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Abstract

We define pure gauge QCD on an infinite strip of width L. Techniques similar to

those used in finite TQCD allow us to relate 3D-observables to pure QCD2 behaviors.

The non triviality of the L → 0 limit is proven and the generalization to four dimen-

sions described. The spectrum of the theory in the small width limit is analyzed and

compared to that of the two dimensional theory.
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1 Introduction

Since the pioneering work of ’t Hooft [1] Quantum Chromodynamics in two dimensions
(QCD2) has been used as a model to understand some of the features of the true theory.
It shares with its four-dimensional version many properties: confinement [2, 3], existence
of massless pseudoscalars [4, 5] and asymptotic freedom [6]. The dimensionality of space-
time allows the unveiling of the mechanism behind these in an exact manner. The drastic
reduction in dimension, the only approximation when considering QCD2 as a model for
QCD , is however too extreme.

In here we develop a continuous procedure to lower the dimensionality of a gauge theory.
We start by considering QCD in 2+1 dimension. One of the spatial dimensions is considered
of finite length L (the strip) and we study how the three dimensional theory approaches the
two dimensional one as the width of the strip is made to vanish. The choice of gauge is
crucial for the process to proceed smoothly. We pay special attention to the spectrum and
compare our findings with those of recent developments [7, 8].

The theory on the strip contains besides the conventional QCD2 (2D) gluons an infinite
set of covariant (non-gauge) interacting fields (φ, {V n

α , α = 0, 1; n 6= 0}) belonging to the
adjoint representation of the color group.

The φ field is a massless gauge-invariant degree of freedom. It is the remnant of the
gauged-away transversal field A2. This scalar field couples to the 2D gluons through the
covariant derivative to preserve the longitudinal gauge invariance. It interacts with the V
fields and undergoes a mass renormalization process which provides it with mass. Unlike the
2D gluons, whose masslessness is protected by the 2D gauge invariance, there is no custodial
symmetry for the scalar field. Moreover the non-abelian scalar field influences the 2D gluon
dynamics by dressing the coupling constant g2.

The V fields of the non abelian strip theory self-couple with couplings which are not
arbitrary, but determined by the 3D gauge invariance, lost after the implementation of the
gauge fixing condition. The couplings are not gauge invariant under the 2D gauge symmetry
because these modes are massive. The 2D gauge symmetry, however is instrumental in
fixing the couplings of the 2D gluons with the V fields through covariant derivatives. All the
couplings preserve the U(1)n topological conservation law, so that the global n-charge will
be conserved in any vertex.

The theory on the strip carries a natural infrared cutoff, the strip width L. In the
effective 2D action this scale parameter generates the perturbative masses of the V fields.
These masses do not and should not survive the infinite volume limit, since they arise from
the boundary conditions. However in QCD we expect mass scales to arise in the form of
the renormalized 2D coupling constant g2 by the effect of the scalar and V -particle loops 1.
This mass scale is fundamental in characterizing confinement in 3D [9].

1Certainly the boson loops will provide the gluon correlator with an L dependence additional to that
coming from the bare masses. If and how a mass parameter is generated depends on the resolution of the
renormalization program.
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2 Non-abelian gauge theory on the strip

A pure SU(N) gauge theory defined on an infinite strip of width L has the following action

S(L) =
∫ L

0
dx̄
∫

dx
{

−1

4
Fµν(x, x̄)Fµν(x, x̄)

}

(1)

We are calling the infinitely extended coordinates (space and time) jointly by x and the
bounded transversal one by x̄. We compactify the transversal degrees of freedom by requiring
periodic boundary conditions on the field strength F a

µν . In order to describe the gauge
dynamics on the strip we need the boundary conditions on the gauge field

Aa
µ(x, x̄+ L) = Aa

µ(x, x̄) (2)

Periodicity implies that Aa
µ can be expanded in Fourier modes

Aa
µ(x, x̄) =

1√
L

[

aaµ +
∞
∑

n=1

(

V na
µ (x)ei

2πn
L

x̄ + V na∗
µ (x)e−i 2πn

L
x̄
)

]

(3)

Our aim is to eliminate the transversal component of the gauge field by an appropriate
selection of the gauge. This can be done for all transverse modes except for the zero mode.
In order to avoid the appearance of ghosts we choose the gauge ∂2A2 = 0 [11] and obtain as
a gauge condition for the Fourier modes (3),

aa2(x) = φa(x) =
1

L

∫ L

0
dx̄Aa

2(x, x̄)

V na
2 = 0 ; ∀n 6= 0 (4)

The gauge field zero mode is therefore a gauge invariant object 2. Moreover the above
equations allow us to relate aa2 to a very familiar object in Quantum Field Theory at finite
temperature, the so called Polyakov loop. On the strip we may define the transverse Polyakov
loop as

Trg(x) = Tr exp[(ig3
√
L)φaTa] (5)

where g3 is the coupling constant of the 3D theory. As the ordinary Polyakov loop Trg(x) is
gauge invariant and it cannot be suppressed by a gauge transformation because it is a phys-
ical degree of freedom. Nevertheless the physical interpretation of the time and transverse
Polyakov loops are very different. Therefore analogies between them beyond their formal
properties must be avoided.

Once the gauge has been chosen it is possible to write the new action in terms of the
Fourier modes of the gauge field and then perform the integration in the transversal coordi-
nate obtaining in this way the 2D action

L2 =
1

2
f 2
αβ + (Dαφ)

2+

2Notice that the standard axial gauge A2 = 0 is not allowed on the strip because φ cannot be removed
by a gauge transformation.
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∑

n 6=0

{

1

2
(DαV

n
β −DβV

n
α )(DαV

n∗
β −DβV

n∗
α ) + V n

α M
2
n(φ)V

n∗
α

−i
g3

L
1

2

fαβ [V
n
α , V

n∗
β ]
}

−i
g3

L
1

2

∑

n,l 6=0

(DαV
n∗
β −DβV

n∗
α )[V l

α, V
n−l
β ]

− g23
2L

∑

l,l′ 6=0

[V l∗
α , V l

β][V
l′∗
α , V l′

β ]

− g23
2L

∑

n,l,l′ 6=0

[V l∗
α , V n+l

β ][V l′∗
α , V l′−n

β ] (6)

The squared color matrix M2
n is given in terms of the scalar Field by

M2
n(φ)ab = (m2

n +
g23
L
φ2)δab −

g23
L
φaφb − 2i

g3
L1/2

mnǫabcφc (7)

The covariant derivative is defined by

Dα ≡ ∂α − i
g3

L
1

2

[aα, .]. (8)

Finally the zero mode tensor fαβ is just the ordinary 2D gluon term

fαβ = (∂αaβ − ∂βaα)− i
g3

L
1

2

[aα, aβ] (9)

Since our final goal is to connect the theory on the strip to two dimensional theories we must
scale the coupling constant in the proper way. Our choice of normalization for the basis of
the Fourier expansion leads to

[aα] = [V n
α ] = [φ] = 1 (10)

the familiar dimensions of the two dimensional fields. Therefore only the coupling constant
needs to be scaled in order to recover the canonical QCD2 dimension , [g2] = M . Its scaling
becomes

g2 =
g3

L
1

2

(11)

The effective 2D action Eq.(6) has a global [U(1)]n (n → ∞) symmetry whose associated
conserved charges are the mode numbers. Its quantization is a necessary condition for the
fields to fulfill the required periodic boundary conditions Eq.(2).

The effective 2D action is invariant under what we call longitudinal gauge transformations.
This is the symmetry left after imposing the gauge fixing conditions, Eqs.(4). We observe
that any gauge transformation behaving as

∂2U(x, x̄) = 0 ⇔ U = U(x) (12)

preserves the axial gauge conditions and transforms the 2D Fourier fields as

aα → UaαU
† − i

g2
(∂αU)U †

φ → UφU †

V n
α → UV n

α U
† (13)
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The non-covariant transformation law of the aα field guarantees the covariance of the
2D field strength fαβ and thus the invariance of the first term of Eq.(6). For this reason
these fields describe the two dimensional gluons. Besides the conventional gluons we find an
infinite set of covariant (non-gauge) interacting fields (Φ, {V n

α , n = 1, ...} belonging to the
adjoint representation of the color group. Since they carry color charges they interact with
the 2D gluons in a gauge invariant way. The derivatives terms of these latter fields are defined
in terms of covariant derivatives, the non derivative terms depend on the covariant field V n

α

and therefore the invariance of the action (6) under longitudinal gauge transformations is
explicit.

3 The small ǫ regime of QCD on the strip

In order to study the 2D effective action it is convenient to change the parameters defining
the theory (g3, L) into a more befitting set to work in 2D,

g2 ≡
g3
L1/2

; [g2] = M (14)

ǫ ≡ g3L
1/2; [ǫ] = 1 (15)

At a given width L and coupling constant g3 we can characterize our theory by fixing
the 2D gauge coupling constant g2 and the dimensionless width ǫ. As far as the effective
2D theory is concerned ǫ acts as a dimensionless coupling constant. We proceed to find an
expansion in this coupling.

In a naive analysis, and since the lagrangian masses of the V fields are

mn =
2πn

L
=

2πng2
ǫ

(16)

we would expect the non-zero mode fields to disappear in the ǫ → 0 limit. Indeed, and just
on classical grounds, the integration of the infinitely heavy particle sector has no consequence
on the effective action for the remaining massless degrees of freedom, that is, the 2D gluons
and the scalar field. At tree level, the sole contribution of the non-zero modes to the reduced
action (6) would be through the substitution of the V field by its vev at ǫ = 0

V n
α →<V n

α >= 0 (17)

So that,

LQCD3

cl =
1

2
f 2
αβ + (Dαφ)

2 (18)

However the classical approach Eq.(18) does not provide the correct answer to the problem
of the real ǫ → 0 limit of QCD on the strip. The reason is that there are important quantum
effects because the loop and ǫ expansions are not independent.

The non-zero mode fields become infinitely heavy in the ǫ → 0 limit and a good descrip-
tion of the system can be given in terms of the lighter degrees of freedom. However the
integration of the heavy modes must be performed in a more accurate way than previously
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(Eq.(17)) presented. The effective potential for 2D gluons and scalar will include contri-
butions arising from many heavy V loop diagrams. In all of them, 2D gluons and scalar
particles will appear as external legs. The dependence on ǫ of these multi-loop diagrams
will come through the V masses Eq.(16) exclusively. Thus we can find the order in ǫ of any
diagram just by analyzing its mn dependence.

Consider an arbitrary diagram of degree C in the coupling constant (∼ gC2 ) and B external
legs at zero momentum, with a complicated structure in terms of the vertices and propagators
defined by the Feynman rules of the action (6). Its behavior can be characterized as 3

diagram ∼ (g2)
CmD

n = (g2)
C+Dǫ−D = (g2)

2ǫ−D (19)

where D can be expressed in terms of the superficial degree of divergence d, the number
of internal transversal propagators i(V V )⊥ , and the number of external φV V vertices of the
diagram by

D = d− 2i(V V )⊥ + bφV V (20)

Using standard topological graph relations, we obtain

d = 4− 2l − b′ − 2bφV V + 2i(V V )⊥ (21)

where l is the number of loops and b′ stands for the number of external legs not of the φV V
kind. That is

b = b′ + bφV V (22)

After some elementary algebra we obtain an expression relating the D to the number of
loops l,

D = 4− 2l − b (23)

It is now easy to understand why the classical action (18) cannot be the real ǫ → 0 limit
of QCD3. This limit is defined by all the possible D = 0 operators we can construct out of
the external 2D gluon and scalar fields. Since

{b ≥ 2, l ≥ 0} (24)

the above condition can be fulfilled only if

{b = 4, l = 0} or {b = 2, l = 1} (25)

The only operators which can appear in the effective action verifying the first condition and

compatible with gauge invariance are

f 2
αβ

aα=uα=ctant−→ −g22[uα, uβ]
2 = O(u4)

(Dαφ)
2 uα,φ=ctant−→ −g22[uα, φ]

2 = O(φ2u2) (26)

3Recall that all the operators contributing to the effective potential have to have mass dimension equals
2.
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They give raise to the classical action (l = 0) Eq.(6). But we have also non-classical (l = 1)
contributions to the effective potential. They correspond to operators arising from two
external legs one-loop graphs {b = 2, l = 1}. The one-loop diagram with two external zero
momentum gluon legs is zero, as local gauge invariance requires.4 On the contrary the scalar
field is not a 2D gauge field. It can get a mass term through the one loop diagrams shown
in Fig.1, which lead to

µ2
φ(ǫ) =

g22N

π
+

g22N

2π
ln(

1

ǫ2
) +O(ǫ2 ln ǫ) (27)

Consequently, for small values of ǫ dynamics is not given by the classical action (18) but by
the quantum corrected one,

SQCD3 =
∫

d2x
{

1

2
f 2
αβ + (Dαφ)

2 + µ2
φ(ǫ)φ

2 +O(ǫ2 ln ǫ)
}

(28)

which allows us to provide the exact line limit of QCD3.
The quantum fluctuations generated by the V -excitations are able to provide the classi-

cally massless scalar field with a very heavy mass. Thus the spectrum of QCD on the strip
contains just one single massless field, the 2D gluon. The remaining particles, scalar and
excited modes, are massive.

In QCD3 the decoupling of the heavy sector is caused by quantum effects in the form of
a divergent mass for the scalar particle in the ǫ → 0 limit,

µ2
φ(ǫ) =

g22N

π
+

g22N

2π
ln(

1

ǫ2
)
ǫ→0→ ∞ (29)

The 2D gauge field is the only massless degree of freedom of the theory and thus the long
range 2D dynamics (R ≫ g−2

3 ) is completely determined by 2D gluon physics.

4 The spectrum of the effective small ǫ theory

The scalar field becomes, like its transversal partners V ’s, infinitely heavy in the completely
reduced action (ǫ = 0). In the small ǫ regime the scalar field φ, although still very heavy,
is the lightest of all the transversal particles (µ2

φ ∼ ln(1/ǫ2), m2
n ∼ 1/ǫ2). Consequently the

appearance of transversal gluons effects takes place in a much softer way than in the classical
reduced action Eq.(18). However QCD on the strip in the small ǫ regime (28) still contains
highly non-trivial gluon physics.

We can take advantage of the fact that the scalar field is very heavy to give a non-
relativistic (NR) treatment to the action (28). Our interest lies in the calculation of (very
massive ∼ µφ) scalar bound states which do not show up in the ǫ → 0 limit (pure QCD2).

We are now in an analogous situation to that found in ’t Hooft’s model. The heavy
scalar field interacts with the 2D gluons as heavy fermions do. Although fermions and
bosons verify different relativistic equations, they give raise to an identical NR formalism in

4In fact, 2D gauge invariance prevents the two gluon diagram at zero momentum to survive to all orders
in the loop expansion. No gluon mass term is allowed by gauge symmetry.
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2D when masses are large enough5. At lowest order in the inverse mass expansion (1/µφ), the
suppressions in the equation for the bound-state amplitude are the same as those appearing
in leading order in 1/N [1], namely, absence of sea quark effects, vertex corrections and
non-planar diagram contributions.

The bound state mass equation is nothing but a one dimensional Schrödinger equation
for a φ(1)φ(2) system interacting through a color gauge field. Only the zero component of the
gauge field contributes to the potential through the static term g2T

aaa0. Other gauge field
dependent contributions to the potential are suppressed by powers of 1/µφ. In the a1 = 0
axial gauge, the zero component of the gauge field is

aa0(x12) = −g2
2
T a
(2)|x12| ⇒ V̂12 = g2T

a
(1)a

a
0(x12) = −g22

2
(T a

(1)T
a
(2))|x12| (30)

thus the eigenvalue equation for the bound state wave function Φ12(x) becomes

− 1

µR

d2

dx2
Φ12(x) + σ|x|Φ12(x) = EΦ12(x) (31)

The string tension σ is given in terms of the 2D coupling constant and the color invariant
CN as σ = 1

2
g22CN

6. The mass µR is the renormalized scalar mass, obtained by dressing the
φ mass Eq.(29) by the action of 2D gluons. The calculation of the renormalized scalar mass
has been carried out in the context of finite temperature QCD3 under the name of electric
mass, or inverse Debye screening length [11], which properly applied to the strip becomes

µ2
R(ǫ) =

g22N

4π
ln(

1

ǫ2
) (32)

The solution of the one dimensional differential equation (31) is known. It is given in terms
of the Airy function [11, 12]

Φr(x) = Ai[(µRσ)
1/3x− εr] (33)

where −εr is the rth zero of Ai or Ai’ for odd or even states, respectively. The energy of the
bound state and thus the mass of the rth glueball is given by

Er(ǫ) = 2µR + εr(
σ2

µR

)1/3

= g2

√

2N

π
[ln(

1

ǫ2
)]1/2 + εrg2

(

C2
N

2

√

π

2N

)1/3

[ln(
1

ǫ2
)]−1/6

(34)

The mass of these glueball states grows as ǫ approaches zero. They decouple eventually
leaving ordinary 2D gluons as the only remnants of color interaction.

5In higher dimensions this limit is also the same with the exception of the term proportional to the spin
S.B. This terms is not present in 2D because of the absence of spin.

6CN is the color expectation value −<(12)|T a

(1)T
a

(2)|(12)>, where the color state |(12)> is

a |Ttot = 0, {N2− 1} ⊗ {N2− 1}> state. For N = 2, CN = 3/4.
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In the small ǫ regime the lowest glueball spectrum corresponds to light glueball φφ bound
states. But they are certainly not the only glueball states one can generate from the strip
action (6). The non-zero mode fields Vn are also present. They can likewise yield glueball
particles as massive VnV

∗
n bound states. Since V states are heavier than the scalar particles

we expect the lightest VnV
∗
n spectrum to be above the lowest mass scalar glueballs Eq.(34).

The way to proceed with VnV
∗
n bound states is identical to that we followed for scalar

glueballs. First of all, NR approach is even better in this case than for scalar particles since
µφ < mn for small ǫ’s. The only difference lies on the presence of V selfcouplings and of an
additional V φ interaction in the V action Eq.(6).

As far as the V self-interaction is concerned we can simply neglect it to lowest order in
ǫ. As we saw in Eq.(17), in order to calculate the lowest ǫ contributions we must perturbate
V around its classical value at ǫ = 0. That is, we must expand the non-zero mode field Vn

around zero

V̂ n
α =<V̂ n

α> +δV̂ n
α = δV̂ n

α (35)

At lowest order in the ǫ expansion only quadratic terms in V are relevant in the strip action.
Higher power V terms are suppressed as ǫ2.

The NR limit of the equation for a VnV
∗
n bound state is then exactly the same as Eq.(31)

except for an extra interaction term in the potential. This is due to the existence of an
additional V V φ vertex supplying an interaction which survives to the NR limit. However
for this piece of the potential is a 2D OSEP (One Scalar Exchange Potential), it is strongly
short range decaying exponentially with the scalar mass (∼ e−µφ|x|). As a first approximation
(recall µφ is very large for small ǫ) we do not consider it and we evaluate the spectrum taking
into account the confining 2D OGEP (One Gluon Exchange Potential) exclusively. Therefore
we can calculate with a rather good accuracy the ǫ dependence of the V glueball spectrum
just by copying the result we obtained for scalar glueballs and making the substitution

µR → mn (36)

That is, the mass of the rth glueball state made out of two massive gluons with U(1) charge
n (VnV

∗
n state) will be

E(n)
r (ǫ) = 2mn + εr(

σ2

mn
)1/3

= g2
4πn

ǫ
+ g2εr

(

C2
Nǫ

8πn

)1/3

(37)

The equations (34) and (37) are valid for the low energy spectrum. High energy modes
(binding energy ∼ µφ) have to be treated in a relativistic framework. The highest modes
(ultrarelativistic ones) can be obtained using the results of Demerterfi et al. [7]7

7Notice they calculate with the massless adjoint action (18) which is not the reduction QCD3 into the
line limit.
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5 Conclusions

In recent times there have been a growing interest in the study of QCD2 coupled to massless
adjoint matter[7, 8]. That is in the study of the classical reduced action (18). This theory
possesses some appealing properties. It is a supersymmetric theory, it is super- renormaliz-
able, it owns a non-trivial glueball spectrum and besides it shows confinement and asymptotic
freedom. It is hoped that, as in ’t Hooft’s model, one can keep track of some interesting
features of the real theory by studying the action (18) as a 2D model of QCD. This hope
would be mainly based on the dimensional reduction process. In this way the role of the
scalar field would be to give a transversality component to the theory 8 absent in pure gauge
QCD2.

However, as we have just proved, Eq.(18) does not provide the right dimensional reduction
of QCD in 2+ 1 dimensions. The massless character of the scalar field is a classical feature.
Vacuum fluctuations corresponding to the massive transversal modes renormalize the scalar
mass. This renormalization process is perfectly defined and gives rise to an ǫ-dependent
non-zero scalar mass Eq.(29). Consequently the scalar mass is not an arbitrary parameter
of the theory but a well defined function of the dimensionless width ǫ.

Another important fact indicated by the small ǫ expansion action Eq.(28) is that the
line limit (ǫ → 0) of gluon QCD3 is gluon QCD2 . In the framework of an interpolating
model of QCD3 like that given by Eq.(6), this means that QCD2 and the successive effective
theories obtained by increasing the value of ǫ are those which can be connected to real
QCD3 in the ǫ ≫ 1 regime. For instance we expect that if there exists some property of
the line limit (ǫ → 0) theory surviving in the infinite volume limit this will correspond to
QCD2 and it will be respected by all the effective actions interpolating between (ǫ → 0) and
(ǫ → ∞). The flux generated by the flow of the effective actions with ǫ is perfectly defined.
For the complexity of the effective 2D theories representing QCD3 increases rapidly with
the value of ǫ Eq.(23), we come to the conclusion that pure QCD2 and the one loop action
(28) are the simplest 2D models one can relate to 3D QCD9. Certainly there is a limit in
the validity of the perturbative approach. The ǫ expansion will break down for large values
of ǫ. Nevertheless this flow can be extrapolated to the non-perturbative region by means
of lattice calculations [13]. Finite temperature lattice results can be likewise interpreted on
the strip after a suitable euclidean rotation. The interesting finite temperature operators in
the strip framework are spatial-like, which become time-like ones on the strip. This is the
case of the finite temperature spatial Wilson loop corresponding to the ordinary strip Wilson
loop. The analysis of lattice results points out the existence of a continuous behavior of the
spatial-like Wilson loop over the phase transition point. Moreover it seems that the spatial-
like Wilson loop gets stabilized already at this point reaching its zero temperature value.
When properly interpreted in the strip language this fact means that physical properties,
as the glueball spectrum or the string tension, can be continuously extrapolated over the
non-perturbative region to the three dimensional ǫ regime [9].

To end we extend our results to four dimensions in a descriptive fashion. Consider pure
gauge QCD defined on R2 ⊗ [0, L] ⊗ [0, L]. We perform a double compactification in the

8Recall φ is nothing but the A2 zero mode.
9In terms of 2D gauge degrees of freedom. It is not excluded an alternative formulation using strings, for

example [10]. In any case this approach should be equivalent to that presented here.
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transverse coordinates. The gauge fixing procedure introduces now two 2D scalar fields
instead of one (one per each compactified dimension). They are massless classically . The
existence of heavy non-zero U(1) ⊗ U(1) modes allows the reduction of dynamics to the
scalar sector in the small L regime. By means of the same compactification techniques used
for QCD on the strip one can construct the effective action [9]. The lowest order in the ǫ-
expansion of the 2D effective action for QCD4 becomes

SQCD4 =
∫

d2x
{

1

2
f 2
αβ + (Dαφ)

2 + µ2(ǫ)φ2+

+(Dαφ
′)2 + µ2(ǫ)φ

′2 + a(ǫ)φφ′ − g22[φ, φ
′]2 +O(ǫ2 ln ǫ)

}

(38)

The integration of the U(1)⊗ U(1) non-zero mode fields is performed analogously as on
the strip. The non-zero mode fields loops give a very heavy mass (µ2(ǫ) ∼ ln(1/ǫ)) to the
scalar sector. They also give raise to an additional φφ′ term. This crossed term has the
effect of breaking the mass degeneracy of the scalar doublet. This can be manifestly seen by
introducing the field combinations

Φ+ ≡ 1√
2
(φ+ φ′)

Φ− ≡ 1√
2
(φ− φ′) (39)

which yields to the following effective action in the small ǫ regime

SQCD4 =
∫

d2x
{

1

2
f 2
αβ + (DαΦ+)

2 + µ2
+(ǫ)Φ

2
+

+(DαΦ−)
2 + µ2

−(ǫ)Φ
2
−

}

(40)

The masses are given by

µ2
+(ǫ) = µ2(ǫ) +

a(ǫ)

2
ǫ→0→ ∞

µ2
−(ǫ) = µ2(ǫ)− a(ǫ)

2
ǫ→0→ ∞ (41)

We see that, like in the strip, scalar particles become extremely heavy in the small ǫ
regime. They decouple eventually from the 2D gluons in the ǫ → 0 limit. The parallelism
between the previous action and the 2D effective action we found for the strip Eq.(28) is
evident. Thus we expect to reproduce qualitatively the main features of QCD on the strip
at small ǫ’s. The main ingredients are identical in both theories. Namely, the existence of a
very heavy constituent matter and the presence of a linearly confining interaction supplied
by the exchange of 2D gluons.
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Figure Captions

Fig.1 : Diagrams contributing to the scalar mass in lowest order in ǫ. Solid lines represent
adjoint scalar fields φ. Double wavy lines represent heavy vector modes V n

α .
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