly evaluate the effectiveness and efficiency of
our method in solving concurrent localization and recogni-
tion problems, we need a suitable dataset not only with a
large number of object models (so exhaustive search over
all object models would be too costly) but also with signifi-
cant cluttered background (so localization matters). Thus,
we designed a typical large-scale concurrent localization

283

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on March 04,2010 at 14:41:08 EST from IEEE Xplore. Restrictions apply.

Figure 3. Examples of the training images used in our experiment (Section 2.3).

Correct Examples

Incorrect Examples

Figure 4. Examples of concurrent localization and recognition results in our experiment (Section 2.3). The top two rows are correct
examples where our algorithm not only finds an optimal bounding box covering most of the target object but also identifies the correct label
(name of the book). The bottom row are incorrect examples. The first three are cases when recognition fail; our algorithm mistakenly labels
background regions as some books. The last example is a typical case when localization fails (the object center is outside the bounding
box) despite correct recognition. This mistake is due to the inability to extract enough salient features that cover the entire object, but can
be overcome by geometric post-verification to infer the correct object center.

and recognition task—recognizing books situated in clut-
tered environments, and constructed a dataset accordingly.
Our training set was images of 120 books downloaded from
an online retailer. Figure 3 shows a small sample of the
training images. For the test set, we placed physical copies
of these books in varying orientations at varying scales in
cluttered environments and took pictures of them using a
camera phone. Figure 4 shows some examples of the test
images with optimal bounding boxes and labels (indicated
by different colors) discovered by our algorithm.

Based on this dataset, we conducted an experiment to
evaluate the effectiveness and efficiency of our concurrent
localization and recognition (CLR) method in relation to
six baseline methods on a task with 120 books in the in-
dex and 130 test images. These six baseline methods were:

(1) simple bag-of-feature voting (BoF), which performed no
localization and used all the image features to vote on ob-
ject models, (2) the implicit shape model (ISM) [12], which
provided localization by letting image features to vote on
scales and locations using class-specific codebooks, (3) an
improved, robust-to-rotation version of ISM (ISM+), which
augmented the training set with rotated versions of each
training image in 45 degree increments, (4) efficient sub-
window search (ESS) [10], which also uses branch-and-
bound to find optimal bounding boxes but does not split
the search space in a data-dependent manner, (5) ESS with
data-dependent sampling (ESS+), and (6) a reduced version
of our method without data-dependent sampling (CLR−),
which aimed to demonstrate the benefit of this sampling
technique. Note that the first five alternatives all require

284

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on March 04,2010 at 14:41:08 EST from IEEE Xplore. Restrictions apply.

repeated applications over all the object models in order to
find the best object label.
Table 1 reports the result of this comparative experiment

along three criteria: recognition accuracy, localization accu-
racy, and running time. All the methods involved were im-
plemented in C++, optimized to the best of our ability, and
executed on a machine with a 3.2GHz CPU. BoF achieved
the fastest performance at 0.12 sec. per image; however, it
had the lowest recognition accuracy at 59.2% and provided
no localization. The original ISM method achieved the best
recognition accuracy, but it only managed to correctly local-
ize the book in 39.2% of the test images, mainly when the
book in a test image happened to be in an orientation close
to that of the training image of the same book. By using 8
rotated images of books as training images, ISM+ improved
the localization accuracy to 82.3%; yet, it took close to 10
minutes to process each test image because of the need to
check every one of the 120 codebooks. The running time of
120 applications of ESS also took about 10 minutes. Using
data-dependent sampling (ESS+), this time was reduced to
about 3 minutes. In comparison, our method was able to
provide localization and recognition with an accuracy com-
parable to that of the two variants of ISM, while recording a
computation time of a little more than a second per test im-
age, at least two-orders of magnitude faster than ISM+ and
ESS. Moreover, the benefit of data-dependent sampling has
been verified; when this feature was turned off (i.e., CLR−),
the running time almost doubled (1.14 versus 2.27 sec.).
We also performed an experiment with the PASCAL Vi-

sual Object Classes (VOC) dataset [5] with 20 categories,
using the same setup as [10] to compute bag-of-word rep-
resentations over densely sampled features and train linear
SVMs. We measured the computation time of our algo-
rithm versus that of ESS in finding the optimal bounding
box and the best class label in a test image. With the same
empirical setup, our algorithm was to reproduce the result
as [10] within margin of errors, but much faster Averag-
ing over 1000 randomly sampled test images, our algorithm
took 2.58 seconds (std = 1.07), whereas 20 runs of ESS
over all classes took a total of 52.84 seconds (std = 11.51).
The speedup is attributed only to the multiclass branch-
and-bound scheme but not to the data-dependent sampling
scheme since the features were densely sampled.

3. Beyond rectangles

While rectangular bounding boxes have been widely
used for localization because of computational simplicity,
sometimes they may be too coarse. For example, when
an object is long and positioned at an odd angle or has
a concave shape, rectangular bounding boxes may inad-
vertently include excessive background features due to its
rigidity and result in low recognition scores. In this section,
we present two alternatives to rectangular bonding boxes—

Y-

Y+X1
- X1

+

X2
- X2

+

b+

b-

Figure 5. Finding the best composite box (Section 3.1).

composite boxes and polygons—that can be employed with
the branch-and-bound optimization technique above.

3.1. Composite bounding boxes

The first alternative to a bounding box is a composite
bounding box. A composite bounding box is comprised of
a series of k bounding boxes in a vertical stack and can of-
fer more flexibility than a rectangular bounding box. Fig-
ure 5 illustrates a typical state of branch-and-bound search
with k = 2. Instead of using two extreme points to mark
the left and right sides of a single bounding box, we use
k pairs of left-right feature points to define the two sides
of each of the k bounding boxes. Namely, we split X−

andX+ into {X−

1 . . . X−

k } and {X
+
1 . . . X+

k } respectively.
Thus, together with Y −, Y +, C, the total number of candi-
date sets in the new joint optimization problem is 2k + 3.
Moreover, k can be determined automatically by incremen-
tally increasing it by one until the score improves no more.
We created six shape classes and randomly generated

foreground, background, and occlusion features. The
recognition score f is the sum of the features within the
bounding area. Figure 6 shows that composite bounding
boxes achieve higher scores, since their geometric flexibil-
ity allows them to include many foreground features with-
out inadvertently including many background features. In
contrast, single bounding boxes often can not avoid the in-
clusion of background features due to their rigidity.

3.2. Bounding polygons

The second alternative to a rectangular bounding box is
a bounding polygon. As illustrated in Figure 7, we can
define a polygon by a set of straight lines each of which
intersect the image boundaries at two locations u and v.
These lines may intersect between themselves somewhere

285

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on March 04,2010 at 14:41:08 EST from IEEE Xplore. Restrictions apply.

Method BOF ISM ISM+ ESS ESS+ CLR− CLR
Classification accuracy 59.2% 86.1% 83.8% 85.3% 85.3% 85.3% 85.3%
Localization accuracy N/A 39.2% 82.3% 80.0% 80.0% 80.0% 80.0%
Time per image (sec) 0.12 61.32 524.28 606.65 182.53 2.27 1.14

Table 1. Empirical comparisons of our method to six alternatives (Section 2.3).

slide cross diamond boomerang crane star

20 40 60 80
10

20

30

40

50

60

70

80

90

k= 1, f = 10.181

20 40 60 80
10

20

30

40

50

60

70

80

90

k= 1, f = 17.961

20 40 60 80
0

10

20

30

40

50

60

70

80

90

100

k= 1, f = 18.965

20 40 60 80

10

20

30

40

50

60

70

80

90

k= 1, f = 14.813

20 40 60 80

10

20

30

40

50

60

70

80

90

k= 1, f = 40.225

20 40 60 80

10

20

30

40

50

60

70

80

90

k= 1, f = 18.486

20 40 60 80
10

20

30

40

50

60

70

80

90

k= 6, f = 23.609

20 40 60 80
10

20

30

40

50

60

70

80

90

k= 3, f = 22.941

20 40 60 80
0

10

20

30

40

50

60

70

80

90

100

k= 6, f = 21.828

20 40 60 80

10

20

30

40

50

60

70

80

90

k= 6, f = 28.502

20 40 60 80

10

20

30

40

50

60

70

80

90

k= 6, f = 64.522

20 40 60 80

10

20

30

40

50

60

70

80

90

k= 5, f = 23.185

Figure 6. Single (top) versus composite (bottom) bounding boxes (Section 3.1). Green and red markers are positive and negative features,
which are solid if bounded. Single bounding boxes achieve lower recognition scores f because they can not include all the positive features
(solid green markers) without inadvertently including many negative features (solid red markers).

inside the image and these intersections form the vertices
of a bounding polygon. We can parameterize u or v by t

between 0 and 1 in terms of its distance from the lower-left
image corner along the image boundaries clockwise. We
set t to be 0, 0.25, 0.5, 0.75 for the lower-left, upper-left,
upper-right, and lower-left corners respectively, and inter-
polate t for other locations along the boundaries between
these corners. Let Ui = [u−

i , u+
i] and Vi = [v−

i , v+
i] de-

note the intervals in which we will search for the best ui

and vi that defines the i-th line. Also, we order all the
lines clockwise. This way, the smallest bounding region
b− will always be the polygon defined by the lines pairs
u−’s and v+’s, whereas the largest bounding region b+ will
be defined by the lines based on pairs of u+’s and v−’s.
This formulation not only allows us to define both convex
and concave polygons but also lends itself to branch-and-
bound search. To apply branch-and-bound, we initialize
U ’s and V ’s to [0, 1]. For a k-sided polygon, there are 2k

variables to optimize. At each branching step, we split the
largest interval into two halves with equal number of points.
The bounds can be computed in the same manner as before
based on the smallest and largest bonding polygon regions
b+ and b−. In theory it is possible to search for polygons
with any number of edges using our method, but in practice
it is advisable to keep k small (i.e., k ≤ 5) as the computa-
tional cost can be high if k is too large.
Figure 8 shows examples of objects with certain geome-

tries where bounding polygons found higher localization
and recognition scores than did rectangular bounding boxes.

b+ b-U3

U2

U1V1
V3

V1

Figure 7. Finding the best bounding polygon (Section 3.2).

As can be seen, our method can find the optimal triangles,
quadrilaterals, and pentagons, both convex and concave.

4. Conclusion and Future Work

This paper described a fast algorithm for concurrent ob-
ject localization and recognition based on a data-dependent
multi-class branch-and-bound formalism. We empirically
demonstrated the superior performance of our method in
terms of accuracy and speed compared to six baselines. In

286

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on March 04,2010 at 14:41:08 EST from IEEE Xplore. Restrictions apply.

Butterfly Remote Seahorse Boomerang Toy

score = 7.56
score = 23.00 score = 13.63

score = 2.92 score = 11.68

score = 10.42
score = 52.00 score = 19.37

score = 8.90 score = 21.07

Figure 8. Bounding boxes (top) versus bounding polygons (bottom) (Section 3.2).

addition, we introduced flexible bounding geometries based
on composite bounding boxes or polygons as alternatives
to rectangular bounding boxes. As future work, we will
perform quantitative analysis of these alternatives on larger
datasets, develop methods to distinguish unique instances
of the same object in close proximity, and explore the pos-
sibility to learn object-specific bounding geometries.

Acknowledgement
Funding for this research was provided in part by

DARPA and by NSF IIS-0704479.

References

[1] M. B. Blaschko and C. H. Lampert. Learning to local-
ize objects with structured output regression. In Proc.
of ECCV, pages 2–15, 2008.

[2] A. Bosch, A. Zisserman, and X. Munoz. Image clas-
sification using random forests and ferns. In Proc. of
ICCV, pages 1–8, 2007.

[3] T. M. Breuel. A comparison of search strategies for
geometric branch and bound algorithms. In Proc. of
ECCV, pages 837–850, 2002.

[4] O. Chum and A. Zisserman. An exemplar model for
learning object classes. In Proc. of CVPR, 2007.

[5] M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman. The PASCAL Visual Ob-
ject Classes Challenge 2007 (VOC2007) Results.

[6] V. Ferrari, T. Tuytelaars, and L. Van Gool. Simulta-
neous object recognition and segmentation from sin-
gle or multiple model views. International Journal of
Computer Vision, 67, 2006.

[7] Y. Gat. A branch-and-bound technique for nano-
structure image segmentation. In Proc. of CVPR
Workshop, 2003.

[8] K. Grauman and T. Darrell. The pyramid match ker-
nel: Discriminative classification with sets of image
features. In ICCV, 2005.

[9] P. M. Kumar, P. H. S. Torr, and A. Zisserman. OBJ
CUT. In Proc. of CVPR, pages 18–25, 2005.

[10] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Be-
yond sliding windows: object localization by efficient
subwindow search. In Proc. of CVPR, 2008.

[11] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags
of features: Spatial pyramid matching for recognizing
natural scene categories. In Proc. of CVPR, volume 2,
pages 2169–2178, 2006.

[12] B. Leibe, A. Leonardis, and B. Schiele. Robust ob-
ject detection with interleaved categorization and seg-
mentation. International Journal of Computer Vision,
77(1):259–289, May 2008.

[13] D. Nister and H. Stewenius. Scalable recognition with
a vocabulary tree. In Proc. of CVPR, volume 2, pages
2161–2168, 2006.

[14] S. Obdrzálek and J. Matas. Sub-linear indexing for
large scale object recognition. In Proc. of BMVC,
2005.

[15] J. Platt, N. Cristianini, and J. Shawe-Taylor. Large
margin dags for multiclass classification. In Proc. of
NIPS, volume 12, 2000.

[16] J. Rihan, P. Kohli, and P. Torr. Objcut for face detec-
tion. In Computer Vision, Graphics and Image Pro-
cessing, pages 576–584, 2006.

[17] J. Winn and N. Jojic. Locus: learning object classes
with unsupervised segmentation. In Proc. of ICCV,
volume 1, pages 756–763, 2005.

[18] S. Yu, R. Gross, and J. Shi. Concurrent object recog-
nition and segmentation with graph partitioning. In
Proc. of NIPS, 2002.

287

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on March 04,2010 at 14:41:08 EST from IEEE Xplore. Restrictions apply.

