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Abstract. Concentrations of oxygen (O2) and other dis-
solved gases in the oceanic mixed layer are often used to
calculate air-sea gas exchange fluxes. The mixed layer
depth (zmix) may be defined using criteria based on tem-
perature or density differences to a reference depth near
the ocean surface. However, temperature criteria fail in re-
gions with strong haloclines such as the Southern Ocean
where heat, freshwater and momentum fluxes interact to
establish mixed layers. Moreover, the time scales of air-
sea exchange differ for gases and heat, so thatzmix de-
fined using oxygen may be different thanzmix defined us-
ing temperature or density. Here, we propose to define an
O2-based mixed layer depth,zmix(O2), as the depth where
the relative difference between the O2 concentration and
a reference value at a depth equivalent to 10 dbar equals
0.5 %. This definition was established by analysis of O2
profiles from the Bellingshausen Sea (west of the Antarc-
tic Peninsula) and corroborated by visual inspection. Com-
parisons ofzmix(O2) with zmix based on potential temper-
ature differences, i.e.,zmix(0.2◦C) and zmix(0.5◦C), and
potential density differences, i.e.,zmix(0.03 kg m−3) and
zmix(0.125 kg m−3), showed thatzmix(O2) closely follows
zmix(0.03 kg m−3). Further comparisons with publishedzmix
climatologies andzmix derived from World Ocean Atlas 2005
data were also performed. To establishzmix for use with bi-
ological production estimates in the absence of O2 profiles,
we suggest usingzmix(0.03 kg m−3), which is also the basis
for the climatology by de Boyer Montégut et al. (2004).

1 Introduction

The oceanic mixed layer is the top part of the water column
where temperature and solute concentrations are vertically
homogeneous due to wind-driven turbulent mixing (Lukas

and Lindstrom, 1991; Brainerd and Gregg, 1995). This is an
important region that directly interacts with the atmosphere
through exchange of momentum, heat, moisture, gases and
aerosols (Dong et al., 2008). The mixed layer depth (zmix)

defines the bottom boundary of the mixed layer and sepa-
rates it from the pycnocline. Mixing between waters in the
mixed layer and waters below determines the ventilation of
the ocean interior and influences the large-scale circulation
(Cisewski et al., 2008; Le Quéŕe et al., 2003).

The biological response to physical forcing is not always
immediate. Likewise, changes in light or micronutrient lev-
els may stimulate rapid biological changes, but are not nec-
essarily reflected in changes of physical properties of the sur-
face ocean. Therefore, physical and biogeochemical tracers
cannot be expected a priori to show the same scales of vari-
ability. For example, heat exchange is generally faster than
gas exchange (Fairall et al., 2000). Mixed layer depths could
also be different, depending on whether they refer to tem-
perature or to gases. Moreover, different gases respond at
different rates to wind forcing, depending on their solubil-
ity, with less soluble gases (e.g., N2, Ar or O2) responding
more quickly. Therefore, for air-sea gas exchange studies
and related topics such as biological production estimates
from O2/Ar ratio and oxygen triple isotopes (Kaiser et al.,
2005; Reuer et al., 2007), it is important to have a proper
representation ofzmix in terms of gas fluxes.

In the Southern Ocean, a strong coupling exists between
atmosphere and surface waters due to the lack of physical
barriers for the eastward flowing Antarctic Circumpolar Cur-
rent, leading to pronounced meridional gradients and defined
frontal regions. In this marine ecosystem, physical processes
are an important driver for biogeochemical processes, such as
biological production in the surface ocean (Rintoul and Trull,
2001; Smith et al., 2008). The Southern Ocean accounts for
a significant fraction of oceanic CO2 uptake (Sarmiento et
al., 1998; Sarmiento and Le Quéŕe, 1996). In particular,
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Antarctic shelf waters act as a strong sink of atmospheric
CO2 due to high biological productivity, intense winds and
high deep-water ventilation rates (Arrigo et al., 2008).

Previous definitions ofzmix in the Southern Ocean have
used criteria based on physical properties of the water col-
umn, such as potential temperature or density (Cisewski et
al., 2008; Dong et al., 2008; Gordon and Huber, 1990; Rin-
toul and Trull, 2001; Verdy et al., 2007). However, tempera-
ture and salinity do not always show the same stratification,
leading to water column structures such as temperature in-
versions (i.e., abrupt changes in the temperature profile due
to intrusions of water masses), barrier layers (as a result of
temperature inversions and at locations where the halocline
is shallower than the thermocline) and density-compensated
profiles (de Boyer Mont́egut et al., 2004; Rintoul and Trull,
2001). These structures can develop frequently in high lat-
itude coastal areas, such as the western Antarctic Peninsula
(WAP), due to the combined effect of shelf bathymetry and
sea-ice dynamics (Ducklow et al., 2006; Williams et al.,
2008). In the WAP region, little temperature stratification
occurs and the density distribution is dominated by the influ-
ence of ice melt on salinity (de Boyer Montégut et al., 2004;
Dong et al., 2008).

Most definitions of zmix can be classified into two
groups: (a) gradient-based criteria, wherezmix is the
depth where the vertical gradient of an oceanic property
reaches a threshold value (Lukas and Lindstrom, 1991) and
(b) difference-based criteria, wherezmix is the depth where
an oceanic property has changed by a certain amount from a
near-surface reference value (Levitus, 1982).

Previous studies have found that well-resolved vertical
profiles are necessary to use successfully gradient-based cri-
teria (Brainerd and Gregg, 1995; Cisewski et al., 2008). For
example, Dong et al. (2008) concluded that the presence of
anomalous spikes and perturbations in profiles from ARGO
floats could lead to erroneously lowzmix. The authors found
that gradient-basedzmix deviates as much as 100 m from
difference-basedzmix. This was mainly due to limited reso-
lution and noise of the temperature and conductivity sensors
of the floats. Difference-based criteria perform better in such
circumstances as well as in regions with temperature inver-
sions or weak upper water column stratification. However,
simulations using an ocean general circulation model have
shown that a latitude-dependent difference criterion may ac-
tually give the best results (Noh and Lee, 2008).

Otherzmix definitions include curvature of temperature or
density profiles (Lorbacher et al., 2006), combinations of
physical criteria (Holte and Talley, 2009), optical measure-
ments (Zawada et al., 2005) and split and merge methods
(Thomson and Fine, 2003). These criteria require more com-
plex numerical methods or additional measurements to de-
terminezmix.

O2 is used as a tracer for water masses, biological activity
and air-sea exchange (Jenkins and Jacobs, 2008; Körtzinger
et al., 2008; Reuer et al., 2007). Dissolved O2 responds
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Fig. 1. CTD stations occupied by RRSJames Clark Rosscruise
JR165 in the Bellingshausen Sea from late summer to early autumn
2007 (3 March to 9 April 2007). Labels indicate station numbers.

to the same physical processes (e.g., vertical mixing, hori-
zontal advection, air-sea exchange) as heat. However, since
the response of O2 solubility to changes in temperature and
salinity is not linear and immediate,zmix defined solely by
differences in potential density does not fully describe the
properties of the water column in terms of dissolved O2 and
temperature-associated solubility changes. O2 also depends
on biology and therefore gives a more complete picture of all
relevant processes.

It makes sense to definezmix using O2 concentrations in
the context of net and gross biological production estimates,
where zmix is used to calculate weighted-average gas ex-
change coefficients (Reuer et al., 2007). In the Belling-
shausen Sea, the main factors controlling the initiation and
maintenance of the high algal biomass are physical dynam-
ics, iron and light availability, which are driven by the mixed
layer depth variability. According to Boyd et al. (1995), high
chlorophyll concentrations in the upper water column of the
Bellingshausen Sea remained unchanged for about 25 days
during austral summer.

Here, we propose to definezmix using a criterion based
on the relative difference between O2 concentrations and a
reference value at a depth equivalent to 10 dbar. O2 is com-
monly measured during hydrocasts and modern electrochem-
ical or optical O2 sensors give sufficiently stable results for
establishingzmix. The correspondingzmix(O2) was first ob-
tained through visual inspection of vertical O2 profiles in the
Bellingshausen Sea. We summarise the different criteria used
to definezmix in global climatologies and in climatologies
specific to the Southern Ocean (Table 1) and compare them
with zmix(O2). Climatologies may be useful where no CTD-
O2 data are available to determinezmix(O2).
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Table 1. Climatologies used in this work to compare with the mixed layer depths extracted from O2 profiles.

Abbreviation Authors Description Data source2 Profiles Resolution Criteria Reference
depth

ML97 Monterey and zmix climatology WOA94 averaged, 1◦
× 1◦ 1σ θ = 0.125 kg m−3 0 m

Levitus (1997) (1900–1992) interpolated monthly and1θ = 0.5◦C

K03 Kara et al. zmix climatology WOA94 averaged, 1◦
× 1◦ 1σ θ corresponding 0 m

(2003) (1900–1992) interpolated monthly to1θ = 0.8◦C

BM04 de Boyer Mont́egut zmix climatology NODC/WOCE/Argo individual 2◦ × 2◦ 1σ θ =0.03 kg m−3 10 m
et al. (2004) and (1941–2008) monthly and1θ = 0.2◦C
LOCEAN-IPSL1

(2008)

WOA05-σ θ This work T andS WOA averaged, 1◦ × 1◦ 1σ θ =0.03 kg m−3 10 m
climatology (1965–2005) interpolated monthly

WOA05-O2 This work c(O2) WOA averaged, 1◦ × 1◦ 1s(O2 = 0.5 %) 10 m
climatology (1965–2005) interpolated monthly

1 Laboratoire d’Oćeanographie et de Climatologie par l’Expérimentation et l’Analyse Nuḿerique – Institut Pierre Simon Laplace (updated
version from the previously published version (de Boyer Montégut et al., 2004).
2 WOA: World Ocean Atlas; NODC: National Oceanographic Data Center; WOCE: World Ocean Circulation Experiment.

2 Methods

2.1 CTD data acquisition

Vertical profiles of temperature (θ ), salinity (S) and dissolved
O2 concentration (c(O2)) were obtained at 253 hydrographic
stations in the Bellingshausen Sea (RRSJames Clark Ross
cruise JR165) (Fig. 1). The cruise took part within the frame-
work of the ACES-FOCAS project (Antarctic Climate and
the Earth System-Forcing from the Oceans, Clouds, Atmo-
sphere and Sea-ice) of the British Antarctic Survey.

The Bellingshausen Sea is situated to the west of the
Antarctic Peninsula between 75◦ W and 90◦ W and is a tran-
sition region between continental shelf, shelf breaks and the
open ocean. The sampling period consisted of 38 days be-
tween 3 March and 9 April 2007, which represents the sea-
sonal shift from late summer to early autumn. The hydro-
graphic profiles were taken with aSea-Bird911+ CTD pack-
age mounted on a rosette with 12 ten-litre Niskin bottles for
the collection of water samples.

The CTD conductivity sensor was calibrated on board
against discrete samples analysed with aGuildline Au-
tosal8400B. A high-precision reversing thermometer sensor
(Sea-BirdSBE35) and two O2 sensors (CTD-O2; Sea-Bird
SBE43) were also mounted on the rosette. The O2 sensors
responded less rapidly than the other CTD sensors. Sen-
sor lags of 8 s and 9 s were established for the two sensors
by finding the lag time that minimised the mean and root
mean square differences between the downcast and upcast.
Plots of downcast and upcast alignment were used as visual
check for the quality of the correction. O2 profiles in deep
CTD casts>1000 m were reported to be affected by pres-
sure hysteresis (Sea-Bird Electronics, 2010). However, lit-

tle hysteresis was observed in our profiles, since only 38 of
them reached depths greater than 1000 m. A small correction
had to be applied to the pressure sensor, which amounted
to the following values: CTDs 000-021: –1.21 dbar; CTDs
022-085: –0.71 dbar; CTDs 086-164: –1.05 dbar and CTDs
165-253: –0.80 dbar.

One of the O2 sensors proved to be more stable and was
selected for calibration. The O2 discrete samples were anal-
ysed on board using whole-bottle Winkler titration (Dick-
son, 1996) with photometric end-point detection. A to-
tal of 276 titrations were performed with a repeatability of
0.29 µmol kg−1 (0.1 %) based on 76 duplicate samples. The
average difference between the non-calibrated CTD-O2 and
Winkler data was (3.9± 3.1) µmol kg−1.

Notwithstanding our calibration efforts, the O2-based
mixed layer depth criterion proposed here actually does not
require of calibrated profiles as it is based on relative dif-
ferences in oxygen concentration, so that sensor gain biases
cancel out.

The CTD data were binned into 2 dbar-depth intervals
starting from 1 dbar (= 104 Pa, or about 1 m) to the maxi-
mum depth for each station. For determiningzmix using dif-
ference criteria, the sensor precision is more important than
the absolute accuracy. The sensor precision was estimated
from the relative standard deviation of the CTD-O2 readings
within 2 dbar-bins in the mixed layer, which was found to be
(0.4± 0.3) %, on average. From a total of 253 CTD profiles,
only two were discarded due to sensor problems (stations 27
and 43). Sensor noise affected our measurements only in the
top 5 dbar of most CTD stations.

www.ocean-sci.net/8/1/2012/ Ocean Sci., 8, 1–10, 2012
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Fig. 2. Vertical profiles of O2 concentration,c(O2), and potential
density (σ θ ). Horizontal lines indicate the location of the objective
zmix(O2) andzmix(0.03 kg m−3).

2.2 Definition of thezmix(O2) criterion

To define azmix criterion based on O2, all 253 CTD pro-
files were initially inspected visually. Some examples of typ-
ical profiles encountered during the survey are depicted in
Fig. 2. Subjective (i.e., visually determined)zmix was then
compared to objective (numerically determined)zmix to iden-
tify a suitable O2 criterion for zmix. The latter consisted in
testing three threshold criteria (0.1 %, 0.5 % and 1.0 %) with
respect to the near-surface (≈1–3 dbar) and 10 dbar concen-
trations. The near-surface value was identified as the lowest
depth with ac(O2) measurement. The different thresholds
were applied objectively and the result was compared to the
subjective mixed layer depth (Fig. 3).

Compared to the objectivezmix values, our results suggest
that the subjectivezmix is deeper, when using a 0.1 % thresh-
old, by (8.7± 8.0) m and (6.0± 7.6) m with respect to the
near-surface and 10 dbar values, respectively. For a 1.0 %
threshold, the subjectivezmix is only slightly shallower than
the objectivezmix by (0.7± 5.0) m and (2.3± 3.5) m when
using near-surface and 10 dbar values for reference, respec-
tively. For the threshold criterion of 0.5 % and the near-
surface value as reference, the difference to the subjective
result was on average (3.1± 6.1) m; for the 10 dbar value as
reference, the difference was (0.9± 4.6) m (Fig. 3).

Although the results from 1.0 % difference with respect to
the near-surface value and the 0.5 % difference with respect
to the 10 dbar are in close agreement, our preferred crite-
rion was the latter for two reasons: In agreement to Brainerd
and Gregg (1995), the 10 dbar reference depth avoids sensor
noise in the surface water due to the effect of ship motion
and sensor stabilization. The reference depth of 10 dbar was
also chosen for consistency with other studies and to allow
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Fig. 3. Mean difference betweenzmix obtained subjectively (by
visual inspection) andzmix(O2) obtained using three threshold cri-
teria with two different reference depths: (1) 0.1 %, (2) 0.5 % and
(3) 1.0 %, with respect toc(O2) in near-surface water (≈2 dbar) and
at 10 dbar.

comparison of our results to climatological data that use the
same reference depth. Using this reference depth means that
the minimumzmix possible is 10 dbar.

2.3 Comparison with density- and temperature-based
zmix and climatologies

To test our newzmix criterion, we first compared it with con-
ventionalzmix definitions based on temperature and potential
density. These criteria were adopted from three widely used
zmix climatologies (Table 1) and applied to the 251 CTD pro-
files of this study. In a second step, we comparedzmix(O2)

to the climatologicalzmix values, interpolated according to
location and time of year.

Climatologies represent binned and averaged monthly
fields. The zmix climatologies by Monterey and Levi-
tus (1997); Kara et al. (2003) and de Boyer Montégut
et al. (2004) (abbreviated as ML97, K03 and BM04)
are widely used in oceanographic studies. We obtained
the climatological data fromhttp://www.esrl.noaa.gov/psd/
data/gridded/data.nodc.woa94.html, http://www7320.nrlssc.
navy.mil/nmld/nmld.htmlandhttp://www.locean-ipsl.upmc.
fr/∼cdblod/mld.html(de Boyer Mont́egut et al., 2004; Kara
et al., 2003; Monterey and Levitus, 1997). ML97 and
K03 are based on data from the World Ocean Atlas 1994
(WOA94). BM04 is based on individual CTD profiles
obtained from the World Ocean Circulation Experiment
(WOCE) and the National Oceanographic Center (NODC)
and the latest update includes profiles from Argo floats. The
BM04 climatology is obtained by an ordinary kriging of the
data distributed in 2◦ boxes, with a prediction limited to
1000 km radius. No value is assigned if there are less than
5 data points in a grid box. BM04 includes profiles from me-
chanical bathythermograph (MBT), expendable bathyther-
mograph (XBT), CTD hydrocasts and profiling floats, pro-
viding a range of vertical resolutions from 2.3 m (CTD) to
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Fig. 4. Difference of objective O2-basedzmix to subjective O2-
basedzmix andzmix based on two potential density threshold crite-
ria applied to the CTD profiles in the Bellingshausen Sea.

19.5 m (XBT). The ML97 and K03 climatologies consider
a smaller radius of influence (771 km). However, interpola-
tion of data and smoothing were performed within that radius
leading to larger uncertainties in the data.

Based on ML97 and BM04, the following criteria were
chosen to definezmix based on potential temperature (θ )
and potential density (σ θ ) differences:1θ = 0.5◦C and
1σ θ = 0.125 kg m−3 with respect to the surface value
(ML97); 1θ = 0.2◦C and1σ θ = 0.03 kg m−3 with respect to
the 10 dbar value (BM04). These criteria were applied to the
same 251 CTD profiles used to determinezmix(O2). In addi-
tion, zmix(O2) was compared with the maximum curvature-
basedzmix algorithm of Lorbacher et al. (2006) (abbreviated
as L06) using temperature and potential density. Finally, we
also compared our observations with azmix obtained after a
mixed layer criterion based on the 95 % O2 saturation (Tal-
ley, 1999; Holte and Talley, 2009).

The zmix values from ML97, K03 and BM04 were also
directly compared withzmix(O2) after linear interpolation
to the same month, latitude and longitude. Since these cli-
matologies suffer from poor data coverage in the Southern
Ocean, particularly south of 30◦ S in the Antarctic coastal
zone, we planned to use a dedicated Southern Oceanzmix
climatology based onσ θ differences derived from Argo float
profiles used for comparison (Dong et al., 2008). However,
it turned out that this climatology did not contain any data in
the region of study and could therefore not be used.

To further test thezmix(O2) criterion, we applied the
1σ θ = 0.03 kg m−3 criterion to density profiles calcu-
lated from 1◦ by 1◦-temperature and salinity climatology in
World Ocean Atlas 2005 (WOA05;http://www.nodc.noaa.
gov/OC5/WOA05/woa05data.html; (Antonov et al., 2006;
Locarnini et al., 2006). Then, thezmix(O2) criterion was ap-
plied to the O2 data in WOA05 (Garcia et al., 2006). WOA05
uses the same standard depths (i.e., 0, 10, 20, 30, 50, 75,
100, 125, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900,
1000 m) and interpolation method for temperature, salinity
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Fig. 5. Mean difference betweenzmix based on potential temper-
ature or density differences or oxygen saturation state (zmix(X)) to
zmix(O2). L06 is the algorithm used by Lorbacher et al. (2006) to
definezmix based on potential temperature (L06-θ ) and potential
density (L06-σ θ ). The1σ θ (0.8◦C) criterion is based on the differ-
ence in density given by a temperature difference of 0.8◦C.

and oxygen. The O2 data only comprise results obtained by
Winkler titration.

3 Results

3.1 Comparison betweenzmix(O2) from subjective and
objective analysis

zmix(O2) obtained by subjective visual inspection and by us-
ing objective numerical analysis agreed to within 1 dbar for
235 out of 251 stations. For the remaining 16 stations, the ob-
jectivezmix(O2) value was on average (1± 5) dbar shallower
than its subjective counterpart (Fig. 4). This small discrep-
ancy was caused by the presence of low oxygenated subsur-
face waters (i.e., Winter Water) that created a weak upper
oxycline. The visual inspection disregarded this top oxycline
andzmix(O2) was defined according to the deeper and more
pronounced seasonal oxycline. In the following, the objec-
tive result is used forzmix(O2).

3.2 Comparison betweenzmix(O2) and zmix based on
θ and σθ differences

Thezmix(O2) criterion appears to better reflect the O2 distri-
bution in the mixed layer, compared to thezmix(0.03 kg m−3)

criterion. This is illustrated by six typical profiles (Fig. 2).
Vertical profiles for stations 25, 76, 89, 188, 199 and 250,
showzmix(0.03 kg m−3) lying in the oxycline region, deeper
than zmix(O2). As a consequence, the O2 concentration is
lower atzmix(0.03 kg m−3) than atzmix(O2). This difference
can lead to an underestimation of the average mixed layer O2
concentration.

No significant correlation was observed betweenzmix(O2)

andzmix based on1θ = 0.5◦C (with respect to the surface
value) or based on1θ = 0.2◦C (with respect to the 10 dbar

www.ocean-sci.net/8/1/2012/ Ocean Sci., 8, 1–10, 2012
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value). The corresponding correlation coefficients werer2
=

0.001 and 0.111, respectively.zmix(0.5◦C) was on aver-
age (61± 51) dbar deeper thanzmix(O2), while zmix(0.2◦C)
was (27± 34) dbar deeper (Fig. 5). Park et al. (1998) made
similar observations in the Kerguelen region of the South-
ern Ocean. The authors argued that thezmix(0.5◦C) crite-
rion gavezmix greater than 500 m, compared to the actual
zmix above 200 m depth. The authors also tested smaller dif-
ferences of 0.05◦C and 0.1◦C. However, due to the small
temperature gradient, particularly in winter, thezmix was still
overestimated by 10 to 490 m. This was previously observed
by Lukas and Lindstrom (1991) for the equatorial Pacific
Ocean, who also argued that the threshold should be based
on density since the temperature profile does not fully cap-
ture the vertical stratification of the water column. In regions
with daily and seasonal cycles dominated by heat flux, a
temperature-based criterion may be sufficient to define mixed
layer depths. However, in regions where precipitation and ice
melt play an important role on water column stratification,
density-based criteria are preferable (Cisewski et al., 2008;
Park et al., 1998)

Comparison betweenzmix(O2) and zmix based on
1σ θ = 0.125 kg m−3 with respect to the surface value and
1σ θ = 0.03 kg m−3 with respect to the 10 dbar value, showed
a better agreement than for the solelyθ–based criteria. The
corresponding correlation coefficients werer2

= 0.711 and
0.813, respectively. zmix(0.125 kg m−3) was on average
(14± 11) dbar deeper thanzmix(O2), whilezmix(0.03 kg m−3)

was (4± 8) dbar deeper (Figs. 4 and 5). The criterion
considering a temperature change of 0.8◦C, 1σ θ (0.8◦C)
= σ θ (θ + 0.8◦C) – σ θ (θ) with respect to the 10 dbar
value, had a poor correlation withzmix(O2) (r2

= 0.016),
andzmix(1σ θ (0.8◦C)) was on average (97± 61) dbar deeper
thanzmix(O2). We also confirmed the results obtained based
on the1σ θ criteria visually. Objective and subjective re-
sults agreed to within (2± 6) dbar for all criteria. It is impor-
tant to note that, for fair comparison with the tested criterion,
we have used the corresponding oxygen concentration at the
same reference depth suggested by each criterion (i.e., sur-
face value or the value at 10 m depth).

Lorbacher et al. (2006) definedzmix based on the first ex-
treme curvature in the temperature or potential density pro-
file. Compared to difference criteria, this approach has the
advantage of being independent of the actual value of the
variable in question. The same is true forzmix(O2), which
uses a relative difference of 0.5 %, independent of the O2
concentration. The mixed layer depth based on temperature
curvature,zmix(θ ′′), gave (15± 30) dbar deeper values than
zmix(O2); zmix based on density curvature,zmix(σ ′′

θ ), gave
(11± 15) dbar deeper values. We also tested the O2 criterion
suggested here in the L06 algorithm. The mixed layer depth
based on the curvature on the O2 profiles gave (17± 15) m
shallower values thanzmix(O2) (Fig. 5), this is probably due
to the presence of the WW intrusions observed in the upper
water column.

Holte and Talley (2009) compared winter mixed layer
depth defined by the 95 % O2 saturation horizon (Talley,
1999) with azmix algorithm based on combinations of phys-
ical criteria. The authors found good agreement between
both definitions in data from the World Ocean Atlas 2005
and Argo profiles.

Although the criterion based on 95 % O2-saturation hori-
zon was mainly proposed to identify winter mixed layer
depths, here we tested this criterion to identify sum-
mer/autumn mixed layer depth using the data from our
cruise. Away from the shore (stations 90 to 163 and 197
to 253), the 95 % saturation criterion does not give meaning-
ful results because of the presence O2-undersaturated waters
near the surface. Closer to ice shelves (stations 1 to 90 and
166 to 198), biological production is able to overcome this
O2 deficit. The surface O2 saturation was (100± 4) % and
zmix(95 % O2) was on average (9± 25) dbar shallower than
zmix(O2).

3.3 Comparison ofzmix with climatologies

For the following comparisons, thezmix data are presented
in meters (rather than dbar) to maintain consistency with the
zmix given in the climatologies. We made a direct compari-
son betweenzmix obtained after applying the selected criteria
with thezmix obtained from the climatologies that make use
of the same criteria. Thus,zmix(0.125 kg m−3) was compared
to zmix from the ML97 climatology. The same procedure was
applied forzmix(0.03 kg m−3) andzmix(1σ (0.8◦C)) in the
BM04 and K03 climatologies, respectively.zmix extracted
from the climatologies corresponded to the same month and
geographical location of our CTDs. Due to the limited spatial
coverage of the climatologies in the Southern Ocean, not all
profiles had a corresponding climatologicalzmix value (170
profiles for ML97, 208 profiles for BM04 and 179 profiles for
K03 all out of 251). Therefore, the comparisons below were
done for the common minimum number of profiles found in
the climatologies.

The ML97 and K03 climatologies have a coarse ver-
tical resolution (0, 10, 20, 30, 50, 75, 100, 125, 150,
200, 250, 300, 400, 500, 600, 700, 800, 900, 1000 m),
which puts limits on the comparison to in situzmix data
based on profiles with 2 dbar resolution. For some CTD
stations, climatologicalzmix was overestimated by up to
500 m with respect tozmix(O2). These values were disre-
garded for the comparison between climatologicalzmix and
zmix(O2). For the BM04 climatology, the vertical resolu-
tion varies according to the source of data: PFL (Profiling
Floats) data have a vertical resolution of 8.2 m, CTD data
2.3 m, XBT (eXpandableBathyThermograph) data 19.5 m
and MBT (MechanicalBathyThermograph) data 9.4 m.

Comparisons withzmix defined using potential density
from ML97 and BM04 showed a good agreement when the
same criterion was applied to our CTD profiles. We obtained
for the criterion used in ML97 and BM04, anr2

= 0.628

Ocean Sci., 8, 1–10, 2012 www.ocean-sci.net/8/1/2012/
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and r2
= 0.604 (data not shown). The ML97 climatology

gave (11.9± 11.6) m shallowerzmix(0.125 kg m−3) than in
the in situ data; the BM04 climatology gave (0.7± 13.5) m
shallowerzmix(0.03 kg m−3). However, zmix(1σ (0.8◦C))
showed poor agreement with the corresponding data from
K03 (r2

= 0.002), with zmix based on CTD profiles being
(94.4± 64.1) m deeper.

We then comparedzmix(O2) (objective result) with the
density-basedzmix in the BM04, ML97 and K03 climatolo-
gies. To ensure comparable results, we only used the pro-
files where data from all climatologies were available, so
that the total number of profiles compared was 160 (Table 2).
zmix(0.03 kg m−3) from BM04 showed a positive correlation
with zmix(O2) (r2= 0.542) and was on average (8± 10) m
deeper thanzmix(O2). zmix(0.125 kg m−3) from ML97 also
showed a positive correlation withzmix(O2) (r2

= 0.542),
and was on average (2± 12) m deeper thanzmix(O2). No
correlation was found betweenzmix from K03 andzmix(O2),
with zmix(O2) on average (153± 300) m deeper (Table 2).

Our results show that the mixed layer depths in the BM04
and ML97 climatology are in close agreement withzmix(O2).
However, the BM04 climatology showed the best coverage in
the Southern Ocean, and has the advantage of having a higher
vertical resolution than the other climatologies evaluated in
this study.

Finally, our observations suggest that temperature-based
criteria significantly overestimatezmix in the region of study
and confirm the importance of using density to definezmix in
this area.

3.4 zmix(O2) compared with zmix based on WOA05
density and oxygen profiles

The1σ θ = 0.03 kg m−3 criterion was applied to density pro-
files taken from objectively analysed fields of temperature
and salinity data from WOA05. We then compared the re-
sults obtained from these observations to thezmix using the
same density criterion and the oxygen criterion both in our
CTD profiles. For the WOA05 profiles we could only find
matching data for 120 out of 251 CTD profiles, due to the
limited spatial coverage of WOA05. A poor correlation was
found for both comparisons (r2

= 0.048 and 0.043, respec-
tively), with zmix = 0.03 kg m−3) based on CTD data being
(14± 16) m deeper than based on WOA05. These differ-
ences are likely due to the scarce WOA05 data in the South-
ern Ocean and their limited vertical resolution (10 m) (Ta-
ble 2).

To test thezmix(O2) criterion with other O2 profiles, we
used historical O2 profiles from WOA05 located at the same
geographical location as our CTD stations. Our results show
a positive correlation (r2

= 0.412) betweenzmix(CTD-O2)

andzmix(WOA05-O2). On average,zmix(WOA05-O2) was
(8± 12) dbar shallower thanzmix(CTD-O2).

4 Discussion

Defining zmix based on potential temperature can lead to
deeper values thanzmix(O2), which is defined based on the
vertical O2 distribution. The1θ = 0.5◦C and1θ = 0.2◦C
criteria lead tozmix located within the oxycline. Poten-
tial density-basedzmix values are in better agreement with
zmix(O2), particularly for the1σ θ = 0.03 kg m−3 criterion.

To explain the discrepancy between temperature and
density-basedzmix, we checked for the presence of barrier
layers and temperature inversions in the area of study. Bar-
rier layers are thought to be formed by melting sea ice, al-
though the mechanisms for the formation and destruction of
barrier layers in the Southern Ocean are not well understood
(de Boyer Mont́egut et al., 2007). Our results showed that
barrier layers were present in 43 % of the CTD profiles. The
barrier layer thickness ranged from 2 to 93 m. Barrier layers
were also encountered below the seasonal mixed layer, but do
not influencezmix(O2). The seasonal variability of the barrier
layers, influenced mainly by the water column stratification,
is expected to correspond to that ofzmix(O2). The deepening
of zmix during autumn and winter will lead to low-O2 waters
entering the mixed layer from the barrier layer below and
subsequent destruction of the barrier layer.

The fact thatzmix(O2) is slightly shallower thanzmix based
on other criteria could be interpreted as an indication that
O2 is a more sensitive variable to establish mixed layer
depths because it responds to both physics and biology. The
metabolic balance in the subsurface ocean is usually net het-
erotrophic, i.e., respiration exceeds production. Below the
mixed layer, this leads to a general decrease of O2 concentra-
tions with depth. In some situations, the productive euphotic
zone may extend below the mixed layer, leading to a build-
up of O2 below the mixed layer. In this case, our criterion
of a 0.5 % relative change would still work, but in the oppo-
site direction. Only if the O2 concentration belowzmix was
the same as in the mixed layer could a situation occur when
biology could obscure the mixed layer for a short period of
time when production, respiration and vertical mixing were
in perfect balance. Such a situation is expected to be rare
and we suggest that the general applicability of thezmix(O2)

criterion should be tested for the world’s oceans.
Comparison between in situzmix(O2) with zmix climatolo-

gies showed a good agreement for the ML97 and BM04 cli-
matologies. BM04 has several advantages over ML97 and
K03: (1) It includes Argo data up to 2008, giving better data
coverage, especially in high latitudes (ML97 and K03 cov-
ered 71 % and 68 % of the occupied stations respectively,
while BM04 83 %), (2) BM04 uses non-interpolated, non-
averaged profiles, which avoids the creation of artificially
smooth profiles as in ML97 and K03; (3) ML97 and K03
have limited vertical resolution and use discrete intervals;
(4) non-averaged profiles allow identification of upper water
structures such as barrier layers and temperature inversions;
(5) a difference-criterion based on temperature or density

www.ocean-sci.net/8/1/2012/ Ocean Sci., 8, 1–10, 2012
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Table 2. Mean differences betweenzmix based on CTD data,zmix climatologies and climatological World Ocean Atlas 2005 temperature,
salinity and oxygen data (WOA05).

Difference betweenzmix based on O2 and climatological data Mean± 1 s (m) Number of profiles

zmix(O2, CTD) –zmix(0.03 kg m−3, BM04) −8± 10 160
zmix(O2, CTD) –zmix(0.125 kg m−3, ML97) −2± 12 160
zmix(O2, CTD) –zmix(1σ θ (0.8◦C), K03) −153± 300 160
zmix(0.03 kg m−3, CTD) –zmix(0.03 kg m−3, WOA05) 17 ± 17 120
zmix(O2, CTD) –zmix(O2, WOA05) 8 ± 12 120

with a wide threshold (such as in ML97 and K03), can lead to
an overestimation ofzmix. De Boyer Mont́egut et al. (2004)
reasoned that a wider threshold might be better for averaged-
profiles with a coarser and smoother resolution.

Both the ML97 and K03 temperature criteria have been
applied for areas where sharp temperature stratification in the
upper water column is present (i.e., tropical and sub-tropical
oceanic areas). The larger temperature difference of the K03
criterion produceszmix values higher than those of ML97.

Argo float data such as used in the latest update of the
BM04 climatology provide new insights for seasonalzmix in-
vestigations in a region where the lack of data during austral
winter from direct observations collected on board research
ships is considerable. Argo floats with O2 sensors have been
launched since 2007, a few of them in the Southern Ocean.
However, these floats are only located in deep waters and
the coarse vertical resolution that the Argo profiles provide
(≈10.5 m) are important limitations for detection of shallow
summerzmix in the coastal region of the Southern Ocean.
Due to this, the climatology by Dong et al. (2008) is limited
to 30◦ S to 65◦ S excluding the location of the Bellingshausen
Sea (i.e., 66◦ S to 74◦ S).

zmix based on curvature as proposed by Lorbacher et
al. (2006) showed a similar overestimation ofzmix(O2) as the
density and temperature criteria. By using the L06 criterion
on our O2 profiles, we observed the opposite, with a ten-
dency of underestimation of thezmix due to the presence of
WW in the upper water column. However, the L06 criterion
has the advantage of being independent of the actual value of
the variable in question. This is also true forzmix(O2), which
uses a relative difference of 0.5 % independent of the actual
O2 concentration.

The 95 % O2 saturation criterion proposed by Talley
(1999) gives mostly lowerzmix values thanzmix(O2) as de-
fined here. Talley’s criterion was designed to establish deep
winter mixed layers and therefore is not suitable for the de-
tection of shallow summer mixed layers as encountered dur-
ing summer and early autumn in the Bellingshausen Sea. In
this and similar regions, the physical and biogeochemical
processes would not appear to be comparable enough from
place to place and time to time to allow using such an “abso-
lute” horizon. Furthermore, in the coastal Southern Ocean,
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Fig. 6. Difference betweenzmix(O2) andzmix(0.03 kg m−3) during
day and night.

surface cold waters are normally in equilibrium or slightly
undersaturated in O2 for most of the year (Garcia and Keel-
ing, 2001).

The nighttime convection and overturning have a daily ef-
fect on thezmix with higher values as the wind speed in-
creases during the night. This effect might also yield a differ-
ential response of gas fluxes due to diurnal thermocline vari-
ations. From the total CTD profiles evaluated here, 17 % (43
stations) were sampled during the period of darkness (about
5 h; from 23:00 to 04:00 h local time). From the observations
in Fig. 6, there is no clear difference betweenzmix during the
night and day, using either O2 or the potential density crite-
rion 1σ θ = 0.03 kg m−3. In order to evaluate in detail the
effect of nighttime convection onzmix(O2), in situ measure-
ments of the vertical profile of O2 in a daily time series at
the same geographical location are needed. High variability
due to diurnal effects has been investigated before for oxygen
isotopes in dissolved water from Sagami Bay, Japan (Sarma
et al., 2006). The distribution of oxygen isotopes was found
to be strongly influenced by diurnal variability. This effect
would also influence production calculations, but can be ne-
glected for our study.

The accuracy ofzmix defined using a threshold criterion
depends on the resolution of the hydrographic parameter
chosen for thezmix definition. Modern CTD observations
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provide sufficiently high resolution to resolve stratification
in the upper water column. However, the coarser resolu-
tion of current climatologies and WOA data make them less
suitable to establishzmix. Furthermore, the low abundance
of O2 profiles in Southern Ocean climatologies means that
zmix obtained from these data collections are unreliable when
compared to results based on CTD-O2 profiles. The differ-
ence betweenzmix(1σ θ ) andzmix(O2) for CTD profiles and
WOA05-profiles may often be due to the vertical resolution
of the data and the interpolation method used to construct the
temperature, salinity and O2 fields in WOA05.

We note that the suggested relative difference criterion
may also be used with uncalibrated O2 profiles, provided that
data affected by sensors noise or ship motion are removed
first.

5 Conclusions

We propose to use O2 concentrations to definezmix
(zmix(O2)) for gas exchange studies. In this way,zmix(O2)
has the advantage of being directly related to a species of
interest. Moreover, the relative nature ofzmix(O2) criterion
means that it may be applicable to other parts of the worlds’
oceans, including during other times of the year. The pro-
posed criterion is more sensitive to better reflect upper mixed
layer air-sea dynamics and the influence of biological and
physical processes, rather than criteria based on potential
temperature or density, particularly in regions with weak ver-
tical temperature and density gradients.

To definezmix(O2), we used CTD-O2 profiles collected
during late summer and autumn 2007 in the Bellingshausen
Sea. zmix was well defined by the depth where the relative
difference in O2 concentration to the 10 dbar reference level
exceeded 0.5 %. The criterion was validated by visual in-
spection, with 94 % of the profiles in good agreement with
the proposed criterion.

In coastal waters of the Southern Ocean, salinity stratifi-
cation is a limiting factor for upper water dynamics due to
the strong ice-melting water signal. Comparison ofzmix(O2)

with zmix based on potential density and temperature criteria
showed best agreement for the1σ θ= 0.03 kg m−3 criterion,
either applied directly to the CTD profiles or based on the
corresponding monthly climatology BM04. Thus, in the ab-
sence of O2 profiles, thezmix(0.03 kg m−3) criterion might be
used. Furthermore, in the absence of CTD stations at all, the
BM04 climatology based on the same1σ θ -criterion appears
to be suitable for the determination ofzmix in the Belling-
shausen Sea.
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