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Abstract. Motivated by recent experimental results we reconsider semileptonic D → Pℓνℓ and
D → Vℓνℓ decays within a model which combines heavy quark symmetry and properties of the
chiral Lagrangian. Using limits of soft collinear effective theory and heavy quark effective theory
we parametrize the semileptonic form factors. We include excited charm meson states in our
Lagrangians and determine their impact on the charm meson semileptonic form factors. Then we
calculate branching ratios for allD → Pℓνℓ andD →Vlνl decays.

The knowledge of the form factors which describe the weakheavy → light semilep-
tonic transitions is very important for the accurate determination of the CKM parameters
from the experimentally measured exclusive decay rates. Usually, the attention has been
devoted toB decays and the determination of the phase of theVub CKM matrix element.
At the same time in the charm sector, the most accurate determination of the size of
Vcs andVcd matrix elements is not from a direct measurement, mainly dueto theoretical
uncertainties in the calculations of the relevant form factors’ shapes.

Recently, there have been new interesting results onD-meson semileptonic decays.
The CLEO and FOCUS collaborations have studied semileptonic decaysD0 → π−ℓ+ν
andD0 → K−ℓ+ν [1, 2]. Their data provide new information on theD0 → π−ℓ+ν and
D0→K−ℓ+ν form factors. Usually inD semileptonic decays a simple pole parametriza-
tion was used in the past. The results of Refs. [1, 2] for the single pole parameters re-
quired by the fit of their data, however, suggest pole masses,which are inconsistent with
the physical masses of the lowest lying charm meson resonances. In their anlyses they
also utilized a modified pole fit as suggested in [3] and their results indeed suggest the
existence of contributions beyond the lowest lying charm meson resonances [1].

In addition to these results new experimental studies of charm meson resonances have
provided a lot of new information on the charm sector [4, 5, 6,7] which we can now
apply toD andDs semileptonic decays.

The purpose of our studies [8, 9] is to accommodate contributions of the newly discov-
ered and theoretically predicted charm mesons in form factors which are parametrized
using constraints coming from heavy quark effective theory(HQET) limit for the region
of q2

max and in theq2 ≃ 0 region using results of soft collinear effective theory (SCET).
We restrain our discussion to the leading chiral and 1/mH terms in the expansion.

The standard decomposition of the current matrix elements relevant to semileptonic
decays between a heavy pseudoscalar meson state|H(pH)〉 with momentumpν

H and a
light pseudoscalar meson state|P(pP)〉 with momentumpµ

P is in terms of two scalar
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functions of the exchanged momentum squaredq2 = (pH − pP)
2 – the form factors

F+(q2) and F0(q2). Here F+ denotes the vector form factor and it is dominated by
vector meson resonances, whileF0 denotes the scalar form factor and is expected to
be dominated by scalar meson resonance exchange [10, 11]. Inorder that the matrix
elements are finite atq2 = 0, the form factors must also satisfy the relationF+(0) =
F0(0).

The transition of|H(pH)〉 to light vector meson|V (pV ,εV )〉 with momentumpν
V and

polarization vectorεν
V is similarly parameterized in terms of four form factorsV , A0, A1

andA2, again functions of the exchanged momentum squaredq2 = (pH − pV )
2. Here

V denotes the vector form factor and is expected to be dominated by vector meson
resonance exchange, the axialA1 andA2 form factors are expected to be dominated by
axial resonances, whileA0 denotes the pseudoscalar form factor and is expected to be
dominated by pseudoscalar meson resonance exchange [11]. As in previous case in order
that the matrix elements are finite atq2 = 0, the form factors must also satisfy the well
known relationA0(0)+A1(0)(mH +mV )/2mV −A2(0)(mH −mV )/2mV = 0.

Next we follow the analysis of Ref. [3], where theF+ form factor inH → P transitions
is given as a sum of two pole contributions, while theF0 form factor is written as
a single pole. This parametrization includes all known properties of form factors at
largemH . Using a relation which connects the form factors within large energy release
approach [12] the authors in Ref. [3] propose the following form factor parametrization

F+(q
2) =

cH(1−a)
(1− x)(1−ax)

, F0(q
2) =

cH(1−a)
1−bx

, (1)

wherex = q2/m2
H∗ .

Utilizing the same approach we propose a general parametrization of the heavy to light
vector form factors, which also takes into account all the known scaling and resonance
properties of the form factors. As already mentioned, thereexist the well known HQET
scaling laws in the limit of zero recoil [13] while in the SCETlimit q2 → 0 one obtains
that all four H → V form factors can be related to only two universal SCET scaling
functions [12].

The starting point is the vector form factorV , which is dominated by the pole at
t = m2

H∗ when considering the part of the phase space that is close to the zero recoil. For
theheavy → light transitions this situation is expected to be realized near the zero recoil
where also the HQET scaling applies. On the other hand, in theregion of large recoils,
SCET dictates the scaling described in [12]. In the full analogy with the discussion
made in Refs. [3, 14], the vector form factor consequently receives contributions from
two poles and can be written as

V (q2) =
c′H(1−a)

(1− x)(1−ax)
, (2)

wherex = q2/m2
H∗ ensures, that the form factor is dominated by the physicalH∗ pole,

while a measures the contribution of higher states which are parametrized by another
effective pole atm2

eff = m2
H∗/a.

An interesting and useful feature one gets from the SCET is the relation betweenV
andA1 [12, 15, 16, 17] atq2 ≈ 0. When combined with our result (2), it imposes a single



pole structure onA1. We can thus continue in the same line of argument and write

A1(q
2) = ξ

c′H(1−a)
1−b′x

. (3)

Here ξ = m2
H/(mH + mV )

2 is the proportionality factor betweenA1 andV from the
SCET relation, whileb′ measures the contribution of resonant states with spin-parity
assignment 1+ which are parametrized by the effective pole atm2

H ′∗
eff
= m2

H∗/b′. It can

be readily checked that alsoA1, when parametrized in this way, satisfies all the scaling
constraints.

Next we parametrize theA0 form factor, which is completely independent of all
the others so far as it is dominated by the pseudoscalar pole and is proportional to a
different universal function in SCET. To satisfy both HQET and SCET scaling laws we
parametrize it as

A0(q
2) =

c′′H(1−a′)
(1− y)(1−a′y)

, (4)

where y = q2/m2
H ensures the physical 0− pole dominance at small recoils anda′

again parametrizes the contribution of higher pseudoscalar states by an effective pole at
m2

H ′
eff
=m2

H/a′. The resemblance toV is obvious and due to the same kind of analysis [3]

although the parameters appearing in the two form factors are completely unrelated.
Finally for theA2 form factor, due to the pole behavior of theA1 form factor on one

hand and different HQET scaling atq2
max on the other hand, we have to go beyond a

simple pole formulation. Thus we impose

A2(q
2) =

(mH +mV )ξ c′H(1−a)+2mV c′′H(1−a′)
(mH −mV )(1−b′x)(1−b′′x)

, (5)

which again satisfies all constraints. Due to the relations between the form factors we
only gain one parameter in this formulation,b′′. This however causes the contribution of
the 1+ resonances to be shared between the two effective poles in this form factor.

At the end we have parametrized the fourH → V vector form factors in terms of the
six parametersc′H , a, a′, b′, c′′H andb′′.

In our heavy meson chiral theory (HMχT) calculations we use the leading order
heavy meson chiral Lagrangian in which we include additional charm meson resonances.
The details of this framework are given in [8] and [9]. We firstcalculate values of the
form factors in the small recoil region. The presence of charm meson resonances in
our Lagrangian affects the values of the form factors atq2

max and induces saturation
of the second poles in the parameterizations of theF+(q2), V (q2) and A0(q2) form
factors by the next radial excitations ofD∗

(s) and D(s) mesons respectively. Although
theD mesons mat not be considered heavy enough, we employ these parameterizations
with model matching conditions atq2

max. Using HQET parameterization of the current
matrix elements [8, 9], which is especially suitable for HMχT calculations of the form
factors near zero recoil, we are able to extract consistently the contributions of individual
resonances from our Lagrangian to the variousD → P andD →V form factors. We use
physical pole masses of excited state charmed mesons in the extrapolation, giving for the



pole parametersa = m2
H∗/m2

H ′∗, a′ = m2
H/m2

H ′, b′ = m2
H∗/m2

HA
. Although in the general

parameterization of the form factors the extra poles inF+, V andA0,1,2 parametrized
all the neglected higher resonances beyond the ground stateheavy meson spin doublets
(0−,1−), we are here saturating those by a single nearest resonance.The single pole
q2 behavior of theA1(q2) form factor is explained by the presence of a single 1+ state
relevant to each decay, while inA2(q2) in addition to these states one might also account
for their next radial excitations. However, due to the lack of data on their presence we
assume their masses being much higher than the first 1+ states and we neglect their
effects, setting effectivelyb′′ = 0.

The values of the new model parameters appearing inD → Plνl decay amplitudes [8]
are determined by fitting the model predictions to known experimental values of branch-
ing ratiosB(D0 → K−ℓ+ν), B(D+ → K̄0ℓ+ν), B(D0 → π−ℓ+ν), B(D+ → π0ℓ+ν),
B(D+

s → ηℓ+ν) andB(D+
s → η ′ℓ+ν) [18]. In our calculations of decay widths we

neglect the lepton mass, so the form factorF0, which is proportional toqµ , does not
contribute. For the decay width we then use the integral formula proposed in [19] with
the flavor mixing parametrization of the weak current definedin [8].

Similarly in the case ofD → Vlνl transitions we have to fix additional model pa-
rameters [9] and we again use known experimental values of branching ratiosB(D0 →
K∗−ℓ+ν), B(D+

s → Φℓ+ν), B(D+ → ρ0ℓ+ν), B(D+ → K∗0ℓ+ν), as well as partial
decay width ratiosΓL/ΓT (D+ → K∗0ℓ+ν) andΓ+/Γ−(D+ → K∗0ℓ+ν) [18]. We cal-
culate the decay rates for polarized final light vector mesons using helicity amplitudes
H+,−,0 as in for example [20]. By neglecting the lepton masses we again arrive at the in-
tegral expressions from [19] with the flavor mixing parametrization of the weak current
defined in [9].

We first draw theq2 dependence of theF+ and F0 form factors for theD0 → K−,
D0 → π− andDs → K0 transitions. The results are depicted in Fig. 1. Our model results,
when extrapolated with the double pole parameterization, agree well with previous
theoretical [21, 22] and experimental [1, 2] studies whereas the single pole extrapolation
does not give satisfactory results. Note that without the scalar resonance, one only gets
a soft pion contribution to theF0 form factor. This gives for theq2 dependence ofF0 a
constant value for all transitions, which largely disagrees with lattice QCD results [22]
as well as heavily violates known form factor relations.

We also calculate the branching ratios for all the relevantD → P semileptonic decays
and compare the predictions of our model with experimental data from PDG. The results
are summarized in Table 1. For comparison we also include theresults for the rates
obtained with our approach forF+(q2

max) but using a single pole fit. It is very interesting
that our model extrapolated with a double pole gives branching ratios forD → Pℓνℓ in
rather good agreement with experimental results for the already measured decay rates.
It is also obvious that the single pole fit gives the rates up toa factor of two larger than
the experimental results. Only for decays toη andη ′ as given in Table 1, an agreement
with experiment of the double pole version of the model is notbetter but worse than for
the single pole case.

We next draw theq2 dependence of all the form factors for theD0 → K−∗, D0 → ρ−

andDs → φ transitions. The results are depicted in Fig. 2. Our extrapolated results for
the shapes of theD → V semileptonic form factors agree well with existing theoretical
studies [20, 21, 23, 24], while currently no experimental determination of the form



TABLE 1. The branching ratios for theD → P semileptonic decays. Comparison of our model fit
with experiment as explained in the text.

Decay B (model, double pole) [%] B (model, single pole) [%] B (Exp. [18]) [%]

D0 → K− 3.4 4.9 3.43±0.14
D0 → π− 0.27 0.56 0.36±0.06
D+

s → η 1.7 2.5 2.5±0.7
D+

s → η ′ 0.61 0.74 0.89±0.33
D+ → K̄0 9.4 12.4 6.8±0.8
D+ → π0 0.33 0.70 0.31±0.15
D+ → η 0.10 0.15 < 0.5
D+ → η ′ 0.016 0.019 < 1.1
D+

s → K0 0.20 0.32

factors’ shapes in these decays exists.
We complete our study by calculating branching ratios and partial decay width ratios

also for all relevantD → Vlνl decays. They are listed in Table 2 together with known
experimentally measured values.

Finally, we summarize our results: We have investigated semileptonic form factors
for D → P andD → V decays within an approach which combines heavy meson and
chiral symmetry. The form factors are parametrized to satisfy all constraints coming
from HQET and SCET. The contributions of excited charm mesonstates are included
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FIGURE 1. q2 dependence of theD0 → K− (upper left),D0 → π− (upper right) andDs → K0 (lower)
transition form factors.



TABLE 2. The branching ratios and partial decay width ratios for theD → V semileptonic
decays. Comparison of our model fit with experiment as explained in the text.

Decay B (Mod.) [%] B (Exp.) [%] ΓL/ΓT (Mod.) Γ+/Γ− (Mod.)

D0 → K∗ 2.2 2.15±0.35 [18] 1.14 0.22
D0 → ρ 0.20 0.194±0.039±0.013 [25] 1.11 0.14
D+ → K∗

0 5.6 5.73±0.35 [18] 1.13 ∗ 0.22 †

D+ → ρ0 0.25 0.25±0.08 [18] 1.11 0.14
D+ → ω 0.25 0.17±0.06±0.01 [25] 1.10 0.14
Ds → Φ 2.4 2.0±0.5 [18] 1.08 0.21
Ds → K∗

0 0.22 1.03 0.13

∗ Exp. 1.13±0.08 [18]
† Exp. 0.22±0.06 [18]

into analysis. The values of form factors atq2
max are calculated using heavy meson chiral

Lagrangian. The second poles of theF+(q2),V (q2) andA0(q2) form factors are saturated
by the presence of the next radial excitations ofD∗

(s) andD(s). The single poleq2 behavior

of the A1(q2) form factor is explained by the presence of a single 1+ state relevant to
each decay, while inA2(q2) in addition to 1+ states one might include their next radial
excitations.

The obtainedq2 dependence of the form factors is in good agreement with recent
experimental results and existing theoretical studies. The calculated branching ratios are
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FIGURE 2. q2 dependence of theD0 → K∗− (upper left),D0 → ρ− (upper right) andDs → φ (lower)
transition form factors.



close to the experimental ones. We hope that the ongoing experimental studies will help
to shed more light on the shapes of theD → P,V form factors.
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