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In Fig. 1, 171#
S was calculated withλ = ln(1 +17εR)/

ln(1 +18εR) = 0.5154 instead ofλ = γR = 0.5179, as in-
tended. A correct version of Fig. 1 is shown below. The sen-
tence “In particular,171#

S is only equal to171#
P for f = 1.”

does not apply for this choice ofλ value.
On p. 1801, the steady-state18δS value of oxygen pro-

duced byAcropora was stated as−9.66 ‰, but should be
−9.16 ‰. The stated171S and171P values of 224 ppm and
175 ppm, respectively, are correct.

The kinetic isotope fractionation during gas exchange
was assumed to be18εI = −2.8 ‰ for O2 invasion.
However, this value actually applies to kinetic isotope
fractionation during O2 evasion (18εE) as per Eq. (8)
in Knox et al. (1992). The same error appears in
Luz et al. (2002). Consequently,18εE = −2.8 ‰ and
18εI = (1 +18εE) (1 +18δsat) −1= −2.1 ‰ for the base case.
17εE and17εE are calculated as before. Updated values are
show in italics in Tables 2 and 3 below. This correction
changes the calculatedg values by 1.4 ‰ or less and is there-
fore not noticeable in the updated versions of Figs. 2 and 3
below.

In Table 2 of Juranek and Quay (2010) the17O/16O
fractionation factor for respiration is listed as 0.9896,
which is equivalent to17εR = −10.4 ‰. I previously as-
sumed that this was calculated as17εR = 0.51818εR = 0.518
(−20 ‰)= −10.370 ‰. However, it was actually calculated
as17εR = (1 +18εR)0.518

−1= −10.410 ‰ (L. Juranek, per-
sonal communication, 2011). Both values are indistinguish-
able from−10.4 ‰ if rounded to 0.1 ‰. The18O/16O frac-
tionation factor listed as 0.979 in Table 2 of Juranek and
Quay (2010) is incorrect because their calculations actually
used a value of 0.980, which is identical to the value of
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18εR = −20 ‰ I attributed to the paper. The corrected17εR
value and the resultingγ R value of 0.5205 are show in italics
in Table 3 below. The resulting changes ing are reflected by
the updated version of Fig. 3 below. The second half of the
sentence “A better agreement with the base case is found for
the iterative calculations “Hendricks et al. (2004)”, “Reuer
et al. (2007)” and “Juranek and Quay (2010)”, with the lat-
ter calculation method giving the best agreement, mainly be-
cause the chosenγ R andλ values of 0.518 are closest to the
base case value 0.5179” on p. 1807 no longer applies.

None of these changes affect the conclusions of the paper.

Acknowledgements.I would like to thank Roberta Hamme for
pointing out the errors associated with the18δS value ofAcropora
and the kinetic isotope fractionation during gas exchange.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


2562 J. Kaiser: Corrigendum

Table 2. Input parameters used as base case in the calculation ofg (Sect. 6.1) and their uncertainties (Sect. 5). Allδ values are relative to
Air-O2. The171 values are defined as171 =

17δ − 0.517918δ (cf. Eq. 8) and expressed relative to Air-O2. However, they are not needed
for the calculation according to Eq. (48) and are listed for reference only. All values have been adjusted to the same decimal for clarity,
irrespective of their actual uncertainty.

Quantity Symbol Value Unit Uncertainty Reference

triple isotope fractionation ratio, respirationa γ R 0.5179 1 0.0006 Luz and Barkan (2005)
18O/16O fractionation, respiration 18εR −20.000 ‰ 4 Kiddon et al. (1993)
17O/16O fractionation, respiration 17εR −10.358 ‰ calculated from18εR andγ R

isotope delta18O/16O, photosynthetic O2
18δP −22.835 ‰ 0.50 see Sect. 5.2

isotope delta17O/16O, photosynthetic O2
17δP −11.646 ‰ calculated from18δP and171P

17O excess,17O/16O, photosynthetic O2
171P 180 ppm 15 Luz and Barkan (2000), recalculated

isotope delta18O/16O, O2 at saturation 18δsat 0.707 ‰ 0.017 Benson and Krause (1984)
isotope delta17O/16O, O2 at saturation 17δsat 0.382 ‰ calculated from18δsatand171sat
17O excess, O2 at saturation 171sat 16 ppm 2 Luz and Barkan (2009)
triple isotope fractionation coefficient, O2 invasionb θ 0.516 1 0.015 estimated
18O/16O fractionation, O2 invasion 18εI −2.095 ‰ calculated from18εE and18δsat
17O/16O fractionation, O2 invasion 17εI −1.082 ‰ calculated from18εI andθ
18O/16O fractionation, O2 evasion 18εE −2.800 ‰ 0.2 Knox et al. (1992)
17O/16O fractionation, O2 evasion 17εE −1.463 ‰ calculated from17εI and17δsat

a γ R =
17εR/18εR

b θ = ln(1+
17εI )/ln(1 +18εI )
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Table 3. Comparison between different calculation methods forg. A dash (–) or values in brackets mean that the corresponding parameters
are not used in the calculation. The “used”17O excess values are used by the different calculation methods. The “implied”17O excess values
are calculated using the definitions adopted by the different calculation methods, based on the listed17δP, 18δP, 17δsat and18δsat values.
Where the calculation method does not require theseδ values, the values for the “best case” in Table 2 have been used for the “implied”17O
excess.

1 2 3 4 5 6 7 8

Parameter Unit Luz and Juranek Hendricks Reuer Juranek base case, approx.,
Barkan and Quay Sarma et al. et al. et al. and Quay this paper this paper
(2000) (2005) (2005) (2004) (2007) (2010)

g calculation Eq. (1) Eq. (1) Eq. (1) iterative iterative iterative Eq. (48) Eq. (1)
Definition 171 (Eq. 4) 171# (Eq. 7) 171# (Eq. 7) 171# (Eq. 7) 171# (Eq. 7) 171# (Eq. 7) 171 (Eq. 4) 171 (Eq. 4)
λ 1 – 0.516 0.518 0.516 0.516 0.518 – –
κ 1 0.521 – – – – – 0.5179 0.5179

γ R 1 – – – 0.5183 0.5185 0.5205 0.5179 –
18εR ‰ – – – –18.000 –20.000 –20.000 –20.000 –
17εR ‰ – – – −9.329 −10.370 −10.410 −10.358 –

18δP ‰ (−22.835) (−22.835) (−22.835) −22.960 −22.960 −23.247 −22.835 (−22.835)
17δP ‰ (−11.646) (−11.646) (−11.646) −11.668 −11.668 −11.864 −11.646 (−11.646)
18εI ‰ – – – 0.707 0.707 0.707 −2.095 –
17εI ‰ – – – 0.381 0.373 0.382 −1.082 –
θ 1 – – – 0.539 0.527 0.541 0.516 –
18δsat ‰ (0.707) (0.707) (0.707) 0.707 0.707 0.707 0.707 (0.707)
17δsat ‰ (0.382) (0.382) (0.382) 0.381 0.373 0.382 0.382 (0.382)

171P, used ppm 249 – – – – – 180 180
171sat, used ppm 16 – – – – – 16 16
171#

P, used ppm – 249 249 249 249 249 – –
171#

sat, used ppm – 16 16 16 8 16 – –

171P, implied ppm 251 137 182 179 179 178 180 180
171sat, implied ppm 14 17 16 16 8 16 16 16
171#

P, implied ppm 321 205 251 249 249 249 249 249
171#

sat, implied ppm 14 17 16 16 8 16 16 16
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Figure 1: Effect of the net to gross production ratio f on the steady-state 17O excess defined 

by Eq. (7), i.e. 17Δ#, and Eq. (4) i.e. 17Δ, with λ = κ = γR = 17εR / 18εR = 0.5179, 18εR = –20 ‰, 
18δP = –23.323 ‰ and 17δP = –11.902 ‰. The steady-state δ values used to calculate the 

steady-state 17O excess have been calculated according to Eq. (31). 
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Fig. 1. Effect of the net to gross production ratiof on the steady-state17O excess defined by Eq. (7), i.e.171#, and Eq. (4) i.e.171, with
λ = κ = γ R =

17εR/18εR = 0.5179,18εR = −20 ‰, 18δP= −23.323 ‰ and17δP= −11.902 ‰. The steady-stateδ values used to calculate
the steady-state17O excess have been calculated according to Eq. (31).
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Figure 2: Relative deviation of g from the base case (see Table 2) for different parameters in 

Eq. (7). Panel (a) corresponds to g = 0.4 and a range of f from –1.0 to +1.0 (negative values 

correspond to net heterotrophy, positive value to net autotrophy). Panel (b) corresponds to f = 

0.1 and range of g from 0.01 to 10 (logarithmic axis). 
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Fig. 2. Relative deviation ofg from the base case (see Table 2) for different parameters in Eq. (7). Panel(a) corresponds tog = 0.4 and a
range off from −1.0 to +1.0 (negative values correspond to net heterotrophy, positive value to net autotrophy). Panel(b) corresponds to
f = 0.1 and range ofg from 0.01 to 10 (logarithmic axis).
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Fig. 3. Relative deviation ofg for different calculation methods (Table 3). Panel(a) corresponds tog = 0.4 and a range off from −1.0 to
+1.0 (negative values correspond to net heterotrophy, positive value to net autotrophy). Panel(b) corresponds tof = 0.1 and range ofg from
0.01 to 10 (logarithmic axis). Black curves correspond to calculation methods based on Eq. (1). Red curves correspond to iterative methods.
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