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I. INTRODUCTION 

More than a half century has elapsed (at the time of writing) since the first 
pioneering attempts by Fermi [l] ,  Heitler and Ma [2], and Hamilton [3] 
(following a related study by Kikuchi [4]) to address the methods of quantum 
electrodynamics (QED) to resonance energy transfer (ET). a process in which 
the excitation energy of an atom, molecule, or other species D (to be referred to 
as the donor) is transferred to another entity A (the acceptor) separated from it 
by some distance R. The early QED theories of this process [ 1-31 concentrated 
on the radiative ET principally manifest at far-zone distances R >> X, where 
h = h/2n and h is the wavelength associated with the photon conveying the 
energy from D to A .  In these early works it was shown that the transfer 
probability properly behaves as R-’. Furthermore there was a relativistic time 
lag of R / c  associated with propagation of the photon to the acceptor; in other 
words, the process satisfies the basic requirements of causality. This much is 
in agreement with what is expected from classical electrodynamics. Radiative 
transfer of energy can take place over various distances, including those of 
cosmic scale ( in  the case of energy coming from distant stars). At the other 
extreme, however, radiative energy transport can also occur between donor 
and acceptor sites within a single object (as long as R >> X); in particular, it 
is a mechanism leading to the re-absorption of emitted photons in optically 
thick samples [5,6]. 

Almost at the same time as the first work on the QED of radiative ET [ 1-31, 
another radiationless mechanism was suggested by Perrin [7], Forster [8], 
Dexter [9] and Galanin [ 101 to deal with near-zone ( R  << h)  energy transport. 
This mechanism treats the process as one induced by the instantaneous 
(Coulomb) interaction between the transfer species D and A .  As a result, 
Forster arrived at an R-6 dependence for the transfer rate in the case where the 
process is governed by dipole-dipole coupling between the donor and acceptor 
[8]. Radiationless ET takes place in a wide variety of condensed systems, 
such as concentrated solutions [6,1 I ]  and, most importantly, in photosynthetic 
light-harvesting antennas [ 12- 141. Through its contextual significance in 
advancing both the fundamental understanding of biological photosynthesis, 
and informing strategies for synthetic mimicry of the latter, the process has 
attracted a greatly increasing interest in recent years. 

In the 1960s Avery [I51 and Gomberoff and Power [16] attempted to use 
the QED approach to generalize the Forster theory of short-range (radiation- 
less) ET L8,IO.l I ]  to arbitrary transfer distances. Such a unified approach 
to radiationless and radiative ET, in which the process is considered to be 
mediated by intermolecular propagation of a virtual photon, has received 
a considerable boost in the 1980s [17-221 and 1990s [22-321. Through 
these studies it has been demonstrated [15,16,18,19,21,27,31] that the unified 
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mechanism reproduces the Forster RP6 dependence of the transfer rates in 
the near zone - whereas in the far zone, resonance ET equates to emission 
of a photon by a donor molecule and subsequent recapture of the photon 
by an acceptor. It has also been shown [33] how the unified theory may be 
extended to include the effects of very short-range nondipolar coupling, asso- 
ciated with localized molecular-orbital interactions through the involvement 
of charge-transfer configurations. This approach offers a seamless extension 
of the Forster theory to regions of strong orbital overlap, where excitation 
transfers as in the Dexter exchange interaction [9]. In other developments 
[25,28,30,34-381, the time evolution of the transfer dynamics has been explic- 
itly considered within the framework of the unified theory, addressing in detail 
the transfer dynamics beyond the rate regime. Among other issues, an intricate 
problem of causality in ET (initially raised by Fermi [ l ] )  has been reexam- 
ined [25.39-521. Another related problem concerns collective emission (super- 
and subradiance) by two atoms interacting via the resonance dipole-dipole 
coupling [34,35,53 -581 a phenomenon finding an interest in laser cooling 
[59,60]. It is also worth mentioning the spontaneous emission by a molecule 
near a metal surface [61-651. Such a process might be considered in certain 
respects as the resonance ET between the molecule and its image. although 
a more rigorous analysis of the phenomenon is to be based on the coupling 
of the excited molecule to surface plasmons [64,65]. It is noteworthy that the 
resonance ET belongs to a wider class of bimolecular photophysical processes 
[66,67] mediated by a virtual photon. Other bimolecular processes. such as the 
(third-order) single-photon cooperative absorption [68-701 or emission [7 11, 
involve creation or annihilation of real photons as well. 

Another important raft of issues relates to the incorporation within the 
unified theory of the effects of the surrounding medium. Although a handful 
of sporadic attempts to accommodate medium effects in excitation transfer 
appeared previously [15,22,24]. i t  was the case until quite recently that most 
QED theories totally ignored the influence of such effects. The 1989 treat- 
ment by Craig and Thirunamachandran [22], incorporating effects of a third 
molecule in the resonance ET between a selected pair of molecules, led to a 
new discussion of the way to include dielectric characteristics. It was suggested 
from macroscopic arguments that the vacuum dielectric permittivity EO entering 
the rate of excitation transfer in k u o  should be replaced by its medium coun- 
terpart E to represent the screening. Nevertheless, in using this prescriptive 
approach, other important medium effects. such as local fields, energy losses 
due to the absorbing medium. and influences on the character of the transfer 
rates in passing from the near zone to the far zone, were not considered. 

More recently a QED theory has been developed [27,28,3 1 3  that systemat- 
ically deals with these issues. A fully second-quantized formalism has been 
adopted to treat the effects of the molecular medium at the microscopic level. 
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In contrast to conventional QED theories for the resonance ET between a 
pair of species in vacuum [15-261, in which the process is considered to be 
mediated by the intermolecular propagation of virtual photons, the new theory 
[27,28,3 I] has been formulated by invoking the concept of bath polaritons 
("medium-dressed photons") mediating the ET. To this end, the approach has 
some analogies with related work [72] on intermolecular forces and superra- 
diance, in which a lossless medium was modeled by an ensemble of two-level 
species. The theory developed in Refs. 27 and, 28 (as well as subsequent 
work [31,73]) accommodates an arbitrary number of excited states of elec- 
tronic. vibrational, and other origin for each molecule of the medium. This 
includes, in particular, a case of special interest, where the excited-state spec- 
trum of the molecules is sufficiently dense and smooth for it to be treated 
as a quasicontinuum. In such absorbing regions of the spectum, the exponen- 
tial (Beer law) decay factor emerges in the microscopically derived rates for 
ET between a selected pair of species (pair-transfer rates). This feature also 
solves the problem of potentially infinite rates of the resonance ET in the 
ensemble, due to the far-zone inverse-square law, featured in  the pair-transfer 
rates [27,28,31] (see Section V for more detail). Furthermore, the pair rates 
contain other refractive modifications, such as the local field factors. 

Other recent studies have analyzed the resonance coupling between 
molecules situated in photonic bandgap crystals [7 1,74-781. in plasma media 
[79], between metal or dielectric plates [80,8 11, in dielectric microparticles 
(Mie particles) [82-861, and in other cavities [87,88]. Such systems can exhibit 
an optical response that fails to support the propagation of certain optical 
frequencies.* The spontaneous emission is inhibited within the bandgaps of 
the photon spectra [7 1,89-931 and no radiative limit exists for the resonance 
ET. Nevertheless. it has been demonstrated that ET can take place quite 
efficiently between species separated by distances up to those comparable with 
the wavelength of light or even somewhat larger [71]. This might serve as an 
alternative relaxation channel for excited atoms or molecules, the transition 
frequencies of which are tuned to the photonic bandgap. 

It is the purpose of this chapter to review the QED approach to energy 
transfer taking place both in the free space (electromagnetic vacuum) and in 
media. The plan in the following sections is to work as follows: 

In Section I1 we define the basic concepts of quantum electrodynamics 
of resonance energy transfer, subsequently providing the derivation of 
the transition matrix element for the ET between a pair of chromophores 

*On the other hand, the photon spectra might also exhibit singularities (such as Mie 
resonances [81-861) at some other frequencies. 
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separated at an arbitrary distance R. At this stage the medium surrounding 
the transfer species. is not explicitly specified. 
The second step (Section 111) is to calculate the tensor for the resonance 
dipole-dipole coupling between a pair of molecules (or atoms) in the 
electromagnetic vacuum. in a photonic bandgap crystal, as well as in a 
homogeneous dielectric medium. The latter dielectric medium is consid- 
ered to be comprised of discrete atoms or molecules, so that the analysis 
is free of phenomenological assumptions. . The subsequent analysis concentrates on the ET in the dielectric medium. 
In  Section IV the energy-level structure is included for each donor and 
acceptor. Accordingly, the transfer rate is represented in terms of the 
overlap integral between the donor fluorescence and the acceptor absorp- 
tion spectra (Section IV.A), establishing a firm connection with both the 
Forster RP6 radiationless result and the radiative limit. The transfer rate 
contains the required refractive modifications, including, inter alia, the 
local field factors. The consideration of the range dependence of the 
fluorescence depolarisation (Section 1V.B) illustrates the approach. . The next element (Section V) is to analyze the total rate of decay of 
an initially excited molecule, due to the ET to the surrounding medium. 
The contribution associated with the ET to the far-zone species is then 
identified as the rate of spontaneous emission in the absorbing medium. 
The emission rate contains the local field factors that support the previous 
phenomenological results obtained using other methods. . Section VI analyses in detail the transfer dynamics for a pair of species in 
the dielectric medium. The section not only extends consideration beyond 
the rate description, but also reexamines conditions for that regime itself. 
That leads to incorporation of the shifts in energy for both the ground 
and excited states of the transfer species, due to the interaction of these 
species with the molecules belonging to the medium and also with each 
other. Attention is then focused on situations that do not f i t  into the rate 
regime, and where different dynamical aspects are apparent. The problem 
of causality in the ET is also here discussed. . Finally, the concluding section, Section VII, summarizes the material 
presented in this chapter. 

11. GENERAL FORMULATION 

A. Hamiltonian 

The framework within which the unified theory naturally emerges is 
nonrelativistic (molecular) QED [94-961, best implemented in its multipolar 
(Power-Zienau-Woolley) formulation [96-981. In such a multipolar 
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formulation, the Coulomb interaction between electrically neutral molecules 
(or atoms) completely cancels, and it is the coupling of the molecules with the 
transverse photons that is responsible not only for molecular absorption and 
emission but also for the intermolecular coupling via the exchange of virtual 
photons. Consequently, retardation is naturally accommodated, reflecting the 
finite speed of signal propagation. It is such retardation features, for example, 
that are responsible for modifying at mesoscopic distances the inverse sixth- 
power distance dependence of the London potential (the attractive part of the 
6- 12 Lennard-Jones potential) to the correct and experimentally verified form 
given by the Casimir-Polder formula- in which the asymptotic behavior at 
large distances proves to be of inverse seventh power form [96,99]. 

In the multipolar formulation of QED, the Hamiltonian for the system can 
generally be written as 

X X 

where Hrad is the Hamiltonian for the radiation field [explicitly presented in  
Eq. (2.4) and H r n o ~ ( X )  is the Hamiltonian for the molecule X, with summations 
taken over all the molecules of the system. Note that the term nzolecirle is used 
here generically to encompass other electrically neutral species as well, such 
as atoms. The coupling between the molecular subsystem and the quantized 
field is represented by a set of terms Hint(X) describing interaction of the 
field with the individual molecules. For present purposes it is sufficient to 
express the interaction terms in the electric dipole approximation, though the 
formalism we employ is perfectly amenable to the incorporation of higher 
mutipole terms [30]. Thus we write 

where p(X) is the electric dipole operator of the molecule X positioned at Rx 
and dL(Rx) is the electric displacement field operator at the molecular site. 
The latter displacement operator and the radiation Hamiltonian may be cast 
as [96]: 

and 
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where in each expression a sum is taken over radiation modes character- 
ized by wavevector k and polarization vector e('.)(k) (with A = 1,2);  d * ) + ( k )  
and a(*)(k) are the corresponding operators for creation and annihilation of a 
photon, and V is an arbitrarily large quantization volume. 

B. Resonance Energy Transfer 

We shall deal with the resonance ET between a selected pair of species (to 
be referred to as donor and acceptor) labeled D and A. For this purpose. the 
full system will be divided into two parts, one subsystem consisting of the 
transfer species D and A. and the other referred to as the radiatiiv (polciriron) 
bath. The latter bath comprises the quantized electromagnetic field and the 
remaining molecules that constitute the surrounding medium. Note that the 
molecules of the medium may, but do not necessarily, differ in type from the 
donor and the acceptor. With regard to the chosen partitioning of the system, 
the full  Hamiltonian (2.1) splits into the zero-order Hamiltonian H' and the 
interaction term V ,  as 

H = H " + V  (2 .5)  

(2 .6)  

and where 

is the "bath" Hamiltonian containing the radiation Hamiltonian Hrud and 
contributions from all molecules other than the donor and the acceptor. 

To represent the ET from the donor to the acceptor, the initial and final 
statevectors are chosen to be the following eigenvectors of the zero-order 
Hamiltonian Ho: 

where the corresponding eigenenergies are 

and 10) represents the ground state of the polariton bath. Note that the subse- 
quent calculation of the transition matrix element (Section 1I.C) is not affected 
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if the quantity 10) is replaced by any other radiative statevector characterized 
by a definite number of medium-dressed photons.* The modifications can 
emerge only in the fourth order of perturbation [ lo l l ,  which is beyond of 
the scope of the present analysis. In  is intructive that the same radiative part 
10) enters the initial and final statevectors [Eq. (2.8)], representing the ET. 
The change in the radiative state would lead to the higher-order bimolec- 
ular processes, such as the single-photon cooperative absorption [66-701 or 
emission [71]. 

Here evnc is the zero-point energy of the bath; Ill*) and ID) label the initial 
and final states of the donor, IA) and IA*) are the corresponding statevectors 
of the acceptor (where the asterisk refers to a molecule in an electronically 
excited state), and r p  and eA (eo and eA*) are the appropriate energies of the 
donor and acceptor in their initial (final) states. For generality the statevectors 
of donor and acceptor are considered to implicitly contain vibrational contri- 
butions that are normally separable from the electronic parts on the basis of 
the Born-Oppenheimer principle, both for the ground and excited electronic 
molecular states. The vibronic sublevels are explicitly included in the theory 
in Section 1V.A. 

It is noteworthy that conventional (semiclassical) theories of radiation- 
less ET [6,8- 111  do not invoke any photon states, and the ET appears as a 
first-order process induced by an instantaneous Coulomb interaction. Such an 
approach is justified in the near zone, when the distance R of donor-acceptor 
separation is much less than the reduced wavelength of light 3i 1 h/2ir, where 
h is the wavelength of light corresponding to the transfer energy. In the QED 
formalism employed here, the quantized electromagnetic field is treated on 
an equal footing to the molecular subsystem, both subsystems comprising a 
united dynamical system described by the full Hamiltonian H .  

C. Transfer Rates 

Let us suppose that the process can be described in  terms of transfer rates, a 
condition satisfied by weakly coupled (i.e., most) ET systems. The detailed 
criteria for this assumption and extensions of the analysis beyond the rate 
regime are considered in Section VI. The rate of ET, associated with the 
initial and final states (2.8), can generally be written using the Fermi golden 
rule (see Section VI for more detail and Refs. 1 and 102 for examples): 

(2.10) 

* RDDI is not altered in the squeezed radiative vacuum as well [LOO]. 
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where T is the transition operator: 

where the higher-order terms can for our purposes be neglected. The first- 
order term T"' = V does not contribute to the transfer rate in the multipolar 
formulation of QED employed: such a term describes processes involving the 
emission or absorption of a medium-dressed photon accompanied by transi- 
tions of individual molecules (see Fig. I ) .  It is the second-order contribution 
T'" that is the leading term responsible for the resonance ET in question, a 
process involving changes in quantum states of both species D and A without 
alteration of the state of the radiative bath. 

Using Eqs. (2.4)-(2.9), the second-order transition matrix element reads 

where 
f7wD. E eD. - eD = eA' - eA > 0 (2.13) 

is the excitation energy of the donor (as gained by the acceptor) and 

f i l l u  = e,  - evac (2.14) 

is the difference in energies between the excited and ground states of the bath. 
Here also IM,(a)) denote intermediate states in which both the donor and the 

A 0" 

(a) (b) 
FIGURE 1. Time-ordered diagram for ( a )  photoabsorption and (b )  photoemisGon of a 

medium-dressed photon labeled by index 0.  
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acceptor are either in the ground ( q  = 1) or in the excited (q  = 2) electronic 
states: 

IM I ( 0 ) )  = 10) IA) la) (2.15) 

(2.16) 

where la) labels the excited states of the radiative bath that are accessible 
though a single action of the interaction operator V on the ground-state vector 
10). Accordingly, the ET is generally regarded as being mediated by such 
elementary excitations (the bath polaritons) representing photons “dressed’ by 
the material medium. 

The two types of intermediate state IM,!(a)) (q  = 1 , 2 )  correspond to the 
two possible sequences of transitions undergone by the donor and acceptor. In 
the first case ( q  = 1). the transition D* + D precedes the transition A + A*, 
as depicted in Fig. 2a, whereas in the second case ( q  = 2) one has the oppo- 
site ordering (Fig. 2b). The latter sequence describes an apparently anomalous 
situation where the upward transition of the acceptor A is accompanied by 
the creation of a virtual polariton a, and the subsequent annihilation of the 
polariton induces the downward transition by the donor D* + D. Never- 
theless, both types of transition must be included in the theory according 
to the normal rules of time-dependent perturbation theory. The contribution 
associated with Fig. 2b plays an important role in the near zone, where the 
uncertainty in energy of a mediating polariton greatly exceeds the excitation 
energy transferred. 

Substituting Eqs. ( 2 . 2 ) ,  (2.8), (2.9) and (2.14)-(2.16) into Eq. (3.12). one 
arrives at the following expression for the transition matrix element: 

where implied summation is assumed over the repeated Cartesian indices 1 
and j .  and where 

(R = RA - R D )  (2.18) 

is the tensor for the resonance dipole-dipole interaction (RDDI) between a pair 
of molecules within the medium. The retarded tensor d/,(w, R) is influenced 
by the material medium through the yet unspecified intermediate polariton 
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D D A’ 

FIGURE 2. The two time-ordered diagrams for resonance ET, time progressing upward. 
In both cases the transfer of energy t’rom the initially excited donor D* to the acceptor A is 
mediated by a photon “dressed- by the medium (virtual polariton), as labeled by index u. 

states 0 featured in  Eq. (2.18). Here also 

are the transition dipole moments of the donor and acceptor, respectively. 
The superscript “full” indicates that the molecular state vectors entering the 
transition dipoles (2.19) contain both electronic and vibrational contributions, 
as made explicit later. 

III. ANALYSIS OF THE RDDI TENSOR e, ( w ,  R )  

A. Vacuum Case 

We commence the analysis of the RDDI tensor with the simplest case, where 
the transfer species are situated in the electromagnetic vacuum. Calculations 
of a similar kind can be traced back to the papers by Stephen [35 ] ,  Avery [ 151, 
Gomberoff and Power [ 161, and others [17-311. In such a vacuum case, the 
bath Hamiltonian reduces to that of the “free” radiation field, H b n t h  = in 
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which the corresponding eigenstates and eigenenergies take the form 

and 
n, = Wk = ck (3.2) 

where the state vector 10) now describes the electromagnetic vacuum. Here the 
intermediate (virtual) photons are considered to be the plane waves character- 
ized by the wavevector k and polarization h. One can alternatively represent 
the intermediate photons in terms of spherical harmonics [38]; however, this 
does not alter the results. 

Calling on Eq. (2.3) for the displacement operator and performing summa- 
tion over the photon polarizations ( h  = 1, 21, the tensor (2.18) reduces to 

(3.3) 
Here k = k/k labels a unit vector along the wavevector k, where the sign of 
the imaginary infinitesimal is reversed in the second (nonresonant) term of 
Eq. (3.3). Replacing the summation over k by an integral and performing the 
angular integration, Eq. (3.3) takes the form 

6’lj cuc (w, R)  = - ’ J*k’dk [ - Wk ] q j ( k ,  R) 
wk 

w - w k + i s  w + w k + i s  1 6 ~ ~ ~ 0  0 

(3.4) 
with 

.. A sin(kR) .̂ A (cos(kR) sin(kR))] 
(Si, - R;R;)- + (8;; - 3RiRj) ~ - ~ 

kR k2R2 k3R3 
(3.5) 

Since w-k = - - ~ k  and r/j(-k,  R )  = q;(k,  R), the integration contour can be 
expanded to negative values of k in Eq. (3.4), subsequently closing it up by 
a large semicircle on the upper or lower complex half-plane [depending on 
the sign of the exponents comprising the geometric functions in Eq. (3.5)]. 
Calculating the residues at k = &(w + is)/c, one arrives at the final result for 
the retarded RDDI tensor in vacuum for R # 0: 

W R  ‘ I  A A  c3 ic’ 
(Sij - 3RiRj) (- - -) - (8;j - RiR;)- 

w3R3 w2R2 
(3.6) 

w3eiKR 

Q;’(W, R) = - 
4rr&OC3 

where use has been made of the dispersion relationship (3.2). 
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The above tensor contains an R-3 term characteristic of the near-zone 
(wR/c << l), a radiative R-’ term operating in the far zone (wR/c >> l), 
as well as an R-2 contribution manifesting at critical retardation distances: 
oR/c  2 1. In calculating the RDDI tensor, an important role is played by the 
imaginary infinitesimal “is” featured in Eq. (2.1 2) for the transition matrix 
element, and in the subsequent equations. It is noteworthy that such an 
infinitesimal emerges intrinsically from the time-dependent analysis of the 
problem (to be considered explicitly in Section VI). It is the presence of 
the imaginary infinitesimal that ensures the correct bypassing of a pole in 
Eqs. (3.4). Thus one automatically avoids analytic problems [ 191 associated 
with the choice of the integration contour. 

Note, too, that in some studies, such as Ref. 96, the RDDI tensor (and hence 
the transition matrix element) has been calculated by taking the principal 
part of the integral: this corresponds to the real part of the RDDI tensor 
given by Eq. (3.6). In the near zone, the real part of the transition matrix 
element describes the shift in excitation energy for a pair of species coupled 
via the resonant dipole-dipole interaction, although such an interpretation can 
be inappropriate in the far zone [35].  

B. Photonic Bandgap Structures 

Analysis of the RDDI tensor for photonic bandgap crystals is generally a 
tough problem. In such structures the photons are characterized by a much 
more complex dispersion relationship Wk compared to that in vacuum, and the 
mode functions are now spatially modulated [ 1031. The spatial modulation 
renders the transfer energy sensitive to the specific sites of the transfer species 
within an elementary cell of the photonic bandgap crystal (the superlattice) 
[75].* In order to establish some characteristic features of the RDDI coupling in 
photonic bandgap crystals, we neglect the spatial modulation [7 1,761, assuming 
the photon modes to represent transverse plane waves. Under this condition, 
one can repeat the preceding analysis of the vacuum case up to Eqs. (3.4) and 
(3 .3 ,  in which Wk is now understood as a dispersion relationship for a photon 
in a bandgap structure. 

Various forms have been used to represent the dispersion of W k .  Kweon and 
Lawandy [76] adopted the vacuum dispersion Wk = ck everywhere except a 
range of frequency magnitudes wg i 6w where no modes exist, and the center 
of the bandgap wo was chosen to coincide with the transfer frequency WD*.  

On the other hand, John and Wang [71] employed another form of photon 

* The site-sensitivity features also for the RDDI in Mie particles [82-861, in waveguides 
1761, and for a system restricted by the two mirrors [80]. 
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dispersion: 
c 

wk = -arccos 
4~ CL 

412 cos(kL) + ( 1  - 
(3.7) 

which follows from the isotropic model for electromagnetic waves in a three- 
dimensional periodic dielectric. Here 11 is the refractive index of the scatterer, 
~7 is its radius, and 20 + 0 = L is the constant of the superlattice; furthermore. 
Eq. (3.7) corresponds to the special case where 2110 = b. The function Wl\ has 
branchcut singularities at k = m n / L ,  the bandgaps appearing for odd values 
of ~ 7 ,  as illustrated in Fig. 3 .  

Calculations [71,76] have shown that the suppression of the RDDI can be 
appreciable only in the far zone: wR/c >> I ,  whereas the transition matrix 
element appears to be close to its vacuum values in the near zone. In fact, the 
precision with which the law of energy conservation has to apply to the virtual 
photons is determined by the time-energy uncertainty principle: SE6r 2 Tz. 
where St is the time necessary for a photon to cover the distance between 
the donor and the acceptor. In the near zone (wR/c << f ) ,  the uncertainty in 
energies of virtual photons is large: SE >> hw, so that the presence of the 
bandgap makes little difference to the RDDI tensor. 

In the far zone (wR/c >> 1 )  one has the opposite effect: 6E << XcK, so that 
the virtual photon acquires a somewhat real character. As a result, the absence 

4 naw k 
n=1.5 

FIGURE 3. Dispersion relationship for a photon in  an isotropic bandgap structure, 
calculated using Eq. (3.7). 



QUANTUM ELECTRODYNAMICS OF RESONANCE ENERGY TRANSFER 37 1 

of resonant photons can considerably diminish the transition matrix element 
for the excitation ET in the far zone. 

To illustrate this fact, we shall present the analytic expressions for the 
RDDI tensor [and hence the transition matrix element given by Eq. (2.17)] 
by using the effective-mass approximation for the photon dispersion [7 11, this 
is appropriate for transition frequencies very close to the photonic bandedge 
and for far-zone distances K R  >> 1. Expanding Eq. (3.7) around the upper 
bandedge w, one has [71]: 

~k w,. + A ( k  - k,)’ (3.8) 

where k,. = n/L,  

C 

4n a 
1 - 6n + n 2  
I + 212 + n2 (3.9) 

and 
-cL2 1 

A =  (3.10) 

Substituting the dispersion (3.8) into Eq. (3.4), the RDDI tensor takes the 
following form for K R  >> 1 

2a( 1 + n ) 2  sin(4nuwc/c) 

where 

can be interpreted [71,104] as the length of photon localization around 
embedded atoms or molecules. Near the bandedge, the localization length 
considerably exceeds the reduced wavelength: ( >> X = c/w. Consequently, 
efficient ET can take place over far-zone distances up to the localization length, 
the process being ensured by the overlap of spatially extended clouds of virtual 
photons surrounding both donor and acceptor. 

It is noteworthy that the straightforward application of the effective-mass 
approximation to the near-zone distances leads to a drastic modification of the 
RDDI [75]. Such an approach has been criticized by John and Wang [71], 
who pointed out that the effective-mass approximation is not applicable for 
the distance scales KR << 1. In fact, here the uncertainty in energies of virtual 
photons is large, so the relevant intermediate photons are no longer restricted 
to the bandedge. Note also that Refs. 71 and 76 (as well as other studies 
[77-78,1051 on the resonance ET in the photonic bandgap crystals) are based 
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on the isotropic model for the photon dispersion. Such a model overestimates 
the number of photon states near the bandedge. 

Finally, we briefly mention recent analysis of the temporal behavior of 
excitation exchange between a pair of atoms in high-Q cavities [77,87] and in 
photonic bandgap crystals [77]. Such a process might be completely different 
from the one occurring in vacuum or in dielectric media (away from the 
exciton resonances). In fact, even in the single-center case, the rapidly varying 
density of radiative modes leads to nonexponential spontaneous atomic decay 
[92,93,106- 1081 in cavities or photonic crystals. For instance, for atomic 
frequencies close to the bandedge, the splitting of the atomic level (vacuum 
Rabi splitting) [71,104] leads to oscillatory spontaneous decay [92]. In the case 
of a two-center system, the kinetics can be even more complicated [77,87], 
the vacuum Rabi splitting now competing with the RDDI. 

In what follows we shall concentrate on the quantum electrodynamics of 
energy transfer in dielectric media. 

C. RDDI in Dielectric Media 

We consider next, without making any phenomenological assumptions, the 
form of the RDDI in a discrete molecular medium. For this purpose, let us 
return to the general relationship (2.18) for the tensor 0 , j (o ,  R) in which the 
influences of the material medium arise through the intermediate polariton 
states labeled by the index G. The analysis of the intermediate states can 
be bypassed in calculating the RDDI tensor by invoking the Green func- 
tion formalism [27]. As an alternative, one can make use of the explicit 
mode expansion of the operators for the local displacement field entering 
Eq. (2.18). Such a mode expansion has been recently derived by Juzelionas, 
giving [109- 11 11 

with (k, in, A )  3 G labeling the normal (polariton) modes. Here Pk+,n, ,h(Pk, , , l ,h)  

is the Bose operator for creation (annihilation) of a polariton characterized by 
a wavevector k, a polarization index A, with an extra index m specifying a 
dispersion branch, and where 

(3.14) 
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is the polariton frequency in the mth dispersion branch. Here, too, 
din)  s = dwr’/dk is the branch-dependent group velocity and n ( w )  is the 
refractive index: 

(3.15) 

where p is the molecular density and a(w) is the molecular polarizability, 
given by 

(3.16) 

The local operator (3.13) has been obtained through the diagonalization of a 
microscopic Hamiltonian for a discrete molecular medium coupled to a quan- 
tized radiation field. The molecules of the medium have been assumed to be 
all of the same type, regularly placed to form a simple cubic lattice, and char- 
acterized by the same isotropic polarizabilities. Such a model is believed to 
describe fairly well the optical properties of some other isotropic and homo- 
geneous media that are not necessarily ordered, such as a common situation 
where the nonisotropic species are randomly oriented in their sites. 

Equations (3.14)-(3.16) yield M + 1 dispersion branches, where M is 
the number of excitation frequencies Qy accommodated by each molecule 
forming the medium, and py is the corresponding transition dipole moment. 
For instance, the single-frequency (Hopfield) model provides two polariton 
branches. Examples of dispersion curves with various values of M are 
presented in Fig. 4. As the number of molecular frequencies increases, the 
dispersion branches may start to form dense sets, as illustrated in Fig. 4c. 
Hence, the formalism may also adequately accommodate the formation of 
quasicontinua of vibrational, rotational, and other sublevels in the molecular 
spectra. This makes the approach applicable to both lossless and absorbing 
media. It is noteworthy that a similar multifrequency model of the medium 
has been considered very recently by Drummond and Hillery [113]. Yet, 
their theory has been restricted to the mode expansion of the macroscopic 
field operators. On the other hand, JuzeliCinas treated the operators for local 
[ 109- 11 11, microscopic [ 1 1 11, and macroscopic [ 1101 fields. It is the operator 
for the local displacement field that describes various molecule-radiation 
processes [ 1091 in condensed media including, inter aha, the resonance ET. 

The expansion (3.13) extends to the modes characterized by relatively 
large wavelength: 

2n 
k << ; (3.17) 
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(,) ......................................... 

2; ;- 

FIGURE 4. Schematic plot of the dispersion curves mp’( rn = 1, . . . , M + 1) for (a )  M = 1 
(Hopfield model) and (b) M = 2; the third diagram (c) illustrates a situation in which a dense 
set of dispersion curves is featured. Note that all the diagrams represent the long-wavelength 
region of the spectrum ( k  << 2n/a) of interest. For greater values of k ,  the effects of spatial 
dispersion are to be considered. The quantities z = z.?) and z = z?’ label the upper and lower 
boundaries of polariton bands, for which n($)) = 00 and n(z!?)) = 0, respectively. Diagrams 
(a)-(c) have been reproduced from a paper by G.  JuzeliCinas (Ref. 110) with the kind permission 
of the American Physical Society. Copyright 1996 by the American Physical Society. 
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with the lattice constant a = , L - ’ / ~  representing a characteristic distance 
between the molecules constituting the medium. Under this condition, the 
expanded displacement operator (3.13) is described exclusively in terms of 
the refractive index. The excluded short-wavelength modes play little role 
in the formation of the RDDI between donor and acceptor, as long as their 
separation distance R is large compared to a. 

It is noteworthy that the mode expansion (3.13) holds for the local displace- 
ment field operator calculated both at a lattice site [109,110] and also at 
an intersitial location. This has been demonstrated in Appendix A using the 
mode expansions of microscopic field-operators derived in Ref. [ 11 1].* It is 
instructive that the (virtual cavity) local field factors explicitly feature in the 
microscopically derived mode expansion (3.11) of the local operator. leading 
to the appropriate local field corrections in the subsequent equations (3.18), 
(3.9), (4.10), (S.l), and (5.14). 

Substituting Eq. (3.13) for di(Rx) (with X = D , A )  into Eq. (2.18), and 
performing the appropriate summation over the intermediate states, the RDDI 
tensor takes the form (see Appendix B): 

(3.18) 

where 077 is the vacuum RDDI tensor given by Eq. (3.6). The relationship 
(3.18) is equivalent to the result by Juzelitinas and Andrews [27] obtained 
using the Green function technique. The tensor (3.18) accommodates a 
screening contribution i i P 2  and a local field (Lorenz) factor ( n 2  + 2)/3. In 
addition, the argument of the vacuum tensor QyY(nw, R) is now scaled by the 
complex refractive at the frequency w: 

y1 = iz(w + is) = ii’ + in” (3.19) 

Note that in the present formalism, the initial refractive index n ( w y ’ )  
entering the mode expansion (3.13) is a real branch-dependent quantity. In 
fact the poles of n ( ~ ) ,  given by (3.13, emerge at frequencies other than the 
eigenfrequencies wY), so y1 (wp’ ) is a well-defined quantity without adding 
any imaginary part to the argument m y ’ .  On the other hand, the refractive 
index IZ = 11 (w + is), featured in the RDDI tensor, would be ill-defined within 
the absorbing regions if a strict mathematical limit s --f +O were taken. That 

* A somewhat similar conclusion has been reached by De Vries and Lagendijk in their theory 
of resonant scattering of classical light by impurity atoms inside dielectric cubic lattices [ 1121. 
It has been demonstrated [ 1121 that the local field factors associated with a virtual cavity apply 
for molecules in pure systems and for intersital impurities. 
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is why the quantity s is to be regarded as a finite (although small) parameter 
reflecting the natural widths of each molecular line; the replacement of an 
infinitesimal s by its finite counterpart can be justified on rigorous dynamical 
grounds, as discussed in Section VI. In the absorbing areas of the spectrum, 
the width s is considered to be larger than the characteristic distance between 
the densely spaced (quasicontinuum) molecular sublevels of vibrational or 
other origin. This makes the refractive index a smooth quantity containing a 
finite imaginary part in the absorbing areas. 

IV. ENERGY TRANSFER IN A DIELECTRIC MEDIUM 

A. Inclusion of the Vibrational Structure for the Transfer Species 

Up to now the vibrational structure has been kept implicit for the molec- 
ular state vectors of donor and acceptor. To explicitly display the vibra- 
tional sublevels, we make use of the Born-Oppenheimer approximation [114], 
according to which the molecular state vectors are separated into electronic 
and vibrational parts, as 

where the subscript “el” refers to the electronic part of the state vectors and the 
indices n ,  r ,  in, and p specify the vibrational, rotational, and other sublevels 
of the transfer species D and A. The transition dipole moments (2.19) then 
split into electronic and vibrational contributions, as: 

(4.3) 

(4.4) 

where, according to the Condon principle, the dipole operators of the donor 
and acceptor, p ( D )  and p(A),  respectively, are assumed not to depend on the 
vibrational degrees of freedom, where pD and PA are the appropriate electronic 
parts of the transition dipoles. 

Substituting the transition dipoles (4.3) and (4.4) into Eq. (2.17), the full rate 
of donor-acceptor transfer reads - after performing the necessary averaging 
over the initial molecular states and summing over the final molecular states 
in Eq. (2.10) 

(4.5) 
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Here p:? and p y ’  are the population distribution functions of the initial 
vibrational states of the donor and the acceptor, respectively; the vibrational 
indices are also included in the excitation energies of donor and acceptor 
(“p, = l i w ~ *  = eD; - eD,  and hw~;,,,, = f 7 0 ~ *  = eA* - eA,,,) that feature in the 
energy-conserving delta function. 

Using Eqs. (3.18) and (3.6) for the RDDI tensor in the dielectric medium, 
the pair rate (4.5) can be expressed in terms of the overlap integral between 
the donor and acceptor spectra: 

with 

(4.7) 

and where 

?/7q = ($A.$D) - q ( R . $ A ) ( R . $ ’ D ) ,  4 = 1, 3 (4.8) 

are the orientational factors (the carets referring to unit vectors), n 3 n ( w  + 
is) = n’ + in” is the complex refractive index* at frequency w, and 

and 

can be identified (see Section V.B), respectively, as the absorption cross 
section of the acceptor and the emission spectrum of donor. The latter F D ( w )  

* See the discussion following Eq. (3.19) regarding the introduction of the complex refractive 
index in the present formalism. 
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is normalized to unity in the Following sense: 

FD(o)dw = 1 (4.11) 

It is noteworthy that both CTA((W) and F D ( ~ )  contain refractive corrections due 
to the medium, including the local field factors. In this way, dielectric influ- 
ences of the material medium are introduced into the pair rate (4.6) through the 
refractive modifications of the spectral functions F D ( ~ )  and aA (w), as well 
as through the factors g(w, R) and e-2r1"oRlc. The latter exponential factor 
represents the Beer law losses in the absorbing medium. This factor will be 
demonstrated to play a vital role at large separations between the transfer 
species, providing a physically sensible total rate of ET to all the surrounding 
acceptors (see Section V.B). 

The pair rate (4.6) applies to arbitrary transfer distances, covering both near 
and far zone, as well as intermediate distances. It can be presented meaning- 
fully as the following sum of three terms: 

I 

(4.12) 

The first term namely 

represents the familiar Forster rate of ET characterized by an RP6 distance 
dependence and featuring the orientational factor q:; the latter factor is 
commonly labaled by K* in the theory of radiationless ET (see, e.g., Ref. 115). 
The rate W F  is the dominant contribution in the near zone ( In(5R/c  << 1). 
Here the exponential factor e-2n"wR/c is close to unity and has therefore 
been disregarded in Eq. (4.13), where W is an averaged transfer frequency. 
Consequently, the spectral integral (4.13) is weighted by the factor lnlP4 in 
the near zone, in agreement with the standard theory of radiationless ET [6,1 I]. 

The third term in (4.12), namely 

dominating in the far zone (InlZR/c >> I), is characterized by the an R-' 
behavior corrected by the exponential decay factor. The rate (4.14) has been 
represented through the overlap integral between the donor emission and 
acceptor absorption spectra, weighted by the exponential Beer law factor. The 
result (4.14) can be identified as the rate of radiative (far-zone) ET involving 
spontaneous emission by a donor, propagation of the emitted photon through 
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the absorbing medium, followed by its absorption at the acceptor. The factors 
FD(w) ,  e-7n"wR/c and OA (0) characterize the corresponding processes. It is 
noteworthy that the local field factors are contained in the spectral functions 
FD(CO) and OA(W). Note also that the near and far zone rates differ not only 
in the distance dependence but also in their orientational factors. This leads 
to a completely different transfer-induced fluorescence depolarization in these 
two cases, an issue to be discussed in detail in the following section. 

Finally, the middle term of the pair rate (4.12), WhA. due to the remaining 
terms in the function (4.7), becomes important at intermediate distances where 
In IGR/c 2 1. In general this intermediate contribution contains not only the 
usual R-' term [15-231 but also additional terms in odd powers of R (i.e., 
R-3 and RW5). However, in the case of weakly absorbing medium (n" << 
d), one can disregard the latter odd rank terms to arrive at the following 
approximate expression: 

For such a weakly absorbing medium, the function g(w, R) entering the pair 
rate (4.6) can be written approximately as 

Note that in most situations the media are indeed weakly absorbing. The 
condition H" << n' can fail only near sharp resonances of the medium. Yet, in 
such a case the whole idea of description of the ET in terms of transfer rates 
is to be questioned. 

We conclude this section with a brief remark concerning nonrigid systems 
having fast rotational motion of the donor and the acceptor. In such a situation 
the factor g(w. R) given above should be replaced by its orientational average: 

B. Range Dependence of the Fluorescence Depolarization Due to ET 

In this section we analyze the range dependence of the fluorescence depolariza- 
tion, applying the unified approach to the radiationless and radiative ET.* For 

*This issue has been first addressed in Ref. 23 neglecting the effects of the surrounding 
medium. Here we include the medium effects as well. 
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the near-zone (nonradiative) ET, the transfer rate depends only weakly on the 
average mutual orientation of the donors and acceptors [see Eq. (4.19) for the 
average of the appropriate orientational factor]. This is the reason for the well- 
known and considerable ( &) reduction of fluorescence anisotropy following 
a single act of ET in an isotropic or randomly oriented system [6,11]. By 
contrast in the radiative mechanism, the ET between molecules with parallel 
transition dipoles is greatly preferred-as one can see from Eq. (4.18), in 
which the angle-dependent term is weighted by a factor of 7. This leads to a 
substantially smaller loss of polarization for an ensemble of randomly oriented 
transfer species; specifically, the residual anisotropy following a single act of 
photon reabsorption is 7 times greater than in the case of the short-range 
(nonradiative) ET. 

Here we present a general result for the residual fluorescence anisotropy 
that connects and accommodates the two limiting cases, also providing the 
behavior at the intermediate distances where neither radiative nor radiation- 
less mechanism dominates. Note that the rotational depolarization is assumed 
to be negligible. In order to obtain a formula exhibiting the effects of the 
relative donor-acceptor orientation in an ensemble, it is necessary to average 
the pair rate (4.6) over the orientation of the radius vector R keeping a fixed 
mutual orientation between donor and acceptor. We then arrive at the following 
rotational averages of the orientational factors featured in the function g(w, R) 
entering the rate (4.6): 

(11:) = &(7cos28+ 1) (4.18) 

(q ; )  = ~ ( C O S ~  e + 3) (4.19) 

(4.20) 

where cos 8 = $ A  . $D. 
We shall concentrate on the situation where a medium is sufficiently weakly 

absorbing that one can make use of Eq. (4.16) for the function g(o, R). Substi- 
tuting the averages (4.18)-(4.20) into Eqs. (4.6) and (4.16), we then obtain 
the following orientationally averaged rate, for the case of a fixed angle 8 
between the transition dipoles of donor and acceptor: 

where the range characteristics Y , ~  are spectral overlap moments of the form 
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Therefore, the properly normalized function for the orientational distribution 
of excited acceptors is given by 

(4.23 1 
3 (3 + k2R2 + 7k4R4) cos2 # + (9 + 3PR2 + $R4) 

f ( 0 ,  R) = - 
10 3 + p R 2  + p R 4  

where the bar over k2 and k4 signifies the spectral averages: 

Of special interest is the fluorescence anisotropy commonly defined by 

(4.25) 

where Ill and I 1  are components of the fluorescence intensity polarized, respec- 
tively, parallel and perpendicular to the polarization of the excitation light. In 
the case where fluorescence occurs directly from the molecule that absorbs 
the incident light (the donor), the anisotropy is designated ro; where fluores- 
cence occurs following a single-step transfer of energy to another molecule 
(the acceptor), the anisotropy is designated r ] .  The value of ro reaches its 
theoretical maximum of 0.4 if intramolecular relaxation of the donor produces 
no change of electronic state [6,1 I ] .  

Here it is the result for r1 that is of principal interest; the fluorescence 
anisotropy following a chain of ET events can be directly calculated from this 
result. In terms of 1-0. the acceptor anisotropy rl can be expressed as (see, e.g., 
Ref. 116) 

r1 = ( ( P ~ ( c o s ~ ) ) ) ~ ~  (4.26) 

where P2 (cos 0) = (3 cos2 8 - 1 ) is the second-order Legendre polynomial, 
and the double angular brackets denote the orientational average over the 
mutual orientations of donor and acceptor: 

P?(cos # ) f ( Q )  sin #do (4.27) 

Substituting the distribution function (4.23) into Eq. (4.27), we obtain the 
following most general result for the fluorescence anisotropy: 

(4.28) 
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This equation is valid for arbitrary separations R.  As shown in Eqs. (4.34) 
and (4.35), the familiar near- and far-zone results are the asymptotes of this 
formula. 

In the general case, the residual anisotropy depends not only on the transfer 
distance but also on the shapes of the spectral lines through the averages k2 
and k4 featured in Eq. (4.28). However, as the widths of the absorption and 
emission lines are considerably less than the photon frequency, Eq. (4.28) can 
be rewritten without a significant loss of generality as 

ro 7k4R4 + k2R2 + 3 

25 k4R4 + k2R2 + 3 
r l ( R )  = - (4.29) 

where the average wavenumber k is related approximately to the averaged 
transfer frequency W as 

(4.30) 
- ] I 1  IW k = -  

C 

In the case where the absorption and emission lines are of Gaussian shape 

2 (w - WA*) 
(4.31) 

(w - GL)*)2 
OA (0) O( w exp 

202 
~ ~ ( w )  cx w3 exp 

202 ' 

we have, for WD. = WA* 

- k 4 = k  -4 [ I + , ( = ,  2 13-1. ( 0 / ~ ) 4  

w 4 

(4.32) 

(4.33) 

This means that if, for instance, the ratio a / W  equals 0.1, the error made using 
the relationship (4.29) instead of the exact result (4.28) is less than a few 
percent. Furthermore, both formulas provide the corrects asymptotes at small 
and large distances: 

1. ZR = JrzlZR/c << 1. Here Eqs. (4.28) and (4.29) reproduce the usual 

r1 = rl - 

Galanin result: 
nonrad - 2 (4.34) 

25 

2. kR = InlZR/c >> 1. Here we arrive at the result for the fluorescence 
depolarization associated with radiative ET from the donor to an acceptor 
in the far zone: 

(4.35) 7 ro 
25 

rl r;"d = - 
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FIGURE 5. The relative anisotropy 1’1 /YO versus ER calculated according to Eq. (4.29) 

The distance dependence of the relative anisotropy q /TO calculated 
according to Eq. (4.29) is presented in Fig. 5. One can see the anisotropy 
rise to significant values at distances much less than those normally asso- 
ciated with radiative ET. For instance, with a donor-acceptor separation 
R = 1S/Z = 0.75h/n, the relative anisotropy q / r o  attains the value 
of 3/25, considerably higher than the result for radiationless transfer, 
as follows from Eq. (4.29). In the vacuum limit In1 -+ 1, the results 
for the fluorescence anisotropy reduce to those presented in Ref. 23.  
In the general case (In I # I ) ,  the wavevector k = In IW/c is scaled by 
In 1, adjusting the characteristic scale of distances. As such, the position 
at which the onset of significant retardation modifies the fluorescence 
anisotropy can be still closer than the vacuum formula would suggest. 

In connection with multiphoton fluorescence ET [ 1171, any microscopically 
disordered system exhibits the same sevenfold increase in fluorescence 
anisotropy as the donor-acceptor distance increases from the near-zone to the 
far-zone range. However, the detailed dependence on the relative orientations 
of the participating donor transition moments adds considerable complexity to 
the results even in the two-photon case [ 1 171. 

V. SPONTANEOUS EMISSION AS FAR-ZONE ENERGY 
TRANSFER 

A. Background to the Problem 

Spontaneous emission is a phenomenon that has played an important role 
in establishing several key concepts of modern quantum theory [99]. Over 
recent years there has been a great deal of interest in modified spontaneous 
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emission by atoms (molecules) in various environments, such as in photonic 
bandgap crystals [89-921, near metal surfaces [61-651, and near dielectric 
interfaces [ I  18- 1211. The characteristics of spontaneous emission are also 
modified in homogeneous dielectrics [72,109,110,122- 1281. The rate for the 
process, in the case of photon emission into transparent areas of a dielectric, 
reads [72,109,110,125,126]* 

where the transition frequency wgl is also modified by the surrounding medium 
[ 109,1261. 

The emission rate (5.1) can be obtained using various methods. For 
instance, the explicit mode expansion (3.13) for the local operator di(RD) 
offers a straightforward way to derive the emission rate (5.1) [109,110] 
through application of the Fermi golden rule (3.1), in which the spontaneous 
emission appears as a first-order process described by the transition operator: 
T(” = -&o1p.di(Ro). The result (5.1) is relevant to the case where only long- 
wavelength polariton modes ( k  << a-’) are involved in the emission process, 
where a is a characteristic distance between the species constituting the 
medium. In fact, only these modes are accommodated in the mode expansion 
(3.13); see the discussion following Eq. (3.17). Consequently, Eq. (5.1) does 
not generally hold where the emission takes place into absorbing areas of the 
dielectric, in which case an important role is played by excitonlike modes of 
the medium with larger values of k ,  as discussed earlier [31,109,110]. 

Spontaneous emission in lossy dielectrics may be considered in a number 
of ways. The phenomenon might be dealt with by analyzing the macroscopic 
Maxwell equations for a classical dipole in an absorbing medium [129]. 
A quantum-mechanical analysis closer in tune with the modem theoretical 
formalism has also been carried out [123,124]. Specifically, in a paper by 
Barnett et al. [124], the decay rate has been calculated for an excited atom 
embedded in an absorbing dielectric. Applying the Green function technique, 
the rate was separated into “transverse” and “longitudinal” components: these 
correspond, respectively, to the rate of emission of a transverse photon and the 

* Equation (5.1) applies to situations where the emitting molecule does not significantly 
disturb the electromagnetic modes of the medium. This is known as the virrunl-cavi@ case 
(Ref. 11. Section 1.4). An alternative is the real-caviry model. which has been applied to 
spontaneous emission by Glauber and Lewenstein [ 1221. The latter model, introducing another 
local field factor into the emission rate. is relevant to situations where the emitting dipoles are 
large species characterised by low polarisability, such as in recent experiments by Rikken and 
Kessener [I271 and by Schuumams et al. [128]. 
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rate of nonradiative decay via longitudinal coupling of the atom to the dielec- 
tric [ 1241. As the absorbing medium was described macroscopically, effects 
due to discreteness of the medium (such as the local field effects) were not 
intrinsically reflected; local field corrections were introduced phenomenolog- 
ically at later stages [ 123,1241. Yet, a comprehensively microscopic approach 
is to be preferred. 

In this section, following Refs. 3 1 and 73, we present a microscopic analysis 
of the phenomenon based on the unified approach to radiationless and radiative 
ET reviewed in the previous section. 

B. Decay of an Excited Molecule in the Absorbing Medium 

Consider the decay of an excited-state donor D induced by the transfer of 
energy to the surrounding species X. By summing up all appropriate pair 
rates, the full decay rate is 

where WDx is the rate of excitation transfer between a pair of molecules D 
and X ,  as explicitly presented in the previous section (with X E A). Using the 
partition (4.12) for the pair rates, the decay rate (5.2) can be cast as 

(5.3) r D - f, - "Forst + rE zone 

with 

and 

(5.4) 

X#D 

The former decay rate, p p ,  contains contributions due to the near-zone 
(Forster) pair rates modified by the intermediate terms Whx; the tilde over 
r reflects such a modification. The constituent pair rates have been explicitly 
presented by Eqs. (4.13) and (4.151, giving the explicit refractive dependence 

A cautionary note should be made concerning such a straightforward deriva- 
in the case where most of the surrounding species X are efficient 

energy acceptors. In this situation, the major contribution to f'p comes from 
ET to the closest species X (up to a few configurational spheres around 0). 
At such small distances, description of the pair rates in terms of the refractive 

of F F .  
tion of FForst ' 
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index is questionable. Yet, one can make use of a certain “effective” index 
neff in the pair rates (4.13) and (4.15) constituting the decay rate rp. The 
quantity, n,ff = 17~ff(R), approaches the true refractive index n as the transfer 
distance R extends into the range where it considerably exceeds the character- 
istic distance between the species in the medium [ 111. On the other hand, the 
far zone decay rate rE ‘One is built up of a macroscopically large number of 
pair rates, making its description through the refractive index quite legitimate 
(see discussion below). The same applies to the near-zone rate (5.4) in the 
case where the medium constituting the transparent background species XI is 
diluted with a small fraction of the absorbing acceptor molecules X 2 .  In such 
a case, the space between the donor and any acceptor X2 is filled with a large 
number of background molecules, the latter species X I  providing the major 
contribution to the refractive index n ,  The acceptors X 2  contribute much more 
weakly to I ? ,  yet ensuring the existence of some imaginary part a‘’ # 0 that 
plays an important role in the far zone through the exponential factor featured 
in corresponding pair rates (4.14). 

In the remaining part of this section we concentrate on the decay rate 
I‘g ‘One associated with far-zone (radiative) ET. The far-zone transfer may 
be viewed [15,18,21,31,73] as spontaneous emission of a photon followed 
by its subsequent recapture by a distant acceptor. Adopting such a concept, 
we shall regard the contribution rE ’One as the rate of spontaneous emis- 
sion in the absorbing medium. The approach is in a certain sense related to 
absorber theory [130-1321 in which spontaneous emission is seen to be the 
result of direct interaction between the emitting atom and “the Universe”, 
the latter acting as a perfect absorber at all emitted frequencies. In our situ- 
ation, the surrounding medium does indeed act as a perfect absorber even at 
extremely low concentrations of the absorbing species (or, alternatively, for an 
almost transparent condensed medium), so long as the system dimensions are 
large enough to ensure eventual recapture of the emitted photon. For such a 
weakly absorbing medium, the rate rg ‘One will be demonstrated to reproduce 
exactly the familiar rate [72,109,110,125,126] for spontaneous emission in a 
transparent dielectric. 

To obtain the proper decay rate rE ‘One using Eq. (5.5), the pair-transfer 
rates should not only reflect effects due to retardation but also incor- 
porate influences of the surrounding medium, as in the previous section. 
Following Refs. 31 and 73, we shall demonstrate that r‘E ‘One does indeed 
represent the rate of spontaneous emission in the absorbing medium. For this 
purpose, we substitute Eq. (4.14) for the pair-rate WLT ‘One (with A = X) into 
Eq. (5.5) to yield 
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with R = RxD. The decay rate rF ‘One is made up of a large number of the 
pair rates operating predominantly in the far zone. Hence the summation over 
the molecules X can be changed to an integral over the radius vector R, giving 

where [in Eq. (5.7)] the appropriate orientational averaging has been carried 
out ([$ -+ (q:) = $1) and the cross section of the molecular absorption ax(@) 
has been replaced by its ensemble average as given by 

Here, the quantity Ex is understood as an averaged polarizability for all the 
species X constituting the medium: 

where N is the total number of molecules in the system. The relationship (5.9) 
has been written exploiting Eq. (4.9) for OA ( w )  (with A = X). Here, constraints 
due to the energy-conserving delta functions have been expressed in terms of 
the imaginary part of the averaged molecular polarizability Z$ = a”, as given 
by Eq. (5.10) with 

(5.1 1) 
and where W X ; ~ ~  = W X ; ~  - wx,,, is the excitation frequency of the molecule 

X and I(vxnx. lpx ) I  are the Condon factors defined in Section 1V.A (with 
A - X ) .  The imaginary part a’’ is in turn related to the complex refractive 
index n 3 n(w),  as 

( P )  (m)  2 

so that Eq. (5.9) ultimately reduces to 

(5.12) 

(5.13) 
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This equation can be identified as the usual relationship between the imagi- 
nary part of the complex refractive index and the absorption cross section. In 
this way, the quantity a(@) defined by Eq. (4.9) is indeed seen to represent 
the cross section of molecular absorption in the lossy medium. Substituting 
Eq. (5.13) into (5.8), one finds, using Eq. (4.10) for F D ( ~ )  and the normal- 
ization condition (4.1 1) 

(5.14) 
1 1 .  r 

The rate rfar ‘One = ti’ as given by Eqs. (2 14) and (5.15) represents the 
full rate of spontaneous emission by the donor, and so involves summation 
over the final levels and averaging over the initial levels of the donor, labeled 
respectively r and n ,  where &? is the population distribution of the vibrational 
levels of donor in the initially excited electronic state. The constituent terms 
(tg )-I represent the partial rates of spontaneous emission associated with 
downward transitions of the donor between the specific levels 11 and r ,  where 
in each of these terms the refractive index is to be calculated at the appropriate 
emission frequency OD* 2 OD;,. = ( eD;  - eD,) /h.  

The emission rates (5.15) manifestly accommodate contributions due to 
the absorbing dielectric medium, including the local field factors. In addition, 
the emission frequency WD* is to be renormalized to include the effects of 
the medium, as follows from the strict analysis of ET dynamics presented in 
the next section. It is noteworthy that our analysis is based on a microscopic 
QED theory [28,3 I], the relationship (5.15) supporting previous phenomeno- 
logical methods [123,124] used to introduce local field corrections to the 
rates of spontaneous emission in an absorbing medium. In the limit where 
a’’ -+ 0, n” + 0, the far-zone rate [Eqs. (5.14) and (5.131 reduces smoothly 
to the usual result for spontaneous emission in a transparent medium given 
by Eq. (5.1) (in which Condon factors are not included); in such a situation 
there is a vanishing contribution due to the decay in the near and intermediate 
zones: F p  3 0. 

In this way, the present analysis reproduces in full the rate of spontaneous 
emission in transparent dielectrics 11’’ = 0, including, inter alia, the case of free 
space: n” = 0.12’ = 1. Here, free space is be to viewed as a limit in which 
the density of the absorbing species goes to zero, while the size of the system 
goes to infinity, so that the emitted photon is eventually recaptured somewhere 
in the system. It is notable that in order to arrive at a sensible result for 
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r!Y zone = to , such as that given by Eqs. (5.14) and (5.15), the influences of 
the absorbing medium are necessarily to be reflected in the pair-transfer rates 
constituting the far-zone decay rate (5.5). In fact, it is the exponential factor 
exp( -2n”wR/c), representing absorption losses at the intervening medium, 
that helps avoid the potentially infinite decay rate rg ‘One due to the R-2 factor 
featured in the constituent pair rates (4.14). Note also that the same result, 
(5.14) and (5.15), can be reproduced for the rate of spontaneous emission T;’, 
in terms of another microscopic method involving calculation of the quantum 
flow from the emitting molecule D in the absorbing medium [73]. 

It is noteworthy that the separation of the full decay rate into far- and near- 
zone components corresponds to a division of the rate into its “transverse” 
and ‘‘longitudinal’’ parts, to use the terms adopted by Barnett et al. [124]. Our 
description in terms of far- and near-zone rates goes along with the multipolar 
formulation of QED employed here: in such a formulation, [96], the coupling 
between the molecules is mediated exclusively via transverse photons, as there 
is no instantaneous (longitudinal) contribution to the intermolecular coupling. 
Finally, the analysis presented yields the exponential decay with time of the 
excited-state population for a selected molecule D, as long as the backtransfer 
of the excitation energy from the surrounding species X is negligible. The near- 
zone contribution to the decay rate, ,p [Eq. (5.4)], may depend markedly on 
a specific distribution of acceptors around the donor in the case of a somewhat 
inhomogeneous medium. At short times, this leads to the well-known [ 1 11 
nonexponential time decay of the excited-state population averaged over the 
ensemble. On the other hand, the total rate of radiative ET ‘One depends 
much more weakly on the specific site of the emitter D, yielding an exponential 
contribution to the time decay of the excited-state population in the ensemble. 
Exponential decay dominates the kinetics at sufficiently large times. 

VI. DYNAMICS OF ET BETWEEN A PAIR OF MOLECULES IN A 
DIELECTRIC MEDIUM 

Up to now the transfer dynamics has been described in terms of well-defined 
rates for intermolecular ET. It is the purpose of the current section to pursue in 
more detail temporal aspects of the ET between a pair of species in a dielectric 
medium. The consideration is based on the QED study [28], a distinctive aspect 
of which is a combined analysis of rate- and nonrate regimes in the context 
of examining the influence of the dielectric medium on a microscopic basis. 
The theory is built on the foundation established in the previous sections. 
Again, the approach exploits the concept of ET mediated by bath polaritons. 
The theory also makes use of the microscopically derived tensor (3.18) for 
the retarded and medium-dressed dipole-dipole coupling, now with regard to 
the dynamical behavior. The present section not only extends consideration 
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beyond the rate description, but also reexamines conditions for that regime 
itself. That leads to incorporation of the shifts in energy for both the ground 
and excited states of the transfer species, due to the interaction of these species 
with the molecules belonging to the medium and also with each other. That is 
a feature not reflected in direct application of the ordinary Fermi golden rule. 

The section is organised as follows. In the next subsection the Heitler-Ma 
method [2,54,95,133,134] for describing the quantum time evolution is first 
outlined, and subsequently reformulated to suit our current purposes. Conse- 
quently, the basic equations for time evolution acquire a form more symmetric 
with respect to the initial and final states. Section V1.B presents the general 
analysis on the transfer dynamics between a pair of molecules in the molecular 
medium. At the end of the Section VLB, we discuss the problem of causality 
in ET, an issue that has received a great deal of interest in the literature 
[39-521. Section V1.C deals with the specific situations including both the 
rate regime and beyond. Note that the non-rate regime features in situations 
lacking an intrinsic density of molecular states for the participating species. 

A. Time Evolution of a Quantum System 

Consider the quantum dynamics of a system with a time-independent Hamilto- 
nian separable as the sum of a zeroth-order Hamiltonian H o  and an interaction 
term V [such as that defined by Eq. (2.5)], where the eigenvectors of H o  
include both the initial state IZ) and the final state IF)  for the process. For 
reasons which will become apparent later, we shall commence work in the 
Schrodinger representation rather than the more common interaction represen- 
tation. The state vector of the system then evolves at positive times from the 
state 11) at t = f O  as 

where @(I) is the unit step (Heaviside) function. Strictly speaking, the quantity 
s' 3 hs is a positive infinitesimal. Yet, for finite times it may be considered a 
finite quantity obeying the following: st << 1,  that is, s should be kept much 
less than the inverse lifetime for the excited states. Under this condition, 
introduction of a finite s does not influence the quantum dynamics governed by 
Eq. (6.2). Retention of a finite value for s plays an important role in smoothing 
of spectral lines. This makes the refractive index given by Eq. (3.19) [together 
with Eqs. (3.15) and (3.16)] a complex quantity in absorbing areas of the 
spectrum (characterized by densely spaced molecular sublevels of vibrational 
or other origin for each electronic transition). 
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The Heitler-Ma method [2,54,95,133,134] may now be employed, giving 

Here U F I ( ~ )  = (F lU(e) lZ)  and I?/(&) E (Z l r (E) (Z)  are, respectively, the matrix 
elements of the off-diagonal transition operator U(E)  and the diagonal damping 
operator r(&), both determined by the following recurrence relation: 

For the present purposes it is more convenient to represent this relation in a 
nonrecursive format as 

where the projection (idempotent) operator 

PI = 1 - IZ)(Z l  (6.6) 

identifies the exclusion of contributions by the initial state in the perturbation 
expansion of Eq. (6.5). Recasting the transition matrix element in a form 
where the perturbational contribution by the final state also no longer explicitly 
features, one arrives at (see Appendix B of Ref. 134) 

where the newly defined quantities on the right, UkI and rk, both have implicit 
E dependence and are given by 

Uki  ( F / J V  + V P / P F ( E  -- H" - P ~ P F V P I P F  + ~ , s ' ) - 'P /PFV]Z)  (6.8) 
-;fir' F - = (FI LV + V P / P F ( E  - H" - PIPFVPIPF  + i s ' ) - ' P ~ P ~ V l l j  (6.9) 

(6.10) 

Finally, calling on Eqs. (6.2), (6.31, and (6.71, one finds the following proba- 
bility amplitude for the transition IZ) -+ IF) :  

J+mdE-- u'Fle-ist/fi 
(FlS(t)lZ) = -_ 

2rri --r23 ( E  - E F  + +hT> + is')(& - El + ShTf + is') 
(6.11) 
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which is an exact result. Here the presence of both and rl, in the energy 
denominators explicitly accommodates the damping corrections and energy 
renormalization of the initial and final states. Consequently, the transfer ampli- 
tude as presented above has a form obviously more symmetric with respect to 
the initial and final states than would result from direct substitution of Eq. (6.3) 
into (6.2). Still, there is some asymmetry with respect to these states, reflected 
by the prime on rl,. The retention of such a asymmetry will be of vital impor- 
tance in the case of sharp energy levels for donor and acceptor, that is, where 
the participating transfer species lack an intrinsic density of molecular states; 
this aspect is to be considered in the Section VI.C.2. 

B. Dynamics of Energy Transfer 

The dynamical system of interest has been defined by the Hamiltonian 
(2.5)-(2.7’). For the representation of resonance ET, the initial and final state 
vectors and their energies are considered to have the form of Eqs. (2.8) and 
(2.9). Because of the two-center character of the interaction operator (2.6), 
it is convenient to carry out the corresponding partitioning in Eqs. (6.5) and 
(6.9), writing 

Here one-center contributions, denoted by a single index D (or A), are due 
to the terms containing only one operator V D  (or V A )  in the perturbation 
expansions of Eqs. (6.5) and (6.9). Such contributions have already been sepa- 
rated into real energy shifts and imaginary damping terms in the preceding 
equations. For instance, AeD* and represent, respectively, the bath-induced 
level shift (energy renormalization) and the damping factor for the excited 
molecular state ID*) (as there are no imaginary (damping) contributions for 
the ground molecular states ID) and ]A)).  Each such energy renormalization 
( A e p ,  Ae,, AeD, and AeA*) embodies not only the radiative (Lamb) shift 
[94-96,991 but also the contribution due to the dispersion interaction between 
the donor D (or acceptor A) and the molecular medium. Note that the disper- 
sion energy appears now in the second order of perturbation, rather than the 
usual fourth order [94-96,1351, since the coupling of the radiation field with 
the medium has already been included in the zero-order Hamiltonian H o  given 
by Eqs. (2.7) and (2.7’). Here we do not consider the explicit structure of 
these energy shifts, which are to be treated as the parameters of the theory. 
The remaining (complex) quantities r D * A  and rbA* are two-center contribu- 
tions resulting from cross-terms (containing both V D  and V A )  that emerge in 
the perturbation expansions of Eqs. (6.5) and (6.9). 
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By making use of Eqs. (6.12) and (6.13), the probability amplitude (6.11) 
for the ET takes the form 

UIFl (w)e-'('u-wA* ) t  

(w - wA* + ( i /2)yA* + (i/2)riIA* + is ) (w - + (i/2)yD* + ( i / 2 ) r p A  + is) 
(6.14) 

(6.15) 
where 

E - eD - eA - AeD - Aea - evac 
t? w =  

is a new variable, and 
eg* f Aeg* - eD - AeD 

f&* = - (6.16) 

(6.17) 

are the excitation frequencies of the donor and the acceptor. The frequencies 
WD* and WA* incorporate level shifts for both the ground and excited molecular 
states. Finally, in Eq. (6.14) transformation has been carried out to a modified 
interaction representation, as 

h 
eA* + AeA* - eA - AeA 

h 
wA* = 

(6.18) 

where the term "modified" refers to change of the final-state energy 

Now we turn our attention to the transition matrix element U',,(w) featured 
in Eq. (6.14). For the present purposes it is sufficient to represent it through 
an effective second-order contribution as 

E F  = eD f eA* by the amount AEF = AeD f A Q * .  

(6.19) 

with 

(6.20) 
(R = RA - RD), where implied summation over the repeated Cartesian indices 
( I  and J )  is assumed, and pi,Un and pF1l are the transition dipoles given by 
Eq. (2.19). As in the previous sections, here fin, = e, - evac is the excitation 
energy of the bath, the index denoting excited (single polariton) states of 
the bath accessible from the ground state 10) by single action of the local 
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displacement operator d’(Rx)(X = D, A). In what follows we replace the 
energy denominator (w - WD* - OA* - nu 3. is) by (-w - nu + is) in the 
nonresonant term of Eq. (6.20). The approximation holds for the range of 
frequencies 10 - W D * I ,  Iw - W A * I  << WD*. Such a frequency range yields the 
major contribution to the integral (6.14) for times greater than the inverse 
molecular transition frequency w,! , generally on the femtosecond timescale. 
This leads the causal result, as discussed later. Adopting the resonance approx- 
imation, the tensor Qfj(w, R) reduces to the familiar tensor for the retarded 
dipole-dipole coupling in the medium: 

The latter &j(w,  R) reads explicitly, using Eqs. (3.18) and (3.6) 

- ( 6 i j  - RiRj)- 
nwR 

(6.22) 

where n is the complex relative index given by Eqs. (3.19), (3.15), and (3.16). 
It is noteworthy that the quantity U~]((WA*) is equivalent to the transition 

matrix element (FlT(”JZ) introduced earlier by Eq. (2.17): 

(6.23) (FIT‘”1~) u,,(@A*) (2) 

In the context of time evolution, it is important to retain the w dependence 
featured in the exponential phase factor exp(inwR/c) of the matrix element 
Up](w)  given by Eqs. (6.19), (6.21), and (6.22). This will lead to appearance 
of a time lag in the initial arrival of the excitation at the acceptor A, due to 
the finite speed of signal propagation. Linearizing the exponent, one has 

n(w)wR - n(wA*)wA*R (w - WA*)R -- + (6.24) 
% C C 

where vg is the radiative group velocity, given by 

(6.25) 

The remainder of the transition element UFj(w),  together with other w- 
dependent parameters entering Eq. (6.14), will at this stage be evaluated 
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at the resonant frequency, w = @A* x W D * .  Redefining the origin of time 
t = ( t  - R/wg), the transfer amplitude (6.14) takes the form 

(6.26) 

1 [-i,*+icwA*-wD*) 5 

(6.27) 

which incorporates damping for both species D and A. Here the two-center 
contributions rD*A and rbA,,, are for the present omitted; the physical basis of 
this approximation is clarified in Section V1.C. 

It is worth noting that the radiative group velocity wg introducing the shift 
of the origin of time in Eq. (6.27) describes the delay of the initial arrival of 
the excitation at acceptor A. On the other hand, the phase velocity w4 = c/iz 
entering the exponential factor exp(inwR/c) of the transition matrix element 
U ~ ] ( W A * )  [with ii = ~ ( w A * ) ]  characterizes the changes of optical phase with 
distance. Note also that incorporation of the time lag in the manner described 
above implies that the refractive index, and hence also the group velocity, takes 
real values. Nonetheless, the general result to follow (6.28) for the transfer 
rates holds for both lossless and absorbing media. 

In the case of ET in vacuum (iz = I), the acceptor can be excited only 
after a relativistic time delay of R/c. A similar causal conclusion has been 
reached already by Fermi [ I ] ,  Heitler and Ma [2], and Hamilton [3]. However, 
removing the approximation (6.21) leading to Eq. (6.27), one would arrive at 
a small (yet finite) probability for the acceptor to be excited at t < R/c. Such 
a noncausal behavior has received a great deal of interest in the literature 
[25,39-521. It was pointed out [40,45,50] that the causality can be restored 
examining the problem within a wider framework. In fact, adopting Eq. (2.8), 
one specifies completely the final state in which, besides to acceptor being 
excited, the donor is specified to be in the ground state and the field in 
its vacuum state at time t. To eliminate this restriction, Power and Thiruna- 
machandran [50] and Berman and Dubetsky [51] calculated (up to terms that 
depend on the square of the transition moment of the emitter and the square 
of the moment of the receiver) the probability of the receiver atom (acceptor) 
being excited at time t without making any reference to the final states for 
both the emitter atom (donor) and the field.* For this purpose, a set of final 

e- 3 ]'A* - 1 
= h- 'Up;(wA*)O(t) 

(@A* - w D * )  + i i ( v D *  - Y A W )  

* This is also implicit in the studies 148,491 focusing on the time evolution of the occupation 
operators. 
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states has been extended to include the ones that are not in resonance with the 
initial state, such as the states where both acceptor and donor are excited, and 
the field is in the arbitrary state. It was found [50,51] that apart from a small 
R-independent term, the total probability becomes causal, that is, is identically 
equal to zero for t < R/c. 

The existence of some (R-independent) probability for the acceptor to be 
excited at t < R/c ,  goes along with the Hegerfeldt theorem [46] stating that 
the initially unexcited atom (acceptor) starts to move out of the ground state 
immediately. As pointed out by Milonni and co-authors [49]: 

The theorem as proved applies regardless of whether . . . (the emitter) is 
present and therefore . . . should not be used as an argument against causality in 
the two-atom interaction. Such “immediate influences” are associated with the 
fact that the assumed initial state is not an eigenstate of the interacting atom- 
field system: a true eigenstate of the system involves an admixture of “bare” 
states , . . . Such admixtures involving excited, unperturbed atomic (and field) 
states occur even in the case of a single atom coupled to the field and are asso- 
ciated with phenomena, such as the Lamb shift, involving virtual transitions. 

C. Specific Situations 

I .  Rate Descriptiorz 

Let us consider first the case where the spectral widths of the species partic- 
ipating in the transfer exceed the magnitude of the corresponding transition 
matrix elements. The overall migration is then incoherent, described as a multi- 
step process involving uncorrelated events of excitation transfer between the 
molecules of the system. In terms of the selected pair DA, by omitting the 
relaxation terms ~ D / o *  and y ~ *  in Eq. (6.27), and for times in excess of the 
transmit time R/v,, the resultant rate of the excitation transfer reads 

This provides the Fermi golden rule exploited previously, subject to the 
replacement of U$/(OA*) by (FIT‘2’IZ) using the relationship (6.23). The full 
pair-transfer rate WDA is subsequently obtained by means of the standard 
procedure involving averaging over initial and summing over final molecular 
sublevels, as in the previous sections. 

A new feature arising in the present dynamical analysis is that the excitation 
frequencies WD* and WA* are shifted by the interaction of the transfer species D 
and A with the molecules of the surrounding medium. The mutual interaction 
of D with A may also be taken into account by retaining the omitted terms 
rD*A and r ’DA* in Eq. (6.26). This introduces additional shifts of the molecular 
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excitation frequencies WD* and WA* featured in the energy-conservation 6 func- 
tion of Eq. (6.28), by the amounts -1mrDeA/2 and -Imr’~1~*/2,  respectively: 
these represent changes in the excitation energy of each transfer species due 
to its interaction with the other. The effects of such corrections decrease with 
distance: over the separations of interest where R is greater than typical inter- 
molecular distances within the medium, they can contribute negligibly. 

At this juncture, a remark should be made concerning some asymmetry of 
the formalism with regard to the initial and final states, as reflected by the 
prime on r’DA*. The rate regime generally implies the existence of a dense 
structure of (usually vibrational) molecular energy levels within the electronic 
manifolds of D and A. Hence the apparent asymmetry in question vanishes, as 
either inclusion or exclusion of the individual states (such as IZ) or IF))  in the 
intermediate-state summation does not significantly alter the quantities rD*A 

and r’DA*. It is a different story in the case where there is no intrinsic density 
of molecular states for the participating species, as is to be considered next. 

2. Nonrnte Regime 

Suppose now that each of the ground- and exited-state manifolds of D and A is 
characterized by only one molecular sublevel, so that the subsystem DA may 
be treated as a pair of two-level species. Ignoring contributions from states 
with two or more mediating bath excitations (polaritons), the exchange of 
energy between D and A now occurs exclusively through intermediate states 
in which both transfer species are in either their ground or excited states, 
and the bath is in a one-polariton excited state. Under these conditions, the 
quantities rD*A and r’DA* introduced in Eqs. (6.12) and (6.13) are 

(6.29) 

where use has been made of Eqs. (6.5) and (6.9). Substituting these results 
for T/DA* and r D * A  into the general dynamical equation (6.14). the probability 
amplitude reads 
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To illustrate the precise form of the time evolution for a specific application, 
we assume the transfer species to be identical (OD" = OA*, yo* = yA*). Further- 
more, we replace U g j ( w )  by its resonant value U,,(WD.) in Eq. (6.31). In so 
doing we neglect the relativistic delay in exchanging the excitation between 
the donor and acceptor,* giving 

(2) 

where the transfer frequency QDA and the inverse time YDA respectively repre- 
sent the real and imaginary parts of the transition matrix element calculated 
at the transfer frequency 

Equation (6.32) has a form familiar from the case of ET between molecules 
in vacuo [34,53-551, although the parameters ~ D A ,  y , * ,  and QDA here display 
the influence of the medium. The result for nonidentical species in vacuum 
is presented in Ref. 55. Note that although in writing Eqs. (6.29)-(6.33) the 
transfer species D and A have beeii modeled as two-level systems, the formu- 
lation still allows each surrounding molecule to possess an arbitrary number 
of energy levels, thus accommodating the cases of both absorbing and loss- 
less media. 

The result (6.32) represents an oscillatory, to-and-fro exchange of excita- 
tion, accompanied by damping. That type of dynamical behavior is a direct 
consequence of the absence of a density of final molecular states, a feature 
that obviously makes the rate description inadequate. Nonetheless, a distinc- 
tion should be drawn between the short-range reversible Rabi-type oscillatory 
behavior, which does not represent any real flow of energy from D to A ,  and 
the long-range behavior. In the latter case, the excitation energy of the donor 
is irreversibly passed to the acceptor. Under such circumstances it is appro- 
priate to introduce transfer probabilities (rather than rates), as shown in the 
remaining part of this section. 

In the long-range limit, the contribution [ Ug)]' associated with the coupling 
between the donor and the acceptor may legitimately be omitted in the 
denominator of the integrand in Eq. (6.31 ), in which D and A are not 
necessarily identical two-level species. The system then follows the same time 
evolution as described through the earlier equation [Eq. (6.27)]. The transfer 

* Such a time delay leading to the effects of multiple time delay in to-and-fro exchange of 
excitation, has been investigated by Milonni and Knight [36], who analyzed the transfer dynamics 
between a pair of species in vacuo. 
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dynamics governed by Eq. (6.27) reflects both the initial arrival of excitation 
at A ,  commencing from time t = R/u,, and subsequent decay of the resulting 
excited state of the acceptor.* The rate of the latter decay may be considered 
to be the same as that for an individual acceptor in the dielectric medium 
(i.e., yA*), since at large distances the remaining influence of the donor is 
minimum. Accordingly, the total transfer probability P may be defined as 
the probability for irreversible trapping of the excitation by the acceptor. 
Integrating the population-weighted rate of decay of the excited state of A,  
one finds 

P = 1 I(FIS(t)lZ)12yA*dr (6.34) 
00 

Wu, 

which is in agreement with the previous far-zone result for the transfer of 
energy between a pair of molecules in vacuo [37]. In passing we note that the 
individual rates of the excited-state decay YD* = r D  and YA* = rA featured in 
the above equations have been explicitly analyzed in the Section V.B. Calling 
on Eqs. (6.19), (6.21), (6.22), and (6.33), the long-range result (6.35) assumes 
the following form in the case of a nonabsorbing medium: 

(6.36) 

with 

Here, in addition to the appearance of the refractive prefactors, the influence 
of the medium extends to the excitation frequencies w p  and WA",  as well as 
to the decay parameters YA* and y p .  The quantity (VA) may be identified as 
the isotropic absorption cross section of acceptor, o ~ ( w ) ,  averaged over the 
normalized emission spectrum of donor, ID* (w), as: 

* For a particular case involving two identical species D and A.  the probability for the acceptor 
to be excited is represented by an initial waiting interval t = R/c ,  followed by a quadratic rise 
time and subsequent exponential decay, in accordance with the classical wave-zone result in 
V ~ C U O  by Hamilton [3]. 
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with DA(W) and I p ( w )  given by 

and 

Finally, one obtains, for the orientationally averaged probability 

(6.40) 

(6.41) 

which is the ratio of the spectrally averaged isotropic absorption cross section 
to the spherical surface at distance R, 4nR2. In the case of an absorbing 
medium, an exponential decay factor of the form exp(-2iz”wR/c) would also 
feature in this equation. 

Throughout this section, the transition matrix element UIFI (as well as the 
damping quantities rl and r ’ F )  have been considered to be relatively smooth 
functions of frequency w. Such an assumption holds well for the ET in vacuum 
and in the dielectric media (away from the sharp resonances). The approxima- 
tion breaks down near the bandgaps or other singularities of the photon spectra. 
Analysis of the temporal behavior of excitation exchange between a pair of 
atoms in high-Q cavities [77,87] and in photonic bandgap crystals [77] has 
been carried out recently using different methods. Such a unusual dynamics 
can be treated using the present methods as well by including the w depen- 
dence of the quantities U’FI ,  r1, and PF featured in Eq. (6.1 1). However, this 
goes beyond the scope of the present review. 

VII. CONCLUSION 

The chapter reviews the QED theories on the resonance energy transfer (ET) in 
the free space (electromagnetic vacuum), in photonic bandgap crystals, and in 
dielectric media. Following the general analysis, the review concentrates on the 
ET taking place in dielectric media, a specific example of which is free space. 
The formalism is based on the explicit consideration of the quantized radiation 
field coupled to a discrete molecular medium, where the constituent molecules 
of the latter are characterized by an arbitrary number of excitation frequencies. 
Accordingly, the ET appears to be mediated by photons “dressed” by the 
medium (virtual polaritons). Rates have been derived for the ET between 
a pair of species: donor and acceptor. The pair-transfer rates connect and 
accommodate both the nonradiative (Forster) RP6 result and also the radiative 
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R-' result. Subsequently the range dependence of the polarization of acceptor 
A uorescence has been considered, the result exhibiting an interplay between 
the radiationless and the radiative behavior. 

The microscopically derived pair-transfer rates contain the refractive contri- 
butions, including inter alia the local field factors. In the absorbing areas of 
the spectrum, the pair-transfer rates embody the exponential (Beer law) decay 
factor as well. This makes it possible to avoid the problem of potentially 
infinite total rates of the ET in an ensemble, due to the far-zone R-' factor 
featured in the pair-transfer rates. By summing up the constituent far-zone 
rates, one arrives at the rate of the spontaneous emission in the absorbing 
medium containing the proper local field factors. The result supports the 
previous phenomenological methods used to introduce local field corrections 
to the rates of spontaneous emission in absorbing media. Finally, the temporal 
aspects of the ET have been considered. A combined analysis of rate and 
nonrate regimes has been presented taking into account the influence of the 
dielectric medium on a microscopic basis. The problem of causality in the ET 
is also discussed. 

APPENDIX A. OPERATOR FOR THE LOCAL DISPLACEMENT 
FIELD 

In this appendix, we derive the mode expansion of the operator di(RX). The 
derivation is similar to that presented in Ref. 1 11. We demonstrate that the 
expansion (3.13) represents the local displacement field calculated either at a 
lattice site, or at an intersitial location. 

Consider the operator for the displacement field at a yet unspecified site Rx: 

where the mode expansion of the microscopic transverse polarization field is 
given by [ 11 11 

(for k << 2rr/a), with 

2 

GI = e''"(k + G)[e""(k + G).e")(k)] 6 3 )  
hi=] 
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where G is an inverse lattice vector. Equation (A.2) can be rewritten as 

p= 1 G 

where 
A h  

f j p ( k ’ )  = ( S S j p  - k j k p )  + $Sjp (A.7) 
h 

and k’ E k ’ l k ’ .  The sum over the inverse lattice can be represented as 

(A.8) 

where k’ is no longer restricted to the first Brillouin zone, as the summation 
over rr covers all N sites of a periodic cubic lattice. The sum over k’ in the 
square brackets can be identified as the tensor for the dipole-dipole coupling 
at a distance rtJ & Rx, the whole of Eq. (A.8) representing the familiar dipole 
sum [ 136,1371. If RX belongs to a lattice site, the term with rtt f RX = 0 is to 
be excluded from Eq. (A.8), as this contribution describes an infinite self-field. 

Consider the local field operator at either a lattice site Rx = ry or an intersi- 
tial location RX = rr + (el + e2 + e3)cr/2, where ej is a unit Cartesian vector. 
In such a situation, the terms with rtf = rt and rt‘ = -r5 2Rx compensate 
each other at small distances rr f. RX in Eq. (A.8). The sum over rc may then 
be replaced by an integral in Eq. (A.8), so that one finds, from the resultant 
double Fourier integral 

e - i k . ( r g ~ i R x )  hik.Rx e 
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Here the contribution from the second term of Eq. (A.7) has been excluded, 
as this term generates a S function at rtl & Rx = 0. Since e(*)(k) I k for 
h = 1 ,  2, substituting Eq. (A.9) into (A.6), one arrives at 

(A. 10) Aj (A) (k) = ie(*)(k) 

This equation, together with Eq. (A.4), leads to 

where p'(Rx) is the transverse part of the operator for the averaged (macro- 
scopic) polarization field. Furthermore, since [ 1 111 

the relationships (A . l ) ,  (A.ll) ,  and (A.12) yield the required mode expan- 
sion (3.13) of the operator for the local displacement field. 

APPENDIX B. CALCULATION OF THE TENSOR e, ( w ,  R) FOR 
THE RETARDED RDDI IN A DIELECTRIC MEDIUM* 

Calling on the mode expansion (3.13) for the local operator d'(Rx) (with 
X = D, A )  in a dielectric medium, the RDDI tensor (2.19) takes the form 

1 [ (111) + ( 1 1 1 )  

eik.R ,-ik.R 

wk - w -  is wk + w -  is  

*This appendix has been arranged while preparing Ref. 110. However, it has not been 
included into the final (revised) version of ref. [110]. 
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Replacing the sum over k by an integral, this equation can be represented as 

03.3) 

where, for convenience, the sign of the infinitesimal s has been reversed in 
the nonresonant energy denominator. This does not alter the integral, since the 
frequency w is considered to be a positive quantity. The angular integration 
may now be accomplished to yield 

1 eik.R ,-ik.R + 
w$) - w - i s  w p  + 0 + is x / dk  [ 

with 

) (B.5) f ( z ) =  8n’iEoR “ 3n(z)  l 7  ( z - w - i s  + z + w + i s  
1 n(2>I2 + 2 - 1 

where we have utilized Eq. (3.14) for wp ’ ,  as well as the fact that up) = 

d w r )  ldk . 
Substituting z = m y ’ ,  we find that Eq. (B.4) takes the form 

> f  (z)dz (B.6) 
ioi (i)R/c - ei:rz(z)R/c A(w,R)  = (e -  s, 

where summation over polariton bands m = 1 ,  2 ,  . . . , M + 1 has been accom- 
modated by choosing the appropriate integration contour C (shown in Fig. 6a)  
that covers the real axis from 0 to +oo, excluding the bandgap areas (see also 
Fig. 4). In other words, the contour C comprises segments restricted by the 
upper and lower boundaries of polariton bands, for which a ($ ) )  = 00 and 

(ni) n(z- ) = 0, respectively. 
Since f (-2) = - f ( z ) ,  the contour of integration may be expanded 

symmetrically to the negative values of z to yield 
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0 Rez 

--w-/s 

\ J 
ez 

(d) 
FIGURE 6. Contours of integration. (a) Integration contour C featured in Eq. (B.6). The 

contour comprises a number of solid lines representing a set of M + 1 polariton bands, where 
M is the number of molecular frequencies accommodated ( M  = 2 in the figure). The upper and 
lower boundaries of the individual bands are the branchpoints of the integral at z = z y )  and 
- _  - ( ? I l l  - c _  . for which /z(zy’) = co and ,?(;!?’I = 0. respectively. Arrows refer to the direction 
of integration. (b)  Symmetric expansion of the original contour C to the negative values of I ,  
producing the contour C I . The branchpoints are extended symmetrically to the negative values 
of: as well. (c,d) Subsequent extension of the contour CI  to either positive (c) or negative (d )  
imaginary half-planes. giving the new conlours C2 or C3, respectively. The hatched lines are the 
branchcuts that connect the neighbouring branchpoints : = ~ Z Y - ~ )  and : = *z?’. 

where the new contour C1 is as shown in Fig. 6b. To convert the integration 
contour C1 into the closed one, we choose the branchcuts connecting the 
neighboring branchpoints z = k+ and z = &z- . The contour may then 
be extended over either upper or lower imaginary half-planes to include 
the bandgap areas, subsequently closing it up with a large semicircle, as 

( 1 1 1 - 1 )  (111) 
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demonstrated in Fig. 6c, d.  The resulting contours C2 and C3 will apply, 
respectively, to the first and second terms of Eq. (B.7), giving 

The extension of the integration contours does not alter the value of the inte- 
gral. Integrals over the large semicircles go to the zero, as the integration 
radius goes to the infinity. Next, the sign of the refractive index n(z )  = 
is opposite at the opposite edges of the branchcuts, so that both terms of 
Eq. (B.8) cancel each other, performing an extra integration the over the 
bandgap areas. Finally, the integrals over the (infinitely) small semicircles 
around the branchpoints are mutually canceled in an obvious way as well. 

The residuum theorem may now be applied. Calculating residues at z = 
fw f is, one finds 

where the refractive index n [defined by Eqs. (3.15) and (3.16)] is to be calcu- 
lated at the frequency w + i s  containing a small imaginary part, as expressed 
by Eq. (3.19). In an absorbing region, the molecular frequencies 52, form a 
quasicontinuum of vibrational, rotational, or other sublevels. The integration 
contour contains then a densely spaced set of tiny bandlines that reduces to a 
quasicontinuum of quasidots, as the spacing between the frequencies 52, goes 
to zero. Under this condition, retention of the infinitesimal s + +O plays 
an important role in the subsequent procedure of smoothing of the quasidis- 
Crete molecular spectrum. In such a procedure, the quantity s is considered 
to be larger than a characteristic distance of separation between the molec- 
ular frequencies 52,. As a result, a finite imaginary part in” appears in the 
refractive index (3.19). 

Finally, calling on Eqs. (B.2) and (B.9), one arrives to required result (3.18) 
for the tensor & j ( w ,  R). Note that the branch-dependent group velocity .up) = 

dwp)/dk no longer features in the final result for @j(w,  R), since it has been 
canceled by making a substitution z = cop) in Eq. (B.6). 
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